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Abstract-- The speed of ar ithmetic calculations in
configurable hardware is limited by carr y propagation even
with the dedicated car ry propagation hardware found in
recent FPGAs. This paper proposes and evaluates an
approach called delayed addition that reduces the carr y-
propagation bott leneck and improves the performance of
ar ithmetic calculations. Our approach employs the idea used
in Wallace trees to store the results in an intermediate form
and delay addition until the end of a repeated calculation such
as accumulation or dot-product; t his effectively removes carr y
propagation overhead from the calculation’s critical path.

We present both integer and floating-point designs that use
our technique. Our pipelined integer multiply-accumulate
(MAC) design is based on a fair ly traditional multiplier
design, but with delayed addition as well .  This design achieves
a 66MHz clock rate on an XC4036XL-2 FPGA.  Next, we
present a 32-bit f loating-point accumulator based on delayed
addition.  Here delayed addition requires a novel alignment
technique that decouples the incoming operands from the
accumulated result.  A conservative version of this design
achieves a 33 MHz clock rate. We also present a 32-bit
floating-point accumulator design with compiler-managed
overflow avoidance that achieves a 66MHz clock rate.  Finally,
we present an application of delayed addition techniques to
solve a system of linear equations using conjugate gradient
method. These designs and applications demonstrate the
utili ty of delayed addition for accelerating FPGA calculations
in both the integer and floating-point domains.

Index Terms-- FPGA, delayed addition, Wallace tree,
multiply-accumulate (MAC)

I. INTRODUCTION

  When an arithmetic calculation is carried out in a RISC
microprocessor, each instruction typically has two source
operands and one result. In many computations, however,
the result of one arithmetic instruction is just an
intermediate result in a long series of calculations. For
example, dot product and other long summations use a long
series of integer or floating-point operations to compute a
final result. While FPGA designs often suffer from much
slower clock rates than custom VLSI, configurable
hardware allows us to make specialized hardware for these
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cases; with this, we can optimize the pipelining
characteristics for the particular computation.

A typical multiplier in a full-custom integrated circuit has
three stages.  First, it uses Booth encoding to generate the
partial products.  Second, it uses one or more levels of
Wallace tree compression to reduce the number of partial
products to two. Third, it uses a final adder to add these two
numbers and get the result.  For such a multiplier, the third
stage, performing the final add, generally takes about one-
third of the total multiplication time [8, 9]. If implemented
using FPGAs, stage 3 could become an even greater
bottleneck because of the carry propagation problem. It is
hard to apply fast adder techniques to speed up carry
propagation within the constraints of current FPGAs. In
Xili nx 4000-series chips, for example, the fastest 16-bit
adder possible is the hardwired ripple-carry adder [19]. The
minimum delay of such an adder (in a -2 speed grade
XC4000xl part) is more than four times the delay of an
SRAM-based, 4-input look-up table that forms the core of
the configurable logic blocks. Since this carry propagation
is such a bottleneck, it impedes pipelining long series of
additions or multiplies in configurable hardware; the carry-
propagation lies along the critical path, it determines the
pipelined clock rate for the whole computation. Our work
removes this bottleneck from the critical path so that stages
1 and 2 can run at full speed. This improves the
performance of inner products and other series calculations.

As an example, consider the summation C of a vector A:

Our goal is to accumulate the elements of A without paying
the price of 99 serialized additions. We observe that in
traditional multiplier designs (e.g., the multiply units of
most recent microprocessors [15, 16]), Wallace trees are
used to “accumulate” the partial products. Our work
proposes and evaluates ways in which similar techniques
can be used to replace time-consuming additions in series
calculations with Wallace tree compression. The technique
is applicable to configurable hardware, because in a
dynamically configurable system it is practical to consider
building specific hardware for inner products or other
repeated calculations. The technique is effective for
configurable hardware because it removes addition’s carry
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propagation logic from the critical path of these
calculations, thus allowing them to be pipelined at much
faster clock rates.

By using Wallace trees to accumulate results without carry
propagation overhead, we can greatly accelerate both
integer and floating-point calculations. We demonstrate our
ideas on three designs.  The first design is an integer unit
that performs pipelined sequences of MAC (multiply-
accumulate) operations; this pipelined design operates at a
37MHz clock rate. The second and third designs perform
floating-point accumulations (i.e., repeated additions) on
32-bit IEEE single-precision format numbers. One of them
uses a conservative stall technique to respond to possible
overflows; it operates at 33MHz.  The other sign relies on
compiler assistance to avoid overflows by breaking
calculations into, chunks of no more than 512 summation
elements at a time.  This approach yields a 66MHz clock
rate for 32-bit IEEE single-precision summations.  These
clock rates indicate the significant promise of this approach
in implementing high-speed pipelined computations on
FPGA-based systems. We demonstrate this promise on an
example application: solving linear equations using
conjugate gradient method.

The remainder of this paper is structured as follows. Section
II introduces the basic idea of Delayed Addition
calculation, and presents a design for a pipelined integer
multiply-accumulate unit based on this approach. Section
III moves into the floating-point domain, presenting a
design of a pipelined 33MHz 32-bit floating-point
accumulator with delayed addition. Building on this basic
design, Section IV then presents the 66MHz floating-point
accumulator with compiler-managed overflow avoidance,
which is used to form the MAC unit in our application to
solve linear equations using conjugate gradient method in
section V. Section VI discusses issues of rounding and error
theory related to these designs, Section VII presents related
work, and Section VIII provides our conclusions.

II. DELAYED ADDITION IN A PIPELINED INTEGER

MULTIPLY-ACCUMULATOR

A. Overview

A multiply-accumulator unit consists of a multiplier and an
adder. For adders of 16 bits or less implemented in Xilinx
FPGAs, the hardwired ripple-carry adder is the fastest. For
adders more than 16 bits long, a carry-select adder is a good
choice for fast addition in FPGA. It uses ripple-carry adders
as basic elements and a few multiplexers to choose the
result. Thus it can still utilize the hardwired ripple-carry
logic on Xilinx FPGA to achieve relatively high speed.

Most of the multipliers that have been implemented so far
in FPGAs are based on bit-serial multipliers [2, 14]. This is
because bit-serial multipliers take much less area than any
other kind of multipliers. Since they have a regular layout,

it is easy to map on a FPGA to achieve very high clock rate.
However, bit-serial multiplier requires a very long latency
to produce a result. For two multiplicands of M and N bits
long, it takes M+N clock cycles to get the product [7].
Although some implementations have tried to relieve this
problem by multiplying more than one bit per cycle [2], we
know of no such implementations with an overall
throughput of more than 10MHz.

Bit-array multipliers also have a regular layout, which
makes it easy to map on FPGA and to achieve high clock
rates [3]. Unlike bit-serial multipliers, they produce one
product every cycle. Thus they can achieve a very high
throughput at the price of large area cost. In the case of a
32-bit integer MAC with a 64-bit final result, we would
expect to have a bit-array multiplier of 63 pipeline stages
for multiplication and one for accumulation. Thus we
would need a 64 × 64 CLB matrix to implement it [3].
However, CLB matrix of this size can barely fit into the
largest Xilinx part available (XC40125XV) now (as of
Sept. 1998) [20], which would involve a huge cost.

Our design, as we will see next, has comparable
performance to bit-array multiplier for vector MAC and is
much more area efficient.

B. Background on Wallace Trees

Before continuing on detailed designs, we will first give a
brief review on some basics of Wallace tree [10] and its
derivatives [11]. One level of Wallace tree is composed of
arrays of 3-2 adders (or compressors). The logic of a 3-2
adder is the same as a full adder except the carry-out from
the previous bit has now become an external input. For each
bit of a 3-2 adder, the logic is:

S[i] = A1[i] ⊕ A2[i] ⊕ A3[i];
C[i] = A1[i]A2[i]+ A2[i]A3[i] + A3[i]A1[i];
For the whole array, S+2C = A1 + A1 +A3

S and C are partial results that we refer to in this paper as
the pseudo-sum. They can be combined during a final

Fig 1. (a)  An array of n 3-2 adders.

a1[n] a2[n] a3[n]

s[n]   c[n]

a1[1] a2[1] a3[1]

s[1]   c[1]

Fig 1. (b) An array of n 4-2 adders.

a1[n] a2[n] a3[n] a4[n]
cout    cin

s[n]   c[n]

a1[1] a2[1] a3[1] a4[1]
cout    cin

s[1]   c[1]
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addition phase to compute a true sum. The total number of
inputs across an entire level of a 3-2 adder array is the same
as the bit-width of the inputs. Fig. 1 (a) shows the layout of
such an array example. In some Wallace tree designs, 4-2
adder arrays have also been used, because they reduce the
number of compressor levels required [11]. Each bit of such
an array is composed of a 4-2 adder. The typical logic is:

Cout[i] = A1[i]A2[i] + A2[i]A3[i] + A3[i]A1[i] ;
S[i] =A1[i] ⊕ A2[i] ⊕ A3[i] ⊕ A4[i] ⊕ Cin[i] ;
C[i] = (A1[i] ⊕ A2[i] ⊕ A3[i] ⊕ A4[i])Cin[i] +
¬(A1[i] ⊕ A2[i] ⊕ A3[i] ⊕ A4[i])A4[i] ;
For the whole array, S + 2C = A1 + A2 + A3 + A4

Fig. 1 (b) shows the layout of an array example using 4-2
adders. At first glance, one might initially think that Cin and
Cout are similar to the carry-in and carry-out in the ripple-
carry adders. The key difference, however, is that Cin does
not propagate to Cout. The critical path of an array of 3-2 or
4-2 adders is in the vertical, not horizontal direction.
Furthermore, the logic shown maps well to coarse-grained

FPGAs. With Xilinx 4000-series parts, we can fit each S or
C, for either a 3-2 or 4-2 adder, into a single CLB using the
F, G, and H function generators.

C. Design of Integer MAC with Delayed Addition

For an integer MAC unit, the implementation is
straightforward because integers are fixed-point and are
therefore aligned. Our design looks exactly like a traditional
multiplier design with Booth encoding and Wallace tree
except that a 4-2 adder array is inserted into the pipeline
before the final addition. To achieve accumulation, we
repeatedly execute:

Pseudo-sum = Pseudo-sum + (the final two partial
products for each multiplication)

Recall that pseudo-sum refers to the S and C values
currently being computed by a 3-2 or 4-2 adder array,
awaiting the final addition that will calculate the true result.
Fig. 2 shows a block diagram of our implementation.

4-2 adder array 4-2 adder array 4-2 adder array 4-2 adder array FF

B B B B B B B B B B B B B B B B B

4-2 adder array 4-2 adder array FF

4-2 adder array FF

3-2 adder array

4-2 adder array

64-bit adder

Booth encoders

Wallace tree level 1

Wallace tree level 2

Wallace tree level 3

Wallace tree level 4

Compressor

Final Adder
(not pipelined)

Fig. 2 Integer MAC with delayed addition.

cycle # 1 2 3 4 5 6 7 8 9 10 11 Combinational
Input 1 BTH W1 W2 W3 W4 CPR
Input 2 BTH W1 W2 W3 W4 CPR
Input 3 BTH W1 W2 W3 W4 CPR
Input 4 BTH W1 W2 W3 W4 CPR
Input 5 BTH W1 W2 W3 W4 CPR
Input 6 BTH W1 W2 W3 W4 CPR Final Addition

Fig. 3 Pipeline diagram of Integer MAC: ∑
=

5

0
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i
iBiA . The stages marked: BTH (Booth encoders), W1 (Wallace tree level 1), W2

(Wallace tree level 2), W3 (Wallace tree level 3), W4 (Wallace tree level 4) and CPR (Compressor) refer to the six pipeline
stages shown in Figure 2. The final addition is performed only once per summation and does not impact the pipelined clock rate.
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Each level of a Wallace tree has a similar delay, and this
delay is also similar to that of a Booth encoder. Thus, as
shown in Fig. 2, a natural way to pipeline this design is to
let each level of logic (above the dotted line) be one of the
pipeline stages. The well-matched delays make for a very
efficient pipelined implementation. The final compressor,
just above the dotted line, stores and updates the pseudo-
sum every cycle. When the repeated summation is
complete, a final add (not part of the pipeline) converts this
intermediate form to a true sum result.

The pseudo-sum is updated each cycle, but the final adder
is only used when the full accumulation is done. Therefore,
it is not one of the pipeline stages, but rather constitutes a
post-processing step as shown in Figure 3.  With this
structure, the carry propagation time for the final addition is
no longer on the critical path that determines the clock rate
of the pipelined MAC design. For sufficiently long vectors,
this final addition time, done only once per entire
summation rather than once per element, will be negligible
even compared to the faster vector MAC calculations of
this design.

D. Design Synthesis Results

For all the designs in this paper, we used the Synopsys
fpga_analyzer tool (1997.08) to generate a .sxnf file from
our VHDL input and we used Xilinx Foundation tools
(V1.3) for the rest of the synthesis. In order to remove the
bottleneck at the pad inputs, we added an extra pipeline
stage before the booth encoder to buffer the chip inputs.
After several initial attempts, we targeted our design at the
speed of 66.7 MHz and specified this information in the
timing constraint file (.pcf file), where we listed this
requirement for all the critical paths. The PAR (placement
and routing) worked through successfully and Timing
Analyzer gives all the timing information after our design is
completely placed and routed. The synthesis results we get
for the above design are listed in Table 1. Most notably, our
design fits in a Xilinx 4036 part and achieves the targetted
clock rate of 66.7 MHz.  The final addition delay, done
once per vector as a post-processing step, takes roughly
40ns or nearly 3 cycles.

To demonstrate the advantage of delayed addition, we also
tried to implement an integer MAC composed of a
traditional integer multiplier and an adder. However, the
design was too big to fit on one XC4036 chip, so we built
an integer multiplier on the chip instead. To trade off
between pipeline speed and area cost, we used the carry-

select adder for final addition and divided it into two
pipeline stages. In the first stage, three 32-bit additions are
carried out in parallel, one for the lower 32 bits and two for
the upper 32 bits. In the second stage, we select the upper
32 bits between the two results by the carryout from the
lower 32-bit addition. The synthesis result of this design is
also listed in Table 1. Timing analysis shows it is exactly
the two pipeline stages of the adder that are the bottleneck
of the whole design. However, further pipelining the adder
will involve a much larger area cost and is not likely to give
any performance gain due to the long wiring delays in
FPGA.

From table 1, we can see that by using the delayed addition
algorithm, we have achieved a faster pipeline speed than the
traditional multiplier and accumulator design. According to
the data above, an IMAC with the delayed addition would
require

7 + (N-1) + 3 = N + 9
cycles for an integer inner product of length N to complete,
where 7 stands for the number of pipeline stages, 3 stands
for the cycle time for the final addition. The overall latency
for this design would thus be 15ns × (N + 9) = (15N +
135)ns. Since we could only implement the multiplier on
one XC4036 chip in the traditional design, we have to add
another two pipeline stages for the accumulator in our
calculation. Thus the overall latency for an inner product of
size N using traditional IMAC would be

10 + (N-1) = N + 9
cycles as well. Since the cycle time in the delayed addition
design is 20% shorter than the traditional design, the
delayed addition design has a performance speedup of
120%.

III. USING DELAYED ADDITION IN A FLOATING-POINT

ACCUMULATOR

Multiply and accumulation also appears frequently in
floating-point applications. For example, of the 24
Livermore Loops, 5 loops (loop 3, 4, 6, 9, 21) are basically
long vector inner-product-like computation [17]. In certain
applications, such as the conjugate gradient example in
Section V, multiply and accumulation dominates the whole
computation process. Thus it would be ideal if we could
also use our delayed addition techniques to build a floating-
point multiply and accumulator to speed up this kind of
computations like what we did in the integer case.

However, a floating-point MAC unit uses too much area to
fit on a single FPGA chip. The major reason is that floating-

Designs Xilinx
part number

CLB
matrix size

CLBs
used

Flip-flops
used

Pipeline
stages

Speed
(MHz)

Final Addition
Delay (ns)

IMAC (delayed addition) XC4036xlhq208-2 36 × 36 1287 1866 7 66.7 38.27
Traditional Integer multiplier XC4036xlhq208-2 36 × 36 1243 1836 8 54.5 N/A

Table 1: Synthesis results for pipelined integer MAC with delayed addition and pipelined adder.
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s exponent fraction
31 30 23 22 0

Fig. 4 IEEE single precision format.

S is the sign; exponent is biased by 127.
If exponent is not 0 (normalized), mantissa = 1.fraction
If exponent is 0 (denormalized), mantissa = 0.fraction

point accumulation is a much more complex process than
the integer case, as explained below. Rather than a MAC
unit, we instead focus here on a floating-point accumulator
using delayed addition.  We first give a brief review of
traditional approaches, then describe how we have used
delayed addition techniques to optimize performance.

A. Traditional Single-Precision Addition Algorithm

As shown in Fig.4, a traditional floating-point adder would
first extract the 1-bit sign, 8-bit exponent and 23-bit fraction
of each incoming number from the IEEE 754 single
precision format. By checking the exponent, the adder
determines if each incoming number is denormalized. If the
exponent bits are all “0” , which means the number is
denormalized, the mantissa is 0.fraction, otherwise,
mantissa is 1.fraction. Next, the adder compares the
exponents of the two numbers and shifts the mantissa of the
smaller number to get them aligned. Sign-adjustments also
occur at this point if either of the incoming numbers is
negative. Next, it adds the two mantissas; the result needs
another sign-adjustment if it is negative. Finally the adder
re-normalizes the sum, adjusts the exponent accordingly
and truncates the resulting mantissa into 24 bits by the
appropriate rounding scheme [2].

The above algorithm is designed for a single addition rather
than a series of additions. Even more so than in the integer
case, this straightforward approach is diff icult to pipeline.
One problem lies in the fact that the incoming next-
element-to-be-summed must be aligned with the current
accumulated result. This adds a challenge to our delayed
addition technique since we do not keep the accumulated
result in its final form, and thus cannot align incoming
addends to it. Likewise, at the end of the computation, re-
normalization also impedes a delayed addition approach.

For these two problems, we have come up with two
solutions:

1.  Minimize the interaction between the incoming number
and the accumulated result. To achieve this, we self-align
the incoming number on each cycle, rather than aligning it
to the Pseudo-sum.  Section 1) will describe self-alignment
in more detail .

2.  Use the delayed addition for accumulation only.
Postpone rounding and normalization until the end of the
entire accumulation. This approach is also used when

implementing MAC in some full-custom IC floating-point
units [12].

B. Our Delayed Addition Floating-Point Accumulation
Algorithm

This section describes our approach for delayed addition
accumulation in floating-point numbers.  Similar to what
we did in Integer MAC, we repeatedly execute pseudo-sum
= pseudo-sum + incoming operand. Each incoming operand
is an IEEE single-precision floating-point number, with 1-
bit sign, 8-bit exponent (EXP[7-0]) and 23-bit fraction. We
consider the exponent bits as three subfields: high-order
exponent, a decision bit and low-order exponent for
simplicity of discussion. High-order exponent refers to the
EXP[7-6], the decision bit is EXP[5] and low-order
exponent refers to EXP[4-0]. We take different actions
according to the value of these three fields.

Like the traditional adder, our design first extends the 23-bit
fraction into 24-bit mantissa. However, we choose not to
align the incoming operand and the current pseudo-sum
directly because that way the incoming operand interacts
with the accumulated pseudo-sum throughout the alignment
process, which makes the further pipelining impossible.
Thus the alignment process could easily become the
bottleneck of the whole pipeline if we still adopt the
traditional alignment method. Instead, we keep summary
information about the high-order exponent of the
accumulated result, and align its mantissa to a fixed
boundary according the its low-order exponent. We refer to
this technique as "self-alignment" and describe it below.

1) Self-Aligning Incoming Operands

There are two ways to align two floating-point numbers.
The common way is to shift the mantissa of one number by
d bits, where d stands for the difference of the exponents of
the two numbers. Another way is to instead shift both
mantissas to some common boundaries. Traditional
floating-point adders use first method. In our case,
however, the second way is used since we would like to
minimize the interactions of the incoming number and the
accumulated pseudo-sum.

We could have fully “unrolled” the incoming operand and
the accumulated pseudo-sum by left-shifting their mantissas
the number of bits denoted by their exponents except for the
huge area cost involved. In that case, the shifted mantissa
would be as long as 255(the largest 8-bit exponent possible)
+ 24(the width of single precision mantissa) = 279 bits.
Because of this, we only left-shift the mantissa the number
of bits denoted by the low-order exponent (EXP[4-0]) in
our design. Since low-order exponent is a 5-bit quantity, the
largest decimal it can express is 31. Thus, by left-shifting to
account for low-order bits, we have extended the width of
our mantissa to 55 bits.  Although this is still wide, our
design can fit into 910 CLBs on a Xil inx 4036 as we will
see later, and this gives us the abili ty to garner truly high-
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performance single-precision floating-point from an FPGA-
based design.

In the above self-aligning process, we did not take into
consideration of the high-order exponent (EXP[7-6]) and
decision bit(EXP[5]). Thus the shifted mantissa of the
incoming operand is still not perfectly aligned with that of
the current pseudo-sum. We used the fact below to solve
this remaining problem. In single-precision IEEE floating-
point, the mantissa is only 24 bits wide.  Thus, if we try to
add two originally normalized numbers that differ by more
than 224 times, alignment will cause the smaller of the two
numbers to be "right-shifted" out of the expressible range
for this format.  For example, 226 + 22 = 226 in single-
precision calculations. Our algorithm efficiently uses this
fact to identify the similar cases and handles them
appropriately.

Once self-aligned, the incoming number can be thought of
as mi’ (the 55-bit mantissa) × 264 ⋅ EXP[7-5]. Meanwhile, our
pseudo-sum is stored as mp’ (the 64-bit mantissa) × 264 ⋅

EXP[7-5]. If the current pseudo-sum and the incoming operand
are identical in decision bit (EXP[5]),  then if the high-
order exponent (EXP[7-6]) of the incoming number is
bigger than that of the pseudo-sum, the mantissa of the
pseudo-sum will be shifted out of the expressible range as
long as it is no more than 64 bit wide. In this case, we
simply replace the current pseudo-sum by the incoming
operand. On the other hand, if the high-order exponent of
the incoming number is smaller than that of the pseudo-
sum, the incoming number will be shifted out of the
expressible range since mi’  is less than 64 bit wide. Thus
we simply ignore the incoming operand. The compression
will only take place when high-order exponent of the
pseudo-sum is equal to that of the incoming number.

Note that if the current pseudo-sum and the incoming
operand are not identical in EXP[5], then determining the
appropriate response would actually require subtracting the
two full exponents to determine by how much they differ.
This would pose a bottleneck in the pipeline; thus we hope

to avoid this scenario entirely. This leads to our design
described in Section 2) below.

2) Compressor Implementation Details

In order to avoid the undesirable scenario of unequal
decision bits, we actually keep two running pseudo-sums.
One compressor, referred to as compressor-0, takes care of
incoming operands whose decision bit is “0” and the other
compressor (compressor-1) handles those which has a
decision bit of “1” . We simply shunt each incoming
operand to the appropriate compressor as shown in Figure
6. In this way, we can always take operations corresponding
to the high-order exponent as described above. The two
pseudo-sums from compressor-0 and compressor-1 are both
added together during the final add stage as a post-
processing step following the pipelined computation.

Figure 5 shows the design layout for one of the two
compressor units in the design, namely compressor-0.
Compressor-1 has essentially identical structure, except that
it cross-connects with adder-0 as shown in Figure 6. The
running pseudo-sum is stored as the Wallace tree's S and C
partial results in the 64-bit registers shown.

Were it not for the possibili ty of either pseudo-sum
overflowing, the design would now be complete.  Since the
accumulated result may exceed the register capacity, we
have also devised a technique for recognizing and
responding to potential pseudo-sum overflows. Since we
are not doing the full carry-propagation of a traditional
adder, we cannot use the traditional overflow-detection
technique of comparing carry-in and carry-out at the highest
bit. In fact, without performing the final add to convert the
pseudo-sum to the true sum, it is impossible to precisely
know a priori when overflows will occur.

Our approach instead relies on conservatively determining
whenever an overflow might occur, and then stall ing the
pipeline to respond. We can conservatively detect possible
overflow situations by examining the top three bits of the S

55-bit register for self-aligned Incoming number

3-2 adder array 0

 To 64-bit adder 0

3-2 adder array 1

MUX 10 P

64-bit register for pseudo-sum

E

MUX 10 MUX 10
GS

From 64-bit adder 1
11

Fig. 5 Compressor design (compressor
0)

GS is the “ stall ” signal generated by the
control unit.

P indicates if the top 2 bits of the incoming
number’s exponent is bigger than that of
the accumulated S and C or not.

E indicates if the top 2 bits of the exponent
of accumulated S and C is bigger than that
of the incoming number or not, E and other
control signals together serve as the clock
enable signal for flip-flops S and C.
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and C portions of the pseudo-sum and the sign bit from the
55-bit incoming operand.  We have used espresso to form a
minimized truth table generating the GlobalStall signal (GS
in Fig. 4) as a Boolean function of these 7 bits.  As shown
in Fig. 5, the GlobalStall signal is used as the clock enable
signal on the first three pipeline stages; when it is asserted,
the pipeline stalls and no new operands are processed until
we respond to the possible overflow.

Since the design's two compressors are summing different
numbers, they will of course approach overflow at different
times since only one number is added a time. Our design,
however, does overflow processing in both compressors
whenever either compressor's ¬GlobalStall signal is
asserted.  This coordinated effort avoids cases where
overflow handling in one compressor is immediately
followed by an overflow in the other compressor and it
potentially reduces the number of stalls needed, too, since
we process these two pseudo-sums in parallel during the
stall .
When a stall occurs, our response is to sum the S and C
portions of each compressors' pseudo-sum using the 64-bit
adders shown in the Stall Response box in Figure 5.  This is
a traditional 64-bit addition incurring a significant carry

propagation delay, but since it occurs during the stall-time,
it does not lie on the critical path that determines the
design's pipelined clock rate. (As long as stalls are
infrequent, it does not noticeably impact performance.) The
decision of what to do with the newly formed sum depends
on its value, i.e., it depends on whether (i) an overflow truly
occurred or (ii ) we were overly conservative in our stall
detection. In cases where an overflow does occur, the value
of EXP[5] in the pseudo-sum will change.  Recall that
compressor-0 is to handle the accumulation of incoming
operands whose EXP[5] bit is 0, with a pseudo-sum whose
EXP[5] bit is also 0.  If the pseudo-sum overflow causes
EXP[5] to change value, then we need to pass the newly-
computed full sum over to the other compressor. This is
why the design in Fig. 6 includes the cross-coupled
connections of adder-1 to compressor-0 and vice versa.
When we are overly conservative in predicting a stall ,
EXP[5] will not change values.  In this case, we retain the
pseudo-sum in its current form.

C. Experimental Results

Figure 6 shows the block diagram of this design and Table
2 summarizes the synthesis results. Because this is a

Compressor 0
(adder not included)

Compressor 1
(adder not included)

64-bit adder 0 64-bit adder 1

Shift by EXP[4]-EXP[3].
Complement the mantissa

if s = 1

Shift by EXP[2] - EXP[0]

Read in and generate 24-bit
mantissa

Pipeline Stage 1

Pipeline Stage 2

Pipeline Stage 3

Align the numbers from
adder 0 and adder1

Final 64-bit adder

Normalize the result

Final Addition and
Normalization
(Not pipelined)

Pipeline Stage 4
Overflow

Detection &
Handling

Fig. 6 Floating-point accumulator pipelining scheme

GlobalStall

Pipelined Portion

Stall response

Combinational logic
(Not pipelined)

Xili nx part number CLB matrix
size

CLB
used

Flip-
flops

Pipeline
stages

Speed
  (MHz)

Final Add and
Norm. Delay (ns.)

XC4036xlhq208-2 36 × 36 910 378 4 33 72.4

Table 2: Synthesis results for floating-point accumulation with delayed addition
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floating-point accumulator rather than a MAC unit, it is
actually smaller than the integer MAC unit discussed in the
previous section.  Using 4 pipeline stages, our design
attains a clock rate of 33MHz.  Because of extra
bookkeeping required to renormalize the final result, the
post-processing delay in this design is larger.  At 72.4ns,
this delay corresponds to roughly 2.4 of the pipelined clock
cycles.  As in the integer case, this difference between the
final add time and the pipelined clock cycle time highlights
the utili ty of delayed addition.  By pull ing this delay off the
vector computation’s critical path, we pay for it only once
per vector, not on each clock cycle. According to the data
above, using the same analysis as in section III and
assuming there is no stall during the computation, we will
have to wait

4 + (N-1) + 3 = N + 6
cycles for an accumulation of length N to complete.

Since each stall causes a 3-cycle bubble in the pipeline and
too many stalls may eventually incur expensive system
interrupt, we also want to make sure how frequent stalls
might be when we accumulate N numbers. We did two
simulations. Simulation I used 100,000 uniformly
distributed floating-point numbers with their absolute
values ranging from 2-31 to 231. Because positives and
negatives are balanced, we did not even meet one case of
stall ing. Simulation II uses 100,000 uniformly distributed
positive floating-point numbers ranging from 0 to 231, and
we only found 24 cases of stall ing. Summing these 100,000
numbers would need 100,006 cycles, so that 72 stall cycles

are negligible. From this experiment we conclude that
overflow and stall ing pose littl e problem for most
applications, as long as we have a reasonably large local
buffer for operands. As we will show and exploit in Section
IV, we can prove that for vectors shorter than 512 elements,
there is no chance of stall ing at all .

IV. FLOATING-POINT ACCUMULATOR WITH COMPILER-
MANAGED OVERFLOW AVOIDANCE

The main reason why we have the overflow detection and
handling logic in the previous design is because of the
possible overflow of the pseudo-sum after a number of
operations. However, the stall -related logic is very
complicated and has a big area cost. Worst of all , it sits on
the critical path of our design and slows down the pipeline
speed. To avoid the area and speed overhead due to
overflow detection and handling, we present a different
style design here. This design omits overflow handling by
relying on the compiler to break a large accumulation into
smaller pieces so that overflow is guaranteed not to occur
when each of these pieces is executed.

Avoiding area overhead for stall handling is desirable, but
we will not have much gain in our design if we have to
break an accumulation into very small pieces. Our goal is to
determine a bound of how often the stall will occur. The
largest incoming mantissa that can be fed into one
compressor is 11…1100…00 (the first 24 bits are ‘1’s and

Compressor 0
(adder not included)

Compressor 1
(adder not included)

Pipeli ne Stage 5

Shift by exp[4] . Complement
the mantissa i f s = 1

Shift by exp[3] and exp[2]

Read in and generate 24-bit
mantissa

Shift by exp[1] and exp[0]

Pipeli ne Stage 1

Pipeli ne Stage 2

Pipeli ne Stage 3

Pipeli ne Stage 4

4-2 compressor array
take S and C from both

compressors

Ali gn the S and C from
adder 0 and adder1

Final 64-bit adder

Normali ze the result

Final addit ion and
normali zation

Fig. 7 Floating-point accumulator with compi ler-managed overf low avoidance
pipeli ning scheme

Pipelined Portion

Combinational logic
(not pipelined)
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the rest 31 bits are ‘0’s). This is less than 255. Thus if the
pseudo-sum is stored in an n-bit (n > 55) register, we may
have an overflow every 2n-55 accumulations. We can use
this formula to choose a suitable n for specific applications.

In this design, we choose the pseudo-sum width to be 64 as
in the design from Section III . Since 64 − 55 = 9, overflows
may occur every 29 = 512 accumulations. We will rely on
the compiler to break summations into 512-element vectors.
However, since we no longer need the overflow checking
and handling in this design, all the related components in
our previous design can be removed and the two 64-bit
adders below the compressors in Figure 4 are replaced by
an array of 4-2 adders. This also greatly simplifies the
control logic on the critical path and enables us to further
pipeline our design. Figure 7 shows a resulting 5-pipeline-
stage design.

 Synthesis results summarized in table 3 show that we have
doubled the speed of the conservative design and have
achieved a high clock rate of 66MHz. For an accumulation
of size N, we will need 5 + (N-1) + 5 = N + 9 cycles to
complete the whole computation.

V. APPLICATIONS OF DELAYED ADDITION TECHNIQUES

 
 In previous sections, we have examined MACs and
accumulations in isolation. We now evaluate the utili ty of
our approach within a larger application. Our design is
especially useful for those applications in which inner-
product computations dominate the overall execution time.
One such example is to solve a system of linear equations
using conjugate gradient method. The system of linear
equations takes the form:

 A x = b, (5.1)
 where A is a N×N matrix and x, b are 1×N vectors. Such
computations arise frequently in scientific matrix-oriented
code, such as in Space-Time Adaptive Processing (STAP)
[18, 21]. STAP is a problem for which configurable
accelerators are often explored, so a high-performance,
FPGA-based inner product unit would form the core of
such an accelerator.

A. Conjugate Gradient Method: Background

 
 The conjugate gradient method is based on the idea of
minimizing the function

 f(x) = 1
2 xTAx − bx (5.2)

 The function is minimized when its gradient ∇f = Ax − b is
zero, which is exactly the solution of (5.1).

 We can use regression to find the minimum x in (5.2). Set
the initial conditions to be

 x0 = 0 (initial solution)
 d0 = b (initial direction)
 g0 = -d0 (initial gradient) (5.3)

and iteratively calculate the following steps:

 αi = 
  i

T
i

i
T
i

dAd

dg (5.4)

 xi+1 = xi + αi di (5.5)
 gi+1 = A xi+1 − b (5.6)

 di+1 = -gi+1 + 
g A d

d A d
i
T

i

i
T

i

+1  
   

di (5.7)

until
 xi+1 − xi < err (5.8)

where err is a pre-specified error limit.

 As we can see from (5.4) to (5.7), each iteration is divided
into four steps and these four steps must be serialized since
the operation of each step relies on the full knowledge of
previous step’s result. Each step has significant parallelism,
however. The number of different kinds of calculations
required for each step is summarized in table 4. Wherever
N appears in a table entry, the corresponding operation has
N-fold parallelism.
 
The above analysis shows that using conjugate gradient
method to solve a system of linear equations is potentiall y a
good candidate for highlighting the utili ty of FPGA
computation with our specially designed accumulation
units. Next, we present a configurable computing system
that implements this application.

B. Proposed Architecture

The current configurable computing systems can be roughly
categorized into closely-coupled architectures and loosely-
coupled architectures. For closely-coupled architectures, the
configurable hardware is part of a microprocessor and is
generally treated as a special functional unit (SFU). The
SFU behaves similarly to other functional units on chip; it
also takes two operands and produces a result for each

Xili nx part number CLB matrix
size

CLB
used

Flip-
flops

Pipeline
stages

Speed
  (MHz)

Final Addition
Delay (ns)

XC4036xlhq208-2 36 × 36 839 417 5 66 73.23

Table 3:  Synthesis results of floating-point accumulation with delayed addition and compiler-managed overflow avoidance.

N-way ip a+b×c Div Sub
Eq. 5.4: αi N + 2 - 1 -
Eq. 5.5: xi+1 - N - -
Eq. 5.6: gi+1 N - - N

Eq. 5.7: di+1 N + 1 N 1 -

Table 4: Number of different operations in Equation (5.4 – 5.7)
ip stands for inner product, Div for division, Sub for subtraction.
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operation. This architecture, however, is not suitable for our
application for several reasons.

First of all , all state-of-the-art microprocessors have
floating-point multipliers and adders. Generally these
functional units are pipelined and can run at a very high
speed. Some microprocessors can even use them to form
two MAC units, like HP PA-RISC. Our SFU, on the other
hand, has a much slower speed. What’s more, as we can see
from previous discussion, it takes a lot of hardware resource
to implement a MAC unit in FPGA, which is beyond the
capabili ty of most current closely-coupled configurable
computing system.  For those that have this capabili ty, the
number of SFUs that can be implemented is very limited,
too. Thus the parallelism in the algorithms can hardly be
exploited.

Loosely-coupled configurable computing system, on the
other hand, can provide us with plenty of hardware resource
for taking advantage of the mass parallelism in applications.
In this architecture, we normally have one host machine and
multiple FPGA boards connected to the I/O bus, with 10-60
FPGAs and associated memory on each board. The host
machine configures and initializes each FPGA board and is
responsible for communication with other machines while
the FPGA boards takes care of major calculation. The host
machine starts the operation on FPGA boards after
initialization and FPGA board talks to the host machine
when the job is done by interrupt.
 
 For our design, each FPGA board will be used to
implement several MAC units, and will also contain some
local memory. We use floating-point accumulators and
multipliers to form MAC units. Since the size of the matrix
A is generally known before computation, we choose a
floating-point accumulator with compiler-managed
overflow avoidance as described in Section IV. On a
separate FPGA, we will have an 8-stage pipelined floating-
point multiplier; our design can run at 33MHz on –2 Xili nx
parts. Thus we can form a MAC unit with two floating-
point multipliers and a floating-point accumulator, with the
floating-point accumulator taking in the products
alternatively from each one of the two floating-point

multipliers each clock cycle (Fig 8). In this way, the MAC
unit can run at the full speed of the accumulator, 66MHz.
 
 Local memory on the FPGA board will help manage the I/O
data flow from the host machine to the FPGA board. It
holds the data of matrix A and the results for each iteration
including αi, xi+1, gi+1, di+1, and also provides space for
intermediate results. When solving more than one system of
linear equations simultaneously, it would be more efficient
to have two memory chips. This would allow us to have one
chip doing computation while the other one is downloading
a new system of linear equations from the host machine.
The memories would alternate their functions once the
computation is done. The communication latency between
host machine and each FPGA board will thus be totally
hidden except for the first time.
 

C. Performance of FPGA-based Conjugate Gradient
Accelerator

 
 Suppose we have L (L>2) MAC units on a FPGA board.
This FPGA board is thus capable of processing all the
multiplication and accumulation in (5.4) – (5.8) except for
the division, which is handled by CPU via interrupt. To
simplify the calculation, we assume the compiler guarantees
N is less than 512. Thus we don’ t have to worry about
breaking long inner products into small pieces. We also
assume each MAC unit is fed from local memory at its
optimum bandwidth of two 32-bit operands at 66MHz.
Suppose we have L MAC units on the FPGA board, the
required local memory bandwidth would thus be 528×L
Meg bytes per second.
 
 Before going down to calculation details, we first define K-
ip time as the number of clock cycles needed for our MAC
unit to compute the inner product of two vectors of length
K. In our case, we need

 8 + 5 + (k-1) + 5 = k + 17
 cycles to complete such a computation, where 8 comes
from the number of pipeline stages for multiplier, 5 comes
from the number of pipeline stages for the accumulator, k-1
is the vector length minus 1, and 5 counts for the
combinational delay for the final addition.
 
 We can then calculate the latency of one iteration of
computation as follows:
 

1) Latency for step 1: Computing ααi  = 
 d Ad

dg

i
T
i

i
T
i

 
 In this step (5.4), we first calculate d Ai

T . The calculation

consists of N inner products, which requires N/L N-ip
time. Since d Ai

T  is an N×1 vector,   )( i
T
i dAd is simply one

inner product of length N, and so is g di
T

i . Thus we can

compute   )( i
T
i dAd  and g di

T
i  simultaneously within one N-

ip time. In all , we need N/L +1 N-ip time for inner

FP Multiplier
33 MHz

FP Multiplier
33 MHz

FP Accumulator
66 MHz

MUX0 1

Fig. 8 A Floating-Point MAC: The accumulator takes in
operands alternatively from the two multipliers.
The whole MAC runs at 66MHz.
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products as well as one interrupt for division. Since
d A di

T
i  will be used later as a divisor in step 4, we can save

one interrupt by sending back both αi and 1/ d A di
T

i  .

 
2) Latency for step 2: Computing xi+1 = xi + ααi di

 
 In this step (5.5), we have to compute each element of xi+1

and we have N such computations. For element j of xi+1, we
have xi+1,j = xi,j + αi di,j. This can be computed as an inner
product of vector length two. Although inner product of
size two is not economical at all using our MAC unit, it is
far better than to send these numbers back to host machine
for computation and send the results back, which would
incur a high penalty in communication time. Thus we need
N/L 2-ip time for this step.
 

3) Latency for step 3: Computing gi+1 = A xi+1 −− b
 
 In this step (5.6), we also have to compute each element of
gi+1 and we have N such computations. Since b is fixed
through iterations, we can store the –b in the memory
beforehand. Thus for element j of gi+1, we have gi+1,j = (- bj)
+ Σ    Aj,k xi,k. This can be computed as an inner product of
vector length N+1, so we need N/L (N+1)-ip time for this
step.
 

4) Latency for step 4:

Computing di+1 = -gi+1 + 
  d Ad

d  Ag

i
T
i

i
T

1i+ di

 In this step (5.7), we need N/L +1 N-ip time to calculate

i
T
i dAg  1+  for the same reason stated in (5.3.1). Since

1/ d A di
T

i  is available from step 1, we need one

multiplication time for i
T
i dAg  1+ × (1/ d A di

T
i  ). And we

need another N/L  2-ip time to get the result for the same
reason stated in 5.3.2. In all , we need N/L +1 N-ip time +
N/L 2-ip time + 1 multiplication time for this step.
 

5) Overall Performance

 By summing up the time needed in each step, we get the
time for one iteration of the computation. In all , it takes 2 (
N/L + 1) N-ip time + 1 N/L (N+1)-ip time + 2N/L 2-
ip time +1 multiplication time + 1 interrupt time for each
iteration. If we plug in the N-ip time and 2-ip time, and we
take 8 cycles to be one multiplication time, and we assume
that 1 interrupt takes 500 cycles, then we need

 (3N + 90) N/L + 2N + 542
 cycles for each iteration.
 
 Fig. 9 shows the cycle count chart for different problem
sizes and number of MAC units. From this table we can
see, with the increase of problem size, the number of cycles
needed becomes inversely proportional to the number of
MAC units L. This is because the cost of interrupt has
become trivial in overall l atency when N gets large.

 It is worth mentioning here that the major computation in
checking for convergence (5.8),  xi+1 − xi , is also an
inner product operation. From (5.5) we know that xi+1 − xi =
αidi , each element of which is calculated by the
multiplication process in step 2. Thus we just have to save
all these elements of αi di in the memory and calculate its
norm later. A scheduling that definitely won’ t put extra
latency on the system would be to calculate it during the
last N-ip time in step 1 and check if  xi+1 − xi < err
during the interrupt.

VI. DISCUSSION

In this section we discuss some of the issues raised by our
delayed addition technique, particularly with respect to
floating-point calculations.  The IEEE floating-point
standard [1] specifies the format of a floating-point number
of either single or double precision, as well as rounding
operations and exception handling. It provides us with both
a representation standard and an operation standard. The
representation standard is helpful for transporting code
from one system to another.  The operation standard,
together with the representation standard, works to ensure
that same result can be expected for floating point
calculations on different platforms (if they all choose the
same rounding scheme).

Our designs, described in Sections III , IV, and V, abide by
the representation portion of the IEEE standard. Our
approaches implement single-precision IEEE floating-point
including denormalized numbers. Our operations do reorder
computations, however, and make the basic assumption that

0

20000

40000

60000

80000

100000

120000

0 100 200 300

Problem size N

N
u

m
b

er
 o

f 
cy

cl
es

 n
ee

d
ed

L = 2 L = 4 L = 8

Fig. 9 Cycle count for one iteration with regard to problem
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the additions performed are commutative. This assumption
is also routinely made by most current-generation
microprocessors, where out-of-order execution also
assumes that floating-point operations on independent
registers are commutative.  Similarly, many compiler
optimizations geared at scientific code also assume
commutativity; optimizations such as loop interchange and
loop fusion reorder computations as a matter of course.
When users are concerned, error theory in computations can
be used to determine to what extent such reordering is safe
[4,5].

VII . RELATED WORK

This paper touches on areas related to both computer
arithmetic and configurable computing. Hennessy and
Patterson provide an overview of computer arithmetic in
Appendix A of [6].  They concentrate on logic principles of
various designs of basic arithmetic components. In addition,
innumerable books and papers go into more detail on adder
and multiplier designs at the transistor level. For example,
Weste and Eshraghian [7] provides a detailed discussion on
various multiplier implementations and Wallace trees.
Examples of recent full-custom multiplier design can be
found in the Work by Ohkubo et al. [8] and Makino et al.
[9]. We can also find recent multiplier designs in state-of-
the-art microprocessors such as DEC Alpha 21164 [15] and
SUN Ultrasparc [16]. These designs, as with most, use
Booth encoders and Wallace trees

Our approach employs the idea used in Wallace trees. C. S.
Wallace used 3-2 adders to build up the first Wallace tree
[10]. There have been many derivatives since then. The
most important change is to use 4-2 adders to replace the 3-
2 adders in the original implementation. In many designs,
pass transistors rather than full CMOS logic gates are used
to build 4-2 adders to improve the circuit speed, as we can
see in Heikes et al. [11].

Early in 1994, Canik et al. [3] discussed how to map a bit-
array multiplier to Xili nx FPGA. They built an 8×8 bit-
array multiplier for integer multiplication with Xilinx 3000
series and their fully pipelined implementation on XC3190-
3 achieved more than 100 Mhz. Now almost all the major
FPGA vendors have provided their implementations of
integer multiplier or multiply-accumulator of 16 bit or
shorter length [22, 24]. A comparison of the speed of these
implementations can be found in [23]. Most of them are
based on bit-serial or bit-array multipliers. However, bit-
array multiplier has too big an area cost for long integer
multiplication. We know of no implementations of 32-bit-
array multiplier, nor have we seen any implementations of
32-bit integer multiplier or multiply-accumulators based on
bit-serial or other algorithms.

More recent work has examined implementing floating-
point units in FPGAs [2,3,13,14]. Louca et al. [2] present
approaches for implementing IEEE-standard floating-point

addition and multiplication in FPGAs. They used a
modified bit-serial multiplier and prototyped their designs
on Altera FLEX8000s. Ligon et al. [14] also discuss the
implementation of IEEE single precision floating-point
multiplication and addition and they accessed the
practicabili ty of several of their designs on XILINX 4000
series FPGA. Shirazi et al. [13] talk about the limited
precision floating point arithmetic. They have adapted IEEE
standard for limited precision computation like FFT in
DSP.

At the application level, there are many papers about Space-
Time Adaptive Processing (STAP). Some background
knowledge can be found in Gupta [18]. In addition, Smith
et al. [19] talks about using conjugate gradient method for
STAP and Gupta [18] discussed about the possibil ity of
using configurable hardware for STAP.

Finally, several authors have discussed rounding and error
theory [4,5,12]. We can see how people deal with the error
in physics from Taylor [4]. Wilkinson [5] and Heikes et al.
[12] touch on rounding error in MAC and inner-product
units.

VIII . CONCLUSIONS

Within many current FPGAs, carry propagation represents a
significant bottleneck that impedes implementing truly
high-performance pipelined adders, multipliers, or
Multiply-accumulate (MAC) units within configurable
designs. This paper describes a delayed addition technique
for improving the pipelined clock rate of designs that
perform repeated pipelined calculations. Our technique
draws on Wallace trees to accumulate values without
performing a full carry-propagation; Wallace trees are
universall y used within the multiply units in high-
performance processors.  The unique nature of configurable
computing allows us to apply these techniques not simply
within a single calculation, but rather across entire streams
of calculations.

We have demonstrated the significant leverage of our
approach by presenting three designs exemplifying both
integer and floating-point calculations.  The designs operate
at pipelined clock rates between 33 and 66MHz.  We have
also used our designs in a real application: solving system
of linear equations using conjugate gradient method. These
techniques and applications should help to broaden the
space of integer and floating-point computations that can be
customized for high-performance execution on current
FPGAs.
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