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Accderate Integer and Floating-Point
Calculations in Configurable Hardware
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Abstract-- The speed of arithmetic calculations in
configurable hardware is limited by carry propagation even
with the dedicated carry propagation hardware found in
recent FPGAs. This paper proposes and evaluates an
approach called delayed addition that reduces the arry-
propagation bottleneck and improves the performance of
arithmetic calculations. Our approach employs the idea used
in Wallace trees to store the results in an intermediate form
and delay addition until the end of a repeated calculation such
as accumulation or dot-product; this effectively removes carry
propagation overhead from the calculation’s critical path.

We present both integer and floating-point designs that use
our technique. Our pipelined integer multiply-accumulate
(MAC) design is based on a fairly traditional multiplier
design, but with delayed addition aswell. This design achieves
a 66MHz dock rate on an XC4036XL-2 FPGA. Next, we
present a 32-bit floating-point accumulator based on delayed
addition. Here delayed addition requires a novel alignment
technique that decouples the incoming operands from the
accumulated result. A conservative version of this design
achieves a 33 MHz dock rate. We also present a 32-bit
floating-point accumulator design with compiler-managed
overflow avaidance that achievesa 66MHz dock rate. Finally,
we present an application of delayed addition techniques to
solve a system of linear equations using conjugate gradient
method. These designs and applications demonstrate the
utility of delayed addition for accelerating FPGA calculations
in both the integer and floating-point domains.

Index Terms-- FPGA, delayed addition, Wallace tree,
multiply-accumulate (MAC)

|. INTRODUCTION

When an arithmetic cdculation is carried out in a RISC
microprocesr, ead instruction typicadly has two source
operands and one result. In many computations, however,
the result of one aithmetic instruction is just an
intermediate result in a long series of cdculations. For
example, dot product and ather long summations use along
series of integer or floating-point operations to compute a
final result. While FPGA designs often suffer from much
sower clock rates than custom VLS|, configurable
hardware dlows us to make spedalized hardware for these
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cases;, with this, we @n optimize the pipelining
charaderistics for the particular computation.

A typicd multiplier in a full-custom integrated circuit has
three stages. First, it uses Booth encoding to generate the
partial products. Seamnd, it uses one or more levels of
Wallacetree @mpresson to reduce the number of partial
products to two. Third, it uses afina adder to add these two
numbers and get the result. For such a multiplier, the third
stage, performing the final add, generally takes about one-
third of the total multiplication time [8, 9]. If implemented
using FPGAs, stage 3 could become an even geder
bottlenedk because of the cary propagation problem. It is
hard to apply fast adder techniques to speed up cary
propagation within the cnstraints of current FPGAS. In
Xilinx 4000series chips, for example, the fastest 16-bit
adder possbleisthe hardwired ripple-carry adder [19]. The
minimum delay of such an adder (in a -2 speed grade
XC400l part) is more than four times the delay of an
SRAM-based, 4-input look-up table that forms the core of
the configurable logic blocks. Since this carry propagation
is such a bottleneck, it impedes pipelining long series of
additions or multiplies in configurable hardware; the cary-
propagation lies along the aiticd path, it determines the
pipelined clock rate for the whole computation. Our work
removes this battleneck from the aiticd path so that stages
1 and 2 can run at full speed. This improves the
performance of inner products and ather series cdculations.

As an example, consider the summation C of avedor A:
C =5 Ail

Our goal isto acaumulate the dements of A without paying
the price of 99 seridlized additions. We observe that in
traditional multiplier designs (e.g., the multiply units of
most recat microprocessors [15, 16]), Wallace trees are
used to “accumulate” the partial products. Our work
proposes and evaluates ways in which similar techniques
can be used to replacetime-consuming additions in series
cdculations with Wallacetree @mpresson. The technique
is applicable to configurable hardware, because in a
dynamicdly configurable system it is pradicd to consider
building spedfic hardware for inner products or other
repeaed cdculations. The tednique is effective for
configurable hardware becaise it removes addition’s carry
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propagation logic from the critica path of these
calculations, thus alowing them to be pipelined at much
faster clock rates.

By using Wallace trees to accumulate results without carry
propagation overhead, we can greatly accelerate both
integer and floating-point calculations. We demonstrate our
ideas on three designs. The first design is an integer unit
that performs pipelined sequences of MAC (multiply-
accumulate) operations; this pipelined design operates at a
37MHz clock rate. The second and third designs perform
floating-point accumulations (i.e., repeated additions) on
32-bit IEEE single-precision format numbers. One of them
uses a conservative stall technique to respond to possible
overflows; it operates at 33MHz. The other sign relies on
compiler assistance to avoid overflows by breaking
calculations into, chunks of no more than 512 summation
elements at atime. This approach yields a 66MHz clock
rate for 32-bit |IEEE single-precision summations. These
clock rates indicate the significant promise of this approach
in implementing high-speed pipelined computations on
FPGA-based systems. We demonstrate this promise on an
example application: solving linear equations using
conjugate gradient method.

The remainder of this paper is structured as follows. Section
Il introduces the basic idea of Delayed Addition
calculation, and presents a design for a pipelined integer
multiply-accumulate unit based on this approach. Section
11 moves into the floating-point domain, presenting a
design of a pipelined 33MHz 32-bit floating-point
accumulator with delayed addition. Building on this basic
design, Section IV then presents the 66MHz floating-point
accumulator with compiler-managed overflow avoidance,
which is used to form the MAC unit in our application to
solve linear equations using conjugate gradient method in
section V. Section V1 discusses issues of rounding and error
theory related to these designs, Section VIl presents related
work, and Section V111 provides our conclusions.

1. DELAYED ADDITION IN A PIPELINED INTEGER
MULTIPLY-ACCUMULATOR

A. Overview

A multiply-accumulator unit consists of a multiplier and an
adder. For adders of 16 hits or less implemented in Xilinx
FPGAS, the hardwired ripple-carry adder is the fastest. For
adders more than 16 bits long, a carry-select adder is a good
choice for fast addition in FPGA. It uses ripple-carry adders
as basic elements and a few multiplexers to choose the
result. Thus it can still utilize the hardwired ripple-carry
logic on Xilinx FPGA to achieve relatively high speed.

Most of the multipliers that have been implemented so far
in FPGAs are based on bit-serial multipliers [2, 14]. Thisis
because bit-serial multipliers take much less area than any
other kind of multipliers. Since they have a regular layout,
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Fig 1. (b) An array of n 4-2 adders.

it is easy to map on a FPGA to achieve very high clock rate.
However, bit-serial multiplier requires a very long latency
to produce a result. For two multiplicands of M and N bits
long, it takes M+N clock cycles to get the product [7].
Although some implementations have tried to relieve this
problem by multiplying more than one bit per cycle [2], we
know of no such implementations with an overall
throughput of more than 10MHz.

Bit-array multipliers aso have a regular layout, which
makes it easy to map on FPGA and to achieve high clock
rates [3]. Unlike bit-serial multipliers, they produce one
product every cycle. Thus they can achieve a very high
throughput at the price of large area cost. In the case of a
32-bit integer MAC with a 64-bit final result, we would
expect to have a bit-array multiplier of 63 pipeline stages
for multiplication and one for accumulation. Thus we
would need a 64 x 64 CLB matrix to implement it [3].
However, CLB matrix of this size can barely fit into the
largest Xilinx part available (XC40125XV) now (as of
Sept. 1998) [20], which would involve a huge cost.

Our design, as we will see next, has comparable
performance to bit-array multiplier for vector MAC and is
much more area efficient.

B. Background on Wallace Trees

Before continuing on detailed designs, we will first give a
brief review on some basics of Wallace tree [10] and its
derivatives [11]. One level of Wallace tree is composed of
arrays of 3-2 adders (or compressors). The logic of a 3-2
adder is the same as a full adder except the carry-out from
the previous bit has now become an external input. For each
bit of a 3-2 adder, thelogic is:

S[i] = A1[i] O A2[i] O A3[i];
Cli] = AL[i]AZ[i]+ AZ[i]A3[i] + A3[i]A1]i];
For the whole array, S+2C = A1+ A1 +A3

Sand C are partia results that we refer to in this paper as
the pseudo-sum. They can be combined during a final
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cycle# | 1 2 3 4 5 6 7 | 8 ] 9 | 10 | 11 | Combinational

Inputl | BTH | W1 | W2 | W3 | W4 | CPR

Input 2 BTH | wi [ w2 | W3 | W4 | CPR

Input 3 BTH | wi1 [ w2 | W3 | W4 | CPR

Input 4 BTH | wi1 [ w2 | W3 | W4 | CPR

Input 5 BTH | wi1 [ w2 | W3 | W4 | CPR

Input 6 BTH | wil [ w2 | W3 | w4 | CPR | Final Addition

5

Fig.3  Pipeline diagram of Integer MAC:

Ali]1B[i]. The stages marked: BTH (Booth encoders), W1 (Wallace tree level 1), W2

(Wallace tree level 2), W3 (Wallace tree level 3), W4 (Wallace tree level 4) and CPR (Compressor) refer to the six pipeline
stages shown in Figure 2. The final addition is performed only once per summation and does not impact the pipelined clock rate.

addition phase to compute a true sum. The total number of
inputs across an entire level of a 3-2 adder array is the same
as the bit-width of the inputs. Fig. 1 (a) shows the layout of
such an array example. In some Wallace tree designs, 4-2
adder arrays have also been used, because they reduce the
number of compressor levels required [11]. Each bit of such
an array is composed of a4-2 adder. The typical logic is:

Couli] = AL[i]AZ[I] + A2[I]AZ[i] + AZ[i]AL][i];
S[i] =A1[i] O AZ2[i] O A3[i] O A4[i] O C[i];
Cli] = (A1]i] O AZ[i] O A3[i] O A4[i])Cii] +

= (AL[i] O A2[i] O A3[i] O A4[i])A4]i];

For thewhole array, S+ 2C=A1+ A2+ A3+ A4

Fig. 1 (b) shows the layout of an array example using 4-2
adders. At first glance, one might initially think that C;, and
Cout are similar to the carry-in and carry-out in the ripple-
carry adders. The key difference, however, is that C;, does
not propagate to Co. The critical path of an array of 3-2 or
4-2 adders is in the vertical, not horizontal direction.
Furthermore, the logic shown maps well to coarse-grained

FPGAs. With Xilinx 4000-series parts, we can fit each S or
C, for either a 3-2 or 4-2 adder, into a single CLB using the
F, G, and H function generators.

C. Design of Integer MAC with Delayed Addition

For an integer MAC unit, the implementation is
straightforward because integers are fixed-point and are
therefore aligned. Our design looks exactly like a traditional
multiplier design with Booth encoding and Wallace tree
except that a 4-2 adder array is inserted into the pipeline
before the final addition. To achieve accumulation, we
repeatedly execute:
Pseudo-sum = Pseudo-sum + (the final two partial
products for each multiplication)

Recall that pseudo-sum refers to the S and C values
currently being computed by a 3-2 or 4-2 adder array,
awaiting the final addition that will calculate the true result.
Fig. 2 shows a block diagram of our implementation.
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Designs Xilinx CLB CLBs| Flip-flops | Pipeline | Speed | Final Addition
part number matrix size | used used stages | (MHZz) Delay (ns)
IMAC (delayed addition) | XC4036x1hg208-2 | 36x36 | 1287 1866 7 66.7 38.27
Traditional Integer multiplier | XC4036xIhq208-2 | 36x36 | 1243 1836 8 54.5 N/A

Table 1: Synthesis results for pipelined integer MAC with delayed addition and pipelined adder.

Each level of a Wallace tree has a similar delay, and this
delay is also similar to that of a Booth encoder. Thus, as
shown in Fig. 2, a natural way to pipeline this design is to
let each level of logic (above the dotted line) be one of the
pipeline stages. The well-matched delays make for a very
efficient pipelined implementation. The final compressor,
just above the dotted line, stores and updates the pseudo-
sum every cycle. When the repeated summation is
complete, afinal add (not part of the pipeling) converts this
intermediate form to a true sum result.

The pseudo-sum is updated each cycle, but the final adder
isonly used when the full accumulation is done. Therefore,
it is not one of the pipeline stages, but rather constitutes a
post-processing step as shown in Figure 3. With this
structure, the carry propagation time for the final addition is
no longer on the critical path that determines the clock rate
of the pipelined MAC design. For sufficiently long vectors,
this final addition time, done only once per entire
summation rather than once per element, will be negligible
even compared to the faster vector MAC calculations of
this design.

D. Design Synthesis Results

For al the designs in this paper, we used the Synopsys
fpga_analyzer tool (1997.08) to generate a .sxnf file from
our VHDL input and we used Xilinx Foundation tools
(V1.3) for the rest of the synthesis. In order to remove the
bottleneck at the pad inputs, we added an extra pipeline
stage before the booth encoder to buffer the chip inputs.
After several initial attempts, we targeted our design at the
speed of 66.7 MHz and specified thisinformation in the
timing constraint file (.pcf file), where we listed this
requirement for all the critical paths. The PAR (placement
and routing) worked through successfully and Timing
Analyzer gives all the timing information after our design is
completely placed and routed. The synthesis results we get
for the above design are listed in Table 1. Most notably, our
design fits in a Xilinx 4036 part and achieves the targetted
clock rate of 66.7 MHz. The final addition delay, done
once per vector as a post-processing step, takes roughly
40ns or nearly 3 cycles.

To demonstrate the advantage of delayed addition, we also
tried to implement an integer MAC composed of a
traditional integer multiplier and an adder. However, the
design was too big to fit on one XC4036 chip, so we built
an integer multiplier on the chip instead. To trade off
between pipeline speed and area cost, we used the carry-

select adder for final addition and divided it into two
pipeline stages. In the first stage, three 32-bit additions are
carried out in parallel, one for the lower 32 bits and two for
the upper 32 bits. In the second stage, we select the upper
32 bits between the two results by the carryout from the
lower 32-bit addition. The synthesis result of this design is
also listed in Table 1. Timing analysis shows it is exactly
the two pipeline stages of the adder that are the bottleneck
of the whole design. However, further pipelining the adder
will involve a much larger area cost and is not likely to give
any performance gain due to the long wiring delays in
FPGA.

From table 1, we can see that by using the delayed addition
algorithm, we have achieved a faster pipeline speed than the
traditional multiplier and accumulator design. According to
the data above, an IMAC with the delayed addition would
require

7+(N-1)+3=N+9
cycles for an integer inner product of length N to complete,
where 7 stands for the number of pipeline stages, 3 stands
for the cycle time for the final addition. The overal latency
for this design would thus be 15ns x (N + 9) = (15N +
135)ns. Since we could only implement the multiplier on
one XC4036 chip in the traditional design, we have to add
another two pipeline stages for the accumulator in our
calculation. Thus the overall latency for an inner product of
size N using traditional IMAC would be

10+(N-1)=N+9

cycles as well. Since the cycle time in the delayed addition
design is 20% shorter than the traditional design, the
delayed addition design has a performance speedup of
120%.

I11. USING DELAYED ADDITION IN A FLOATING-POINT
ACCUMULATOR

Multiply and accumulation also appears frequently in
floating-point applications. For example, of the 24
Livermore Loops, 5 loops (loop 3, 4, 6, 9, 21) are basically
long vector inner-product-like computation [17]. In certain
applications, such as the conjugate gradient example in
Section V, multiply and accumulation dominates the whole
computation process. Thus it would be ideal if we could
also use our delayed addition techniques to build a floating-
point multiply and accumulator to speed up this kind of
computations like what we did in the integer case.

However, afloating-point MAC unit uses too much area to
fit on asingle FPGA chip. The major reason is that floating-
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Fig.4 |IEEEsingle predsion format.

Sisthesign; exporent isbiased by 127.
If exporent is not O (normali zed), mantissa =1.fracion
If exporent is O (denormali zed), mantissa =0.fradion

point acaimulation is a much more amplex process than
the integer case, as explained below. Rather than a MAC
unit, we instead focus here on a floating-point accumulator
using delayed addition. We first give abrief review of
traditional approadies, then describe how we have used
delayed additi on techniques to optimize performance

A. Traditional Sngle-Precision Addition Algorithm

As shown in Fig.4, atraditional floating-point adder would
first extrad the 1-bit sign, 8-bit exponent and 23-bit fradion
of ead incoming number from the IEEE 754 single
predsion format. By checking the exponent, the alder
determines if each incoming rumber is denormalized. If the
exponent bits are dl “0", which means the number is
denormalized, the mantissa is O.fradion, otherwise,
mantissa is l.fradion. Next, the alder compares the
exponents of the two numbers and shifts the mantissa of the
smaller number to get them aligned. Sign-adjustments also
occur at this point if either of the incoming rumbers is
negative. Next, it adds the two mantissas; the result neals
another sign-adjustment if it is negative. Finally the alder
re-normalizes the sum, adjusts the exponent acordingy
and truncates the resulting mantissa into 24 lhits by the
appropriate rounding scheme [2].

The @ove dgorithm is designed for a single aldition rather
than a series of additions. Even more so than in the integer
case, this draightforward approac is difficult to pipeline.
One problem lies in the fad that the incoming next-
element-to-be-summed must be digned with the current
acamulated result. This adds a dhalenge to our delayed
addition technique since we do not keep the acumulated
result in its fina form, and thus cannot aign incoming
addends to it. Likewise, at the end of the computation, re-
normalization also impedes a delayed additi on approach.

For these two problems, we have @me up with two
solutions:

1. Minimize the interacion between the incoming number
and the acamulated result. To achieve this, we self-align
the incoming number on each cycle, rather than aligning it
to the Pseudo-sum. Sedion 1) will describe self-alignment
in more detail .

2. Use the delayed addition for acamulation only.
Postpone rounding and normalizaion wntil the end of the
entire acumulation. This approach is aso used when

implementing MAC in some full-custom IC floating-point
units[12].

B. Our Delayed Addition Floating-Point Accumulation
Algorithm

This ®dion describes our approach for delayed addition
acamulation in floating-point numbers. Similar to what
we did in Integer MAC, we repeaedly execute pseudo-sum
= pseudo-sum + incoming operand. Each incoming operand
is an |IEEE single-predsion floating-point humber, with 1-
bit sign, 8-bit exponent (EXP[7-0]) and 23-bit fradion. We
consider the exponent bits as three subfields: high-order
exponent, a dedsion bit and low-order exponent for
simplicity of discusdon. High-order exponent refers to the
EXP[7-6], the dedsion bhit is EXP[5] and low-order
exponent refers to EXP[4-0]. We take different adions
acording to the value of these threefields.

Like the traditional adder, our design first extends the 23-bit
fradion into 24bit mantissa. However, we doose not to
align the incoming operand and the aurrent pseudo-sum
diredly becaise that way the incoming operand interads
with the acamulated pseudo-sum throughout the dignment
process which makes the further pipelining impossble.
Thus the dignment process could easily bemme the
bottlenedk of the whole pipeline if we ll adopt the
traditional alignment method. Instead, we keep summary
infformation about the high-order exponent of the
acamulated result, and align its mantissa to a fixed
boundary acwrding the its low-order exponent. We refer to
this technique a "self-alignment” and describe it below.

1) Sdf-Aligning Incoming Operands

There ae two ways to aign two floating-point humbers.
The common way is to shift the mantissa of one number by
d bits, where d stands for the difference of the exponents of
the two numbers. Ancther way is to instead shift both
mantissas to some mmon boundaries. Traditional
floating-point adders use first method. In our case,
however, the second way is used since we would like to
minimize the interadions of the incoming number and the
acamulated pseudo-sum.

We oould have fully “unrolled” the incoming operand and
the acumulated pseudo-sum by left-shifting their mantissas
the number of bits denoted by their exponents except for the
huge aea ost involved. In that case, the shifted mantissa
would be & long as 255the largest 8-hit exponent possible)
+ 24(the width of single predsion mantiss) = 279 hts.
Because of this, we only left-shift the mantissa the number
of bits denoted by the low-order exponent (EXP[4-0]) in
our design. Since low-order exponent is a 5-bit quantity, the
largest deamal it can expressis 31. Thus, by left-shifting to
acount for low-order bits, we have extended the width of
our mantissa to 55 hbits. Although this is dill wide, our
design can fit into 910CLBs on a Xilinx 4036 as we will
seelater, and this gives us the aility to garner truly high-
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performance single-predsion floating-point from an FPGA-
based design.

In the @ove self-aligning process we did not take into
consideration of the high-order exponent (EXP[7-6]) and
dedsion hit(EXP[5]). Thus the shifted mantissa of the
incoming operand is gill not perfedly aligned with that of
the aurrent pseudo-sum. We used the fact below to solve
this remaining problem. In single-predsion |EEE floating-
point, the mantissa is only 24 hts wide. Thus, if we try to
add two originally normalized numbers that differ by more
than 2% times, alignment will cause the smaller of the two
numbers to be "right-shifted" out of the expressble range
for this format. For example, 2% + 22 = 2?° in single-
predsion cdculations. Our agorithm efficiently uses this
fad to identify the similar cases and handles them

appropriately.

Once self-aligned, the incoming number can be thought of
as mi’ (the 55-hit mantiss) x 2°* "&F78 Meawhile, our
pseudo-sum is stored as mp’(the 64-bit mantisss) x 2°* -
EXFITS|f the current pseudo-sum and the incoming operand
are identical in dedsion bit (EXP[5]), then if the high-
order exponent (EXP[7-6]) of the incoming number is
bigger than that of the pseudo-sum, the mantissaa of the
pseudo-sum will be shifted out of the expressible range as
long as it is no more than 64 Lt wide. In this case, we
simply replace the airrent pseudo-sum by the incoming
operand. On the other hand, if the high-order exponent of
the incoming number is smaller than that of the pseudo-
sum, the incoming rumber will be shifted out of the
expressble range since mi’ is lessthan 64 Lt wide. Thus
we simply ignore the incoming operand. The compresson
will only take place when high-order exponent of the
pseudo-sum is equal to that of the incoming number.

Note that if the current pseudo-sum and the incoming
operand are not identical in EXP[5], then determining the
appropriate response would adually require subtrading the
two full exponents to determine by how much they differ.
This would pcse abattlenedk in the pipeline; thus we hope

E indicatesif the top 2 bits of the exponent
of accumulated Sand C is bigger than that
of theincoming number or not, E and other
control signals together serve as the dock
enable signal for flip-flopsSand C.

Compressor design (compressor

to avoid this senario entirely. This leals to our design
described in Sedion 2) below.

2) Compressor Implementation Detail s

In order to avoid the undesirable scenario of unequal
dedsion bits, we adually keg two running pseudo-sums.
One mmpressor, referred to as compressor-0, takes care of
incoming operands whose dedsion hit is “0” and the other
compressor (compressor-1) handles those which has a
dedsion bit of “1". We simply shunt ead incoming
operand to the gpropriate compresor as fiown in Figure
6. In thisway, we can always take operations corresponding
to the high-order exponent as described above. The two
pseudo-sums from compressor-0 and compressor-1 are both
added together during the fina add stage & a post-
processng step foll owing the pipelined computation.

Figure 5 shows the design layout for one of the two
compressor units in the design, namely compressor-0.
Compresor-1 has essentially identical structure, except that
it crossconneds with adder-0 as own in Figure 6. The
running pseudo-sum is gored as the Wallacetreés S and C
partial resultsin the 64-bit registers shown.

Were it not for the posshility of either pseudo-sum
overflowing, the design would now be wmplete. Sincethe
acamulated result may exceal the register cgpadty, we
have dso devised a tednique for remgnizing and
responding to paential pseudo-sum overflows. Since we
are not doing the full cary-propagation of a traditional
adder, we canot use the traditional overflow-detedion
technique of comparing carry-in and carry-out at the highest
bit. In fad, without performing the final add to convert the
pseudo-sum to the true sum, it is impassible to precisely
know a priori when overflows will occur.

Our approach instea relies on conservatively determining
whenever an overflow might occur, and then stalling the
pipeline to respond. We can conservatively detea posshle
overflow situations by examining the top threebits of the S
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Fig. 6 Floating-point accumulator pipelining scheme
Xilinx part number | CLB matrix CLB Flip- Pipeline Sped Final Addand
size used flops stages (MHz) | Norm. Delay (ns.)
XC4036<1hq208-2 36x% 36 910 378 4 33 724

Table 2: Synthesis results for floating-point acaimulation with delayed addition

and C portions of the pseudo-sum and the sign bit from the
55-bit incoming operand. We have used espresso to form a
minimized truth table generating the Global Stall signal (GS
in Fig. 4) as a Bodean function of these 7 hbits. As giown
in Fig. 5, the GlobalStall signal is used as the dock enable
signal on the first three pipeline stages; when it is asserted,
the pipeline stalls and no new operands are processed urtil
we respond to the possble overflow.

Since the design's two compressors are summing different
numbers, they will of course gproac overflow at different
times snce only one number is added a time. Our design,
however, does overflow processng in both compressors
whenever either compressor's - GlobalStall signal is
aserted. This coordinated effort avoids cases where
overflow handling in one @mpressor is immediately
followed by an overflow in the other compressor and it
potentially reduces the number of stalls needed, too, since
we process these two pseudo-sums in paralel during the
stall.

When a stall occurs, our response is to sum the S and C
portions of ead compressors pseudo-sum using the 64-bit
adders sown in the Stall Response box in Figure 5. Thisis
a traditional 64-bit addition incurring a significant cary

propagation delay, but since it occurs during the stall-time,
it does not lie on the aiticd path that determines the
design's pipelined clock rate. (As long as galls are
infrequent, it does not noticealy impaad performance) The
dedsion of what to dowith the newly formed sum depends
onitsvalue, i.e., it depends on whether (i) an overflow truly
occurred o (i) we were overly conservative in our stall
detedion. In cases where an overflow does occur, the value
of EXP[5] in the pseudo-sum will change. Recdl that
compressor-0 is to handle the acumulation of incoming
operands whose EXP[5] hit is 0, with a pseudo-sum whose
EXP[5] bit is aso 0. If the pseudo-sum overflow causes
EXP[5] to change value, then we need to passthe newly-
computed full sum over to the other compresor. This is
why the design in Fig. 6 includes the aoss-coupled
connedions of adder-1 to compresor-0 and vice versa
When we ae overly conservative in predicting a stall,
EXP[5] will not change values. In this case, we retain the
pseudo-sum in its current form.

C. Experimental Results

Figure 6 shows the block diagram of this design and Table
2 summarizes the synthesis results. Because this is a
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Pipeline Stage 1

Pipeline Stage 2

Pipeline Stage 3

Pipeline Stage 4

v

Read in and generate 24-bit
mantissa

Pipelined Portion

v

| Shift by exp[1] and exp[0]

v

| shift by exp[3] and exp[2]

v

Shift by exp[4]. Complement
the mantisaaif s=1

v

v

Compressor 0
(adder not included)

Pipeline Stage 5

Compressor 1
(adder not included)

v

v

Alignthe S and C from
adder 0 and adderl

v v

Final addition and

)

4-2 compressor array
take S and C from both

normalization compressors
v v
| Final 64-bitadder |
v
| Normalize the result | Combinational logic
v (not pipelined)

Fig. 7 Floating-point accumulator with compiler-managed overflow avoidance

pipelining scheme

floating-point accumulator rather than a MAC unit, it is
acdually smaller than the integer MAC unit discussed in the
previous fdion. Using 4 pipeline stages, our design
attains a dock rate of 33MHz. Becaise of extra
bodkkeeping required to renormalize the final result, the
post-processng delay in this design is larger. At 72.4ns,
this delay corresponds to roughy 2.4 of the pipelined clock
cycles. Asin the integer case, this difference between the
final add time ad the pipelined clock cycle time highlights
the utility of delayed addition. By pulling this delay off the
vedor computation’s criticd path, we pay for it only once
per vedor, not on ead clock cycle. According to the data
above, using the same aalysis as in section Il and
assuming there is no stall during the computation, we will
have to wait
4+(N-1)+3=N+6
cycles for an acaumulation of length N to complete.

Since eah stall causes a 3-cycle bubble in the pipeline ad
too many stalls may eventualy incur expensive system
interrupt, we dso want to make sure how frequent stalls
might be when we acumulate N numbers. We did two
simulations. Simulation | used 10Q000 uriformly
distributed floating-point numbers with their absolute
values ranging from 2% to 2% Because positives and
negatives are balanced, we did not even med one cae of
stalling. Simulation 11 uses 100,000 uniformly distributed
positive floating-paint numbers ranging from 0 to 2%, and
we only found 24 cases of stalling. Summing these 100,000
numbers would need 10Q006 cycles, so that 72 stall cycles

are negligible. From this experiment we nclude that
overflow and stalling pose little problem for most
applicaions, as long as we have areasonably large locd
buffer for operands. As we will show and exploit in Sedion
IV, we can prove that for vedors shorter than 512 elements,
there isno chance of stalling at all.

IV. FLOATING-POINT ACCUMULATOR WITH COMPILER-
MANAGED OVERFLOW AVOIDANCE

The main reason why we have the overflow detedion and
handling logic in the previous design is because of the
posdble overflow of the pseudo-sum after a number of
operations. However, the dal-related logic is very
complicated and has a big area ©st. Worst of all, it sits on
the aiticd path of our design and slows down the pipeline
spead. To avoid the aea ad speed overhead due to
overflow detedion and handling, we present a different
style design here. This design omits overflow handling by
relying on the compiler to brea a large aceamulation into
smaller pieces © that overflow is guaranteed not to occur
when ead of these piecesis executed.

Avoiding areaoverhea for stall handling is desirable, but
we will not have much gain in our design if we have to
brea an acaumulation into very small pieces. Our goal isto
determine abound of how often the stall will occur. The
largest incoming mantissa that can be fed into one
compressor is 11...1100...00 (the first 24 htsare ‘1's and
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Xilinx part number | CLB matrix CLB Flip- Pipeline Sped Final Addition
size used flops stages (MH2) Delay (ns)
XC4036hq2082 36x 36 839 417 5 66 7323

Table 3: Synthesis results of floating-point acawmulation with delayed addition and compil er-managed overflow avoidance

the rest 31 hits are ‘0’s). This is lessthan 2°°. Thus if the
pseudo-sum is stored in an n-bit (n > 55) register, we may
have an overflow every 2" accumulations. We can use
this formulato choose asuitable n for spedfic goplicéions.

In this design, we cthoose the pseudo-sum width to be 64 as
in the design from Sedion Ill. Since 64 - 55 = 9, overflows
may occur every 2° = 512 acamulations. We will rely on
the compiler to brek summationsinto 512element vedors.
However, since we no longer need the overflow checking
and handling in this design, al the related components in
our previous design can be removed and the two 64hit
adders below the compresors in Figure 4 are replaced by
an array of 4-2 adders. This also grealy simplifies the
control logic on the aitical path and enables us to further
pipeline our design. Figure 7 shows a resulting 5-pipeline-
stage design.

Synthesis results summarized in table 3 show that we have
doubled the speed of the mnservative design and have
achieved a high clock rate of 66MHz. For an acamulation
of size N, we will need 5+ (N-1) + 5 =N + 9 cycles to
complete the whole computation.

V. APPLICATIONS OF DELAY ED ADDITION TECHNIQUES

In previous <dions, we have eamined MACs and
acamulations in isolation. We now evaluate the utility of
our approach within a larger applicaion. Our design is
espedaly useful for those gplicaions in which inner-
product computations dominate the overall exeaution time.
One such example is to solve asystem of linea equations
using conjugate gradient method. The system of linea
equations takes the form:

A x=b, (5.1)
where A is a NxN matrix and x, b are 1xN vedors. Such
computations arise frequently in scientific matrix-oriented
code, such as in SpaceTime Adaptive Procesing (STAP)
[18, 21]. STAP is a problem for which configurable
acceéerators are often explored, so a high-performance,
FPGA-based inner product unit would form the wre of
such an acceerator.

A. Conjugate Gradient Method: Background

The njugate gradient method is based on the idea of
minimizing the function

f(x) = 2 X"Ax - bx (5.2)
The function is minimized when its gradient 0f = AX - b is
zero, which is exadly the solution of (5.1).

N-way ip | atbxc Div Sub
Eq. 5.4: q; N+2 - 1 -
EqQ. 5.5! X+1 - N - -
EqQ. 5.6: gi+1 N - - N
Eq. 5.7: di.1 N+1 N 1 -

Table 4: Number of different operationsin Equation (5.4 —5.7)
ip stands for inner product, Div for division, Sub for subtradion.

We can use regression to find the minimum x in (5.2). Set
theinitial conditionsto be
X =0 (initial solution)

do=b (initial direction)

0o =-dg (initial gradient) (5.3
and iteratively cdculate the foll owing steps:

T
o= 9 d (5.4)
d'Ad
Xis1 =X + 0 0 (5.5)
g+1=AX:1—b (5.6)
T
— gi+ A di

Ois1=-Gis1 + dITlA—dI d (5.7
until

M1 — % (X err (5.8

where err is apre-spedfied error limit.

As we ca seefrom (5.4) to (5.7), ead iteration is divided
into four steps and these four steps must be serialized since
the operation of ead step relies on the full knowledge of
previous gep’s result. Each step has sgnificant parall €lism,
however. The number of different kinds of cdculations
required for ead step is summarized in table 4. Wherever
N appeasin atable entry, the mrresponding operation has
N-fold parall elism.

The @ove analysis shows that using conjugate gradient
method to solve asystem of linea equations is potentialy a
good candidate for highlighting the utility of FPGA
computation with our spedaly designed acamulation
units. Next, we present a onfigurable computing system
that implements this appli cation.

B. Proposed Architecture

The aurrent configurable computing systems can be roughly
caegorized into closely-coupled architecures and loosely-
coupled architedures. For closely-coupled architedures, the
configurable hardware is part of a microprocesor and is
generaly treaed as a speda functional unit (SFU). The
SKU behaves similarly to ather functional units on chip; it
also takes two operands and produces a result for ead
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FP Multiplier | | FP Multiplier

33MHz 33MHz
0 mux 1

|

FP Accumulator
66 MHz

Fig. 8 A Floating-Point MAC: The acamulator takes in
operands aternatively from the two multipliers.
Thewhole MAC runs at 66MHz.

operation. This architedure, however, is not suitable for our
applicaion for several reasons.

First of all, al state-of-the-art microprocesors have
floating-point multipliers and adders. Generaly these
functional units are pipelined and can run at a very high
speal. Some microprocesrs can even use them to form
two MAC units, like HP PA-RISC. Our SFU, on the other
hand, has a much slower speel. What's more, as we can see
from previous discussion, it takes alot of hardware resource
to implement a MAC unit in FPGA, which is beyond the
cgoability of most current closely-coupled configurable
computing system. For those that have this capabili ty, the
number of SFUs that can be implemented is very limited,
too. Thus the paralelism in the dgorithms can hardly be
exploited.

Loosely-coupled configurable computing system, on the
other hand, can provide us with plenty of hardware resource
for taking advantage of the massparall elism in applicdions.
In this architecure, we normally have one host machine and
multi ple FPGA boards conneded to the I/O bus, with 10-60
FPGAs and associated memory on ead board. The host
madine configures and initiali zes eaty FPGA board and is
responsible for communicaion with other machines while
the FPGA boards takes care of major cdculation. The host
madine starts the operation on FPGA boards after
initialization and FPGA board talks to the host macdine
when the job is done by interrupt.

For our design, eadr FPGA board will be used to
implement several MAC units, and will also contain some
locd memory. We use floating-point acaimulators and
multi pli ers to form MAC units. Since the size of the matrix
A is generaly known before mmputation, we choose a
floating-point ~ accumulator ~ with  compil er-managed
overflow avoidance as described in Sedion IV. On a
separate FPGA, we will have an 8-stage pipelined floating-
point multi plier; our design can run at 33MHz on -2 Xili nx
parts. Thus we @n form a MAC unit with two floating-
point multi pliers and a floating-point accumulator, with the
floating-point accumulator taking in the products
aternatively from each one of the two floating-point

multi pliers each clock cycle (Fig 8). In this way, the MAC
unit can run at the full speed of the acamulator, 66MHz.

Locd memory on the FPGA board will help manage the 1/0
data flow from the host machine to the FPGA board. It
holds the data of matrix A and the results for ead iteration
including a;, X+1, G+1, di+1, and also provides gace for
intermediate results. When solving more than one system of
linea equations smultaneoudly, it would be more dficient
to have two memory chips. This would allow us to have one
chip dang computation while the other one is downloading
a new system of linea equations from the host machine.
The memories would alternate their functions once the
computation is done. The cmmunicaion latency between
host machine and each FPGA board will thus be totaly
hidden except for the first time.

C. Performance of FPGA-based Conjugate Gradient
Accelerator

Suppcse we have L (L>2) MAC units on a FPGA board.
This FPGA board is thus capable of processng all the
multi plication and acawmulation in (5.4) — (5.8) except for
the division, which is handled by CPU via interrupt. To
simplify the cdculation, we asume the compil er guarantees
N is less than 512 Thus we dorit have to worry about
bre&ing long inner products into small pieces. We dso
assume exh MAC unit is fed from locd memory at its
optimum bandwidth of two 32hit operands at 66MHz.
Suppcse we have L MAC units on the FPGA board, the
required locd memory bandwidth would thus be 528xL
Meg bytes per second.

Before going down to cdculation detail s, we first define K-
ip time as the number of clock cycles needed for our MAC
unit to compute the inner product of two vedors of length
K. Inour case, we neal
8+5+(k-1) +5=k+17

cycles to complete such a computation, where 8 comes
from the number of pipeline stages for multiplier, 5 comes
from the number of pipeline stages for the acemulator, k-1
is the vedor length minus 1, and 5 counts for the
combinational delay for the final addition.

We can then cdculate the latency of one iteration of
computation as foll ows:

g/ d,
d/Ad,

1) Latency for step 1: Computing @ =

In this gep (5.4), we first caculate d A. The cdculation
consists of N inner products, which requires ON/LCIN-ip
time. Since d A isan Nx1 vedor, (dA)d, is smply one
inner product of length N, and so is g'd,. Thus we can
compute (d'A)d, and g'd, simultaneously within one N-
ip time. In al, we need IN/LO+1 N-ip time for inner

10



Draft submitted for publication. Please do not distribute

products as well as one interrupt for division. Since
d"Ad, will beused later asadivisor in step 4, we can save

oneinterrupt by sending back both o and /d Ad, .

2) Latency for step 2: Computing Xi.1 = X; + @ 0

In this d4ep (5.5), we have to compute eat element of X1
and we have N such computations. For element j of .1, we
have x.1; = Xj + o di;. This can be computed as an inner
product of vedor length two. Although inner product of
sizetwo is not economicd at all using our MAC unit, it is
far better than to send these numbers bad to host machine
for computation and send the results back, which would
incur a high penalty in communication time. Thus we neal
[N/LO2-ip time for this gep.

3) Latency for step 3: Computing @i+ = A Xj+1 =b

In this gep (5.6), we dso have to compute eat element of
0+1 and we have N such computations. Since b is fixed
through iterations, we @n store the —b in the memory
beforehand. Thus for element j of gi.1, we have gi.1j = (- by)
+2  AjxXx Thiscan be omputed as an inner product of
vedor length N+1, so we need [N/L(N+1)-ip time for this

step.

4) Latency for step 4:
T
i = ) gi+ A di X
Computlng d|+l =gt Cl;l-iA—(jl d|
In this dep (5.7), we need IN/LO+1 N-ip time to cdculate
g',Ad for the same reason stated in (5.3.1). Since

Vd'Ad is avalable from step 1, we need one
multiplication time for g’ Ad,x (Ud'Ad, ). And we

need another [N/L I 2-ip time to get the result for the same
resson stated in 5.3.2. In al, we need IN/L+1 N-ip time +
[N/LO2-ip time + 1 multi pli cation time for this step.

5) Overall Performance

By summing y the time needed in ead step, we get the
time for one iteration of the cmputation. In all, it takes 2 (
[N/LO+ 1) N-ip time + 1 ON/LO(N+1)-ip time + 2IN/L02-
ip time +1 multiplicaion time + 1 interrupt time for ead
iteration. If we plug in the N-ip time and 2-ip time, and we
take 8 cycles to be one multiplication time, and we assume
that 1 interrupt takes 500 cycles, then we nedd
(3N +90) ON/L[+ 2N + 542
cyclesfor ead iteration.

Fig. 9 shows the cycle ount chart for different problem
sizes and number of MAC units. From this table we can
see with the increase of problem size the number of cycles
needed becomes inversely propartional to the number of
MAC units L. This is becaise the @mst of interrupt has
becometrivia in overal | atency when N getslarge.

——L=2-—=L=4 L=8]

120000

N ’
. /
o /
|/
Il

0 100 200 300

Problem size N

Number of cycles needed

Fig.9  Cycle murt for oneiteration with regard to problem
sizeN and number of MAC unitsL.

It is worth mentioning here that the major computation in
cheding for convergence (5.8), x.; — X [I] is also an
inner product operation. From (5.5) we know that X.; — X; =
aidi , eahr element of which is cdculated by the
multi pli cation processin step 2 Thus we just have to save
al these dements of a; d; in the memory and cdculate its
norm later. A scheduling that definitely won't put extra
latency on the system would be to cdculate it during the
last N-ip time in step 1 and check if 0x.; — X X err
during the interrupt.

V1. DISCUSSION

In this ®dion we discuss ®me of the issues raised by our
delayed addition technique, particularly with resped to
floating-point cdculations.  The I|EEE floating-point
standard [1] spedfies the format of a floating-point number
of either single or double predsion, as well as rounding
operations and exception handling. It provides us with both
a representation standard and an operation standard. The
representation standard is helpful for transporting code
from one system to another. The operation standard,
together with the representation standard, works to ensure
that same result can be epeded for floating point
cdculations on different platforms (if they all choose the
same rounding scheme).

Our designs, described in Sedions llI, 1V, and V, abide by
the representation portion of the IEEE standard. Our
approaches implement single-predsion | EEE floating-point
including denormalized numbers. Our operations do reorder
computations, however, and make the basic assumption that

11
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the aditions performed are ommutative. This assumption
is also routinely made by most current-generation
microprocesors, where out-of-order execution also
assumes that floating-point operations on independent
registers are commutative.  Similarly, many compiler
optimizations geaed a scientific code dso asume
commutativity; optimizaions such as loop interchange and
loop fusion reorder computations as a matter of course.
When users are concerned, error theory in computations can
be used to determine to what extent such reordering is sfe
[4,5].

VIlI. RELATED WORK

This paper touches on aress related to bah computer
arithmetic and configurable computing. Hennessy and
Patterson provide an overview of computer arithmetic in
Appendix A of [6]. They concentrate on logic principles of
various designs of basic aithmetic components. In addition,
innumerable bodks and papers go into more detail on adder
and multiplier designs at the transistor level. For example,
Weste and Eshraghian [7] provides a detailed dscusson on
various multiplier implementations and Wallace trees.
Examples of recant full-custom multiplier design can be
found in the Work by Ohkubo et al. [8] and Makino et a.
[9]. We ca dso find recent multiplier designs in state-of-
the-art microprocesors such as DEC Alpha 21164[15] and
SUN Ultrasparc [16]. These designs, as with most, use
Booth encoders and Wall acetrees

Our approach employs the ideaused in Wallacetrees. C. S.
Wallaceused 3-2 adders to huild up the first Wallacetree
[10]. There have been many derivatives snce then. The
most important change isto use 4-2 adders to replacethe 3-
2 adders in the original implementation. In many designs,
passtransistors rather than full CMOS logic gates are used
to huild 4-2 adders to improve the drcuit speed, as we can
seein Heikeset a. [11].

Early in 1994 Canik et al. [3] discussed how to map a bit-
array multiplier to Xilinx FPGA. They built an 8x8 hit-
array multiplier for integer multiplicaion with Xilinx 3000
series and their fully pipelined implementation on XC3190
3 achieved more than 100 Mhz. Now amost al the major
FPGA vendors have provided their implementations of
integer multiplier or multiply-accumulator of 16 Kt or
shorter length [22, 24]. A comparison of the speal of these
implementations can be found in [23]. Most of them are
based on hit-serial or bit-array multipliers. However, bit-
array multiplier has too kg an area @st for long integer
multi plication. We know of no implementations of 32-hit-
array multiplier, nor have we seen any implementations of
32-bit integer multiplier or multiply-accumulators based on
bit-serial or other algorithms.

More recent work has examined implementing floating-
point units in FPGAs [2,3,13,14]. Louca ¢ al. [2] present
approaches for implementing |EEE-standard floating-point

addition and multiplicaion in FPGAs. They used a
modified bit-serial multiplier and prototyped their designs
on Altera FLEX800Gs. Ligon et a. [14] aso discuss the
implementation of |IEEE single predsion floating-point
multiplicaion and addition and they accesed the
pradicability of several of their designs on XILINX 4000
series FPGA. Shiraz et al. [13] talk about the limited
predsion floating point arithmetic. They have alapted IEEE
standard for limited predsion computation like FFT in
DSP.

At the gplication level, there ae many papers about Space
Time Adaptive Processng (STAP). Some badground
knowledge ca be found in Gupta [18]. In addition, Smith
et al. [19] talks about using conjugate gradient method for
STAP and Gupta [18] discussed about the possbility of
using configurable hardware for STAP.

Finally, several authors have discussed rounding and error
theory [4,5,12]. We can seehow people ded with the aror
in physics from Taylor [4]. Wilkinson [5] and Heikes et al.
[12] touch on rounding error in MAC and inner-product
units.

VIII. CONCLUSIONS

Within many current FPGAS, carry propagation represents a
significant bottleneck that impedes implementing truly
high-performance pipelined adders, multipliers, or
Multi ply-accumulate (MAC) units within configurable
designs. This paper describes a delayed addition tedhnique
for improving the pipelined clock rate of designs that
perform repeaed pipelined cdculations. Our technique
draws on Wallace trees to acamulate values without
performing a full cary-propagation; Wallace trees are
universally used within the multiply units in high-
performance procesors. The unique nature of configurable
computing allows us to apply these techniques not simply
within a single cdculation, but rather acoss entire streams
of cdculations.

We have demonstrated the significant leverage of our
approach by presenting three designs exemplifying both
integer and floating-point cdculations. The designs operate
at pipelined clock rates between 33 and 66MHz. We have
also used aur designs in a red applicdion: solving system
of linea equations using conjugate gradient method. These
techniques and applicaions should help to broaden the
spaceof integer and floating-point computations that can be
customized for high-performance execution on current
FPGAs.
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