

Floating-point to Fixed-point Conversion

By

Changchun Shi

B.S. (California Institute of Technology) 1998
M.S. (University of California, Berkeley) 2002

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

In

Engineering-Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Robert W. Brodersen, Chair

Professor Laurent El Ghaoui
Professor Deborah Nolan

Spring 2004

The dissertation of Changchun Shi is approved:

Chair Date

Date

Date

University of California, Berkeley

Spring 2004

Floating-point to Fixed-point Conversion

Copyright 2004

 by

Changchun Shi

1

ABSTRACT

Statistical Quantization Effects and Floating-point to Fixed-point

Conversion

Changchun Shi

Professor Robert Brodersen, Advisor

Department of Electrical Engineering and Computer Science

University of California, Berkeley

The digital signal processing (DSP) algorithms used by communication systems

are typically specified as floating-point or, ideally, infinite precision operations. On the

other hand, digital VLSI implementations of these algorithms rely on fixed-point

approximations to reduce cost of hardware while increasing throughput rates. One

essential step of a top-down design flow is to determine the fixed-point data type of each

signal node, namely the word-length, truncation mode and overflow mode. This is

commonly referred as floating-point to fixed-point conversion (FFC) problem.

Conventional approaches are typically both time-consuming and error-prone since ad-hoc

assignments of fixed-point data type are performed manually and iteratively.

We first formulate FFC problem into an optimization framework. The

optimization variables are defined by the fixed-point data-types to be determined; the

objective function is hardware cost, and the constraint functions are system specifications.

In this unified point of view the past techniques are compared. A primary goal is to make

the optimization automatic and fast which requires an understanding of the relationships

between these functions and the variables. One critical step is the identification of the

2

right metric that judges the quality of an FFC and is sufficiently general. This metric is

directly related to quantization effects and will serve as the constraint functions. We first

categorize functional blocks in a system according to their quantization behavior; then, a

novel statistical perturbation theory provides the guideline of using simulations to obtain

constraint functions in their semi-analytical form. The theoretical work reduces the

otherwise exponential complexity of characterizing quantization effects to a polynomial

one. The other critical step to achieve automated FFC is the automatic acquisition of

hardware-cost function. This has been done using a high level resource estimation tool

and function-fitting method.

Based on the preceding methodology, an FFC tool in Matlab and Simulink

environment has been built for Xilinx FPGA designs as a demonstration. The FFC tool

has been successfully tested on several complicated digital designs—namely a binary

phase shift keying (BPSK) transceiver, a U-Sigma block of singular value decomposition

(SVD) system and an Ultra-wide band (UWB) system. The conversions normally take

from minutes to hours, varying according to system complexity. These are orders of

magnitudes faster than existing tools, which are projected to take weeks to do the

conversions. Without reducing system performance, the FFC can reduce their hardware-

costs by 1.5 to 50 times.

The hardware resource estimation part of our FFC utility is based on my summer

intern project in Xilinx, Inc. Unlike existing resource estimations that rely on post-

netlisting information or post-placement-and-routing map report, this pre-netlisting

estimator (now part of System Generator 3.1) in Matlab environment speeds up

estimations by 2-3 orders of magnitudes.

3

The proposed FFC methodology can also be applied to ASIC design when

hardware cost is chip area, power consumption, and so on. One necessary pre-requisite is

a similar hardware estimation tool and hardware cost function model.

 Professor Robert W. Brodersen

i

To My Wife Chao

ii

Table of Contents

Table of Contents ii
List of Figures v
List of Tables vii
Acknowledgements viii
Chapter 1 Introduction 1

1.1 Definition of Floating-point to Fixed-point Conversion 2
1.2 FFC formulation in optimization framework 7
1.3 Our methodology and thesis organization 10

1.3.1 Brief review of the past techniques 11
1.3.2 Practical, Reliable and Cost-efficient FFC 12
1.3.3 Analytical form of hardware-cost function 13
1.3.4 Choices and analytical forms of constraint functions 13
1.3.5 FFC Design Automation 15
1.3.6 Scalability 17

1.4 Summary 17
Chapter 2 A Statistical Perturbation Theory on the Quantization Effects 18

2.1 Brief introduction 19
2.2 Quantization basics and literature review 22
2.3 Preparation for perturbation theory 31

2.3.1 Categorization of signals and blocks 31
2.3.2 Some definitions 34
2.3.3 Smooth operators 39

2.4 Perturbation theory 40
2.4.1 Limit large quantization effects 40
2.4.2 Limit quantization effects caused by altered decisions 41
2.4.3 View FP the same as IP system, but with different noise
inputs 43
2.4.3 Taylor expansion 45
2.4.4 Statistical quantization effects 47
2.4.5 Some useful variations of (2-28) 50

2.5 Application in numerical simulations 54
2.6 Examples 57
2.7 Summary 60

Chapter 3 Quantization Effects with the Presence of Decision-errors 62
3.1 Introduction 62
3.2 System Description 63

iii

3.3 Probability of Decision Errors 65
3.4 Effects of decision errors 70
3.5 Application in Floating-point to fixed-point conversion 82

3.5.1 General Analyses 82
3.5.2 BPSK and CORDIC examples 84

3.6 Summary 85
Chapter 4 Automated FFC Tool 87

4.1 Introduction 87
4.2 Further review of the past techniques and our design environment 90

4.2.1 Past techniques 90
4.2.2 Simulation environment 96

4.3 Automation and Implementation of FFC 99
4.3.1 Tool Infrastructure 100
4.3.2 Keep useful fixed-point information 102
4.3.3 Block grouping 103
4.3.4 Integer overflow 110
4.3.5 Analytical hardware resource estimation 114
4.3.6 Analytical specification functions 117
4.3.6.1 Directly use the difference as specifications 118
4.3.6.2 Measure the difference at the right places 122
4.3.6.3 Perturbation theory provides valuable information 122
4.3.6.4 Use ergodic average rather than large ensemble average 124
4.3.7 Optimization step 125
4.3.7.1 Simplifications 125
4.3.7.2 Fractional word-length optimization 126
4.3.8 Robust optimization 128
4.3.9 User interface 129

4.4 Applications 130
4.4.1 Simple binary phase shift keying (BPSK) transceiver 130
4.4.2 U-Sigma block of singular value decomposition (SVD)
system 131
4.4.3 Ultra-wide band (UWB) baseband implementation 133

4.5 Comparison with existing techniques 134
4.6 Summary 137

Chapter 5 FPGA Hardware Resource Estimation 139
5.1 Introduction 140
5.2 Resource estimation in System Generator 141

5.2.1 System Generator design environment 142
5.2.2 Resource estimation methodologies 143
5.2.3 Resource estimation at the system level 145
5.2.4 Resource estimation at the block-level 146
5.2.4.1 Resource estimation for an Adder/subtractor block 147
5.2.4.2 Resource estimation of 18x18 Embedded Multipliers 150
5.2.5 User interface and design automation 150

5.3 Experimental results 151
5.4 Acknowledgements 152

iv

5.5 Summary 153
Chapter 6 Possible Extensions and Future topics 154
Appendix A. Perturbation Theory on LTI Systems 157

A.1 Derivation of (2-33) from (2-37) 157
A.2 Partial derivation of (2-37) from (2-36) 160

Appendix B. Another Way to Derive (3-7) for Gaussian q 162
Appendix C. FFC Tutorial 164

C.1 Introduction 164
C.2 How to start 164

C.2.1 Getting familiar with the environments 166
C.2.2 Using FFC Tool 168

C.3 Algorithm Study 169
C.4 Building the floating-point System – algorithm validation 170
C.5 Building pseudo-floating-point system in System Generator 175
C.6 Building fixed-point System using FFC 178
C.7 Multiple specifications 184
C.8 Some further Analyses 186
C.9 An important remark 188
C.10 Conclusion 190

Appendix D. Related Publications 191
Reference 192

v

List of Figures

Fig. 1-1 (a) A conceived algorithm in algebraic form, and (b) architectural form 3

Fig. 1-2 Fixed-point representations of p: ... 5

Fig. 1-3 Tradeoff curve between minimum hardware and specification level............ 10

Fig. 1-4 FFC design flow graph. ... 16

Fig. 2-1 Quantization function for (a) truncation, and (b) roundoff............................ 23

Fig. 2-2 Quantization error model ... 24

Fig. 3-1 Decomposition of a decision-making block .. 64

Fig. 3-2 An implementation of absolute value function.. 71

Fig. 3-3 Sign algorithm in Example. .. 76

Fig. 3-4 Semi-log plot of)2(µ=∆ nwP for the signed algorithm. 80

Fig. 3-5 A BPSK system. .. 84

Fig. 3-6 Calculated and simulated probability of decision errors for BPSK............... 85

Fig. 4-1 A simple algorithm in System Generator. ... 89

Fig. 4-2 “Guided” FFC methodology [14] .. 92

Fig. 4-3 Adhoc search FFC method [15]... 93

Fig. 4-4 Impulse probing method to get transfer functions [3]. 94

Fig. 4-5 A graphical translation method to find quantization effects [16]. 95

Fig. 4-6 Detailed FFC automation and design flow graph. 100

Fig. 4-7 Initialization of the ith block structure in Matlab. .. 102

Fig. 4-8 Possible grouping rules for a multiplexer.. 103

Fig. 4-9 Resolving block connectivity. ... 106

Fig. 4-10 Algorithm to resolve functional-block connectivity. 107

Fig. 4-11 Grouping methodology.. 108

Fig. 4-12 BPSK communication system in System Generator. 131

Fig. 4-13 SVD algorithms... 132

vi

Fig. 4-14 Ultra-wide-band (UWB) baseband .. 133

Fig. 4-15 Hardware-cost using various models for the estimate................................. 135

Fig. 4-16 Hardware-cost and specification trade-off for the SVD U-sigma. 137

Fig. 5-1 Resource estimation methods .. 143

Fig. 5-2 A simple System Generator design with block output data-type displayed.145

Fig. 5-3 A possible realization of a 32-bit adder. .. 147

Fig. C-1 Using Matlab demos .. 166

Fig. C-2 Using the Matlab help system.. 167

Fig. C-3 Floating-point system in Simulink™ blockset .. 171

Fig. C-4 Design a root-raised-cosine filter... 172

Fig. C-5 Exporting coefficients to workspace vector A... 174

Fig. C-6 Floating-point performance of the BPSK.. 174

Fig. C-7 Pseudo flpt system in system generator... 176

Fig. C-8 LP rRC filter .. 176

Fig. C-9 Mask parameters of LP rRC filter ... 177

Fig. C-10 ffc_tutorial_v2.mdl file. .. 180

Fig. C-11 Analog gain subsystem in ttc_tutorial_v2.mdl.. 181

Fig. C-12 The final fxpt system... 184

Fig. C-13 386 slices and BER ~ 8.36 ×10-4. .. 185

Fig. C-14 New specification Marker parameters... 185

Fig. C-15 Tx rRC filter frequency response satisfies the -40 dB spec. 186

vii

List of Tables

Table 3-1 State probability of signed algorithm .. 79

Table 4-1 Grouping rules ... 105

Table 4-2 Pre-grouping rules to identify logic signals..................................... 110

Table 4-3 Summary of the three systems that are FFC’ed............................... 134

Table 5-1 Comparison of estimation tools. .. 152

Table C-1 Summary of conversions in this tutorial.. 190

viii

Acknowledgements

Without the following people, the research described in this thesis would be

impossible.

I’d like to express my sincere gratitude to my advisor Professor Bob Brodersen.

Bob is one of the few persons who I felt lucky to meet in my life. Besides his truly

insightful technical advices that guide me through my PhD and M.S. projects, he is

always patient, trustful and encouraging to support me becoming a better scholar and a

better person. With his inspiration of “practicing to become strong”, I became physically

active and I truly enjoyed it. His understanding of my “telecommuting” research style

made my graduate study so much easier. His selflessness, rightness and enthusiasm in

research set him a perfect role-model for both my academic career and personal life.

I am also especially grateful to have Professor Laurent El Ghaoui and Professor

Deborah Nolan in my thesis committee. They taught me two of the most enjoying and

intellectually stimulating courses at Berkeley—Convex Optimization and Theoretical

Statistics—from which I benefited so much. Their supports and cares contribute as

inseparable factor that makes this thesis possible. I also want to thank them to spend time

on reading this thesis.

I’d also like to thank some other colleagues. Many great researchers have been

working on related subjects over the last few decades. Without them, the current research

ix

could have never gone so far. I am especially grateful to some of the best professors who

taught me related material or give me useful advice: Professor Laurent El Ghaoui,

Professor David Tse, Professor Deborah Nolan (in Statistics department), Professor Jan

Rabaey, Professor Borivoje Nikolic, Professor Edwards Lee, and many others. I also

want to thank my group mates: Haiyun Tang, Kathy Lu, Ning Zhang, Mike Chen, Peimin

Chi, Ada Poon, Dejan Markovic, Danejila, Tufan Karalar, Kevin Camera, Engling Yeo

and many others. I had learned a lot from many of the useful discussion with them.

My thanks also go to the researchers at Xilinx, Inc., where I did my summer

Intern. They are Jim Hwang, Nabeel, Vinay, Scott McMillan, David Square, and many

others in the System Generator and DSP groups. Their genuinely nice personality shaped

my attitude to life. Their active healthy life-style and advices also made that summer the

most influential and enjoying time.

I also want to thank Dr. Jim Hwang (again) at Xilinx Inc., Professor Rajeev Jain

at University of California of Los Angeles (now also with Conexant Inc.), Dr. Etan

Cohen at Conexant Inc., Dr. David Shaw at DEShaw research group, Dr. Benoit

Lemonnier at Synplicity Inc., and Dr. Robert Hewes and Dr. Manish Goel at Texas

Instrument. Their help, time and understandings during the last few months of my

graduate study, together with Bob’s and Chao’s constant supports, shaped my research

attitude and set off the next stage of my research career.

Besides the scientific advisors, other professional and friendly staff members

made my life at Berkeley Wireless Research Center (BWRC) and EECS department an

easy and happy experience. In particular, I want to thank Tom Boot and Ruth Gjerde for

x

their professional and personal cares and inspirations. They set the warm tone for us

students to enjoy and concentrate on research. I also want to thank Elise Mills and Brian

Richard for their numerous helps on administrative supports.

Also, Tom Boot, Tufan Karalar, Ruth Gjerde, and Mike Chen have helped me

greatly on taking care of the submission of this dissertation while I was away working in

New York. Many thanks to them!

I like to thank some other great scholars I am lucky to meet earlier in my life, they

are Professor Yousheng Shu at Peking University and Professor Peter Asbeck at

University of California at San Diego. Their trusts and selfless supports built up my

confidence and shaped my love of science, technology and life in general.

Last but certainly not least, I want to express my heartfelt thanks to my wife

Chao. Her beauty and honesty have transformed me into a better person. Because of

Chao, my love of every beautiful thing has become purer. Without her, I wouldn’t be able

to have the persistency to carry this research to the current depth. Without her, I, as a

person, can hardly be so happy inside. I also want to thank my parents who always

provide me the freedom to do what I feel the right thing. Finally, I wish to thank my best

friend, Chengzhou Wang, whose true friendship since middle school has made my life

more joyful and complete. My four cats, Bob, QQ, Xiaobao and p, accompany me

through my Ph.D. years, especially many of the nights when I need to stay up late. It is

such a privilege and luck to have them and to take care of these four little “spirits”!

1

Chapter 1
Introduction

This thesis analyzes some difficulties associated with floating-point to fixed-point

conversion (FFC) problem. Several analytical results that we derived from a perturbation

theory simplify the problem and lead to an automated FFC methodology for digital VLSI

communication systems. As a demonstration, the methodology is implemented into a

FFC tool in Matlab and Simulink environment that is used to convert floating-point

FPGA systems.

In this introduction chapter, the FFC problem is defined and motivated. A global

optimization point of view is used to abstract the problem into mathematical level; at this

level, various aspects of achieving both efficient and reliable FFC become easier to

identify. Then, the organization of the thesis is described. Instead of full explanation of

all the topics with detailed references, only an outline with a few references that are

necessary to illustrate the general picture of FFC are given here.

A great deal of understanding of FFC problem has been previously conducted in

my master thesis “statistical methodology for floating-point to fixed-point conversion”

2

[3]. By studying, summarizing, and extending the results of a large number of references,

such as [72-86], it serves as a good source of getting you familiar with the nature of FFC

problem as well as a practical methodology for linear-time-invariant (LTI) system in

particular. I believe it would be more beneficial if my master thesis [3] can be read

briefly before this thesis as the latter is based on the knowledge learned there. In fact, this

thesis, in my opinion, can be viewed as an extension of [3]. Overlaps between these two

are tried to be minimized whenever possible. Many unsolved issues by the time that my

master thesis was completed have found their answers here. It should be a fun experience

to read both of them.

1.1 Definition of Floating-point to Fixed-point Conversion

The algorithms used in communication systems are typically first proposed as

algebraic operations. We usually numerically verify them, especially complicated ones,

in digital computer under some carefully designed test vectors. The underlying data types

in this digital computing are either single precision floating-point or double precision

floating-point [55]. Either one of these floating-point representations has limited number

of bits used for mantissa and exponent. This inevitably causes numerical errors, either

due to roundoff at least-significant-bit (LSB) side of the mantissa, or due to the saturation

of the exponent. Our goal is to implement the algorithm in application specific integrated

circuits (ASIC). So, the realization of the algorithm in digital computer is only to

simulate its performance; thus, the designers need to assure these numerical errors are

negligible to validate these verifications. Topics related to this kind of numerical error are

beyond this work. Fortunately, they are almost always negligible for most

communication and digital signal processing (DSP) systems because of the following two

3

reasons. First, in these systems, input signals are of relatively small variation in dynamic

range. Second, only a few significant bits of an output value are meaningful, whereas

others are corrupted by unknown physical noise anyway. Therefore, the single and double

floating data types are practically treated as infinite-precision as mentioned in my master

thesis [3]. As a result, unless otherwise specified, the rest of the thesis will refer floating-

point data type and infinite-precision date type interchangeably.

Fig. 1-1 (a) A conceived algorithm in algebraic form, and (b) architectural form

In a top-down design flow to implement these algorithms, the next step is to

determine the system architecture, such as the amount of parallelism and pipelining

scheme [56]. For example, in an Orthogonal-frequency-division-modulation (OFDM)

y(n) = π + |x(n-1)|

x(n-1)

mux

s=≤1

|x(n-1)| 1

-1

Sel

-

z-1 x(n)

π + +
y(n)

(a)

(b)

4

communication system, it is necessary to choose the architecture for its FFT unit: column

based, CORDIC based, or fully parallel butterfly-based, and so on [57-58]. The details of

this architectural description should reach the level of arithmetic operators, such as

adders, multiplexers (MUX’s), and delays. In this thesis, we assume this description is

already given, possibly by system architecture designers. Similar to algorithms, in case of

lacking information to choose one out of several promising architectures at this moment,

all of them should be implemented to certain level and compared. As an example, Fig. 1-

1 shows part of a conceived DSP algorithm described in both its algebraic form, and its

architectural form. The architecture designers have to verify that the inclusion of

structural refinements does not modify the algorithm functionality. This is done again by

floating-point simulations under the same test vectors that are used previously.

0 0 1 1 0 1 00 0 1

WInt WFr

Sign

π =

Overflow-mode Quant.-mode

0 1 1 0 1 00 0 1π = 0

Overflow-mode Quant.-mode

Binary point

(a)

(b)

WInt WFr

Binary point

5

Fig. 1-2 Fixed-point representations of p:
(a) 2’s complement, and (b) unsigned magnitude.

Recently some design environments that catch architectural information and allow

high speed simulations have been developed. These tools include graphical platforms

such as Simulink from MathWorks [59] and System Generator from Xilinx, Inc. [60] that

is built on top of Simulink environment. Other non-graphical high level design

environments such as SystemC based on C [61] and AccelChip based on Matlab [62]

allows even faster behavioral simulation, though they are not as intuitive as the graphical

ones. Once the structural floating-point system has been tested, the immediate task is to

determine the data types that are feasible in a final implementation. A large number of

digital ASIC implementations rely on purely fixed-point approximations to reduce

hardware costs while increasing throughput rates. Other approximation methods, such as

light-weight floating-point design [9], are beyond the scope of this thesis. Fig. 2-2 shows

two most commonly used fixed-point data types that are considered, representing the

irrational number p. Therefore, we need to determine the fixed-point data type of each

signal node, namely the number type (either 2’s complement signed or unsigned), word-

length (both integer word length and fractional word length), truncation mode (either

roundoff or truncation) and overflow mode (either saturation or wrap-around).

A negative integer word length is valid; it represents that the first few bits in

fractional part are unnecessary to be specified since their values do not vary. Similarly

fractional word lengths can be negative as well. Fixed-point data type has this flexibility

to save hardware. For example, let’s use the architecture in Fig. 1-1 to perform |x| for an

even integer value x between -7 to 7; that is, x is -6, -4, -2, 0, 2, 4 or 6. In 2’s complement

format, x is 1010, 1100, 1110, 0, 0010, 0100, or 0110. At the first glance, both the

6

Negate block and the Mux block in Fig. 1-1 need to support at least 4-bit fixed-point

operation. In fact, only 3 bits are needed in hardware because the last integer bit is always

0. In this case, one can specify the fractional word length as -1 to save hardware.

In the previous example, three bits are needed for two reasons. First, the range of

x is known, and the integer word length can be 4 without any overflow. Second, we know

the last integer bit is not needed. In information theory, the bits to the left of the 4th

integer bit carry no information since the entropy of the ith bit given the 4th bit is

identically 0, that is,

,4,0
)|0(log)|0()|1(log)|1(4444

>∀=
=⋅=+=⋅=

i
bbPbbPbbPbbP iiii

 (1-1)

where P denotes probability and bi is the ith bit to the left of binary point. Similarly, b1 in

our example has 0-entropy because this bit is always 0 in even integers.

On the other hand, even with none-zero information, some bits can be eliminated

as long as the information is not useful in particular application. For example, this

information may be dominated by physical noises or architecture defects, or it may

simply be ignored by the rest of the system that processes it. This thesis is largely to

identify those bits with valuable information. Conventional approaches rely on manual

and try-and-error assignments of fixed-point data types. These methods are both time-

consuming and error-prone [13]. As communication systems and digital signal processing

units become increasingly complex, more intelligent methods are called for. Here, we

assume the system is already implemented in architecture level, and the goal is to quickly

and reliably produce the fixed-point correspondence. We define this part of design flow

as the Floating-point to Fixed-point Conversion (FFC) problem. Finite-word-length

7

effects can drastically vary depending on the system architecture. For example, a finite

impulse filter (FIR) implemented in different architectures, such as direct form I, direct

form II, transposed forms, and cascaded form, all have different quantization behaviors

[4][5][56]. Therefore a system description lacking of its structural information provides is

not ready for FFC problem. Once the fixed-point data types are resolved, a design flow

continues to circuit level and physical level [56], which is again beyond the scope of this

work.

In Section 1.2, the FFC problem is formulated into an optimization problem.

Under this unified framework, our methodology is briefly explained in Section 1.3, which

also points out the chapters that give detailed studies.

1.2 FFC formulation in optimization framework

An FFC problem often happens in one of the following two situations. First,

under certain test vectors that the algorithm designers have carefully chosen, the floating-

point system with architectural information passing to FFC stage already satisfies some

behavioral system specifications. A specification is usually based on some statistics of

output data, such as output bit-error rate (BER) and signal-to-noise ratio (SNR). Since

fixed-point data types are unknown yet, no reliable hardware-cost information can be

introduced at the floating-point design stage. Therefore, FFC is to decide the fixed-point

data types throughout the system, such that the system still satisfies the same

specifications. The goal here is to minimize hardware cost. Equation (1-2) shows the

optimization frame work described above

8

, 0,

) , ,...; , ,; , , ; ,W ,W ,W ,(W
 ionsspecificat subject to

) , ,...; , ,; , , ; ,W ,W ,W ,(W
cost -hardware minimize

212121Fr,2Int,2Fr,1Int,1

212121Fr,2Int,2Fr,1Int,1HW

j

...nnqq...ooS

...nnqq...oof

j

∀<

…

…

 (1-2)

where

fHW- hardware-cost function,

Sj- the jth system behavioral constraint function,

and the following variables are associated with the fixed-point data types of the ith signal

node,

WInt,i- integer word length (always integer),

WFr,i- fractional word-length (always integer),

oi- overflow mode (0 for wrap-around, or 1 for saturation),

qi - quantization modes (0 for truncation, or 1 for round-off to the nearest),

ni - number systems (0 for 2’s complement, or 1 for unsigned magnitude).

Here we have limited the search space formed by these variables to what is

commonly used in circuit design, as shown in parentheses.

Second, sometimes designer have constraints in hardware-cost, such as area and

power, together with some system specifications. And the objective is to minimize

another system performance. Without losing generality, we let the objective function be

S1. Then this situation can be modeled as

9

,1 0,)data typespoint -(fixed
,)data typespoint -(fixed

subject to
)data typespoint -(fixed

 eperformanc systema minimize

0HW

1

>∀<
<

jS
ff

S

j

 (1-3)

where the fixed-pint data types are same specified as in (1-2) and f0 is a hardware-cost

specification value. Interestingly, this problem is essentially equivalent to (1-2) [10]. In

fact, if we modify the first constraint in (1-2) and obtain the following variation

,1 0,)data typespoint -(fixed
,)data typespoint -(fixed

 ionsspecificat subject to

)data typespoint -(fixed
cost hardware minimize

11

 HW, 1

>∀<
<

jS
sS

f

j

s

 (1-2’)

where a slack variable s1 is introduced in the first constraint. Problem (1-2’) and (1-2) are

only slightly different, and can be solved with the same method and complexity. In fact,

solving (1-2’) repeatedly for different s1, we can get a tradeoff curves between fHW and s1,

as shown in Fig. 1-3. The curve must be non-increasing due to the construction of (1’).

Fig. 1-3 also shows the feasible regions for (1-2) and (1-3). Basically, if we can solve any

problem in format (1-2) and (1-2’) efficiently, problem (1-3) is solved directly from the

tradeoff curve.

10

Fig. 1-3 Tradeoff curve between minimum hardware and specification level.
The curve shows a possible minimum hardware cost in problem (1-2’) as a function of
slack variable s1. Both optimization problems defined in (1-2) and (1-3) become trivial
with the curve.

Therefore, we consider (1-2) as our basic optimization formulation of FFC. The

constraints in (1-2) should be defined in such a way that they are satisfied at least by the

floating-point system. If we choose very large word lengths and 2’s complement number

systems for all signal nodes in the fixed-point system, the system becomes arbitrarily

close to infinite-precision. Consequently, the optimization problem (1-2) must be feasible.

On the contrary, problem (1-3) is not guaranteed feasible if, for example, f0 is set negative

or too small for a hardware-area cost function.

1.3 Our methodology and thesis organization

In this section, we will briefly describe some past FFC techniques and our

strategies. This serves the purpose of getting you familiar with many of the related

.

.

Slack variable s1

M
in

im
um

 f H
W

 in
 (1

-2
’)

0

f0

Feasible region in (1-2)

Feasible region in (1-3)

Minimum S1 in (1-3)

Minimum fHW in (1-2)

11

problems; it also point you to the particular chapter that you are most interested in,

including the hardware-cost estimation, the quantization effects, the optimization

algorithm, as well as how to automate the methodology into usable a FFC tool.

1.3.1 Brief review of the past techniques

Recently a few strategies have been proposed to automate FFC for

communication systems described in C/C++ [13-15]. While the integer-part word-length

and overflow modes of the fixed-point operands are commonly determined by avoiding

signal overflow, the determination of the fractional word-length relies on different

methods. In both [13] and [14], there is no gross hardware-cost function given; neither is

the problem treated as an optimization. However, the implicit goal is to minimize all the

word-lengths at the same time. The task of minimizing multiple objective functions is

unrealistic unless the constraints are special so that they all can be minimized

simultaneously. This is done in [14] by having one constrain function for each word-

length: the input word lengths are pre-assigned; for the rest of the word lengths the

integer part should be sufficiently large to cover the signal ranges that it governs (same

for both [13] and [15]), and the fractional part should be sufficiently large so the local

quantization noise power is much smaller than the one caused by quantizations of the

inputs. These strongly decoupled constraint functions are always feasible and can

minimize all word lengths at the same time. However, the gross quantization effects

from these locally justified quantization sources altogether can still be much greater than

the one induced by input quantizations. Therefore it is still necessary to have a final

constraint on system performance (e.g. SNR or bit-error rate) as a function of all the word

12

lengths done by simulations. This becomes the reason for unbounded number of

iterations.

In [13], the unjustified pre-assignments of date-types on some signal nodes

provide some constraint equations. The deterministic propagation methodology yields

inequalities among the fractional word lengths, e.g. the fractional word length at the

output of a multiplier should be no less than the sum of those of the two inputs, while the

output fraction word length of a delay component should be no less than the input one.

Besides the overly pessimistic consideration of quantization effects, feedback loops such

as the one in an accumulator can yield contradictive inequalities. This is solved in [13]

by possible user interaction using engineering decisions, which also yield undetermined

design time.

The work in [15] implies a similar problem formulation to ours, and again has the

same treatment on integer word lengths as most other methods. The constraints are

chosen to be the system specification functions. However the lack of investigation of the

closed form specification function limits their optimization algorithm to be purely

heuristic and time-consuming search. In addition, the Monte Carlo simulations among

iterations can be inconsistent which adds further complications.

To probe further of the vast literature, refer to Section 2.1, 2.2 and 4.1.

1.3.2 Practical, Reliable and Cost-efficient FFC

In this thesis, the same constraint functions as [13-15] on integer word lengths are

adopted in the current work. The assumption that overflow noise hurt the quality of the

13

design greatly is widely reasonable. However, in some special situations occasional

overflows in saturation mode are acceptable and even expected, which won’t be

discussed further. For each input statistics, a single estimation is needed for the ranges of

all signal nodes. With all WInt and o-modes determined separately, these variables are

dropped out from the optimization problem in (1-2). In the following subsections the

hardware-cost function and constraint functions will be studied.

1.3.3 Analytical form of hardware-cost function

A single hardware cost function is to be minimized in eq. (1-2). This could be

area, power consumption, and so on. High-level estimations of hardware resources such

as area, energy and delay have been studied extensively. For system level optimization,

it often suffices to adopt the parameterized library based approach. The area of each

block of the library can be modeled as a function of parameters related to fixed-point data

types as well as other important technology factors such as feature size and voltage.

Provided the architecture choice with all other parameters fixed, the area cost of a library

block is uniquely characterized as a function of the fixed-point data-type parameters. The

total area of the system can then be estimated as a sum of all the required blocks plus a

certain routing overhead. This usually yields a hardware-cost that is a quadratic function

of WFr’s and q’s. More detailed discussion can be found in part of Chapter 4 and Chapter

5.

1.3.4 Choices and analytical forms of constraint functions

Unlike in [14] where a number of additional constraint functions are created to

solve the multiple-objective-function situation, only the system specifications (such as

14

bit-error rate and SNR) that are eventually used to judge the quality of the design are

initially considered as the constrains. Furthermore, instead of employing the system

specifications directly as the optimization constrains as used in [15], a more robust

specification scheme is proposed based on the statement that the fixed-point system is

expected to deviate only little from the floating-point origin. One natural alternative

specification replacing (NOT in addition to) the system specifications is their relative

changes between floating and fixed point systems. An innovative perturbation theory is

developed, and shows that the change to the first order is a linear combination of all the

first and second-order statistics of the quantization noise sources. With the widely used

theoretical models of the means and correlations of the quantization noise sources and a

couple more assumptions, Chapter 2 and 3 (the latter one concentrates on the situation

when one of the assumption is not satisfied) tells us this alternative specification function

can be written into closed form

...,2 M

|)flptsys.spec.(-)fxpt(spec. sys.|

Data Path}{

2WT ,Fr +∑+=
∈

−

i
i

icu

where ci’s are constants and M is a constant column vector, the ith element of µ is

⎪⎩

⎪
⎨
⎧ −

=
ii

-
i

-
i

i
aaa

q
u

i

i

const for -)2,(fxpt

datapathfor 2
 ,W

 ,W
2
1

Fr

Fr

,
⎩
⎨
⎧

=
n truncatio1,
off-round if 0,

iq . (1-4)

Function fxpt(a, d) means the value among the set {integer × d} that is the closest to a,

and ai’s are the constants (e.g. filter coefficients) that appear in the floating-point design.

The linear coefficients M and ci’s can be data-fitted by running polynomial

numbers of Monte-Carlo simulations. However unacceptably large sample sizes may be

15

needed to conduct an accurate Monte-Carlo bit-true simulation to detect the small

perturbation on top of a large value, whose own estimation error can easily hide the small

perturbation. This important issue is resolved by choosing the mean square error (MSE)

as the specification function. The MSE error is the output difference between the

floating-point system and the fixed-point system.

 ,2CB MSE
Data Path}{

2W ,Fr∑+=
∈

−

i
i

T iuu

where B is positive semi-definite, denoted as Bf 0, C ≥ 0. Again, more details can be

found at Chapter 2.

A totally independent study on general multiple-input-multiple-out linear-time-

invariant (MIMO LTI) systems based on transfer function method has been conducted in

my master thesis [3] which confirms the validation of the MSE formula. The present

results are much more general since they apply to non-LTI systems with non-stationary

input.

1.3.5 FFC Design Automation

Now, the FFC problem is safely reduced to

0. and 0,C 0, Bwith

 ,02CB

subject to

,...),,...;W,W(Quadratic
 minimize

Data Path}{

2W
,

212,Fr1,Fr

,Fr
>≥

∑ <−+
∈

−

ki,kk

i
kkik

T

A

Auu

qqf

i

f

Here vector µ is defined in the same way as before, and Ak is the tolerance of the kth MSE

error. The problem is feasible because as all WFr increase, the left sides of the constraint

16

functions asymptotically converge to -Ak’s which are always less than 0. Physically that

means the fixed-point system becomes infinite precision.

(hierarchical) Flpt sys in Simulink

WInt, , o-modes

H.W.-cost Info

WFr , q-modes

Simulations

Simulations
& data-fit

B, C & A H.W.-cost f

Compile

stopping
criteria

Pre-programmed
optimization

(hierarchical) Flpt sys in Simulink

WInt, , o-modes

H.W.-cost Info

WFr , q-modes

Simulations

Simulations
& data-fit

B, C & A H.W.-cost f

Compile

stopping
criteria

Pre-programmed
optimization

Fig. 1-4 FFC design flow graph.

An essential part of a practical FFC is to automate the process of obtaining the

analytical hardware cost function and the analytical specification function. This is

achieved following the design flow in Fig. 1-4. First the signal ranges need to be

estimated automatically by running one simulation. This simulation also provides us the

MSE tolerance vector, A. Secondly, a number of simulations can be conducted following

the MSE formula to find out matrix B and C. The analytical hardware-cost function can

be achieved by automatically reading the system parameters, provided the hardware-cost

formula for each block. Our current design environment is Xilinx System Generator that

is based on Mathwork Simulink and Matlab. Chapter 4 and 5 shows that all the tasks

above can be automated. The number of Monte-Carlo simulations need to be done is

proportional to [dim(B)2 + dim(C) + 1]. Chapter 4 further discusses some simplifications

17

to reduce the number of simulations. Finally, the optimization algorithm specifically

suitable for this problem can be preprogrammed.

1.3.6 Scalability

A partition of the system MSE specification into block-wise MSE specifications

can factorize the problem into several smaller optimization problems. Moreover, many

of the word lengths along forward-directional data path can be pre-related to reduce the

number of optimization variables. These two strategies ensure the applicability of the

proposed methodology on large communication systems.

1.4 Summary

This chapter serves several purposes.

First, it emphasizes my master thesis [3] and suggests it to be read first. Though

its title is similar to this thesis, their contents are deliberately made almost non-overlap to

efficiently present the information. One can view this thesis an extension, though my

master thesis contains many useful results itself, such as its study of quantization effects

of LTI systems.

Second, a brief description of the thesis is provided to prepare you a big picture of

the FFC problem. With pointers to specific chapters, you can go directly to the specific

chapters for certain topics.

18

Chapter 2
A Statistical Perturbation Theory on the

Quantization Effects

As mentioned in Chapter 1, any general understanding of quantization effects can

benefits the FFC process. Most existing studies on fixed-point quantization effects rely

on either pure simulations or pure analyses. Pure simulations require extensive computing

power, and provide limited insights. The associated complexity is exponential function of

the number of fixed-point parameters. Whereas pure analyses aim to find explicit

relationships between quantization effects and all system parameters which often

becomes too difficult to accomplish even with extensive assumptions and case-by-case

efforts to get a result. General theory only exists for linear-time-invariant (LTI) systems.

Based on an innovative perturbation theory and three assumptions—independent

and white quantization noises, small noises, and no decision-error-propagation, this

chapter derives an analytical relationship between statistical quantization effects and FP

parameters and lump all other system parameters into some coefficients. The theory does

not require stationary inputs. When a system description and input statistics are given, the

theory provides a procedure to understand its statistical quantization effects both

19

analytically and numerically. In the numerical approach, only a polynomial number of

simulations are needed, whereas in the analytical approach, existing theory in LTI

systems with stationary inputs becomes a special case. Finally, several examples are

given to verify and clarify the theory.

2.1 Brief introduction

As described in the previous chapter, the algorithms used in communication

systems and digital signal processing are typically specified with infinite precision (IP)

operations at the beginning. In literature, especially for circuit designers, these operations

are sometimes referred as floating-point because floating-point computations in digital

computers possess high precisions [1-3]. On the other hand, digital implementations of

these algorithms rely on finite precision (FP) approximations, sometimes also called

limited precision. Finite precision number systems are often represented by fixed-point

realizations, among which the most popular one used in hardware implementation

systems is binary number, such as 2’s complement and binary unsigned number (see, for

example [4-9]). When a number cannot be represented by a given fixed-point data type

with finite word-length, overflow on the most-significant-bit (MSB) or quantization on

the least-significant-bit (LSB) or both take place. These finite-word-length effects cause

the FP system behaves differently from the IP system, and this may result in

implementation failure of an otherwise functioning IP algorithm.

Motivated to understand this important difference, theorists study finite-word-

length effects using mathematical analysis, whereas most hardware designers do so by

simulation methods. On the MSB side, overflow noise may cause recursive filters to

20

oscillate at 0-input, referred as limit cycle effects (see, for example, [4] and [10-12]).

However, the effects of overflow noise are often understood purely based on simulations

due to their possibly large magnitudes, low occurring probabilities, and strong

correlations with signals [1-3][13-17]. We are not going further here on this largely open

problem. Some analytical works related to MSB overflow effects take one step back and

focus on mathematically predicting the signal statistics, such as variance and higher

statistical moments, in an IP system, based on which overflow noises can be prevented

[3][5].

In contrast, the finite-word-length effects on LSB side, also referred as

quantization effects, are understood better largely benefited by their smaller magnitude,

high occurring probabilities and weak correlations with signals. Since deterministic

analysis of quantization noise is as difficult as studying overflow noise, theorists

approach the problem almost purely statistically over the last few decades (see, for

example, [18] for deterministic analysis). Given an IP algorithm, mathematical methods

are applied to determine the statistical quantization effects at system output (or internal

nodes) in relation to system parameters [3-5][19-51]. System parameters include

architectural information such as the number of taps in a filter, system inputs such as

constant filter coefficients and the signals to be processed, and FP parameters such as

word-lengths and quantization modes. Despite some elegant successes addressing linear-

time-invariant (LTI) systems and simple nonlinear systems, doing all these tasks

simultaneously is often difficult that requires special care for each individual case, and

still yields results that are too complicated to comprehend, such as infinite sums. We

characterize quantization effects on FP parameters for a general DSP system based on a

21

small-signal perturbation theory and three assumptions—independent and white

quantization noises, small noises, and no decision-error-propagation. This result covers

both stationary and non-stationary inputs. Some large quantization effects are not studied,

which is similar to the majority existing analytical work. Statistical quantization effects

are described as functions of FP parameters only, together with some other unknown

system parameters as simple coefficients that can be determined numerically. Even

without determining the coefficients, the expression itself provides valuable insights on

understanding quantization effects in general. Procedures to determine these coefficients

analytically are also suggested.

On the other hand, pure pure-simulation-based approach to study quantization

effects led by designers faces difficulties [13-17] as explained in [1]. Without any

theoretical guidance, numerically analyzing quantization effects of FP parameters

becomes a combinatorial problem. Its complexity is exponentially related to the number

of FP parameters [1]. Moreover, simulation results often yield limited insight on how

quantization effects depend on FP parameters systematically. With our results in this

Chapter, the complexity of this numerical problem is reduced to a polynomial function of

the number of FP parameters.

In Section 2-2, we prepare the basic terminologies and relationships for the rest of

the chapter while briefly reviewing the vast existing work in the literature. The first

assumption is introduced here. Section 2-3 categorizes the functional blocks and signals

in a system according to their different quantization effects, and explains about the

randomness of a system. Section 2-4 introduces two more assumptions that lead to our

perturbation theory. Section 2-5 explains the numerical concerns of the theory. Examples

22

are given in Section 2-6, and we summarize in Section 2-7. Again, overflow noise is not

studied, and only quantization effects due to roundoff quantization and truncation

quantization are given explicitly, which are defined in previous chapter and depicted in

next section.

2.2 Quantization basics and literature review

Quantization effects have been actively studied for more fifty years [4][7].

Transferring analog signals using digital-communication techniques and source-coding

theory requires quantizations, and the objective is to find a quantization scheme that

represents the source information efficiently and reliably [7]. A different quantization

effect emerged in the early 1970’s due to the raise of digital signal processing. The

objective here is to understand how finite-precision (FP) signal processing differs from IP

signal processing for a digital discrete-time signal processing system. It is important to

discern these two topics when studying the literature. We concentrate on the second

topic—quantization effects in DSP systems.

Though different number systems and quantization schemes are proposed for

DSP, most implementations rely on binary fixed-point number system—either 2’s

complement or unsigned binary number—and quantization modes of either roundoff and

truncation [4]. The rest of this chapter only explicitly studies the quantization effects of

these two modes, which is relevant to current circuit implementation.

A quantizer in our discussion is uniquely characterized by two FP parameters—its

binary point position relative to its least-significant-bit and its quantization mode being

either roundoff or truncation. The binary point position is equivalent to the fractional

23

word-length, WFr, of a binary number. That is, the output can be represented as integer

multiples of FrW2− . WFr > 0 implies the quantized signal indeed has a fractional part. WFr

= 0 implies the quantized signal can be any integer. And WFr < 0 means the quantized

signal has its last |WFr| integer bits always being 0’s—thus not necessarily to be

represented in hardware. A quantizer changes its input signal x into a quantized signal,

denoted as Q[x]. Fig. 2-1 shows the two quantization scheme normalized by quantization

step D, where, again,

.2 FrW−=∆ (2-1)

Fig. 2-1 Quantization function for (a) truncation, and (b) roundoff.
Here, .2 FrW−=∆

Quantization noise, often referred as quantization error as well, is defined as the

difference between quantizer output and input

.][Q xxe −= (2-2)

The exact expression of ε after a quantizer with roundoff mode is

,),(fxptroundoff xxe −∆= (2-3)

24

where),(fxpt ∆x is defined as ∆⋅∆)(round x , and round(.) is the function that maps

its argument to its nearest integer. Similarly with truncation mode,

 ,)(floortruncation xxe −∆⋅∆= (2-4)

where floor(.) is the floor function, or called greatest integer function. The error is related

to WFr exponentially, that is, where e is on the order of ∆ . So, as its name suggests, the

noise is usually small when WFr is large. Fig. 2-2 depicts that a quantizer, as a nonlinear

operator, is replaced by an adder with one input connected to the quantization noise,

which clearly depends on its input.

Fig. 2-2 Quantization error model

Because both roundoff and truncation modes partition the real axis into segments

of equal distance, the associated quantization functions are periodic. Thus, a Fourier

series can write them as an infinite sum of basic analytical functions—such as sums,

divisions, and exponentials—of input signal x, as shown in [19] (see [20-24] for related

discussions), that is

),
2

)12((
2

)2exp(
2
)1(

0
roundoff

∆
∑ +=∆

+∑
∆

⋅−∆−=

∞

−∞=

≠

k

k

k

kx

kxj
kj

e

1

π
π

 (2-5)

Q ++

e

25

where 1(.) is the indicator function, which equals to 1 when its argument is true and 0

otherwise. Similar expression can be given for truncation error. Exact analyses of

quantization error starting from (5) face serious challenges when the quantization error

from one quantizer starts to feed into another one. One way to alleviate these vastly

nonlinear effects is to study the quantization effects statistically. For example, taking

expected value of a continuous random variable x on both sides of (5) gives the mean of

roundoff error [19],

,)2(
2

)1(][
0

roundoff ∑
∆

−∆=
≠k

x

k k
kj

eE πφ
π (2-6)

where (.)xφ is the characteristic function of x. Based on this approach, [19] studied how

the mean and variance of the quantization noise at the output of a finite-impulse-filter

(FIR) are related to its FP parameters. Though in this model an FIR only possesses at

most two quantizers in any data path, the analyses have already been fairly complicated.

The results are again expressed in infinite sums and can only be evaluated numerically,

thus it reveals limited insights. This kind of exact analysis seems surreal and inadequate

for systems containing long data paths and feedback loops.

Bershad and Bermudez extended the exact analysis when they studied the

simplest adaptive filter—least-mean-square (LMS) algorithm [25-26]. To reduce the

complexity, they assumed and numerically justified that, in many applications, a one-

quantizer model in this nonlinear recursive system is sufficiently accurate. In addition to

a popular Gaussian distribution assumption, some critical independence assumptions— or

“constant assumptions”, depending on how they are viewed—are used. As the result, the

first two moments of the differences between actual filter weights and ideal Wiener filter

26

weights are obtained as iterations of infinite summations. Numerical computations of

these iterations agrees well with simulations given the one quantizer model and

independence assumption, but this analysis is of limited practical use and it is no longer

“exact”.

Almost in parallel to the exact theory, the majority of the community has been

concentrated on purely statistical approach based on statistical assumptions of the noises.

By giving up being “exact”, these analyses proceed much further and provide many

useful and often inspiringly accurate results. One of the most used assumptions is

Assumption 1: A quantization noise is uniformly distributed in its possible

range and independent (in some analysis, a weaker version is used

assuming only uncorrelation instead of independence) with other signals,

other quantization noises, and itself overtime (therefore it is white).

Exceptions are constant signals whose quantization noises can be modeled

as constants as well.

Examples of constant signals are filter coefficients of an FIR, step size parameter

in an adaptive filter, and so on. These signals are deterministic and deserve special

treatment. With Assumption 1, the quantization noise in Fig. 2-2 becomes independent to

its signal and can be treated as additive noise statistically. Except for constant inputs, the

noise is uniformly distributed between [-D,0) in truncation mode, whereas in roundoff

mode the noise is uniformly distributed in [-D/2, D/2). The mean value, u, of the noise

can be summarized as

27

⎩
⎨
⎧

⋅−
=≡

otherwise 2
constant for ,

][
FrW

2
1 -q

ee
eEu , (2-7)

where e is a constant when the signal being quantized is constant, and

⎩
⎨
⎧

=
mode n truncatioin 1,
mode roundoff in 0,

q .

This is what we stated in eq. (1-4). When a signal or a system parameter, x, is known to

be constant, its roundoff quantization value fxpt(x, D) as defined in eq. (2-3) is often used

in an FP system, that is,

econstant = fxpt(x, D) – x. (2-8)

The variance of the noise, on the other hand, is

⎪⎩

⎪
⎨
⎧

=−= otherwise ,2
12
1

constant for ,0
])[(Var FrW2

2
-

e
eE µ . (2-9)

The standard deviation s is Var .

More accurate models on the mean and variance base on the weaker version of

Assumption 1 and take into account that the signal coming from a previous DSP block is

already in FP and thus not continuous [3][10][27]. Nevertheless, Assumption 1 is widely

used because it models quantization noise efficiently. Many researchers have studied the

mathematical condition for this assumption using either simulation or exact analysis [19-

24]. For example, certain conditions on the characteristic function of the signal to be

quantized make the quantization noise and signals exactly uncorrelated. However,

experience shows that it is empirically sufficient to have the input random signals of

much greater variance than the quantization noise and of reasonably wide spreads in both

28

value and frequency spectrum [5]. The first part can be easily satisfied when WFr

becomes sufficiently large and the quantization error decreases exponentially according

to (2-3) and (2-4). For most signals to be processed in communication systems and

multimedia signal processing systems, signals are corrupted with various noises due to

physical environment, referred as physical noises. Thus, the second part of the condition

is also satisfied. Our favorite explanation of this condition is the following. From (2-6),

when a random input has a much wider spread than D, it’s characteristic function as its

Fourier transfer should have values concentrated between ≤p/D. So)2(
∆

k
x

πφ becomes

small except for k=0. This makes roundoff mean in (2-6) close to 0. Similarly, the

variance becomes (1/12)D2 strictly. In the following analyses, Assumption 1 is considered

strictly true.

Based on Assumption 1, quantization effects of linear-time-invariant (LTI)

systems have been solved [3-5], mostly focusing on statistical quantities such as the first

moment and the second moment of a signal. In these analyses, only the uncorrelation

version of Assumption 1 is needed instead of the more restrict full independence

condition. The quantization effects of an LTI system with stationary stochastic input can

be summarized together into compact results [3-5][16]. This includes FIR, IIR (with

feedback loops), FFT, and many other commonly used functional blocks in non-LTI

systems. With Assumption 1, quantization noise occurred along signal data path in a

linear system can be separated from input signals without any nonlinear interference,

whereas quantization of constant gain coefficients is treated completely differently as

deterministic modification of the system transfer functions.

29

Nonlinear systems such as adaptive filters, including LMS, Block LMS, RLS

(recursive least square), and leaky LMS, are also studied extensively [6][28-41]. Because

of the nonlinear feedback loop, the output and internal signals contain contributions from

multiplications of input signals from various time instances. Analysis cannot proceed

unless further assumptions are made on quantization noise and also on the statistical

property of the input signals themselves. Efforts in [40] results in a statistical “energy

preserving equation”, from which calculations about quantization effects (and analysis

for IP algorithms in general) of a time-domain LMS system are eased. Some other

nonlinear systems are also studied assuming the nonlinear part of the system is not

apparent [42-45], such as for CORDIC (coordinate rotation digital computer) system

[42]. Yet a general theory on quantization effects on nonlinear systems is not available.

Furthermore, it is known that small modifications in system architecture alters

quantization effects [1][4] and requires new derivation from the beginning despite all the

existing results for similar systems. The situation gets worse as the system is

implemented with a top-down design flow, because a complete analysis on quantization

effects requires complete understandings of both algorithm and architecture. But

algorithm, IP architecture, and FP architecture are often designed by separate designers,

causing a communication problem.

The quantization effects associated with the non-stationary input signals become

more complicated to analyze, requiring simplified statistical models, such as Markov

chain [40-41]. However, the accuracy of the results suffers due to more aggressive

simplifications.

30

As mentioned in Section 2.1, the difficulties met in nonlinear systems are caused

by the inefficiency to separate the quantization effects from other complicated ones

existing in IP systems. As a result, it is widely admitted that analyses on quantization

effects are more advanced and complicated than those for pure IP systems. However,

with a couple more assumptions that could be strictly satisfied, we will show that general

understanding of quantization effects is indeed possible.

Aside from the analytical approach, advancement in computing promotes

simulation-based approach [13-17]. However, lack of understanding, the number of

numerical estimations to completely characterize the quantization effects is exponential

with respect to the number of quantizers. Suppose a system has L quantizers, each of

which has its fractional word-lengths chosen from l possible values and 2 quantization

mode, then (2l)L estimations are required in the characterization task—usually too high to

realize. For example, in the process of the classical floating-point to fixed-point

conversion, an intuition, stating that higher fractional word-lengths always result to

“better” systems, may reduce the estimation complexity greatly [15][17]. We will

validate this by giving a sufficient condition in Section 2.7 as an example of our theory.

Furthermore, based on our results in this chapter, we propose that only orders of L2

number of estimations are needed to completely characterize the statistical quantization

effects numerically. The complexity is independent to l. Our floating-point to fixed-point

conversion tool is largely benefited by this conclusion [1].

31

2.3 Preparation for perturbation theory

2.3.1 Categorization of signals and blocks

Quantization effects depend on the architecture of the system implementation

[1][4]. For example, it is well-known that finite-impulse filters (FIR) implemented in

direct form I and direct form II produce the same result in infinite precision arithmetic,

yet they have different quantization effects [4]. In fact, the number of quantizers is

usually different in various finite-precision (FP) implementations, and they may locate at

different places. The most natural way to include all the system description necessary for

understanding quantization effects is starting from the structural description, as suggested

in [1]. In a structural description, a large system is constructed by smaller functional

units such as adders, multipliers, multiplexers, and so on; infinite-precision (IP) or FP

systems with architectural information look like a block diagram. Fig. 1-1 in previous

chapter depicts a simple algorithm in its architectural form.

In order to identify the different types of functional modules, we first differentiate

the types of signals in a DSP system. This is done by comparing the FP system from its

IP version. Both IP and FP descriptions of a system can be viewed as different levels of

abstractions of a physical design. A FP system can be represented by the same block

diagram as the IP system, with some quantizers inserted in the signal paths or after some

constants. After each quantizer, the signal is changed from infinite-precision (or higher

precision) to finite-precision (or lower precision). We name this kind of signals

arithmetic signals—new quantizations happen right after them in the FP version of the

system.

32

Some other signals are already in their desired finite-precision even in the IP

description. This is possible because of algorithm designers’ understanding of Boolean

algebra, coding theory, abstract algebra, and other mathematical theory about FP

arithmetic. Hence, it is unnecessary to place additional quantizers for these signals in the

FP version. Doing so, the IP algorithm designers’ vision would be ignored which results

in different systems. As an example, one may combine 8 1-bit signals after source coding

into an 8-bit number with four of the bits being fractional. This can be done by a serial-

to-parallel converter and by thinking that the binary point being in the middle. Then, it

would be completely wrong to treat this signal arithmetic and quantize it because the

information associated with the bits truncated away is permanently lost. We call these

signals that have predetermined FP data-type logical signals. In fact, most of them are

naturally described in Boolean or binary integer format, and IP system designers can

identify them easily.

Some other constraints can also cause predetermined FP data-type, for example,

when having limited hardware resources such as fixed precision analog-to-digital

converter, multipliers, and so on. In order to develop an algorithm to be implemented

using these hardware, it is practical to treat signals after these blocks also of fixed finite-

precision. We will not distinguish these fixed data-type signals from logical signals.

With the preceding signal-type description, operators (or functional blocks) and

its inputs and output in IP system can be summarized into different types as well. Here,

we assume one operator always have one output because an operator with multiple

outputs can be separated into multiple copies with single output individually.

33

1 The output is an arithmetic signal. We name the operator arithmetic

operator. Examples include adder, multiplier, and delay elements as

appeared in FIR and LMS filter.

2 All of the inputs are logical, and the output is also logical. The operator is

called logical operator. These operators often appear in control logic

circuits. Examples are AND/NAND/OR gates.

3 Some of the inputs are arithmetic, and the output is logical. The operator is

called decision-making operator. Examples include the final slicer in a

communication system that estimates the transmitted bit, a comparator in a

time-synchronization unit to select the right time-offset, and a comparator in

a stage-based CORDIC unit to decide in which direction the angle needs to

be shifted at a particular stage.

Let us explain this classification. It may first look non-trivial to discern signal

types and thus operator types. For example, an adder with arithmetic output (with

potentially infinite-precision) is by definition an arithmetic operator. Yet an adder

included in control logics such as finite-state machine description that produces strict

logic signal output is a logical operator. On the other hand, an adder as an arithmetic

operator can also be decomposed into logical operators such as NAND gates operating on

logical signals. In this way, architecture description has been driven into too much detail

for analysis of quantization effects. This is because modifying the FP parameters now

means cutting blocks from (or adding blocks to) the architectural description. Therefore,

fixing the architectural description rules out this kind of confusions. As another example,

an absolute function denoted as |.| operating on an arithmetic signal is naturally treated as

an arithmetic operator. However, as shown in Fig.1-1, it may compose a multiplexer

selecting the input signal or input signal’s negation based on its sign, and the sign

equivalent to a slicer—a decision-making block.

34

From another point of view, because infinite-precision operations do not exist in

implementation, why don’t designers only design finite-precision system from the very

beginning? The answer is that this is too “abstract” (in the same sense as it appears in

Abstract Algebra) for the designers, and the large combination of FP parameters make the

task easily forbidding. Therefore, IP description normally starts as the first level of

abstraction, which contains mostly infinite-precision operations that are easier for

analysis. Then, architectural information is added, and then FP parameters are

considered. Yet from the beginning, IP designers might know some signals’ final FP

types, either inferred by algorithm itself (such as for the slicer in communication systems,

and for the source-coding), external reasons (such as component availability in

hardware), or even design experience. The last “knowledge”-based approach is not

recommended: more scientific reasoning and more advanced design tools can do better

[1].) Usually, logical signals are those that become wrong when shortening its word-

length and become awkward and unnecessary to increase; in contrast, the FP parameters

of arithmetic signals affect the behavior of a system much more incrementally.

In summary, signals types are often confined by and apparent from algorithmic

and architectural descriptions of a system. If not, the IP system designers know who they

are.

2.3.2 Some definitions

The inputs of a digital system can be considered as discrete-time random process

[1][3][6][46]. The operators in a system can usually be treated as deterministic operations

that produce random process at their output under this stochastic signal environment. At a

35

given sample time t, each input signal, internal signal, or output signal is a random

variable—with values from different ensemble realizations will follow a probability

density function at t. The function could be different at different t, that is, signals

throughout the system may be non-stationary random processes.

In reality, an operator, denoted by bold letter F, has a finite number of inputs,

denoted as K, and they together form a random vector point (x1(t), x2(t), …, xK(t)) or, in a

simpler notation, (x1, x2, …, xK) t , at time t. This random vector may be non-stationary.

An operator could be as small as an adder or as large as a complete communication

system. Inputs include normal data-path inputs such as the inputs of an adder, or constant

inputs such as the constant coefficients of an LTI filter or adaptive update parameter. At

t, any ensemble realization of the random vector (x1, x2, …, xK) t becomes a regular

vector and belongs to a domain Wt. Here, Wt consists of all the possible realizations at

time t and is a subset of the K-dimensional Euclidean space RK if we treat Boolean

signals True and False as real numbers, such as 1 or 0, respectively. For convenience, the

random vector (x1, x2, …, xK) t is considered to have domain Wt, that is,

(x1, x2, …, xK) t œ Wt. (2-10)

Let t > t1 > t2 > … > 0, and suppose the system starts to run at t =0, then at a later time t,

the output of a causal operator F depends on all its previous and current inputs, {(x1, x2,

…, xK) t , (x1, x2, …, xK) 1t ,…, (x1, x2, …, xK) Nt , (x1, x2, …, xK)0}, and possibly a random

initial state. In a sample based system, ti is simply t-i. Variables in the initial state are

treated as additional inputs to the system which are brought into the system by adders at

time 0. So, for conciseness, let’s ignore the initial state in subsequent discussion. Now,

36

the output of F at time t as fF(x1, x2, …, xK, t), called the transfer function of F, can be

written as

().),...,,(,...,),...,,(,),...,,(
),,,,(

0K21K21K21,

K21

1
xxxxxxxxx

txxxf

tttF

F

φ
=L

 (2-11)

The functionality of F at time t is uniquely expressed by function fF,t , named as

the instantaneous transfer function of F at t. It is convenient to rename the input

Kä(N+2)-dimensional random vector {(x1, x2, …, xK) t , (x1, x2, …, xK) 1t ,…, (x1, x2, …,

xK) Nt , (x1, x2, …, xK)0} to {x1, µ, xM} as

x1=)(1 tx , x2=)(2 tx ,…,xK=)(K tx ,

xK+1=)(11 tx , xK+2=)(12 tx ,…,x2K=)(1K tx ,

…

xM-K+1=)0(1x , xM-K+2=)0(2x ,…,xM=)0(Kx , (2-12)

where M= Kä(N+2). (x1, µ, xM) are called the expanded variables of (x1, x2, µ, xK) at

time t with respect to operator F. Now, (2-11) reduces to

().,...,,),,,,(M21,K21 ξξξφ ttxxxf FF =L (2-13)

Only with an ensemble realization of random vector (x1, µ, xM), a numerical value of the

output at t becomes available using (13). By the definition in (10) and (12), the expanded

variables belong to a expanded domain, that is (x1, µ, xM) œ WtäW 1t ä…äW0, where “ä”

means direct product.

It is important to notice that fF as a function is deterministic. When a system is

physically designed, it is often to fulfill a deterministic functionality to process some

random (or, sometimes, deterministic) inputs. This is generally accepted in modeling all

37

DSP systems; therefore, this is not made as a separated assumption in addition to

Assumptions 1-3. In fF,t , the subscript t stresses that this deterministic function itself

may vary over time. The technical difficulty of explicitly expressing this deterministic

function is not crucial to understand the rest of the chapter.

The examples below explain the definitions so far.

 Example 1. An adder operator A at time t has output transfer function

),()(),,(2121 txtxtxxf +=A

so,

.),...,,(),,(21M21,21 ξξξξξφ +== ttxxf AA (2-14)

A multiplexer, denoted by operator M, selects either of the two inputs, x1 or x2, to

its output depending on the value of the third input—xsel; so its transfer function is

),()1)(()()0)((),,,(2sel1selsel21 txtxtxtxtxxxf ⋅=+⋅== 11M

That is,

.)1()0(
),...,,(),,,(

2313

M21,sel21

ξξξξ
ξξξφ

⋅=+⋅==
=

11
MM ttxxxf

 (2-15)

where xsel is a logical signal, and 1(.) is the indicator function as defined in (2-5).

É

Example 2. A timing operator G has its output at t equal to its single input at

another time g(t), where g(t) § t for a causal G. That is,

(),)(),(tgxtxf =G

so,

38

1)(M1,),...,(),(+−== tgtttxf ξξξφGG . (2-16)

More specifically, a unit delay z-1 has g(t) = t-1, and its instantaneous transfer function is,

2M1,),...,(ξξξφ =− t1z .

On the other hand, a 2-times down-sampler samples the input at every even time event

(here 2 is chosen for clarity and without loss of generality) has

 () ()1,2)mod()1(0,2)mod()(=⋅−+=⋅= tttttg 11 ,

where mod(a, b) gives the remainder of integer a divided by integer b and the underlying

discrete clock is the one before the down-sampler (because it is of higher frequency) . So

() ()

() ,

),...,(),(

11,2)mod(

1)}1(1,2)mod(0,2)mod({

M1,

+=

+−⋅=−⋅=−

↓↓

=

=

=

t

ttttt

ttxf

1

11

22

ξ
ξ

ξξφ

where the last step is because ()1,2)mod(=t1 + ()0,2)mod(=t1 is just 1. Alternatively, we

can understand the last equation as

 If mod(t,2)=0,

 1M1,),...,(),(ξξξφ == ↓↓ ttxf 22 ,

 otherwise, that is, if mod(t,2)=1,

 2M1,),...,(),(ξξξφ == ↓↓ ttxf 22 .

É

In summary, all the random factors of the output of an operator are introduced by

its random inputs, whereas the transfer function fF,t is deterministically known (as a

function of time t).

39

2.3.3 Smooth operators

The concept of “smoothness” of an operator provides the foundation of the

perturbation theory to be introduced later. As defined in calculus, deterministic function

fF,t is said to be smooth on arithmetic signals if it is continuous and differentiable to any

desired degree over an open set in which the arithmetic signals belong to, regardless of

the realizations of the logical signals. Then, operation F is called smooth over its

arithmetic inputs, or briefly as F is smooth. Discussions later show differentiability to the

third degree is usually sufficient in consideration of quantization effects.

It is meaningless to say the operator smooth or not over its logical signal inputs as

they have discrete values. Basic arithmetic operators, such as an adder, a multiplier, and

so on, clearly are smooth. In Example 1, for a multiplexer whose functionality is defined

by (2-15), fM,t is clearly smooth on its arithmetic signals (1ξ , 2ξ) over all their possible

values. So, multiplexer is indeed smooth. In Example 2, timing operator is evidently

smooth according to (2-16) if the input is arithmetic. The following simple example

explains the domain involved in the definition.

Example 3. A reciprocal operator R is given by its transfer function as

1M1, /1),...,(),(ξξξφ == ttxf RR , (2-17)

where x1 is arithmetic signal. Clearly, fM,t is smooth if its input belongs to (-¶,0)»(0,

+¶). Similarly an absolute-value operator is also smooth in the same domain. In fact,

most mathematical operations, such as sine, cosine, logarithm, exponential and power,

are all smooth with properly defined input domain.

É

40

In our definition, decision-making operators with arithmetic input and logical

output can also be treated as smooth operators over its arithmetic inputs. The unsmooth

region contains those arithmetic input vector points that, when adding some infinitesimal

perturbation at different direction, produce different decisions at the output. For example,

a slicer that determines the sign of an input arithmetic signal has unsmooth region

containing one point, 0.

Two consequential smooth operators form a combined operator that is also

smooth. This is simply because smooth function acting on smooth function provides a

joint smooth function. The smooth domain for this combined operator is usually those

inputs that cause neither of the two operators to operator at unsmooth region.

2.4 Perturbation theory

Section 2.2 motivates us to understand quantization effects of a general system,

similar to what has been successfully done for LTI systems. When the systems and

signals satisfy two additional assumptions that are given in the first part of this section, a

theory based on perturbation fulfills this task.

2.4.1 Limit large quantization effects

First, in addition to Assumption 1 in Section 2.2 that treats quantization noises as

separate and independent system inputs, further regulations on the noise magnitude helps.

This gives

Assumption 2. Only the effects caused by small quantization noises in

comparison with the magnitudes of their corresponding IP signals are

considered.

41

Since quantization noise introduced by a quantizer is strictly bounded by

quantization step D in (2-3) and (2-4), Assumption 2 is normally well-satisfied when

fractional wordlength of the quantizers in the system are large since D decrease

exponentially as the fractional word-length increase.

One consequence of Assumption 2 is that large quantization noises due to

aggressive quantizers are ignored. Those quantizers may cause the FP system behave

significantly differently from the IP system. Such a system would most likely violate the

IP designers’ original visions on the algorithm, so that it would be more properly

considered as a new algorithm, rather than an approximation of the IP system. For

example, an adaptive sign-algorithm (SA) is almost identical to LMS, except that it takes

the sign of the error signal (a 1-bit quantizer) rather than the full error signal to feedback

and update the filter tap weights [47][40]. In literature, they are indeed treated as two

algorithms. So, Assumption 2 basically confines us to understand on FP system who

behaves slightly different from its IP version. However, this analysis provides insights on

explaining some phenomena in aggressively designed FP systems.

2.4.2 Limit quantization effects caused by altered decisions

By definition, only arithmetic signals are modified directly by FP quantizers.

Nevertheless, the value of a logical signal in a FP system can indirectly vary from its

counterpart in IP system. Quantization effects from quantizers that modify only

arithmetic signals may accumulate in front of a decision-making block. These arithmetic

signals influenced so much that the decision of a decision-making block may be altered.

This altered decision can further propagate through control logic operators and alter the

42

value of any logic signal following them. They can also bring large magnitude errors to

arithmetic signals. This important mechanism is called decision-error-propagation. It

brings more subtle quantization effects, under which the FP system may still act as an

approximation of the IP one with occasional large deviations. These effects are much

more difficult to study. We rule out them by having Assumption 3,

Assumption 3. In a causal discrete-time system, assume each of the

arithmetic operators and decision-making operators has its arithmetic

inputs sitting in smooth regions of the operator, that is, the probability that

its arithmetic inputs occur in the “unsmooth” region is zero.

In Example 3, this simply translate to probability P(1ξ =0) = 0. In practice, a safer

version might be P(-d< 1ξ <d)=0, where d is an arbitrarily small positive number.

One immediate inference of Assumption 3, together with Assumption 2, is that, as

long as quantization noises are sufficiently small, logical signals can not alter due to the

aforementioned decision-error-propagation mechanism in a FP system. Under arbitrarily

small quantization effects, arithmetic inputs of an arithmetic operator can only change in

an infinitesimally small neighbor around its IP point, which is still included in its open

smooth region. So its output also changes infinitesimally small amount around its IP

value. (Here need the operator function continuous.) Similarly, a decision-making block

keeps its output value same as IP one because its inputs only change little from their IP

value, sitting in the open smooth region. The whole system, even with recursive loop,

will operate nicely similar to its IP version. In this way, only arithmetic operators

propagate quantization effects for any finite time t. Therefore, the values of logical

43

signals in FP system are always the same as in IP system at any time instance before and

including the current time.

Most existing analytical studies on quantization effects focus on systems that

satisfy Assumption 3. A large number of these systems do not even contain logical

signals, thus no decision-making blocks and logical blocks either. For example, linear-

time-invariant (LTI) systems consist of constant gains, adders and delays, whereas least-

mean-square (LMS) and recursive-least-square (RLS) systems contain multipliers in

addition, yet only arithmetic operators are involved. Furthermore, all these arithmetic

operators are basic and smooth. On the other hand, a CORDIC system does include

decision-making and logical operators, but its quantization effects has been studied

implicitly assuming no logical signals is different between the FP and IP systems [42].

2.4.3 View FP the same as IP system, but with different noise inputs

As stated at the end of Section III, a system can be treated as a combined operator.

Furthermore, Assumptions 2 and 3 infer that the operator is smooth on its arithmetic

signals. Since all the internal operators operate in their smooth region, the combined

operator also does the same thing.

Denote the original IP system as SIP and the FP system as SFP. Assumption 1 says

that a quantizer can be treated as an adder with the quantizer input and independent error

noise as two of its inputs. In this way, one additional input per quantizer is brought into

the system with an additional arithmetic adder. By replacing all quantizers with adders in

the FP system, we get a new system, called S . This system S can represent both the IP

system, SIP, by setting the noise inputs of these adders constantly 0, whereas S can

44

represent SFP as well by having the noise inputs the corresponding noise sources. Fig. 4

depicts these relationships. Assumption 1 allows us to treat IP and FP versions of a

system simply as the same systemS , but with different inputs. Here S differs from SIP

since the former contains additional adders.

Fig. 2-3 FP system SFP is treated as an IP system with changes on some error input
signals.

Let bold letters S , SIP and SFP be the operators associated withS , SIP and SFP,

respectively. Then S is a combined operator of all those in SIP and the smooth adder-

operators replacing quantizers. When all quantization noise inputs are 0, the internal

signals of S are identical to those in SIP. Because quantization noises only modify

arithmetic signals under Assumptions 2 and 3, is smooth on both the original arithmetic

inputs of SIP and on the quantization noise inputs.

SFP: the FP version
of S, with arithmetic
operators and
quantizers

Ç
input

output : IP system Ç

input

. . .
q-error inputs

SIP: An IP system S
with arithmetic
operators Ç

input

output

: IP system, with
all operators in S
and additional
arithmetic adders

Ç
input

. . .
Zero inputs

=

=
output

output

45

Denote the transfer function of as f , its signal inputs as (x1, x2, µ, xK), and the

error inputs as (e1, e2, µ, eL), where L is the number of additional quantizers in SFP

comparing with SIP. The expanded variables of (x1, x2, µ, xK) and (e1, e2, µ, eL) over

are denoted as (x1, µ, xM) and (ε1, µ, εN), respectively. Since (ε1, µ, εN) is simply a

rearrangement of (e1, e2, µ, eL) at different discrete time instances, (ε1, µ, εN) in the IP

system should be constant 0’s.

Now, the transfer function of SFP and SIP can be stated in terms of the transfer

function of ,

),,,,,,(
),,,,,,,,(

),,,,(

N1M1,

L21K21

K21

εεξξφ LL

LL

L

t

teeexxxf

txxxf

S

S
=
=

FPS

 (2-18)

and

).0,,0,,,(
),0,,0,0,,,,(

),,,,(

M1,

K21

K21

LL

LL

L

ξξφ t

txxxf

txxxf

S

S
=
=

IPS

 (2-19)

The next Subsection will use the differentiability part in Assumption 3 to study the

difference between (2-18) and (2-19).

2.4.3 Taylor expansion

All the discussion in previous two subsections could still hold if “continuous” was

to substitute “smooth” in Assumption 3. A continuous operator’s output only change little

if its inputs change little. The differentiability in Assumption 3, however, enables

46

quantitative study on infinitesimal quantization effects. This is done by using Taylor

expansion of smooth function),,,,,(N1M1, εεξξφ LLtS over its arithmetic inputs signals

(ε1, µ, εN) around their IP values that are all zeros. The expansion up to its 2nd-order

terms gives

....

)0,,0,,,(

),,,,,(

N

1, 0,,0

,
2

N

1 0,,0

,
M1,

N1M1,

N1

N1

+∑ ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂+

∑ ⋅⎟
⎠
⎞

⎜
⎝
⎛

∂
∂+=

= ==

= ==

ji
ji

ji
t

i
i

i
t

t

t

εεεε
φ

εε
φξξφ

εεξξφ

εε

εε

L

L

LL

LL

S

S
S

S

 (2-20)

Using (2-18) and (2-19) on both side of the equation, (20) becomes

....

),,,,(

),,,,(

N

1, 0,,0

,
2

N

1 0,,0

,
K21

K21

1

1

+∑ ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂+

∑ ⋅⎟
⎠
⎞

⎜
⎝
⎛

∂
∂+=

= ==

= ==

ji
ji

ji
t

i
i

i
t

N

N

txxxf

txxxf

εεεε
φ

εε
φ

εε

εε

L

L

L

L

S

S
IP

FP

S

S

 (2-21)

Thus the output of the FP system at time t has been expressed as the IP output with

additional small perturbations due to all the quantization noises in a power series format.

The coefficients of the power series are no longer functions of the noises themselves.

With Assumption 2 and the smooth operator assumption, the higher order terms

are normally negligible comparing with the first two orders. Only the first two orders of

terms are kept for relatively easy analysis.

47

2.4.4 Statistical quantization effects

Both the coefficients and error noises are stochastic signals. Thus, deterministic

studies can only be conducted in ways such as the absolute bounds of the difference

between IP and FP system.

Commonly, it is the statistics of an output that is most informative. Studies such

like direct analysis of the probability distribution functions may provide insights. Though

useful, the analysis is very hard to get useful results. Yet study on statistical expectations

provides a good tradeoff between the complexity and usefulness.

With Assumption 1, entries of (ε1, µ, εN) are mutually independent and are

independent to (x1, µ, xM); so, in (2-21), the power terms of (ε1, µ, εN) and coefficients

terms that only are functions of (x1, µ, xM) are statistically independent. So, doing

expectation of (2-21) on both sides and using identity E[a⋅b]=E[a]⋅E[b] for independent

random variables a and b, it gives

,][][

][][)],,,,([

)],,,,([

N

1, 0,,0

,
2

N

1 0,,0

,
K21

K21

1

1

∑ ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂+

∑ ⋅⎟
⎠
⎞

⎜
⎝
⎛

∂
∂+=

= ==

= ==

ji
ji

ji
t

i
i

i
t

EE

EEtxxxfE

txxxfE

N

N

εεεε
φ

εε
φ

εε

εε

L

L

L

L

S

S
IP

FP

S

S

 (2-22)

where only the first two terms are kept. Note that

[] []
jijiji

jjiiji

ji

EEEEEE

E

σσγµµ
εεεεεε

εε

⋅+=

−⋅−+=

,

][][][][

][

, (2-23)

48

where][ii E εµ = is the mean of iε ,

]])[[(2
iii EE εεσ −= (2-24)

is the standard deviation of iε , and

ji

jjii
ji

EE
σσ

µεµε
γ

][][
,

−⋅−
= (2-25)

is the auto-correlation coefficient between iε and jε . Due to Cauchy-Schwartz

inequality [48], | jir , |§1 always holds. Furthermore, (2-23) can be simplified by noticing

that (ε1, µ, εN) are mutually independent as stated in Assumption 1. That is, ji,γ =0 if i ∫

j, and jir , =1 if i = j. Thus, (2-22) becomes

.][

][

][)],,,,([

)],,,,([

N

1, 0,,0

,
2

N 2

0,,0
2

,
2

N

1 0,,0

,
K21

K21

1

1

1

∑ ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂+

∑ ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂+

∑ ⋅⎟
⎠
⎞

⎜
⎝
⎛

∂
∂+=

= ==

==

= ==

ji
ji

ji
t

i
i

i

t

i
i

i
t

N

N

N

E

E

EtxxxfE

txxxfE

µµεε
φ

σ
ε

φ

µε
φ

εε

εε

εε

L

L

L

L

L

S

S

S
IP

FP

S

S

 (2-26)

It is more straightforward to represent the expression in terms of the statistics of

quantization noises (e1, e2, µ, eK) directly. To do this, define the mean and standard

deviation for ei according to (2-7) and (2-9) as

][ii eEu = , and])[(2
iii ueEs −= . (2-27)

These statistics can be related to the quantization mode and fractional word-length using

(2-7)-(2-9). Now, replacing all mi’s and si’s in (2-26) with corresponding u and s

49

according to the definition of expanded variables in (2-12), possibly repeatedly.

Collecting all the coefficients in front of the same ui, si and uiuj , denoting the final

coefficients to mi, hi and ni,j, respectively, and moving the first term of the right side of

(2-27) to the left side, we get

∑ ⋅+∑ ⋅+∑ ⋅=

−

==

L

1,
,

L 2L

1

K21K21

.)()()(

)],,,,(),,,,([

ji
jiji

i
ii

i
ii uutnsthutm

txxxftxxxfE LL
IPFP SS

 (2-28)

Here the summation is from 1 to L, rather than 1 to N used for expanded variables in (2-

26). Furthermore, (2-28) is a deterministic relationship where every term on the right side

is no longer random. This central result (2-28) is worth interpreting below. Examples in

Section 2-6 provide further clarifications.

First, if none of mi’s degenerates to 0, Assumption 2 infers that ui<<1 and the last

summation of (2-28) is always negligible comparing with the first summation. However,

the summation containing si
2 cannot be neglected since ui=0 strictly in roundoff

quantization mode, in which case those terms dominate the perturbation. So,

.)()(

)],,,,(),,,,([
L

1

2L

1

K21K21

∑ ⋅+∑ ⋅≈

−

== i
ii

i
ii sthutm

txxxftxxxfE LL
IPFP SS

 (2-29)

This relation was first reported in [2] without giving the proof there.

Second, the detailed expressions of the coefficients are not given. These

expressions, together with the value of L, summarize the statistics of the input signals,

and the algorithmic and architectural information of the system. All the FP parameters,

such as fractional word-lengths and quantization modes, on the other hand, are exhibited

50

in the mean and variances given by (2-27). That is, (2-28) separates quantization effects

from IP characteristics. Furthermore, our derivation actually gives a procedure to find out

the coefficients expression explicitly. This includes getting system S as discussed in Fig.

2-3, changing (x1, x2, µ, xK) and (e1, e2, µ, eL) to their expanded variables (x1, µ, xM)

and (ε1,µ, εN), figuring out the analytical instantaneous transfer function

),,,,,(N1M1, εεξξφ LLtS , conducting the derivatives as shown in (2-20), doing

expectations for the coefficient functions in (2-22), and finally switching the variables

back to (x1, x2, µ, xK) and (e1, e2, µ, eL) and simplifying the result. The most difficult

tasks in this procedure are often finding the transfer function explicitly and simplifying

the expectations of those coefficients. Not surprisingly, a closed form expression often

cannot be acquired. Yet, however hard it is, the difficulties are only technical. Of course,

despite the insights provided by (2-28), the result becomes quantitatively useful in

practice only when the coefficients are evaluated. Some of the examples in Section 2-6

try to execute the complete calculation following the preceding procedure. On the other

hand, Section 2-5 introduces the method to achieve the numerical values of these

coefficients computationally.

Third, only Assumptions 1-3 are used in our derivation. Therefore, the result and

the procedure work on non-stationary inputs with general statistical distributions, as well

as transient analysis of a system under stationary inputs.

2.4.5 Some useful variations of (2-28)

Though the formula given in previous subsection can be very useful in analysis,

various difficulties may occur in practice. For example, the mean of the output might not

51

convey enough statistical information. Therefore, it is generally necessary to find the

statistical difference between a smooth function, g(ÿ), of the outputs of the IP and FP

systems. Let g be the operator whose transfer function is g, g is a smooth operator; its

acting on the output of a system gives a new system. The new system still satisfies

Assumptions 1-3 and is of great interest. Then, the result (2-28) directly applies to give

.)()()(

))],,,,(()),,,,(([
L

1,
,

L 2L

1

K21K21

∑ ⋅+∑ ⋅+∑ ⋅=

−

== ji
ji

g
ji

i
i

g
i

i
i

g
i uutnsthutm

txxxfgtxxxfgE LL
IPFP SS

 (2-30)

Here L is the same as in (2-29) because no new quantizers are introduced by including g.

The coefficients, superscripted by g, are different from those in (2-29) unless g(ÿ) is an

identity function. Either the procedure mentioned in previous Subsection or the

simulation method of Section 2-5 may find out the coefficients.

This result may still lack the ability to reveal quantization effects in practice. In

fact, (2-30) suggests the difference interested is often dominated by the means of

quantization noises; thus, the random nature of the noises, summarized by their variances,

does not show up in (2-30). So it is valuable to study the statistics of a function of the

output difference between SIP and SFP. First, suppose g is a smooth memoryless function,

that is, the function value at time t only depends on its input at time t, then,

()
],)[()0('')][()0(')0(

]),,,(),,,([
2

2
1

K1K1

IPFPIPFP

IPFP

SSSS

SS

ffEgffEgg

txxftxxfgE

−⋅+−⋅+≈

− LL

 (2-31)

where a Taylor expansion is given on g to the second order. This relationship indicates

that)][(
IPFP SS ffE − and])[(2

IPFP SS ffE − are the keys to understand the expectation of

any memoryless function of the output difference between the FP and IP systems. While

52

the former has been studied in previous subsection, it is straightforward to find out that

the mean-squared error (MSE) of)(
IPFP SS ff − can be represented as

,)()(

])),,,,(),,,,([(
L 2L

1,
,

2
K21K21

∑ ⋅+∑ ⋅=

−

= i
ii

ji
jiji stcuutb

txxxftxxxfE LL
IPFP SS

 (2-32)

where bi,j(t) is defined to equal bj,i(t) for simplicity (it is the sum bi,j(t) + bj,i(t) that is

uniquely determined). We use coefficient bi,j(t) in (2-32) as the ith-row and jth-column to

form a K-by-K matrix B(t) and use µ to represent the column vector formed by

(u1,…,uK)T, where superscript T means vector transpose. Then, (2-32) becomes

 .)()(

])),,,,(),,,,([(
L 2

2
K21K21

∑ ⋅+=

−

i
ii

T stcutu

txxxftxxxfE

B

IPFP SS LL

 (2-33)

Since the MSE quantity has to be non-negative regardless of each mi and si , matrix B(t),

denoted by the bold letter, must be symmetric and positive semi-definite and ci(t) has to

be positive, denoted as B(t)f 0, and ci(t) ≥ 0.

Finally, the function g defined in (2-31) may have memory to study the

correlation characteristics of the output quantization noise. Let gm be one such function

where the subscript m indicates that it has memory. Then, the statistic of interest is

()]),,,,(),,,([K1K1 ttxxftxxfgE m LL
IPFP SS − . (2-34)

The following method outlines one solution to this problem. First, the difference between

two systems SIP and SFP creates a FP system (SIP-SFP). Followed by the smooth system

that is based on function gm, it becomes a new FP system. All the quantizers in this new

system are the same as those in SFP. The IP version of this compound system is (SIP-SIP),

53

which is constant zero, followed by the system using function gm. The compound system

satisfies Assumptions 1-3 if SIP does. So, the result (2-28) applies to

()
∑ ⋅+∑ ⋅+∑ ⋅=

−−

==

L

1,
,

L 2L

1

K1K1

.)()()(

)],0([]),,,,(),,,([

ji
ji

g
ji

i
i

g
i

i
i

g
i

mm

uutnsthutm

tgEttxxftxxfgE

mmm

LL
IPFP SS

. (2-35)

Here gm(0,t), by our definition, indicates the output of gm at time t given all its previous

and current inputs are 0. This is a deterministic value and often zero if gm is unbiased; so,

the expectation of the last term in (2-35) can be removed, and (2-35) essentially provides

the statistic in (2-34). Of course, MSE of the output after gm becomes similar to (2-33),

where the first order term disappears. That is,

()
.)()(B

])},0([{]}),,,(),,([{
L 2

22
11

∑ ⋅+=

−−

i
i

g
i

gT

mm

stcutu

tgEttxftxfgE

mm

LL
IPFP SS

 (2-36)

This will be used in Example 2 of section VI.

In summary, the output difference between IP and FP systems is a random

variable at any time instance, as given in (2-21). Its mean and variance given in (2-28)

and (2-33) provide basic understandings of its regularity. In most applications, this

information is the sufficient statistics to depict the gross quantization effects. In principal,

this provides the statistical quantization effects for all discrete-time DSP systems under

stochastic signal environment when Assumptions 1-3 are satisfied. The difficulties left to

determine those coefficients are purely technical in both the analytical procedure

suggested in previous Subsection and the computational method in the next Section.

54

2.5 Application in numerical simulations

Advancements of digital computers promote simulation-based approach to

understand quantization effects. This can neatly fit into the results in previous Section.

Suppose a system has L quantizers, each of which has l possible fractional word-lengths

and 2 quantization mode, then, (2l)L Monte-Carlo estimations are required to understand

a statistical quantity that summarizes the quantization effect. Each of these estimations

reveals the relationship between the statistical quantity and a specific setup of the FP

parameters. The number of estimations needed for a complete understanding of

quantization effects is exponentially related to number of quantizers. This exponential

number is often too high to be practical. In some applications, such as floating-point to

fixed-point conversion (FFC) [13-17], the situation may be alleviated. In simulation

based FFC, an assumption based on the intuition—higher fractional word-lengths always

result better systems—leads to great savings on the number of estimations needed [13-

16]. We will study when this assumption is appropriate in Section 2.6.

However, the analytical results in previous sections indicate that at any time t,

only 2L + (L+1)⋅L/2 coefficients are unknown and to be determined in (2-28), and

(L+1)⋅L/2 + L independent coefficients are to be determined in (2-33). Together, (L+4)⋅L

unknown coefficients are to be determined, and this is the number (and also the least

number) of well-designed estimations needed to numerically determine the quantization

effects as given in (2-31). This number, on the order of L2, is a quadratic function of L—

a huge saving comparing with the previous exponential relationship (2l)L. In fact, the

number is not a function of l—as long as the word-lengths are not too small to violate

Assumptions 1-3. When the mean errors ui’s are all 0, which is the case as all

55

quantization modes are roundoff and no constant coefficients are involved, then only 2L

unknown coefficients are left in (2-29) and (2-33). Then, the number of estimations

needed becomes a linear function of L. Our floating-point to fixed-point design tool is

largely benefited by these results [1].

Now, a polynomial number of estimations is needed to understand the

quantization effects at a time t. Fortunately such efforts do not need to repeat at each time

instance to understand the quantization effects for all the time before t. In fact, they only

introduce a small increase to the existing numerical cost. To explain this, let’s first look

at the components of estimation cost here. The expectations in (2-28), (2-30), and (2-33)

can be estimated using different types of estimators, among which ensemble-average

estimator is the most intuitive and un-biased one. It estimates the expectation by

averaging the corresponding output at a time while running simulations from time 0 to t

multiple times. All the simulations are based on the same input statistics but with

different random ensample realizations. Therefore, to get the numerical output at t, all the

outputs before the time become byproducts. So, the only overhead-cost to get

quantization effects from 0 to t-1 is doing t more numerical averages that are fast.

The estimation methods may still be too costly because an estimation using a

large ensemble average means a large number of digital simulations. This can be eased

by using ergodic averages. Whenever the input statistics (or probability density function)

do not change rapidly over time, and the mapping from (x1, x2, µ, xK, e1, e2, µ, eL) to

(x1, µ, xM, ε1, µ, εN) does not change over time rapidly either, over a short period of

time, the output signal of the system can be treated as a stationary random process. As a

56

result, the expectation at a time t can be estimated using their ergodic averages over a

short period of time around t. In this way, only one digital simulation from time 0 to t is

needed. This saving becomes useful in many practical applications where simulations to

do large ensemble average become too expensive [1].

Another subtle point regarding the way to conduct estimation can also affects the

estimation efficiency dramatically. At least two methods can be used to numerically

simulate the left side of (2-28). In the first one,)],,,,([K21 txxxfE L
FPS and

)],,,,([K21 txxxfE L
IPS are estimated using separate simulations, whereas

alternatively,)],,,,([K21 txxxfE L
FPS -)],,,,([K21 txxxfE L

IPS is estimated directly

using),,,,([K21 txxxfE L
FPS -)],,,,(K21 txxxf L

IPS . Both methods can be done in

run-time (then the second method requires the simulation of the two systems

simultaneously to get their differences) or by post-processing of the saved system

outputs. However, errors associated with any estimation often make the first method

much less efficient. In fact, the estimation error of each of the two terms could be much

higher than the small difference between them. Thus, an accurate simulation of the

difference requires a large sample size in each estimation. The second method avoids this

numerical difficulty by testing the difference directly. In this way, either the sample size

is greatly reduced to achieve the same accuracy, or the accuracy improves comparing

with the first method using the same sample size. That is, the second estimation scheme

is often more efficient.

57

2.6 Examples

Example 1. As mentioned in previous section, in simulation based FFC, it is often

assumed that higher fractional word-lengths always give better systems [13-16]. In fact,

this assumption is not always true, unless some additional conditions are satisfied. This

can be illustrated in (2-28) as it depends on the signs of the first order coefficient mi’s.

Only when mi and ui have the same signs for all i, it is true that higher fractional word-

length cause smaller ui and therefore smaller quantization effects.

Furthermore, the intuition is not true even for the noise power

])[(2
IPFP SS ffE − in (2-33) that does not have the first order term. For example, a

simple high precision subtractor with two quantized signal inputs gives the output

quantization noise power as)()(2
2

2
1

2
21 ssuu ++− . Though the standard deviation terms

indeed decrease as any of the two WFr’s increases, the first term 2
21)(uu − can have a

complicated behavior.

In general, one sufficient condition for])[(2
IPFP SS ffE − to satisfy the intuition

is that all quantizers use roundoff modes exclusively because then (2-33) reduces to

∑ ⋅
=

L

1

2)(
i

ii stc with ci(t) ≥ 0.

†

Example 2. Assuming the input signals are 0-mean stationary random processes, a

transfer function method derives that, for a multiple-input-multiple-output linear-time-

invariant (MIMO -LTI) system [2-3],

58

),()()(

)()()()(
ωωω

ωωωω

jH
qy

j
qq

j
qy

jH
xy

j
xx

j
xy

j
yy

eee

eeee

HRH

HRHR

⋅⋅+

∆⋅⋅∆=∆∆

 (2-37)

where the notation and every term are explained in Appendix A. the notations have been

slightly modified from [2-3] to accommodate the present context:

Appendix A shows that (2-33) at steady state can be derived from (2-37), whereas

(2-37) can be partially derived from (2-36). So, (2-37) verifies the perturbation theory in

previous sections.

Based (2-37), a simple Biquad IIR system and other more complicated systems

like FFT are examined [2-3]. Theoretical results of the power spectrum density at the

output agree well with the simulation, which verifies the LTI theory and therefore the

perturbation theory.

†

Example 3: Although error bounds have been studied extensively [18] for

CORDIC algorithm, the straight-forward statistical analysis on quantization error

variance was done only recently [42]. A CORDIC algorithm contains decision-making

operators as well as arithmetic operators. However, ignoring decision-errors, quantization

effects is shown in (2-14) of [42], or restated as

].|[|))((2

)]([)()]([2]|[|])[(

21

1

1 2
)(

22
)(2

2
1

12
22

s
N

j

N

ji
jeNe

N

j
rror

eEik
K

jeEjPNeE
K

eEfxptflptE

rr
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑ ∏++

∑+==−

−

=

−

=

−

=

σσ
 (2-37)

59

This clearly fits the pattern in (2-33). In fact, without decision errors, the system

becomes linear to propagate all the errors; so, the result is predictable using LTI

relationship (2-37).

†

Example 4. Based on the perturbation results, various analyses for least-mean-

square algorithms have been done and published. They are listed here briefly. For more

detail, please read the corresponding reference.

In [52], the transient analysis of a one-tap LMS algorithm with correlated input is

studied following both the analytical procedure mentioned after (2-29) and the

computational approach mentioned in Section V. Both methods lead to good agreement

with Monte-carlo simulation. This example helps to explain how to use the perturbation

results of this chapter in multiple ways.

In [2], by direct simulation, (2-28) and (2-33) are validated for a 12-tap LMS

algorithm with stationary inputs.

In fact, quantization effects of an LMS and its related algorithms are probably the

most studied other than LTI systems [6][28-41][53]. Those results all support our results

from perturbation theory, in one way or another.

†

Example 5. The perturbation theory provides the basis for the understanding of

many other phenomena present in digital systems, sometimes in a qualitative way. As an

example of this statement, let’s study the saturation effect of signal-to-noise ratio (SNR)

60

with respect to finite-word-length. That is, it is often observed that the SNR improves

quickly by increasing any fractional word-length WFr of an FP system until it suddenly

reaches a threshold, after which the SNR practically stays the same.

Let nq, nph, and x be the accumulated quantization noise, the accumulated physical

noise, and the signal at a certain signal node; then, the SNR, defined as the signal power

over total noise power, becomes])[(
][

2
ph

2

nnE
xE

q + . For simplicity, assuming nq and nph

are uncorrelated, SNR becomes][][
][

2
ph

2

2

nEnE
xE

q + . From (2-33), as any WFr increases,

][2
qnE decreases exponentially, which causes the SNR increase quickly. However,

when those terms in (2-33) that are associated with this WFr are already smaller than

][2
phnE , the SNR can at most change 3dB even when WFr goes to infinity. This explains

the saturation effect.

†

2.7 Summary

After a brief review of existing literature, a perturbation theory has been

developed to study quantization effects of digital signal processing systems. The analysis

applies to linear or non-linear systems, with stationary or non-stationary inputs. Possible

applications are explained, followed by a few examples that support our results.

To extending the analysis, one might study the effects of decision-errors, which

has been emphasized and studied partially elsewhere [51]. On the other hand, statistical

61

effects might not be the most interested for all applications. It could be interesting to

extend (2-21) in a deterministic way for those situations.

Finally, the assumptions in this chapter limit our results. However, as Dr. Box

[54] said, "Models of course, are never true but fortunately it is only necessary that they

be useful." Our automated floating-point to fixed-point conversion tool for

communication systems has taken advantage of the present results. Its success, besides

the few examples section 2-6, proves the model here to be indeed useful [1]. On the other

hand, Chapter 3 is going to talk the situation when Assumption 3 is not true.

62

Chapter 3
Quantization Effects with the Presence of

Decision-errors

Most existing analyses of quantization effects, including those in Chapter 2, are

given under the condition (sometimes implicitly) that all decision-making blocks, if exist

in a system, produce identical decisions in both fixed-point and infinite-precision (IP)

implementations. However, in doing floating-point to fixed-point conversion (FFC), a

fixed-point design with occasional decision errors may still be an acceptable

approximation of the IP system. In this Chapter, we study the effect of this decision error,

and relate its probability to the fixed-point data types. The FFC methodology that is

briefly described in Chapter 1 is then extended to include systems with possible decision

errors due to quantization. The analytical results here are applied to both CORDIC and

BPSK transceiver as examples.

3.1 Introduction

By now, it should be clear that to lower hardware costs, most implementations of

digital systems rely on binary fixed-point number systems—either 2’s complement or

unsigned-magnitude—with roundoff and truncation quantization. Existing work

63

reviewed and presented in the previous chapter studies the effect of this quantization on

systems that have no decision-making blocks, a term that is to be defined in section 2, or

based on the assumption that there is no decision error. Therefore, the automated infinite-

precision (often also referred as floating-point) to fixed-point conversion (FFC) method

as been briefly described in Chapter 1 is uses this assumption. However, in many

complicated communication and DSP systems, decision errors in a fixed-point system are

acceptable as long as its probability is small; then, the system is still a fair approximation

of its IP correspondence. Other FFC methods based on unguided optimization and

recursive estimations without understanding of the effects of these decision errors, on the

other hand, require a large number of long simulations [17]. This becomes especially

time-consuming when each simulation takes minutes to hours in bit-error-rate (BER) type

of estimation.

Based on a study of the types of decision making blocks and the probability of

decision errors as a function of fixed-point data-types in a system, we extend the FFC

method to include possible decision errors. The updated FFC problem formulation looks

still similar with additional constraints, such that each requires one BER type of

estimation for coefficient fitting—itself a well-defined task. Finally, we show two

examples, BPSK transceiver with root-raised-cosine-filter and CORDIC, to support our

analytical results.

3.2 System Description

In Section 2.3.1, signals of a digital system have been categorized into arithmetic

or logical, whereas and operators have been categorized into arithmetic, logical and

64

decision-making. Operators have been further defined as either smooth or unsmooth

depending on their continuity and differentiability.

Let SL be the slicer operator of a slicer. It has one arithmetic input x and one

logic signal output y. The slicer function transfer this input x to the output y, given below

as

⎩
⎨
⎧

<−
≥

==
0 if ,1

0 if ,1
)(

x
x

xfy SL . (3-1)

It turns out all decision-making operators can be equivalently modeled as a combination

of arithmetic operator, slicers (a basic decision-making operator), and logical operators as

shown in Fig. 3-1.

Fig. 3-1 Decomposition of a decision-making block

Example: suppose A is a comparator defined as with two input x1 and x2, and one

output y

⎩
⎨
⎧

≤
>

==
21

21
21 if ,0

 if ,1
),(

xx
xx

xxfy A ,

where input x1 and x2 are arithmetic and y is logical output. It can be easily verify that

)1),((),(1221 xxfxxf −= SLA NAND ,

Arithmetic
operator

logical
operator

Decision-
making

operators

-
-
-

slicer

Arithmetic
operator

65

where NAND is a logic operator that gives 0 if two inputs are the same, and 1 otherwise.

So A is equivalent to a combination of a subtractor, a slicer and a NAND operator.

Therefore in the subsequent discussion we will concentrate on the quantization effect of a

slicer.

†

3.3 Probability of Decision Errors

According to its definition, all arithmetic signals (and only they) can be modified

by quantizers. However, logical signals in FP system can also differ from its counterpart

in IP, because quantization effects from quantizers for arithmetic signals can alter the

decision of those decision-making operators, and therefore the value of logical signal at

its output. These changes can further propagate through control logic operators and alter

the value of any other logic signal following them. Chapter 2 shows that quantization

errors propagating through smooth arithmetic operators give a small perturbation of the

output in an IP system. This small perturbation will be transferred as possible different

decision through a decision-making operator.

Let x be the IP input of a slicer, q be the difference between FP and IP version of

x, that is,

q = xFP – xIP = xFP – x. (3-2)

For simplicity, assume

Assumption 4: input signal difference q of a slicer is statistically

independent to x at any time instant.

66

Though this assumption is not strictly true since q is a deterministic function of all the

input signals, in a complicated system both the dependence of q and x on input signals are

so mixed that it often suffices to consider them independent.

Let the probability density of x and q be px and pq respectively. Then the FP

decision may differ from IP decision according to the following formula

)0,0()1)(,1)((≥<+==−= xxPxfxfP θIPSLFPSL . (3-3)

With preceding Assumption 4, the probability above can be written as a double integral

over x and q,

.)()()()(

)1)(,1)((
0

0
0

0
∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∫=∫∫=

=−=

∞−

−

≥
<+

θθθθ
θ

θ
θ

θ ddxxppdxdpxp

xfxfP

x

x
x

x

IPSLFPSL

Under the assumption that error magnitude is small comparing with signal x, the integral

regarding px(x) is around px(0) in the integral, the probability becomes

())],0([)0()()0(

)1)(,1)((
0

<⋅⋅−=∫ ⋅−≅

=−=

∞−
θθθθθ θθ 1

IPSLFPSL

Epdpp

xfxfP

xx
 (3-4)

where the last step follows directly from definition of expectation value.

Similarly, the probability of error from decision of -1 in IP system to decision of 1

in FP system is given by

)].0([)0(
)1)(,1)((

≥⋅⋅=
−==

θθθ 1
IPSLFPSL

Ep
xfxfP

x
 (3-5)

Sum (3-4) and (3-5) together, we get the probability of decision error event between IP

and FP system as

67

)]).0([)]0([()0(
))()((

<⋅−+≥⋅⋅=
≠

θθθθ θθ 11
IPSLFPSL

EEp
xfxfP

x

The two expectations in the parenthesis can be combined together as the expectation

of |][|θθE . Therefore, the proceeding equation can be written as

|].[|)0())()((θθEpxfxfP x ⋅=≠ IPSLFPSL (3-6)

However, due to Cauchy-Swartz inequality,

.])|[|(|][| 2
12θθ θθ EE ≤

So (3-6) can finally be written into a form

.][)0())()((2θγ θEpxfxfP x ⋅⋅=≠ IPSLFPSL (3-7)

where γ §1. Furthermore, γ is usually between 0.7 and 1 for practical distribution of q.

For example, γ = 8.0/2 ≅π , γ = 87.02/3 ≅ , and γ =1 for cases that q has zero-mean

Gaussian distribution, zero-mean uniform distribution, and two point masses symmetric

around 0, respectively.

Equation (3-7) shows that the decision difference between IP and FP system is

proportional to the square-root of the accumulated quantization error power][2θE , also

called mean-squared error (MSE) of q. The coefficients may vary for different systems

and signal environment depending on how well the independence Assumption 4 applies.

This quantity has been related directly to the fixed-point data types in Chapter 2. In fact,

notice that][2θE is just the left side of (2-28). That is,][2θE = E[| flpt – fxpt |2].

In the following example

68

Example: When q has a Gaussian distribution (mq, sq2), Appendix B shows a

more complicated way to prove (3-7).

†

Therefore the quantization errors brought into the system in arithmetic operators

turns into this decision error with a probability proportional to][)0(2θEpx . The

coefficients might vary in real system depending on how well assumption 4 is in reality.

In reality, especially in communication systems, there is a more subtle system

specification—a “desired decision” might exist, named as D(x), associated with x at each

time instance. Even in the IP system, the decision-making operators might produce

“wrong” decisions simply because of physical noise or system/architecture deficiency. In

this case it is how much more often such error happens in a FP system that is most

concerned. Without losing any generality, let D(x)=1 corresponds to the correct decision,

then let the probability density of x in this case be px|D(x)=1(x). This function is usually

different from px(x). Then the probability or wrong decision in FP system differs from IP

system by

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∫=

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
∫−∫=

∫−∫∫=

=−=−=−=

∞+

∞−

−

=

∞+

∞− ∞−
=

−

∞−
=

∞−
=

<+
=

θθ

θθ

θθ

θ
θ

θ
θ

θ
θ

ddxxpp

ddxxpdxxpp

dxxpdxdpxp

xDxfPxDxfP

xDx

xDxxDx

xDx
x

xDx

0
1)(

0

1)(1)(

0

1)(
0

1)(

)()(

)()()(

)()()(

)1)(1)(()1)(1)((IPSLFPSL

 (3-8)

Now again notice q is concentrated around 0, so

69

)0(')0(

))0(')0((

)(

1)(
2

2
1

1)(

0
1)(1)(

0
1)(

==

−

==

−

=

⋅+⋅−=

∫ +≈

∫

xDxxDx

xDxxDx

xDx

pp

dxxpp

dxxp

θθ

θ

θ

 (3-9)

Therefore (3-8) becomes

)0('][)0(

)1)(1)(()1)(1)((

1)(
2

1)(2
1

1)(1)(==== ⋅+⋅−=

=−=−=−=

xDxxDxDxxD pEp

xDxfPxDxfP

θµ θθ

IPSLFPSL
 (3-10)

Here both error moments are conditioned on D(x)=1. The second order terms are

included since mq might be 0 in some cases. When mq>0 the probability of wrong error

under D(x)=1 actually gets less in FP system. However the probability of wrong error

under D(x)=-1 gets larger. Net wrong decision probability is the sum of these two. In

case q and D(x) are independent the conditional moments are the same as moments. With

this simplification the result becomes

))1)(()0('

)1)(()0('(][

))1)(()0(

)1)(()0((
))()(())()((

1)(

1)(
2

2
1

1)(

1)(

−=⋅−

=⋅⋅+

=−

−=⋅=
≠−≠

−=

=

=

−=

xDPp

xDPpE

xDPp

xDPp
xDxfPxDxfP

xDx

xDx

xDx

xDx

θ

µθ

IPSLFPSL

 (3-11)

Example: In maximum likelihood detection of BPSK signals that are corrupted by

IID symmetrical noise, the threshold is set at 0 because

)1)(()0()1)(()0(1)(1)(==−= =−= xDPpxDPp xDxxDx .

Also note normally, as in Gaussian physical noise,

70

0)0(',0)0(' 1)(1)(<> =−= xDxxDx pp .

Therefore only the second term is left in (3-11) and it becomes

))1)(()0('

)1)(()0('(][

))()(())()((

1)(

1)(
2

2
1

−=−

=⋅=

≠−≠

−=

=

xDPp

xDPpE

xDxfPxDxfP

xDx

xDxθ
IPSLFPSL

. (3-12)

That again points out the importance of studying E[q2].

†

3.4 Effects of decision errors

Decision errors are brought into the system via decision-making operators as

described in the previous section. These erroneous signals can further affect either logic

signals via control operators or arithmetic signal via arithmetic operators. The pattern of

this error propagation becomes generally difficult to track.

One overly simplified treatment can be given assuming decision error events at a

node happen randomly following a Poisson process, independent to all the signals in IP

system. Let’s consider a slicer again as this can be treated as the building block for all

decision-making blocks. When a random error happens, the error value is either -2 or 2

depending on whether the signal value in IP system is 1 or -1, respectively. So, clearly

each error is dependent to the IP signal value. With this Poisson process assumption, one

can do simulations to an IP system by randomly altering the decision, and examine the

signal variation at the output of the system comparing with IP output.

The problem of the approach above is that decision-error events are closely

related to signal values in the IP system. For a slicer, it has been pointed out that an error

71

usually happens when the magnitude of the input IP signal to a slicer is compatible to the

accumulated quantization error. Therefore, the quantization effect of this decision error

is associated with special occasions of input signals. The propagated error then can be

very different to an error that happens randomly as assumed in previous paragraph.

The following example provides the treatment for an absolute-value function and

illustrates the previous statement.

Example: A slicer determines the sign of input. If positive a following

multiplexer will select the input; otherwise the negated value is selected, as shown in Fig.

3-2.

Fig. 3-2 An implementation of absolute value function.

In this example, let’s assume both IP signal x and quantization error follow zero-

mean independent Gaussian distribution with (0, sx
2) and (0, se

2), respectively. The

actual error at output become

x+e

mux

s=≤1

y1
-1

Sel

-

72

()
()

()
()

x

e
e

e

x

x

e
xe

e

xe

xe

xe

xe

xexxexE

xexxexxexE
xexE

xexxexxexE
xexxexxexE

xexE

xexExexE

πσ
σσ

σ
σπ

σ
σσ

π
σ

σ

σσ

σσ

σσ

σσ

3
4

))(tan
2

(4
],0)[(8

]),0(or),0()[(4
])[(22

]),0(or),0()([2
]),0(or),0()[(22

|])([|22

|]||[|22]|)||[(|

3
2

122

2

22

22

22

222

−≈

−+−+=

−<≥⋅++=

−≥<−<≥⋅++
+−+=

−≥<−<≥⋅+−−
−<<−≥≥⋅+−+=

+−+=

⋅+−+=−+

−

1

1

1
1

 (3-13)

Here 1(x) is again the indicator function which gives 0 when x is false and 1 when x is

true. The last step is using Taylor expansion around
x

e

σ
σ , considering xe σσ << . A simpler

method is using Price’s theorem [87]. Let y1 and y2 be both (0,1) with cross-

correlation r. Define |]||[| 21 yyER ⋅= . Notice the first and second derivatives of an

absolute function is

⎩
⎨
⎧

=
>
<−

=)(2'|'|and ,
0,1
0,1

|'| xx
x
x

x δ ,

that is, the second derivative is a Delta function with a factor 2. Thus, according to

Price’s theorem one gets

73

2

2
21

)1(2
)2(

21

2

2

1

2
12

'|'|'|'|

)(

2
212

2
1

ρπ

ρπ

ρ
ρ

ρ
ρ

−
=

∫ ∫
−

⋅=

∂
∂

∞

∞−

∞

∞−

−
⋅−+−

dt

dydyeyy

R

yyyy

So let

22210

2221

][and

, ,

ex

x

ex
x

yyE

exyxy

σσ
σρ

σσσ

+
==

+
+==

,

we get

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∫ +

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∫

−
++=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∫ +

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∫

−
+

∂
∂+=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∫ +

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
∫

∂
∂+

∂
∂+=

⋅+=+

−−

=
=

=
==

ex
e

x
xexx

y

exx

y

exx

y

t
exx

exx

dy
t

dt

Rdy
t

dtR

RdydtRR

RxexE

σσ
σ
σσπσσρσπ

ππ
σσσ

πρ
σσσ

ρρ
σσσ

σσσ

ρ

ρ

ρ
ρ

ρ

ρ
ρρ

)(tan
2

)(sin
2

2

1

20

1

2

|])([|

12
0

12

0 0 2
22

0
0

0 2
0

22

0
0

0
2

2

0

22

22

0

0

0

This together with the first step of (3-13) gives the same result as (3-13).

On the other hand, if it is assumed that decision errors happen independently

according to probability given in previous subsection, the error variance should be

roughly

74

()
()

()

xee
x

x

x xfxfP

xfxfExxE

xfxfxxE

xexE

σσ
π

σ
σππ

σ

σ

2
2

1
2

4

)()(4

])()([]|)|||[(

])()(|)|||[(

]|)||[(|

2

2

2

2

2

==

≠⋅=

≠−−=

≠−−≈

−+

IPSLFPSL

IPSLFPSL

IPSLFPSL

1

1

This approximation gives an estimate of quantization error that is one order higher than

the actual result in (3-13). Therefore, it is not acceptable to assume independency

between decision error events and IP signal.

†

This example clearly indicates the independence assumption described at the

beginning of Section 3.4 can oversimplified the problem. On the other hand, assuming

the decision are always the same in FP and IP system, MSE(yFP - yIP) would become

() 22])sgn())(sgn([exxexxE σ=−+ . (3-14)

Comparing with the result in (3-13) one can see that decision-error at the slicer only

introduced error variance proportional to 3
eσ . This is not surprising since decision error

happens at rate ~ eσ , when signal-magnitude is around eσ as well; so the resulted MSE

magnitude is expected to be ~
32
eee σσσ = . Of course not all decision-errors influence

the system in such a manner. Therefore it is beneficial to categorize decision-error into

two groups: soft decision-error and hard decision-error.

A soft decision-error is defined to be a decision-error that when happens affect

the system output in the same scale as the quantization error noise. From the analysis

75

above it affects MSE(yFP - yIP) by small magnitude on the order of
2/3)(Var e or even

less significantly. The decision-errors in the previous absolute value function are soft

errors.

On the other hand, a hard decision-error is defined to be a decision-error that

when happens the system output may change in a magnitude much greater than

quantization error noise. The following example shows a system with hard decision-

errors.

Example: A one-tap version of sign algorithm is given in Fig. 3-3. Comparing

with LMS algorithm where residue error e is directly used in updating equation it use

sgn(e) to speed up the algorithm as a multiplier in the feedback loop is eliminated.

Suppose the input signal xn is 1 or -1. The desired tap weight wo is 1, and physical noise

v has uniform distribution U(
bb 2

1,
2
1−). Let xn and vn be IID sequences that are mutually

independent. Assume the only difference between FP and IP system is the presence of a

quantizer after the tap weight wn in FP system. That is, at time instant n a quantization

noise qn is inserted in the system, where qn follows uniform distribution U(-Dq/2+mq,

mq+Dq/2), where mq=0 or -Dq/2 for round-off and truncation quantizers. To simplify the

analysis we consider the case Dq<2má
b2

1 , where m is update step coefficient.

76

Fig. 3-3 Sign algorithm in Example.
Dashed box shows the desired system with noise v.

When the corresponding signals in a FP system and IP system may be different

use a superscript FP or IP to discern, and define the difference between them by a prefix

D; thus

IPFP
nnn sss −=∆ . (3-15)

Then the updating equations for tap weight are

µδ FPFPFP
1 nnnn xww +=+ and µδ IPIPIP

1 nnnn xww +=+ ;

So

µδ ⋅∆⋅+∆=∆ + nnnn xww 1 . (3-16)

m

+ +

vn

xn
+ -

dn

wo

Q +
+ z-1 wn wn+1

en

dn

qn

77

Since FP
nδ , IP

nδ and xn are either 1 or -1, both FP
nw and IP

nw can only be integer multiples of

m. Similarly nδ∆ is either 2, 0, or 2; so nw∆ must be integer multiples of 2m. Now

⎪
⎩

⎪
⎨

⎧

−≥>−+∆+
−<≤−+∆+

−=

⎪
⎩

⎪
⎨

⎧

≥−+<+−+
<−+≥+−+

−=

−+−+−+=

−=

−=∆

otherwise
)()()(if
)()()(if

,0
,2
,2

otherwise
0 and 0)(if
0 and 0)(if

,0
,2
,2

)sgn()(sgn(

)sgn()sgn(

IPIP

IPIP

IPFP

IPFP

IPFP

IPFP

IPFP

onnnonnnnn

onnnonnnnn

nnonnnnnonn

nnonnnnnonn

nnonnnnnonn

nn

nnn

wwxvwwxwqx
wwxvwwxwqx

wxwxvwqxwxv
wxwxvwqxwxv

wxwxvwqxwxv

ee

δδδ

 (3-17)

An immediate observation is that if nw∆ >0, qn + nw∆ >0 as qn<2m§ nw∆ which

suggests nδ∆ can be 2 only if xn <0 , and -2 only if xn >0. Together with equation (3-16),

it says 1+∆ nw < nw∆ strictly. Similarly, if nw∆ <0, then 1+∆ nw > nw∆ strictly. So, starting from

0w∆ =0, the only possible values of nw∆ are 0 and ≤2m.

On the other hand one can view (on ww −IP) as a random walk as well with step size

m. When | on ww −IP | is away from 0 the adaptive mechanism will drive it to walk towards 0

with a higher probability than to walk further away from 0. Thus at steady state | on ww −IP |

will center around 0 and highly unlikely reach near
b2

1 . So

78

⎪
⎩

⎪
⎨

⎧

∆+⋅
>∆+⋅∆+⋅

>∆+⋅∆+⋅
−=

∆

]|)([|-1 prob w/
)]0)(()([prob w/

)]0)((-)([- prob w/

,0
,2
,2

nnnq

nnnnnnq

nnnnnnq

nn

wqxEb
wqxwqxEb

wqxwqxEb

x

n

n

n

1
1

δ

; (3-18)

together with (3-16) one gets the transition probability

⎪⎩

⎪
⎨
⎧

∆
−

⋅
=

+=
=∆−==∆⋅−=+

=∆=−=∆⋅==
=∆−=∆⋅=

=∆=∆ +

n truncatioif ,)
2

2(

off-round if ,2

])2[(
)2,1|2()1(

)2,1|2()1(
)2|2(

)2|0(1

b

b

bqE
wxPxP

wxPxP
wxP

wwP

q

nq

nnnn

nnnn

nnn

nn

n

µ

µ

µ
µδ

µδ
µδ

µ

 (3-19)

Where Dq<2m has been applied to secure the qn+2m always positive. Similarly

⎪⎩

⎪
⎨
⎧

∆
+

⋅
=−=∆=∆ + n truncatioif ,)

2
2(

off-round if ,2
)2|0(1 b

b
wwP qnn µ

µ
µ

as well, and

⎪
⎪
⎩

⎪⎪
⎨

⎧

∆

∆

=<⋅−=

=∆−=−=∆⋅−=

+=∆==∆⋅==
=∆−=−=∆⋅−=

+=∆==∆⋅==
=∆=∆⋅=

=∆=∆ +

 n truncatioif ,
2

 off-round if ,
8)]0([

)]0,1|2([)1(

)]0,1|2([)1(
)0,1|2()1(

)0,1|2()1(
)0|2(

)0|2(1

b

b
qbqE

wxPExP

wxPExP
wxPxP

wxPxP
wxP

wwP

q

q

nnq

nnnqn

nnnqn

nnnn

nnnn

nnn

nn

n

n

n

1

δ
δ

δ
δ

δ
µ

 (3-20)

Similarly

79

⎪⎩

⎪
⎨
⎧∆

=

>⋅=
=∆−=∆ +

n truncatioif ,0

off-round if ,
8

)]0([
)0|2(1

b

qbqE
wwP

q

nnq

nn

n
1

µ

 (3-21)

In steady state, interstate-transitions are balanced following two equations

)2|0()2(
)0|2()0(

),2|0()2(
)0|2()0(

1

1

1

1

⎪
⎪
⎩

⎪⎪
⎨

⎧

=∆=∆=∆=
=∆=∆=∆

−=∆=∆−=∆=
=∆−=∆=∆

+

+

+

+

µµ
µ

µµ
µ

nnn

nnn

nnn

nnn

wwPwP
wwPwP

wwPwP
wwPwP

 (3-22)

Solving equation (3-20), (3-21) and (3-22), together with the fact that the total probability

equals one, the state probability are shown in Table 3-1.

)(nwP ∆ µ2−=∆ nw 0=∆ nw µ2=∆ nw

Round-off
µ

µ
81

1
16 q

q

∆+

∆

µ81

1
q∆+

µ

µ
81

1
16 q

q

∆+

∆

Truncation 0
µ4

1 q∆
− µ4

q∆

Table 3-1 State probability of signed algorithm

A number of simulations from an actual SA algorithm implemented in Matlab are

generated to prove the analysis. Plotting both the simulation results and calculation

results, Fig. 3-4 shows the good agreement between these two and validates the analyses

in this example.

80

Fig. 3-4 Semi-log plot of)2(µ=∆ nwP for the signed algorithm.
System parameters are m=0.01, b=2.5 and 6WFr ≤ since q∆=− FrW2 <2m. In all simulations
for truncation cases, 0)2(=−=∆ µnwP .

Remark: One can use result from Section 3.3 to directly get equation (3-18). For

example,)2(nn xP =∆δ can be calculated as the following. Given xn, the total

quantization noise at the slicer is)(nnn qwx +∆− which is small comparing with physical

noise vn; so according to equation (3-4), we get

)]0)((-)([-)0(
)1,1()2(

IP

FPIP

>∆+⋅∆+⋅=
=−===∆

nnnnnnqe

nnnn

wqxwqxEp
PxP

nn
1
δδδ

 (3-23)

81

where)(IPIP
nonnn wwxve −+= . As the coefficient is not important in our calculation

of steady state probability since they cancel out, this is equivalent to the corresponding

part of (3-18).

In fact, if |)(| IP
non wwx − is always less than b2

1
 , one can prove

bp
ne =)0(IP regardless of the distribution of)(IP

non wwx − under the assumption vn is

uniformly distributed. Then (3-23) and the corresponding case of (3-18) are exactly the

same.

†

Because now the MSE(nw∆) is proportional to the first order of quantization

step, the decision errors in the preceding example are indeed hard decision-errors.

Unfortunately, a general study of the gross effects of decision errors is not

available and is certainly one of the most interesting topics for future research.

Nevertheless, FFC can still be done with the presence of decision errors. The basic idea is

to suppress their probability below some tolerance, which is very small itself. Section 3.5

continues on this topic.

82

3.5 Application in Floating-point to fixed-point conversion

3.5.1 General Analyses

The accumulated quantization noise power MSE(q) is related to fixed-point data-

types, namely fractional word-lengths ,...W,W 2,Fr1,Fr and quantization modes ,..., 21 qq . It

has been stated in (2-28) and restated here for convenience,

 ,2CB)MSE(
Data Path}{

2W ,Fr∑+=
∈

−

i
i

T iuuθ (3-24)

where, again, coefficients B is a positive semi-definite matrix, denoted as Bf 0, and Ci ≥

0. Vector u is related to fixed-point data-types deterministically as shown in (1-4).

These coefficients in (3-24) can be found using simulations in an FFC problem with

careful setups of fixed-point data types. From (3-7) and the discussion in previous

section, using large word lengths for the setups avoids strong decision errors in the

simulations and leads to the coefficients in the same as described in Chapter 2. That is,

when doing simulations to get those coefficients in (3-24), decision-errors can be ignored

when word-lengths are chosen to be large.

Furthermore, since weak-decision-errors can be neglected in both simulation and

analysis, we just need to regulate the chance of strong decision-errors. The quantization

effects further caused by a strong decision-error do not affect the system performance in

an avalanche effect, because the IP system is tested to be robust under physical noise. So

the probability of decision error at a strong decision-making block needs to be smaller

than those caused by physical noise, which usually corresponds to BER specification, that

is,

83

,))()((BERxfxfP ⋅<≠ αIPSLFPSL

where design parameter α is a positive guard fractional number. Substituting (3-7) into

this inequality, we get

.][)0(2 BEREpx ⋅<⋅⋅ αθγ θ

Here][2θθE is the same as MSE(q) in (3-24) since the effects of previous strong

decision errors, which happen at some sample-time long before, have faded away.

Rewriting this equation, we get

.))0((MSE 2

xp
BER

⋅
⋅< γ

α (3-25)

A stronger version of (3-25) is by substituting the fractional number γ by 1. Furthermore,

px(0) can be directly obtained by estimating the probability of decision difference

between the IP system and an otherwise identical system, but with an additive noise n of

power MSEn added at the input of the decision-making block. Denote this probability as

))()((with IPSL IPSL xfxfP n ≠ , from (3-7), we get

,
MSE

))()(()0(with

nn

n
x

xfxfPp
⋅

≠=
γ

IPSL IPSL
 (3-26)

where nγ depends only on the noise shape of n, as explained shortly after (3-7). With (3-

26), the right side of (3-25) is completely determined, denoted as A; therefore, (3-25)

reduces to .0MSE <− A This condition, associated with (3-24), again gives a

constraint function on FFC problem in exactly the same form of those showed in previous

two chapters, where no decision-making blocks have been considered. Thus, with a

condition for each strong decision-making block, the FFC problem is re-formulated in the

84

same form as stated in Section 1.3.5. The only change is some additional constraint

functions. One BER type estimation is needed for each of this strong decision-making

blocks—a very well-defined task.

3.5.2 BPSK and CORDIC examples

The first example of weak decision errors whose quantization effects can be

neglected are those happened in a CORDIC system with large number of rotation stages

[42][18]. In fact, the errors at CORDIC output caused by decision errors can be

essentially bounded by the residue error caused by finite rotation stages—one type of

architecture imperfection that vanishes as the number of stages becomes large [18].

Furthermore, these errors, as shown in Section 3.3, happen with very small probability.

These two reasons ensure that the noise power at CORDIC output can be accurately

predicted regardless of the possible internal decision errors [42].

Fig. 3-5 A BPSK system.
The adders, filter coefficients and gain output of the root-raised-cosine filters, as well as
ADC, suffer quantization noises.

Second, we validate our central result (3-7) and (3-26) of this Chapter using the

binary-phase-shift-keying (BPSK) base-band transceiver in Fig. 3-5. Two root-raised-

BPSK
Modula-

tion
1 Mbit/s

{0,1} 4↑

AWGN
Channel

DAC

4↓
1 Mbit/s
detected

 bits ADC

Final slicer as a
demodulator

23-tap
rRCos FIR

23-tap
rRCos FIR

85

cosine FIR filters, each with 23 taps, act as band limiter and matched filter, respectively

[46]. The slicer, as a demodulator, makes decisions on transmitted data based on the

signal polarity of its input. Fig. 4 shows that the probability of decision errors in FP

system, calculated as a function of MSE of quantization noise using the (3-7) and (3-26),

indeed agrees well with simulation results with various word length realizations of all the

fixed-point operators in the system.

Fig. 3-6 Calculated and simulated probability of decision errors for BPSK.
BPSK Calculated curve is from (3-7), where γ =1 and)0(xp is obtained from (3-26) with
one BER type estimation using an additive i.i.d. sequence {0.1, -0.1} with equal
probability.

3.6 Summary

Two examples were given to illustrate and support our analysis of the effect and

probability of a decision error. Based on the result, we have extended the FFC

methodology to include decision making blocks and decision errors due to quantization.

It should be point out that the understanding of the effect of decision errors is far from

complete, despite the efforts done here. Nevertheless, the categorization of soft and hard

86

errors in Section 3.4 and the continuation of FFC methodology in Section 3.5 partly

enable us deal with them.

87

Chapter 4
Automated FFC Tool

This chapter explains a floating-point to fixed-point conversion (FFC) tool that

has been implemented for digital signal processing and communication systems. This tool

automates the floating-point to fixed-point conversion (FFC) process for digital signal

processing systems. The tool automatically optimizes fixed-point data types of arithmetic

operators, including overflow modes, integer word lengths, fractional word lengths, and

the number systems. The approach is based on statistical modeling explained in Chapter 2

and 3, hardware resource estimation to be explained in Chapter 5 and global optimization

based on an initial structural system description. The basic technique exploits the fact that

the fixed point realization is a weak perturbation of the floating point realization which

allows the development of a system model which can be used in the optimization process.

4.1 Introduction

The advances of software and hardware co-design environments enable us to

capture architectural information at an early design stage and conduct bit-true and cycle-

accurate simulations. The verified design can then be mapped to hardware automatically.

88

A number of platforms that are based on Simulink have been successful, targeting either

FPGA’s, such as in System Generator from Xilinx, or ASIC’s. Fig. 1 shows such an

algorithm description in both algebraic form and structural form that is implemented

using System Generator blocks. If 32-bit word-lengths are specified throughout the

design, the numerical precision is typically sufficiently high that the structural form is

verified to perform the target algebraic functionality without errors from finite

wordlength effects, i.e. it is essentially a floating point description. A resource estimation

tool based on the Simulink description has been developed that automatically calculates

FPGA hardware requirements, such as slices, used in the design. For ASIC designs, a

similar tool could be developed which estimates the chip area requirements based on the

number of cells used in the block realization. To reduce these hardware-costs, increase

the throughput, and reduce power, one essential step is to optimize the fixed-point data-

types to use the minimum word lengths possible—the task of FFC.

89

Fig. 4-1 A simple algorithm in System Generator.
(a). The algorithm in algebraic form; (b). A high-precision architectural version with the
output of the hardware “Resource Estimator”.

For many application domains and algorithms, high precision in the computation

is wasteful and significant hardware reductions are possible. However, determining the

minimum requirements through manual optimization is time-consuming and rarely

optimal [13].

Chapter 1 gives the motivation and briefly describes our methodology of an

automated floating-point to fixed-point conversion (FFC) tool. Chapter 2 and 3 provide

some novel analytical results originated at this purpose. This chapter illustrates in more

details on how these results can be used collaboratively to an implementable automated

FFC. As seen in Fig. 1, the designer inserts an FFC utility block, “Spec Marker”, from

the FFC library into the system at critical nodes, which is used to enter user specifications

(a)

(b)

)|)1(sgn(|)(π−−⋅= nxany

90

of the system performance and the tool then automatically produces a system with

optimized fixed-point data types. Though implemented targeting FPGA’s, the same

methodology may be applied to other hardware, such as ASIC’s, provided a hardware-

cost estimator is available.

Section 4.2 gives a more detailed review of existing techniques. Section 4.3

describes our strategy with emphasis on the techniques used in improving efficiency of

the automated optimization. Sections 4 and 5 compare the performance of this approach

on several typical designs with previously described optimization techniques.

4.2 Further review of the past techniques and our design environment

4.2.1 Past techniques

Section 1.3.1 briefly reviewed existing FFC techniques without exposing too

many details. This is extended in this section as you have been more familiar with FFC

by now. Those existing FFC tools [13-17] using normal C or C++ for simulation and

system description take advantage of the higher simulation speed of these tools over

graphical editors. To push this further, [49] developed new compiler to speed up the

simulation. However, the disadvantage of sequential language such as C or C++ is their

lack of support for architectural information of a system. As explained in previous

chapters, architectural information affects the finite word length effects. So, considerable

amount of efforts of these past techniques focus on developing the support for

architecture information in C or C++. Yet some aspects of the system architecture are still

very implicit. As a result, hardware-cost estimations become difficult. For example, the

system in Fig. 1 includes a MUX that would naturally be implemented as an “if-else-end”

91

statement in C or C++. Yet, in most of the past techniques, this statement is modeled to

take no hardware area; consequently, Mux’s are often modeled to take no hardware.

Besides their simulation environments, the other common feature in the past

techniques is how to determine the number system, the integer word length, and the

overflow mode for each signal node. By extracting the signal statistics using simulations,

the signal range can be predicted. Thereafter, the fixed-point data types are set to hold

this range with high confidence. The most complete description of this method is given in

[15]. Let’s explain this method from our optimization point of view stated in Section 1.2.

In fact, if overflow happens frequently, these overflow errors that are large relative to

quantization errors on the fractional part are likely going to cause system failing the

constraints in equation (1-2). So, a simple method that prevents it is to separate this

“avoiding overflow” constraint from the original ones. This action results some losses of

optimality of the solution to (1-2). Later in robust optimization part of this Chapter, we

are going to support this idea by arguing the loss of optimality is small.

On the other hand, the past FFC techniques mainly differ on how the fractional

word-lengths and quantization modes are determined. In both [13] and [14], no gross

hardware-cost function are given nor mentioned. There, the FFC problem is not treated as

an optimization explicitly. However, their implicit goals are to minimize all the word-

lengths at the same time. The task of minimizing multiple objective functions

simultaneously is unrealistic unless the constraints are separable to constraints that each

only depends on one variable.

92

Fig. 4-2 “Guided” FFC methodology [14]

Fig. 4-2 summarizes the FFC methodology of [14]. There, one constraint function

is assigned for each word-length in the following way. The input word-lengths are pre-

assigned, and the fractional part are set to be sufficiently large so that the local

quantization noise power is much smaller than the one caused by quantization of the

inputs. These strongly decoupled constraint functions are always feasible and can

minimize all word-lengths at the same time. However, the gross quantization effects

from these locally justified quantization sources altogether can still be much greater than

the one induced by quantizing the input. Therefore, it is still necessary to have a final

constraint on system performance, such as SNR or BER, as a function of all the word-

lengths. This results a possibly unbounded number of iterations in [14].

In [13], some unjustified pre-assignments of date types on a set of selected signal

nodes provide a number of constraint equations. The deterministic propagation

methodology yields inequalities among the fractional word-lengths; for example, the

fractional word-length at the output of a multiplier should be no less than the sum of

those of the two inputs, while the output fraction word-length of a delay component

should be no less than the input one. Besides being overly pessimistically considering

∆ due to input Q.N. ⇒ WFr

+ ×

+ ×

Flpt input

Fxpt input

Pre-assign

input datatypes

93

quantization effects, this approach may result contradictive inequalities under the

presence of feedback loops such as the one in an accumulator. This is prevented in [13]

by possible user interaction using engineering decisions, which causes undetermined

design time and design efforts.

Fig. 4-3 Adhoc search FFC method [15]

Fig. 4-3 summarizes [15] and some other works published by Dr. Sung’s group.

Similar approach is taken in other works such as [92]. The problem is formulated in an

implicitly similar way as ours. However the lack of investigations on the closed form

specification function and simulation efficiency limits their optimization algorithm to be

heuristic and time-consuming search. In addition, the Monte Carlo simulations among

iterations can be inconsistent which adds further complications. Furthermore, their

hardware cost function is manually input to the optimization scheme, and is lack of

justification.

System
specs

Hardware-cost

Ad-hoc search

bit-true
sim.

FFxxpptt SSyysstteemm AAss
BBllaacckk--bbooxx

Fxpt datatype

94

Fig. 4-4 Impulse probing method to get transfer functions [3].

Dr. Jain and his colleagues studied the wordlength optimization of linear filters

[93][94]. Using either extensive specialized analytical result or guided simulations, the

word lengths of constant coefficients instead of data path are optimized. [94] further

extend the topic to integration with synthesis and layout tools to provide a total solution

of FIR filter design, which is beyond the scope of this thesis. However, the FFC tools

only work for part of LTI systems.

In my master thesis [3], I proposed an automation using the same optimization

point of view as (1-2) for linear-time-invariant (LTI) systems. Each quantization noise

source on the LSB side is treated white, and uncorrelated to each other. The quantization

Biquad filter

Probe

95

noises from all different sources accumulate at the output through linear transfer function

in frequency domain. We insert a test impulse input, called probe, to each quantization

source and test the output response using an impulse response simulation; therefore, we

can obtain the impulse response for each noise source automatically. And these impulse

responses provide the transfer function in frequency domain. Being very efficient, this

approach requires the system to be LTI.

Fig. 4-5 A graphical translation method to find quantization effects [16].
This figure is copied from [16].

Recently, [16] proposes another interesting new method that is heavily analytical.

It also assumes a quantization at the LSB side generates a white and uncorrelated noise

source. This noise propagates in the system. If part of the system is LTI, the transfer

function theory similar to the one in [3] applies. However, in stead of basing on

simulations, a graphical translator is used to directly understand the structure of the

system to obtain the transfer function. Furthermore, the method extends to non-linear

systems that have no feedback loops by modeling that a quantization noise propagates

through a system one operator after another without considering the possible correlations.

The limitations in this approach are two folds: nonlinear systems with feedbacks are not

modeled; second, the inputs of an operator may be indeed correlated to each other since

they originate partly from the same quantization source earlier in the system.

96

 Finally many optimization procedures similar to [15] but with different

optimization procedures are tested and compared in [17]. It appears from the comparisons

that the most promising procedures are those based on simulation with the assumption

that increasing word-length improves system performance and increases hardware-cost,

but otherwise are unguided. However, as showed in one example 1 of Chapter 2, this

statement is not always true, which shakes the foundation of these procedures. Another

critical drawback of this method is the simulation time which can be unreasonably large

for complex systems and thus sub-optimal solutions are often obtained. Furthermore,

these approaches use a system description that doesn’t contain architectural information,

which compromises their results, since the architecture-free high-level hardware-cost

estimations are often very crude.

As pointed out in previous Chapters, we will also use simulations to evaluate

various sensitivities, but will use these results to develop a model of the system which is

then used in the optimization problem (1-2). This allows us to dramatically reduce the

amount of simulation required.

4.2.2 Simulation environment

We choose Xilinx System Generator embedded in Simulink as our system input

and simulation environment. First, it is able to capture architectural information much

better than any of the environments built in past techniques except for [3] where we used

Simulink which is essentially the same as System Generator. This graphical input also fit

seamlessly with Berkeley Emulation Engine (BEE) project [89] and Simulink to Silicon

Hierarchical Automated Flow Tools (SSHAFT) project [56] in Berkeley Wireless

97

Research Center. BEE project starts from fixed-point system in System Generator; then it

partition and map the system to multiple Xilinx FPGA chips for fast system emulation.

At the same time, it can map the same system to application specific integrated circuits

(ASIC) design. We believe designs of complicated systems should eventually be done

completely by algorithm and system designers with understanding of hardware, whereas

the rest of the implementation should be automatically done by design flows. Our choice

of Xilinx System Generator is based on popular software Matlab and Simulink from

MathWorks. This environment is often familiar to these high-level designers.

Chapter 5 describes a tool integrated in Xilinx System Generator that can estimate

high-level hardware-resource fast and accurately [60][64][91]. This estimation tool meets

our needs for a hardware-resource estimator to retrieve hardware information

automatically.

Furthermore, Xilinx System Generator blocks allows a block to be simulated as

either floating-point (double precision) system, full-precision fixed-point system, or user-

defined fixed-point system. By applying simple parametric changes, the system can act as

any of the three systems. This feature basically accomplishes one of some major tasks in

some past FFC techniques. Adopting it allows us to concentrate on other important

aspects of FFC.

Our choice of this graphical input environment just allows us to be concrete on

the discussion in rest of the chapter, especially regarding the automation part of our

methodology. We foresee no important technical difficulties to effectively implement our

methodology in other environments, such as DSP Canvas [92] based on C++, SystemC

98

[61][79] based on C++, AccelChip [62] based on Matlab, Simulink itself, SPW DSP

simulation environment [95] that is similar to Simulink, Ptolemy [96] from University of

California Berkeley, and probably many others that I do not know. In fact, the

methodology promoted in this thesis can almost be directly applied on them.

Implementations of a system in some higher level languages among this list make the

simulation and initial compilation of the system relatively faster since no graphical

information needs to be supported, that is, architectural information needs not to be

graphically displayed and maintained. This seems to promote this kind of environment

over block-diagram based tools.

However, graphical information shown in platforms such as Simulink helps to

reveal the relationship between functional blocks, and becomes invaluable in maintaining

the system. Furthermore, Simulink has the feature of using Matlab scripts to generate and

modify a model [3]. All these features make Simulink as well as System Generator easy

to use and to automate. The naturally hierarchical description of the system also makes a

library approach easy as well. In my opinion, this is the best environment to demonstrate

different FFC methodologies. The sister EDA tools associated with Simulink, some of

which are developed inside Berkeley Wireless Research Center by my colleagues, further

increase the value of implementing FFC in this environment.

More detailed descriptions of System Generator and Simulink can be found in

Chapter 5, Appendix C, and many of the references such as [3][89].

99

4.3 Automation and Implementation of FFC

Admitting that numerical simulations become slower using graphical editor for

numerical simulation, our strategy concentrates on speeding up FFC by understanding the

problem in three important aspects of optimization problem (1-2).

First, we ensure complete design automation by obtaining direct access and

control of the fixed-point data types of each block. Furthermore, we implemented the tool

in such a way that minimal cares are needed from the floating-point system designers.

That is, our FFC tool can read a design that is either completely fresh for optimization or

with some parts already optimized. In addition, block grouping is supported and

recommended for faster conversion.

Second, we make efforts on understanding the hardware cost as a function of

fixed-point data types and how to retrieve this information automatically. This becomes

possible since the architectural decisions have been made, either permanently or

temporarily, before FFC.

Third, we make efforts on understanding the constraints as functions of fixed-

point data types, and how to retrieve this information automatically. This includes not

only the relationships themselves, but also the choice of constraint functions. We will

show some constraint functions are time-consuming to simulate or difficult to be treated

as constraint functions or both, whereas some others are very easy to obtain. Good

choices of constraint functions are essential for a fast and accurate FFC tool.

100

Fig. 4-6 Detailed FFC automation and design flow graph.
The box with bold line shows the details of the tool. The section numbers in parentheses
show the sections in which the corresponding topics are covered in detail.

Fig. 4-6 shows the design flow graph of our FFC. In the following subsections,

these aspects are address one by one; some other important but probably less novel

considerations are also described here.

4.3.1 Tool Infrastructure

The first task of our FFC is to copy the floating-point system, possibly with fixed-

point parts, into a temporary prototype system. This ensures the consequent modifications

from our FFC tool leave the original system untouched.

Get WInt , o, and n (4.3.4) Get WFr , (4.3.7, 4.3.8)

One simulation & Range
Detection (4.3.4)

Simulations &
data-fit (4.3.6)

MSE coeff. (4.3.6)

Pre-programmed optimization (4.3.7)

Place Range Detector
(4.3.4)

Placing “Spec. Markers”
(4.3.6, 4.3.9)

Copy into fix-point prototype with spec. Marker (4.3.2)

Keep existing data-
types (4.3.2)

(4.3.3) block
grouping

Get signal
statistics (4.3.4)

Area estimation &
data-fit (4.3.5)

H.W. coeff. (4.3.5)

Automated FFC tool (4.3)

Structural floating-point system (4.3.1)

Final fix-point system (4.3.9)

101

Total automation of our FFC tool relies on complete accessibility and

controllability of the Simulink model in Matlab environment. Fortunately, this is well

supported by the Model Construction Command set, including commands such as

find_system, set_param, get_param, add_block, delete_block, add_line, and delete_line

[3][59]. With these commands, we can write scripts to sort out all the blocks in a system,

to understand how blocks, lines and ports are connected, to set fixed-point data types as

variables, and so on. In fact, an extension of using these commands is to modify the

model architecture [3], which is beyond the scope of this thesis.

Each block may have input and output ports. System Generator allows the user to

specify the fixed-point data types of the output ports of most blocks with some

exceptions; for example, a Delay block has its output data type follow its input data

always. Some signals can break into multiple branches, each of which feeds into different

blocks. It is possible that different branches of the same signal need different word-

lengths. This can be done by inserting a Quantizer block at each branch. Nevertheless, we

ignore this dimension of optimization because cutting the number of independent

quantizers is one key to speed up optimization. Thus, the output data types of all blocks

fully characterize the fixed-point implementation of a system. For better controllability,

we maintain this output data type information in a Matlab structure, named block

structure (bs), with fields describing data types. Fig. 4-7 shows the Matlab initialization

of one of the block structure. The “o_wf_master” field designates the fractional

wordlength group to which the block belongs, and this is explained in Section 4.3.3.

102

Fig. 4-7 Initialization of the ith block structure in Matlab.
% start Matlab comment for the rest of the line.

4.3.2 Keep useful fixed-point information

A floating-point system in System Generator contains many signals whose fixed-

point data types are already specified. As described in Chapter 2 and 3, we call them

logic signals. As an example, Fig. 4-8 shows that the Select port of a 2-input multiplexer

must be 1-bit unsigned, which must be specified in this way even in a floating-point

system. No change is needed on these signal data types. Therefore, it is important for the

block structure to remember the floating-point data types. Fig. 4-7 shows that the fields

bs{i}.bh=blocks{i}; % blocks{i} is the handle of the i-th
 % block after sorting bs{i}.range=[];
 % block output range statistics. bs{i}.sign= [];
 % block number system. bs{i}.omode='s';
 % block output overflow mode.
bs{i}.qmode='r'; % block output quantization mode. bs{i}.o_wi=
Inf; % block output integer word length.
bs{i}.o_wf= ['my_fxpt_o_wf_’ int2str(i)];
 % block output fractional
 % word length, as a string variable

%% variables on the right side of the following expressions
%% have been obtained using get_param() command
bs{i}.old_sign= arith; % block number system in
 % floating-point (flpt) system
bs{i}.old_o_wi= w-wf-(arith=='s');
 % flpt output integer word length
bs{i}.old_o_wf= wf; % flpt block fractional word length

%% in word length grouping, the following variable indicates the
%% master word length the current block is to follow
bs{i}.o_wf_master='';% default is empty

%% following variable determines whether the output data type in
%% flpt version is to be used in the fxpt system.
bs{i}.use_old=0; % default is 0 as not to use flpt.

103

“old_sign”, “old_o_wi” and “old_o_wf” are used for this reason, and the old data type is

used when field “use_old” is set 1.

An analysis of the library blocks is therefore initially undertaken to define the

obvious logical signals, but even some arithmetic signals, which have been pre-defined

(such as those determined by availability of existing hardware) are also considered to

have “fixed” data-types and left untouched. These signals can be simply tagged by the

system designer, or configured through an additional rule, which for example may limit

the signal data-types to be greater than a minimum value and when that minimum level is

reached in the optimization are set to fixed status. The remaining signals are all

considered “arithmetic” and subject to be changed freely by the FFC tool.

4.3.3 Block grouping

Fig. 4-8 Possible grouping rules for a multiplexer

Section 4.3.4 will discuss how to determine the variables on integer sides,

whereas Section 4.3.5, 4.3.6 and 4.3.7 concentrate on the fractional part. It turns out with

all the efforts the optimization problem in (1-2) is still too complex, and it is generally

These ports may
be grouped
together

This port remains
to be unsigned
1 bit

104

necessary to reduce the optimization space. This is done by grouping some blocks

together to have the same fractional word-lengths [15]. Fig. 4-8 shows that some signal

ports can be grouped together quite intuitively. For example, we might want to force a

Mux’s two signal inputs to have the same fixed-point data type, and so might be its

output. This means the block in front of the two signal inputs and the Mux itself may be

group together to have the same fractional word-length at their outputs, that is, they

should have the same “o_wf_master” field. Grouping more blocks together can greatly

reduce the optimization space in (1-2), leading to faster optimization. Table 4-1 lists the

rules that we developed so far. The more rules are used, the faster FFC becomes, and the

less optimal the resulted conversion becomes. Sometimes, we shall not group one block

with others because the output feeds into many other blocks, which means the output will

largely influence hardware cost and finite word-length effects. This observation is

reflected in rule 1, 3, 5, and 6.

105

Table 4-1 Grouping rules
*Rule 0 is always applied.

One example of a rule specification is “rule=[1.1, 5]”, which means rule number

1.1 and number 5 are to be applied. Refer [60] for block descriptions.

Group inputs and outputs of Delay, Register (except for Reset

port), Up sampler, and Down samplers

0*

Same as rule 2.1, but for Logical block 7

Always group inputs of a Logical block 6.1

Same as rule 1, but for Logical block 6

Always group inputs of a Relational block 5.1

Same as rule 1, but for Relational block 5

Same as rule 2.1, but for Mux block 4

Always group inputs of a Mux 3.1

Same as rule 1, but for Mux block 3

Group inputs and output of an Add/sub, unless its inputs are not

grouped

2.1

Group inputs and output of an Add/sub, unless its two inputs are

not grouped or its output is not connected to an Add/sub block

2

Always group two inputs of an Add/sub 1.1

Group inputs of an Add/sub, unless anyone of them are inputs of

5 or more blocks

1

Rule description Rule number

106

Before grouping a system automatically, we have to figure out the connectivity

among functional blocks, where we differentiate blocks in a graphical editor as either

functional or supportive. Fig. 4-9 shows a simple system with a Multiplier following an

Adder. Both the Adder and Multiplier block are functional since they are essential to

accomplish the desired signal processing. On the contrary, the Subsystem block and the

associated In and Out blocks in Fig. 4-9 are just supportive and make the hierarchical

description possible. In current Simulink environment, the only two other supportive

blocks are From and Goto blocks, which are used to eliminate long wires in Simulink. All

other blocks are functional. Finding the connectivity among functional blocks is basically

to flatten the design hierarchy. This is important since grouping involves frequent cross-

references of adjacent functional blocks.

 Fig. 4-9 Resolving block connectivity.

Fig. 4-10 shows our iterative strategy on resolving functional block connectivities.

Inside the loop, we exchange the connection information between blocks and between

ports in supportive blocks. In this way, the supportive blocks are treated to be transparent.

The iteration is completed when all ports know their adjacent functional blocks; then the

Understand these
two ports are connected

Inside the subsystem

107

port information is saved into a subfield of “userdata” cell (cell is a Matlab data type

[59])— “userdata.appendix”— associated with each System Generator block. “Userdata”

is a standard variable supported for each block in Simulink. To prevent possible erasion

of “userdata” created by floating-point system designer, the original data are obtained

using get_param(.) command and saved in a subfield “userdata.backup_userdata”.

Fig. 4-10 Algorithm to resolve functional-block connectivity.
This is done by considering supportive block transparent.

Once connectivity is resolved, the tool proceeds to grouping according to rules

described in Table 4-1. Fig. 4-11 shows our grouping strategy. Each rule causes more

blocks placed in the same group list. When all rules are done, the list is simplified to

remove any redundancy in a group. Then a master cell array variable, called “wl_master”,

remembers the blocks in each list (group), and the index of wl_master is written to

Exchange port information inside
structure-supportive block

Exchange port information
between input and output among

adjacent blocks

Ready—all ports know
their adjacent functional

blocks?

Save port
information connectivity

resolved

YES

NO

108

“bs{i}.o_wf_master”. Then, we can easily cross-reference the corresponding

“wl_master” and “bs”. In the mask of System Generator block, we use set_param(.)

command to set the fractional word-lengths to be a variable, named “my_fxpt_o_wf_i”

and saved in “bs{i}.o_wf”. Thereafter, we may easily set the value for these variables in

Matlab, and the system automatically uses their new values for simulation or hardware

resource estimation. This accomplishes automatic control of system parameters to

prepare the system for a large number of Simulations in the following few sections.

Fig. 4-11 Grouping methodology.

If yes, add these block handles into
the group list maintained by each

of these blocks

Checking each functional block to
see whether some adjacent blocks

need to be grouped

Ready all rules have
been applied

Remove redundancy in all the group
lists, identify the number of groups, save
them in a cell array wl_master, and set

bs{i}.o_wf_master accordingly

YES

NO

Apply next grouping rule

Pre-grouping keep fixed-
point data types of logic

signals unchanged

109

The first step in Fig. 4-11 is called pre-grouping, which figures out who are

interpreted as logical signals in a floating-point design. Table 4-2 shows our pre-grouping

rules that are currently used. The last pre-grouping rule simply ignores those signals that

already are of light weight in fixed-point data type. This is to catch some logical signals

that other rules possibly missed. Furthermore, it appreciates floating-point designer’s

decision on fixed-point data types of some of the signals.

The next few sections explain how to determine the other fields in the block

structure in Fig. 4-7. Once all the fields are obtained, we can again use set_param(.)

command to substitute the variables, which are previously set in block parameters, to

their final values and save the system as the FFC output fixed-point system as shown in

the last step of Fig. 4-6.

In summary, this Section discusses our strategy on managing system

infrastructure related to FFC problem in System Generator and MathWorks environment.

With proper modification, similar infrastructure and grouping rules can apply to other

structural system descriptions.

110

Table 4-2 Pre-grouping rules to identify logic signals
Refer to [5] for detailed description of the blocks mentioned above.

4.3.4 Integer overflow

As stated in below, we follow a strategy similar to those used in [14-17] to treat

the fixed-point data types related to the integer part, comprising WInt, n (number

systems), and o (overflow-mode). We briefly repeat the strategy and describe how to

implement it in our environment. Finally we discuss its drawbacks.

We assume overflow noises hurt the behavioral quality of the system so greatly

that they should be avoided by all means. Monte Carlo simulations of the floating-point

system with the input test vector provide a large set of data for each signal node. Based

on these data we can record the maximum and minimum value and estimate the first few

of its statistical moments. From these statistics and a few commonly encountered signal

probability distribution functions, we can predict the signal range and determine the

All signals that are less than 6 bits in floating-point design are considered

optimized and thus stay untouched

Blocks connected to Inverter block, Slice block (with some exception), Bus

Concatenator block, and Type Reinterpreting block, stay untouched

Outputs of Relational blocks stay untouched.

All blocks proceeding Enable ports, Mux Select ports, Memory address ports,

and Register Reset ports stay untouched

All Boolean signals stay to be Boolean

Rule description

111

integer word-length accordingly by making it just large enough to cover the range. The

number system is set to be unsigned if the signal is always positive, and otherwise signed

2’s complement. If the maximum value occurred in simulations is within the predicted

range, wrap-around mode is to be used for overflow; otherwise, saturation mode is used

(as a confidence guard). In this approach, we implicitly assume that hardware-cost

monotonically increases as WInt increases, as n switches from unsigned to signed for a

positive number (because of one more bit needed for the sign), or as o switches from

wrap-around to saturation (because of the extra logics needed). Consequently, we

effectively separate all integer fixed-point data types in the optimization problem in (1)

into independent optimization problems, each of which has the parameters related to only

the integer fixed-point data types of one signal node.

One way to calculate the statistics of each signal node is by saving all its

simulation data to a Matlab workspace variable that is processed after simulation. This

approach becomes infeasible because possibly thousands of signal nodes can produce

millions to billions floating-point data in a long Monte-carlo simulation—impossible to

store. The other approach is to do running average during simulations. We write a

Simulink s-function block in C, called Range Detector. Once placed in a system and

linked a signal node to its input, this block can do running-average estimation of the first

four moments of its input during a simulation. Internally only the current averages and

sample size—totally five double precision numbers—are saved for each of these Range

Detectors during a simulation. Only at the end of a simulation, the final averages are

saved to Matlab workspace as our estimations of signal statistics.

112

Using add_block(.) and add_line(.) commands, one Range Detector is

automatically placed into the system after each block corresponding to each entry of the

block structure defined in Fig. 4-7. A simulation with all these Range Detectors tells us

the signal statistics. Because of the extra computations during a simulation with these

Range Detectors, the simulation time is found to increase by up to 100%. However,

because no iterations of simulations for range detection are needed in our algorithm

showed in Fig. 4-6, this extra simulation time is acceptable.

After the signal statistics are estimated, our FFC tool automatically removes them

using Matlab delete_block(.) and delete_line(.) commands. Then the system is ready for

connectivity resolving and grouping, as mentioned in Section 4.3.3.

Once determined, these fixed-point data-type variables on the integer side are

dropped out from the optimization problem (1-2). Then, (1-2) becomes

. 0, ...) , , ; ,W ,(W
 ionsspecificat subject to

...) , , ; ,W ,(W
cost -hardware minimize

21Fr,2Fr,1

21Fr,2Fr,1HW

jqqS

qqf

j ∀<…

…
 (4-1)

Before discussing how to determine the fractional fixed-point data types in next

few subsections, we need to explain the drawbacks of the proceeding approach. First of

all, overflow-free method is only sufficient, but not necessary, to ensure that the variables

on the integer side in (1-2) do not violate the constraint functions. Thus, the proceeding

method trades simplicity over design optimality. Second, a more serious problem is the

impossibility to avoid overflow completely for many distributions such as a Gaussian

whose range is the whole real axis. We may try to model the signal using distributions

113

that only have finite ranges. This barely transfers the previous difficulty to statistical

modeling—we still need to use finite number of data to predict the range in the model.

The built in fixed-point data-type propagation in [59] and [60] avoid this difficulty by

deterministically propagating integer word-lengths. Unfortunately, this is often overly

pessimistic. For example, in a least-mean-square (LMS) algorithm, the residue error

signal is usually relatively small after the subtractor between desired signal and filtered

input. Then, it is uneconomical to set the integer word-length of the error signal large

enough to hold the maximum possible value based purely on integer word-length

propagation. The situation becomes worse in systems with feedback loops and long data

paths.

Theoretically, the best method is to discover a simple enough relationship

between fixed-point data types on the integer side and the constraint functions in (1-2), as

what we are doing for fractional quantization noise in next few sections. An unsatisfying

attempt in [3] assumes that an overflow noise hurts the system decision with certain

average probability. Then we can link the bit-error rate requirement to the maximum

probability of overflow incidence. Unfortunately, this “certain probability” is indeed

unknown, system dependent, and difficult to simulate, which makes the approach

impractical.

In general, the overflow noise is statistically dependent on signals, which causes

difficulties on noise modeling. The overflow noise may also be large compare to signal,

which causes non-linearity effects. Finally, overflow noise comes with small probability,

which makes digital simulation of its effect difficult. Therefore, we think it remains an

114

open question for both theorists who want to model overflow noise and also for FFC

designers who want to avoid long and numerous digital simulations.

Nevertheless, in practice the method adopted in our FFC works well. The robust

optimization part of Section 4.3.8 explains some fundamental reasons for this to be true.

4.3.5 Analytical hardware resource estimation

The most immediate task of the optimization problem in (4-1) is to find out the

hardware-cost function, specification functions, and their relationships to WFr, defined as

the vector [WFr,1, WFr,2, …]T , and the q-modes.

Only one hardware cost function is to be minimized in (4-1). This could be area,

power consumption, power delay product, and so on. High-level estimations of hardware

resources such as area, energy and delay have been studied extensively, as detailed in

Chapter 5. For system level optimization, it often suffices to adopt the approach based on

parameterized library. The area of each block in the library can be modeled as a function

of parameters related to fixed-point data types as well as other important technology

factors such as feature size and voltage. Provided the architecture choice with all other

parameters fixed, the area cost of a library block is uniquely characterized as a function

of the fixed-point data-type parameters. The total area of the system can then be

estimated as a sum of all the required blocks plus a certain routing overhead. This usually

yields a hardware-cost that is a quadratic function of WFr,i with coefficient affected by qi,

that is,

.)()(H
2
1)(0FrFrFrHW hWqhWqWWf TT ++≈ (4-2)

115

Chapter 5 describes my summer intern work at Xilinx, Inc. on developing a resource

estimation tool in Xilinx System Generator environment. Given a system designed in

System Generator environment, the tool can estimate the hardware resource accurately.

Each type of block associates with one Matlab function, written based on complete

understanding on how the corresponding block hardware is designed in FPGA. Once the

block parameters, such as its input and output fixed-point data types, are provided, the

function can calculate the hardware resources efficiently. The tool considers both input

and output data types because trimming effects can happen at placement and routing

stage. This happens when part of the logics are eventually trimmed away since they are

dangling. For example, when only the LSB of a multiplier is used, the multiplier is just an

AND gate with all other logics removed at placement and routing. (This should happen at

least for a good placement and routing tool.) The tool estimates hardware resources

normally within seconds, which is several orders of magnitude faster than any previously

existing method. The relative error comparing with final implementation is usually within

5%. The tool has been included in version 3.1 of System Generator [60].

We use the proceeding tool to conduct experiments, and to function-fit the

coefficients of f in (4). Here f is an affine function of H, h, and h0, and can be written as

longlongFrHW H)(TWWf = , (4-3)

where the long column vector Hlong captures all the independent entries of symmetric

matrix H, vector h, and scalar h0,

.),,...,

,H,....,H,..., H,H,H,..., H,H(H

021

2232211211long

T
m

mmmm

hhhh

=
 (4-4)

116

So Hlong has dimension [(m (m+1))/2 +m+1]×1 where m is the number of word-length

groups given in Section 4.3.3. Wlong is the corresponding column vector formed by the

quadratic and linear combinations of entries from WFr , as well as a constant for h0. Let

fHW,est(WFr) be the estimation using the tool, the relative error can be approximated as

.Hˆ1

)H(1

)(
)(1

)(
)(-)(

longlong

long
HW,

long

FrHW,

FrHW

FrHW

FrHWFrHW,

⋅−=

−=

−≈

T
est

T
est

est

W

f
W

Wf
Wf

Wf
WfWf

 (4-5)

With different realizations of WFr, we can obtain a stack of ,...)ˆ,ˆ(ˆ long,2long,1 WWW = . Suppose

the relative error in (4-5) forms a Gaussian random noise, the maximum-likelihood

estimation of Hlong then is given by the following least-square problem [63]:

.Hˆ1 minimize
2long

Hlong

TW− (4-6)

Furthermore we want to keep monotonicity and non-negativity of fHW(WFr), " WFr ‘ 0,

which means the minimization in (4-6) is subject to

.0H
0 and , H ofentry each

0 0,)(and ,0 H)(

long

0

FrFrFrFr\Fr

f

ff

⇔
≥⇔

∀≥+⋅=∇

hh

WWfhWWf T
W

 (4-7)

So the estimation of Hlong becomes a Quadratic programming problem [63]. In Matlab,

lsqnonneg(1 ,ˆ TW) solves it efficiently.

Once the coefficients are estimated, we obtain an analytical quadratic hardware-

cost function fHW(WFr). The quality of the model can by justified by plotting fHW(WFr)

versus fest(WFr) for a number of new WFr. Fig. 10 shows the plot. It is evident quadratic-

117

fit model works well. On the other hand, if our model of fHW does not include the 2nd-

order term H (thus probably under-modeled), it becomes the so-called “linear-modeling”

or “linear-fit”. Later in Section 4.5, Fig. 4-15 also shows much larger relatively errors

using linear-fit. In certain systems, these errors could be too high to validate the model.

This justifies the completeness of quadratic hardware-cost model.

One problem associated the hardware-estimation tool of Chapter 5 is the

sometime long compilation time for each hardware estimation. When a large number of

such estimations are needed, the total compilation time may become quite long. To

minimize this problem, after the first compilation, a Matlab script is specially generated

using “printf” command, which list all the Matlab functions to be used for hardware-

estimation and use variable names as their input arguments. In any subsequent hardware-

estimation, the variable values are changed and this script is directly called to estimate

the corresponding hardware-cost. This arrangement eliminates most of the compilations

and leads orders of magnitudes of simulation time for hardware-cost estimations.

Although we use FPGA resource as the hardware function in (4-1), the approach

applies to other functions and to ASIC designs as well. It is therefore only a

demonstration of the feasibility of having high level hardware cost as function of fixed-

point data types.

4.3.6 Analytical specification functions

To solve the optimization problem (1-2) and its simplification (4-1), we need to

repeatedly verify the constraint functions. This is normally done using digital

simulations. The cost associated with these verifications can be summarized as

118

 Simulation time = number of optimization iterations ä

 simulation time for each optimization iteration. (4-8)

A successful FFC requires total automation; so other simulation cost includes the

time to prepare the design automation such as designer’s coding time. These additional

costs are not considered here. In this section, we find the ways to get less simulation time

by reducing each of the two terms on the right side of (4-8).

4.3.6.1 Directly use the difference as specifications

Two most common specifications used in communication systems are signal-to-

noise ratio (SNR) and bit-error rate (BER). Unfortunately, blindly adopting these

specifications may result intolerably long simulation duration for a reliable conclusion.

Any Monte Carlo simulation only provides finite number of data to estimate a

statistical quantity based on a model on probability distribution function (PDF). In

statistics, the estimation uncertainty due to finite sample size has been well-studied using

two dual methods—confidence interval and hypothesis testing [3][48]. For example, we

model bit errors of a communication system as a Poisson process, and denote an

estimation of the true BER as BER . The estimation uncertainty is denoted as an interval

around the estimated value

]BER),(BER ,BER),(BER[⋅+⋅− αα NaNa , (4-9)

where a is a positive fractional number that is a function of simulation sample size N and

confidence level 1-a. Roughly speaking, from an estimation based on N samples, with

119

probability 1-a, the true BER is within the interval given in (4-9). With large sample

approximation,

 2
2

BER
14

a
kN

⋅
⋅≅ α , (4-10)

where αk is the α
2
11− quantile of a normal distribution [3]. The inverse relationship

between N and BER, as well as a2, results a potentially very large sample size. In the

optimization problem (4-1), this kind of simulation needs to be iterated many times,

which could be too long to be acceptable [15].

Example 1. If a confidence level=0.95 (so αk =1.96), BER= 2ä10-4, and a= 0.05,

(12) gives the sample size about 7ä106; that is, about 1500 errors need to occur to ensure

the small 0.95-confidence interval of [1.9ä10-4, 2.1ä10-4] given in (11). Hypothesis

testing yields similar conclusion [3]. This large sample size could be very slow to

simulate in Simulink environment for a relatively complicated system. For example, a

binary-pulse-shift-keying (BPSD) system introduced later in Section VIII takes about 8

hours to obtain 2ä106 samples at the output for each simulation.

É

In an optimization scenario, even more samples for each simulation are necessary

to compare the performances of two realizations of the same system. The two realizations

can either be floating-point and fixed-point, or be both fixed-point. The comparison is

used to judge if a parameter change makes the system perform better or worse.

Confidence levels that are too large to reveal the performance difference may result either

120

wrong decision or wrong suggestions for the subsequent parameter change. Therefore, a

very small confidence interval may be necessary.

Example 2. Continuing Example 1, suppose that two fixed-point realizations of

the system above have true BERF = 2.01ä10-4 and BERF’ = 2.02ä10-4. In order to make

sure unprimed fixed-point system performs better than the primed system, one needs a

much smaller a as small as 2.5ä10-3 for each estimation, or [2.005ä10-4, 2.015ä10-4] and

[2.015ä10-4, 2.025ä10-4], separately; otherwise, the two confidence intervals overlaps.

This corresponds to 2.8ä109 samples in (4-10) for both simulations.

É

To alleviate this situation, we directly measure the system degradation caused by

fixed-point implementation. This is done by finding the difference at the system output

between a fixed-point system and floating-point system under the same input signal. This

difference is solely caused by quantization noises occurred in the system. In this way, we

avoid the intermediate estimation errors that can easily be so large that the degradation

caused by fixed-point implementation is covered. Example 3 below shows the saving by

direct measuring the difference.

Example 3: Continuing Example 2, we directly measure the errors due to

quantization noises. Assuming these errors are independent to floating-point errors

(strictly speaking this is an over-simplification), the BER’s due to quantization noises are

0.01ä10-4 and 0.02ä10-4, respectively. To tell the unprimed system is better, we need the

accuracy on BER estimation again better than 0.005ä10-4. But we only need a about 0.5

and 0.25 for the two simulations. From (4-10), we need 1.4ä107 and 2.8ä107 samples,

separately. This is two orders of magnitude saving from Example 2.

121

É

The three examples shows that direct measuring the difference due to quantization

noises may saves us a lot simulation time. The same argument applies on other statistical

specifications such as SNR.

We use mean squared error (MSE) to abstract the difference between floating-

point system and fixed-point system, denoted as MSE(flpt-fxpt). This difference is due to

quantization noise. Because MSE of a random variable is 0 if and only if the variable is 0

with probability 1 [48], MSE qualifies to reveal the difference. For example, we check

the MSE(flpt-fxpt) after the slicer of a BPSK communication system. The slicer produce

decisions of either 1 or -1 in both systems; so flpt-fxpt at this node is either ≤2 when

error happens, or 0 when no error happens. Let p be the probability of an error occur at a

time, then

MSE (flpt-fxpt) = (≤2)2 p + 02(1- p) =4p. (4-11)

So MSE(flpt-fxpt) after the slicer is just equivalent to direct measuring the BER.

As a specification, we set the difference between floating-point system and fixed-point

system much smaller than other degradations at this node that is not controllable at FFC

stage,

MSE (flpt-fxpt) at a node << noises due to other sources. (4-12)

Some sources for these additional degradations are physical noise from channel,

physical noise from analog part, and architecture limitations such as circuit

approximation for square-root operation. These sources are present for the floating-point

system, and cause communication errors even for the floating-point system. In our

122

approach, we always consider fixed-point implementation an approximation of the

floating-point system. This idea is stressed in the formulation in (1-2), where we consider

system behavioral performance higher priority, and hardware-cost secondary; therefore,

we never want fixed-point non-idealities to be the primary source of the system

performance degradation. On the other hand, we do not consider how to design a fixed-

point algorithm directly. Examples of this direct approach include designing a finite-state

machine and a communication source coder. In these designs, direct abstract (or Boolean)

algebra are used even at the algorithm level.

4.3.6.2 Measure the difference at the right places

Example 1 in Section 4.3.6.1 shows that measuring MSE(flpt-fxpt) after a slicer is costly.

This is because the probability of noisy events (errors here) is low. Chapter 3 shows that

not all signal nodes are suitable for MSE estimation. Furthermore, Chapter 3 links the

MSE(flpt-fxpt) after decision-making operators to the MSE(flpt-fxpt) in front of the

operator. And the latter MSE become very easy to simulate.

Even more essentially, the perturbation theory of Chapter 2 allows MSE(flpt-fxpt)

after arithmetic operators to be written as an explicit function of fixed-point data types in

the system, which is further illustrated in Section 4.3.6.3.

4.3.6.3 Perturbation theory provides valuable information

An innovative perturbation theory has been developed in Chapter 2. With the

widely used theoretical models of quantization noises, a specification function telling the

difference between the floating-point system and fixed-point system can be written into

closed form

123

...,2u M

|)flptsys.spec.(-)fxpt(spec. sys.|

Data Path}{

2WT ,Fr +∑+=
∈

−

i
i

ie

 (4-13)

where ei’s are constants and M is a constant column vector, the ith entry of vector u is

given by (1-4). Moreover, this perturbation theory works on general criterions and even

non-stationary input, as long as they can be represented as large ensemble averages of

functions of the signal outputs.

Following the perturbation theory, we also get

 ,2CB fxpt)-MSE(flpt
Data Path}{

2W ,Fr∑+=
∈

−

i
i

T iuu (4-14)

where B is a positive semi-definite matrix, denoted as Bf 0, and Ci ≥ 0. This has been

stated several times in previous text due to its importance.

Now we safely reduce the FFC problem (4-1) to

0. and 0,C 0, Bwith

 ,02CB

subject to

,...),,...;W,W(Quadratic
 minimize

Data Path}{

2W
,

212,Fr1,FrHW

,Fr
>≥

∑ <−+
∈

−

ki,kk

i
kkik

T

A

Auu

qqf

i

f

 (4-15)

Here vector u is defined in the same way as before, and Ak is the tolerance of the kth MSE

error. The problem is feasible because as all WFr’s increase, the left sides of the

constraint functions asymptotically converge to -Ak’s which are always less than 0.

Physically, it means the fixed-point system becomes infinite precision. The number of

simulations is significantly less than unguided characterization in which the form in (4-

14) is not assumed.

124

4.3.6.4 Use ergodic average rather than large ensemble average

A statistical quantity of an output at time n can be estimated based on large

ensemble average. That is, we run the simulation M times with different random seeds

and same statistics to generate input data, and use all the M output received at time n to

estimate the mean squared error. Though this approach is theoretically accurate to

estimate the expectation function, it requires too many repeated simulations. Its

simulation time for each optimization step is

Simulation time for M ensembles =Mä (preparation time for each simulation

 + n ä time to get one output sample), (4-16)

where the preparation time for each simulation includes time for the simulation

environment to compile the system. This compilation alone takes seconds to minutes.

Currently, Simulink may take up to minutes to compile a large system, due to its support

to process graphical information. Quite often, a random process at the output that is

locally stationary; then, we can use ergodic average—an average based on different

output samples in one simulation—to estimate the ensemble average [48]. For each

Monte Carlo simulation, we have

Simulation time for iteration = preparation time for each simulation +

 (n+M-1) ä time to get one output sample, (4-17)

and the samples between time n to n+M-1 are used for the estimation. This potentially

saves simulation time by additional orders of magnitude over (4-16). Our tool uses this

approach to save simulation time.

In summary, in Section 4.3.6, we adopted multiple ways to make the verification

of constraint function faster. First, we argued that measuring the performances of

125

floating-point system and fixed-point system separately is costly, whereas direct measure

using MSE(fxpt-flpt) is suggested. Second, simulation error after decision-making

operators is too costly to measure, whereas errors after arithmetic operators are faster.

Third, based on perturbation theory, we limit the number of Monte Carlo simulations.

Finally, we argued large ensemble average is too costly, whereas ergodic average is

faster. All the efforts make the verification efficient.

4.3.7 Optimization step

4.3.7.1 Simplifications

The inclusion of binary round-off mode qi in problem (4-1) makes the problem

intractable with the understanding of the problem. First, the hardware cost function in (4-

2) may have very complicated relationship with qi, and it is a combinatorial problem to

reveal this relationship. Second, according to (4-14), we need the number of digital

simulations quadratically proportional to the word-length group size if qi are taken into

account, rather than linear relationship otherwise. Third, even with all the functions

extracted in (4-15), the problem is still combinatorial, and is very challenging to solve. So

in the rest of this chapter, it is assumed that roundoff modes are used everywhere.

The preceding simplification implies u i = 0 for i œ {datapath}. Furthermore,

since pre-grouping of operators is done to reduce the number of simulations in Section

4.3.3, many constant inputs are often grouped together. These multiple quantization

sources in each of the constant-group altogether behave similar to a random noise with 0-

mean and variance proportional to 2-2×WFr. Assuming such 0-mean “noises” from

126

different constant-groups are uncorrelated to each other, the optimization frame work in

(4-15) can then include constant-groups similar to data-path quantization noise. That is,

K1,2,....,;,...,2,1 0; and 0,C
 with

 ,02C

subject to

 H
2
1)(

minimize

groups} -constant and Data Path{

2W
,

0

0W

,Fr

iFr,

==>≥

∑ <−

+⋅+=

∈

−

≥

kmiA

A

hWhWWWf

ki,k

i
kki

Fr
T

Fr
T
FrFr

i (4-18)

It should be pointed out that all the groupings are done automatically if the structural

information of the system is provided, as shown in Section 4.3.3. Therefore, no ambiquity

arises in the definition of index i in (4-18) as it is just an ordering of all the word-length

groups. The dimension of k, denoted as K, specifies the number of critical nodes to be

examined for MSE specifications, which is usually less than 100.

4.3.7.2 Fractional word-length optimization

The constraints of problem (4-18) represent a joint set of sublevels of exponential-

sum convex functions; thus it is a convex set. So if the Hessian H of the quadratic

hardware-cost function is positive semi-definite, (4-18) would be a convex optimization

problem [63]. Unfortunately, H is usually not positive semi-definite. An easy counter

example is a multiplier of input W1 and W2, and output W1 + W2. The hardware-cost is

approximately proportional to 21WW , or

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

1
21 01

10
),(

2
1

W
W

WW ,

127

which gives a Hessian that has negative determinant and not positive semi-definite.

Therefore, in order to proceed using convex optimization techniques, an approximation

of the objective using a convex function, such as an affine function, is needed. A local

affine approximation of hardware cost function after grouping is used here for this

purpose. So, (4-18) is broken into external iterations based on the inner update as convex

optimization. Finally, we address the complications caused by integer constraints of WFr;

this can be done by using ceiling(WFr) as the result, and then individually adjust each

component of the result to see whether any of them can be reduced.

Based on the previous arguments, we can the following algorithm

1. Find an initial feasible WFr by noticing

 K.1,2,...., ,02C

K1,2,....,;,...,2,10,2C
,Fr

,Fr

2W
,

2W
,

=∑ <−⇒

==<−
−

−⋅
kA

kmiA

i
kki

kki

i

im

So choose

 .,...,2,1)],
C

([logmaxW ,
2k2

1
,0Fr mi

Ak

ki
i

m
==

⋅

2. Obtain the affine approximation of the objective function around W0Fr, which

is).() H()(:min 000 FrFr
TT

FrFrFr
W

WfWhWWWf
Fr

+∆+≈∆+
∆

 The constraints remains to be exponential sum on the new variable FrW∆ , with

a couple of practical constraints on the size of FrW∆ :

.,...,1

);,WWmax(W),WWmin(

 and K;1,2,...., ,02C

,0Fr,minFr,Fr,0Fr,maxFr

)W2(W
,

,Fr,Fr

mi

kA

iiiii

i
kki

ii

=

−−>∆>−

=∑ <−∆+−

µµ

3. Use Mosek function mskscopt(.) to solve the convex separable problem [21].

Once the new ii WW ,0Fr,0Fr ∆+ is obtained, update it as the new iW ,0Fr .

128

4. Repeat step 2 and 3 until the optimal objective value no longer increases by

more than 0.1 slice, or until the iteration number exceed 100 (stopping

criteria).

5. Use ceiling(iW ,0Fr) as the integer solution. Then try to decrease any of these

m values by one bit; choose the one that decreases f the most while still

satisfies the constraints.

6. Repeat 5 until any bit-reduction of iW ,0Fr makes the constraints infeasible.

Applying this algorithm on several systems, it is found that step size µ being too

large (> 5) or too small (< 0.2) results large number of iterations. By choosing µ from 1

to 2, the iteration process in step 4 usually finishes in less than 10 iterations, with each of

them done in a few seconds.

On the other hand, we also found that since the number of word length groups is

usually less than 50, so that the procedures in [15] or [17] are usually sufficiently fast.

That is, the optimization algorithm to solve (4-18) is not essential since the problem has

been understood very well using all the results that have been developed so far.

4.3.8 Robust optimization

So far, we have strived to make the FFC fast and, thus, practical. We use

functions to represent hardware-cost and constraints, and also limit the optimization

space using grouping methods. Meanwhile, we also try to keep the simplifications

accurate enough so that our optimization result reflects the true optimal design choice.

However, any simplified modeling inevitably introduces errors. Therefore, it is

important to understand these errors and make the optimization robust.

129

Given the relationship between MSE and WFr about m experiments are enough to

fit the m×K coefficients Ci,k’s. Either due to estimation error or under-modeling of MSE,

such as various simplifications in Section VI, an estimation of Ci,k is given by a range

[Ci,k,lower , Ci,k,upper] Õ R+ , and the interval size depends on the confidence of estimation of

Ci,k. The design of WFr should satisfy (4-18) for any Ci,k œ[Ci,k,lower , Ci,k,upper]. Thus, it

quickly reduces to the following robust version

K.1,2,....,;0 and 0,C with

 ,02C

subject to

 H
2
1)(

 minimize

,

1,2,...m

2W
,,

0

,Fr
=>≥

∑ <−

+⋅+=

=

−

kA

A

hWhWWWf

kupperi,k

i
kupperki

FrFr
T
FrFr

i
 (4-19)

The algorithm remains almost the same as in (4-18) except for the replacements of Ci,k’s.

So the procedure in Section 4.3.7 still applies. Because of the exponential relationship,

the optimal wordlength design increases only about 1/2 log2(Ci,k,upper/ Ci,k), so that word

length optimization is quite insensitive to MSE estimation errors.

4.3.9 User interface

In addition to the Range Detector and Spec Marker blocks that are implemented

as Simulink library blocks, the rest of the tool is fully implemented as Matlab functions

that realize each proceeding subsection of Section 3 in a pre-programmed flow. The user

places Spec Marker(s) into the high-precision system and specifies the performance

levels, and then the tool will execute all the functions in Fig. 4-6 and output the optimal

fixed-point design.

130

Occasionally, MSE becomes a poor way to approximate a specification. For

example, the regulation on off-band transmitting power of a radio often translates to the

requirement that the digital filter in the transmitter needs to satisfy a specification on the

maximum side-lobes of its frequency response. Therefore, there is an option of Spec

Marker to choose as a specification function using customized Matlab functions. In this

case, convex optimization method as described in Section 3.7, often can not be used.

For systems with non-stationary inputs, the program monitors the MSE at each

Spec Marker at different times. There will be a specification level corresponding to each

time. So, (4-19) retains its format, but with more constraints.

Finally, for comparison purposes the tool can also easily provide the capability of

using a pure-simulation-based approach, similar to those in [15]. That is, no analytical

hardware-cost function and constraint functions are drawn. However, it still takes

advantage of the discussions in 3.6.1 and 3.6.4, as well as 4.3.2 and grouping method in

4.3.3.

4.4 Applications

4.4.1 Simple binary phase shift keying (BPSK) transceiver

The first system that is automatically converted is a BPSK transceiver system

mentioned earlier in Chapter 3. By applying robust optimization, one obtains the final

conversion result in about 5 minutes, with only 265 FPGA slices, as shown in Fig. 4-12.

131

Fig. 4-12 BPSK communication system in System Generator.

4.4.2 U-Sigma block of singular value decomposition (SVD) system

The second system is a SVD-USigma system used in multi-carrier multi-antenna

system. This system is nonlinear with feedbacks. Fig. 4-13 shows the system. It takes 40

minutes to FFC, and most time is spent on running the m simulations in Section VI. The

converted system takes 1704 FPGA slices, which is about 5 times smaller than previous

known result of about 8800 slices obtained by floating-point designer with hand-tuning

[70]. Fig. 4-13 (b) and (c) show that the convergence behavior of the fixed-point system

does not change much from the one in floating-point system.

132

(a)

 (b) (c)

Fig. 4-13 SVD algorithms
 (a) SVD U-sigma block with 1704 slices. (b) Eigen-value tracking versus time of the
floating-point system to be converted. (c) Eigen-value tracking versus time of the fxpt
system.

133

4.4.3 Ultra-wide band (UWB) baseband implementation

The third system converted is an ultra-wideband system designed by UWB

subgroup at Berkeley Wireless Research Center [71]. This is a complicated system

contains about 2000 arithmetic and logic units. The system has been hand-tuned to take

6695 slices in fixed-point implementation. The FFC tool works on this partly optimized

system and produces a version of 4610 slices. Not much improvements can be done over

the original system since on average only 2~3 slices per unit are consumed.

Fig. 4-14 Ultra-wide-band (UWB) baseband
This UWB system contains 16-tap matched filter and 7-entry PN sequence. Right bottom
is PN sequence generator; upper right shows control units. 10 specification markers were
inserted as shown in red give the constraints.

The conversion takes about 2 hours. Some final tests on the converted fixed-point

system show its matching performance to the original system.

In Table 4-3 the results for the three systems are summarized.

134

Systems: SVD-Usigma UWB BPSK
Transceiver

Direct system
specifications

Eigenvalue
convergence

Detection error and
BER BER

FPGA slices of
hand-tuned
system

8858 6695 N/A*

Number of
MSE Spec.
Markers

1 10 1

MSE spec
levels 0.1 4äones(1,10) 0.0005

Grouping rules [1.1 2.1 3 4 5 6
7] [1.1 2.1 3 4 5 6 7] [1 2.1]

FPGA slices of
the system after
FFC

1704 4610 265

FFC duration 40 minutes 2 hrs 5 minutes
Table 4-3 Summary of the three systems that are FFC’ed
*The fixed-point data types in the system are not hand-tuned before automated FFC; so,
no information available.

4.5 Comparison with existing techniques

This section compares the FFC tool with those techniques that are based on pure-

simulation. The FFC techniques are superior to other existing tools because of its more

general applicability and due to the improved optimality obtained [17].

135

Fig. 4-15 Hardware-cost using various models for the estimate.
The curve shows that a quadratic model is adequate for the BPSK transceiver in Section
4.4.1 (a) using quadratic-fit as proposed in this section, or (b) no 2nd-order term H is
modeled—so called linear-fit.

First of all, our tool uses accurate resource estimation instead of handwritten

linear hardware model that is used in all previous techniques. Fig. 4-15 shows that a

linear model can differs greatly from actual the hardware-cost, while a quadratic model is

quite accurate. Furthermore, since existing techniques that do not start from a structural

description often do not model the hardware required for blocks such as a MUX, they

suffer significant modeling errors.

Second, using simulation based FFC, but without adapting our techniques

discussed in Section 4.3.6, the conversion becomes often intolerably long. Even using the

136

ergodic approach described in Section 4.3.6.4 does not make it acceptable. For example,

for the relatively simple BPSK system in Section 4 that has BER=0.00078 in the floating-

point design, and a target BER=0.00085 for the fixed-point, each BER simulation take

hours to finish. The iterations needed for optimization would further prolong the

conversion time. In fact, without using the methods in Section 4.3.6.1, 4.3.6.2 and

4.3.6.3, to finish the conversion listed in Table 4-3 for the BPSK system would take at

least 7 days, which is 103-104 times slower than our proposed method.

Even by further adopting part of our techniques in Section 4.3.6 to avoid BER

type of simulation—using MSE(flpt-fxpt) as a direct measure of fix-point system

performance, existing techniques are still at least 5 to 6 times longer. This is because the

number of simulations in any unguided optimization is at least 5 or 6 times the number of

independent wordlength groups, denoted by m [15], while the FFC approach described

here only requires approximately m simulations to characterize all the specification

functions.

Finally, since the tool first completely characterizes the hardware functions and

specifications, optimizations against different specification levels just repeat the

optimization procedure, which is usually performed in seconds. Therefore, it becomes

straightforward to produce curves such as shown in Fig. 4-16 in which the hardware cost

versus specification can be clearly presented.

137

Fig. 4-16 Hardware-cost and specification trade-off for the SVD U-sigma.
The system is described in Section 4.4.

4.6 Summary

A comprehensive automated approach for floating-point to fixed-point conversion

(FFC) has been presented. With tens of thousands of lines of Matlab codes as the

underlying engine, an implementation in a self contained tool in the Xilinx System

Generator and Mathworks Simulink environment has been developed and the application

of this tool to several real designs has been presented. Hardware-cost information has

been modeled and a perturbation approach to determining the specification sensitivity has

been implemented and found to give orders of magnitude in speedup over our simulation

based techniques. The tool uses FPGA’s as the hardware model merely to demonstrate

138

the feasibility of our methodology, but a similar approach would apply to ASIC designs

as well. The essential step is to obtain an accurate model of the hardware-costs.

Our goal is not to find the last few percent improvement of objective function in

(1-2), but is to quickly and intuitively determine the data type. Our efforts on

understandings of specifications and hardware cost functions shows one promising way

to attack this problem, which we hope to inspire similar approach on other design and

verification problems, such as architecture and algorithm design. On the other hand, it

is important to understand the “loss of optimality” by doing robust optimization.

A few open questions are explained. More strict treatments on the integer side can

be valuable. Moreover, the combinatorial optimization problem associated with

quantization-modes, which may also be chosen from truncation-mode and round-off

modes, also needs further studies. They are emphasized again in Chapter 6.

139

Chapter 5
FPGA Hardware Resource Estimation

Section 4.3.5 of Chapter 4 mentions the usage of a hardware-cost estimation tool

to solve the FFC optimization problem (1-2). This tool is the topic of this Chapter.

When a system is mapped to Xilinx FPGA chip, the consumed slices, LUTs,

Block RAMs, Virtex-II embedded multipliers (when applicable), flip-flops, tri-state

buffers and IOB counts are referred as its hardware resource information. Existing

hardware resource estimations suffer either inaccuracy, slowness or high complexity. A

strategy of fast hardware resource estimation in Xilinx System Generator environment is

proposed in this Chapter, and is implemented purely in Matlab and Simulink

evnironment. Only the pre-netlisting Simulink compilation is required to prepare for the

estimation, and each estimation typically takes only seconds or a few minutes. In our

verifications, every aspect of the resource estimation agrees within 10% from the map

report. The resource information of each System Generator block is characterized into a

Matlab function, based on the understanding of IP-core design, as well as the

considerations of the trimming effects from the subsequent synthesis tool and mapper.

Finally, it is explained how these functions get integrated together with Similink to form

140

a user-friendly and automated infrastructure. This estimator has been included in System

Generator since version 3.1.

5.1 Introduction

Field-programmable gate arrays (FPGAs) have become increasingly important in

implementing digital signal processing (DSP) systems such as digital communications,

and multimedia. On an FPGA chip, the following basic resources are normally available

to realize a system: slices which contains look-up tables (LUTs) and flip-flops (FFs),

block memories (BRAM), tri-state buffers (TBUFs), In and Out bonds (IOBs), and

dedicated 18x18 multiplies (currently available for Virtex-II chips). A top-down design

methodology has been recognized to dramatically speed-up the design process without

substantially compromising the performance of the hardware implementation. In fact,

together with high level hardware-cost estimation tools, the top-down design flow opens

the possibility of global optimization at the system level, which often leads to even more

hardware-efficient designs. Our FFC strategy is one excellent example in this trend.

FPGA resource usage, as one type of hardware-cost (others are like critical path delay or

active-power consumption), is particularly important when the goal is to find the best

behavioral system performance (such as signal-to-noise ratio) while fitting into a specific

chip, or when the goal is to find the lowest resource meeting a performance specification.

As another example, it is sometimes necessary to partition a large system to multiple

FPGA chips, which requires estimations of the resources for sub-systems. An

optimization process further requires numerous iterations of resource estimations. This

motivates a fast resource estimation tool at high level.

141

Among many available CAD tools, System Generator1 [60][91] for DSP is a

successful example for modeling and designing Xilinx FPGA-based signal processing

systems in Simulink and Matlab2 [59]. Section 5.2 starts by providing some necessary

information of System Generator environment. Then it proceeds to introduce some

existing or possible resource estimation methodologies, followed by a proposal of our

method. In our method, only the Simulink compilation stage is needed for each estimate.

Our method differs from existing ones in that it requires complete understanding of how

the IP-cores are designed. Furthermore, it predicts those logics that are trimmed away by

synthesis tools and mappers. What is also covered is the topic of how the methodology

can be integrated with Simulink GUI and Matlab command line to form a user-friendly

infrastructure, which enables estimation for selected parts of a system. Section 5.3

validates the fully implemented resource estimator by studying the estimation results of a

couple DSP designs. A few possible future developments are summarized in Section 5.4.

5.2 Resource estimation in System Generator

Our resource estimation is implemented in the System Generator design

environment that is described in Section 2.1. Though the methodology is portable to other

platforms, the architectural description of a DSP system, as System Generator does

naturally, is indeed necessary for accurate estimation.

1 System Generator is a registered trademark of Xilinx Inc.

2 Simulink and Matlab are registered trademarks of Mathworks Inc.

142

5.2.1 System Generator design environment

At simulation level, System Generator for DSP maintains an abstraction level

very much in keeping with the traditional Simulink blocksets, but at the same time

automatically translates designs into hardware implementation [60][91]. The system

model and hardware implementation are bit-true and cycle-true. Besides some

synthesized blocks, the implementation is also made efficient through the instantiation of

high-speed and area-efficient intellectual property (IP) cores that provide a range of

functionality from arithmetic operations to complex DSP functions. In System Generator,

the capabilities of IP cores have been extended transparently and automatically to fit

gracefully into a system level framework. For example, although the underlying IP cores

operate on unsigned integers, System Generator, through the so called wrapper logics,

allows signed and unsigned fixed point numbers to be used, including saturation

arithmetic and rounding. While providing functional abstraction of IP cores, the System

Generator blocks also provide the FPGA-literate designer access to key features in the

underlying silicon, which is often necessary to achieve the highest performance

implementation in an area-efficient manner. For example, the System Generator

multiplier block has an option to target embedded high-speed 18x18 multipliers in the

Virtex-II family of FPGAs.

143

5.2.2 Resource estimation methodologies

Fig. 5-1 Resource estimation methods

The hardware resource information can be exactly retrieved from the post-

placement-and-routing map-report. As shown in Fig. 5-1, the hardware resource

information of a model can only become available after Simulink compilation, Netlister,

IP-Core generation, synthesis and mapping stages. The whole process can take minutes

or even hours, depending on the size of the system.

Fig. 5-1 also shows an estimator can simply sum the resource information

available at each core after core-generation. However, the method becomes slow—often

Netlister

Synthesis Tool

VHDL and IP-Core Generation

Placement-and-routing Mapper

Structural Designs in System
Generator

Map Report with resource Info

Simulink Compiler
Pre-netlisting

Resource Estimation

Post-mapping
Resource Information

Post-core-generation
Resource Estimation

144

only a couple times faster than to map-report method. Also, all the synthesized logics

other than the IP cores are not considered, making the result inaccurate as well.

Several possible ways can be done for the pre-netlisting resource estimation. One

of them is to build a database, listing the resources given all the possible combination of a

particular block. Each entry of in the database is obtained by a complete design

experiment. However, an initial implementation3 of this methodology shows that many

blocks involve too many combinations that the tests may easily takes months or more of

computing time to complete. Even when this done, the database for some blocks may

consume hundreds of Megbytes and is no longer practical. Therefore, only for a few

blocks that have less than tens of parameter combinations, this method is useful (and

indeed used sparsely in our current estimation tool).

An alternation of this aforementioned method is to build database for IP-cores

only, while estimating all other synthesized logics by simple functions [90]. Yet, this

method still suffers from the complexity difficulty as complicated cores can have too

many parameter combinations. One way to alleviate the preceding complexity difficulties

is by ignoring block parameters. As the tradeoff, the estimation become less accurate

(e.g. up to 30% or more [89]).

A common problem associated with all these third-part estimation methods is the

lack of understanding of IP-core design. The present methodology, however, is based on

complete reverse-engineering the IP-core designs. Moreover, trimming effects caused by

3 This was tried by C. Shi under Prof. Robert W. Brodersen’s advice at University of California, Berkeley.

145

synthesis tool and mappers are understood by doing experiments and by collaborative

working with the designers of these tools.

5.2.3 Resource estimation at the system level

Fig. 5-2 A simple System Generator design with block output data-type displayed.
Here UFix_20_10 means an unsigned signal with 20 bits in total and 10 bits of them are
fractional. UFix_15_7 is defined accordingly. Fix_8_4 is a 2’s-complement signed signal
with 8 bits in total and 4 of them are fractional. This design shows the trimming effects.

 Fig. 5-2 shows a simple design in System Generator composed by some basic

blocks. To estimate the resources of one type of blocks, such as adders, a Matlab function

in the following framework is written and called:

function tarea=get_BlockType_area(system)
% find out all the blocks of a particular masktype
r = find_system(system, ‘masktype',…)
% Initial a Simulink compilation if not yet
% Get area for each of these blocks using a for-loop
for i=1:length(r),
 % Get the data-type of the block inputs and outputs
% as well as all other block parameters
 get_param(r{i},…);
% Use a dedicated function to get the resource
[area(i,:), input_type]=BlockType_area(...);
% update the resource info for block r{i}
end
% End the Simulink compilation if it has not been done
% Get the total area of the particular type
tarea=sum(area,1);

146

The functions find_system(.) and get_param(.) are Simulink model construction

commands [3][59]. They allow the control of Simulink system using Matlab scripts,

which makes the design automation possible. Simulink compilation is needed to retrieve

signal (port) data-types and to compute those formula-based or hierarchically defined

mask parameters.

In Fig. 5-2, a full-precision adder would grow its input data-type to UFix_21_10

(with one more integer bit than the input to accommodate overflow). But as the user

defines that only 15 bits of the adder output are needed, some of the adder logics will be

trimmed away by the synthesis tool or mapper. This trimming effect is referred as block-

level trimming and is further studied in Section 5.2.4. Furthermore, if the Convert block

uses truncation mode at the LSB side and wrap-around mode on the MSB side, the

synthesis tool or the mapper will directly propagate its output wordlengths backward to

its input, making the true output of the adder block as UFix_8_4 instead of UFix_15_7.

As a result, more logics will be trimmed away from the adder by the synthesis tool. This

trimming mechanism is referred as system-level. In the current version of the tool, the

system-level (or global) trimming effects are not implemented.

5.2.4 Resource estimation at the block-level

A Matlab function is written for each type of block, initiated as

 Function [area,input_type] = BlockType_area(block_params).

Normally, each BlockType_area(.) function is written in the following steps,

1 case-divide the following steps according to block parameters;

2 understand the data-types for output wrapper and all the sub-cores;

147

3 calculate the resource for the wrapper and each sub-core with trimming

effect;

4 sum different resources together;

5 get input data-types after backward trimming effects .

Whenever applicable, vector signal processing is used to speed-up the calculation.

A great amount of efforts are paid to take care the aforementioned block-wise trimming

effects. The last step of this procedure prepares the inclusion of the system-level (or

global) trimming effects in the future. Extensive map-report tests are done to make sure

the estimation function gives either less than a couple units or less than 5% relative error.

The following two subsections illustrate these steps using two examples.

5.2.4.1 Resource estimation for an Adder/subtractor block

Fig. 5-3 A possible realization of a 32-bit adder.

These logics are trimmed away if bits Q<7:0> are truncated

These logics are trimmed away if Q<31:24> and Q_C_out are not needed

+

+

+

+

+

+

+
0

0

0

A<7:0>

B<7:0>

A<15:8>

B<15:8>

A<23:16>

A<31:24>

B<31:24>

B<23:16>

Q<7:0>

Q<15:8>

Q<23:16>

Q<31:24>

Q_C_OUT

C_IN

148

The blank boxes denote pipeline flip-flops. The logics in the dashed box would be
trimmed away if output Q<7:0> is truncated at the output.

The adder/subtractor block, or in short add/sub, is used as the first example. In the

get_addsub_area(.) function, the following function is called

function [area, input_type]= addsub_area(at_a, wa,wfa, at_b, wb, wfb, at_o,
wo, wfo, prec, q, o, latency, use_core, use_rpm, pipeline, mode)
% This particular function contains about 200 lines of
% Matlab code that are not shown here.

Here at_a is arithmetic type of input a; wa is the total wordlength of input a; wfa

is the fractional wordlength of input a; at_b, wb, and wfb are similarly defined for input

b; at_o, wo, and wfo are similarly defined for the output; q and o are the output

quantization and overflow modes; latency is the extra latency at the output; use_core

indicates whether the add/sub block is generated using ip-core or freshly synthesized;

use_rpm indicates whether the block use RPM feature; pipeline indicates whether the

block is pipelined internally to the greatest extend; mode indicates the block is an adder,

subtractor or add/sub combination. All these block parameters are obtained in

get_addsub_area(.) function before it calls addsub_area(.).

Experiments show that using RPM results slightly higher resources, but usually

negligible. The three modes—subtractor, add/sub or adder—usually take similar

resources; the difference is negligible except that when two unsigned numbers add each

other, some logic LUTs will be replaced by route-through LUTs.

There are three main cases for the add/sub block, or abbreviated as add/sub. They

will be described one by one in this section, followed by some major observations that

need to be pointed out.

149

The first case is the pipelined add/sub using IP-core. Then, the adder is divided

into pipelined sessions depending on the latency chosen. The main challenge here is to

figure out the implementation style of the core, based on different choice of latency and

output width. This has been done by reverse-engineering the way the add/sub core is

designed.

The second case is the none-pipelined add/sub using IP-core. Here, the challenge

is to discern the logic LUTs with the route-though LUTs. One level of latency is absorbed

by the slices containing LUTs, and the rest latencies are handled by the SRL17

implementations. All LUTs on the most-significant-bit side are trimmed away when

these bits are not needed, whereas only the flip flops and shift-register LUTs are removed

in the least significant parts, as shown in Fig. 3.

The third case is the fully synthesized add/sub. This is similar to the none-

pipelined core add/sub, with important difference. First, all the latencies are handled by

the SRL17s. Secondly, some of the least-significant-bit logics can be trimmed away only

one input has none-trivial bits there.

In general, the addsub_area function is designed to understand how trimming

affects the add/sub resources, and includes the additional resources needed for the

synthesizable wrapper.

Finally, the possible trimming on input bits is described in addsub_area(.)

function, which is prepared for handling global trimming effect in the future, when the

compiler is able to handle backward data-type propagation.

150

5.2.4.2 Resource estimation of 18x18 Embedded Multipliers

As another example of writing block level resource estimation function, let’s look

at the usage of 18x18 embedded multipliers that are currently available in Virtex-II

family. When the target multiplier size is less than 18x18, it can be fit into one embedded

multiplier. Otherwise, multiple embedded multipliers are needed, each of which

generates a partial product, followed by adder logics to sum all the partial products

together to form the final output.

By understanding the way the embedded multiplier is used, the usage of these

embedded primitives can be written as a simple function of the parameters of the target

multiplier, that is,

⎟
⎠
⎞⎜

⎝
⎛ +×⎟

⎠
⎞⎜

⎝
⎛ +

=×

17
1)- Unsigned (NCeil17

1)- Unsigned (NCeil

 era Multipli in Mults Embedded1818 ofNumber

BBAA (5-1)

where subscripts A and B denote the two inputs of the multiplier, NA denote the number

of bits of input A, UnsignedA is either 1 or 0 representing signal A is unsigned or signed,

similarly for B. and ceil(.) is the ceiling function as defined in Matlab. The total number

of 18x18 multiplier primitives used in a model is simply the sum of the numbers for each

parallel multiplier.

5.2.5 User interface and design automation

Fig. 4-1 shows the user interface of the initial resource estimation tool (which has

subsequently been slightly changed in the commercially available one [60]). Every Xilinx

block that requires FPGA resources has a mask parameter that stores a vector containing

151

its resource requirements. The Resource Estimator block can invoke underlying functions

to populate these vectors (e.g. after parameters or data types have been changed), or

aggregate previously computed values that have been stored in the vectors. Each block

has a checkbox control "Use Area Above for Estimation" that short-circuits invocation of

the estimator function and uses the estimates stored in the vector instead.

In Fig. 4-1, by activating the resource estimator block, a Simulink compilation is

initiated. When the complication is done, all the underlying resource estimation functions

get_BlockType_area(.)’s can be called, which in turn calls those core functions

BlockType_area(.)’s to get the estimated area. The results are then displayed on the

estimator box. Furthermore, the resource vector of each individual block is also updated

and displayed.

5.3 Experimental results

The Matlab function BlockType_area(.) for each block type has been tested

extensively, sometimes exhaustively, against the map-report result under various block

configurations. In this section, the complete resource estimation tool is further tested

against a number of complicated DSP designs, two of which are reported here. One

design is an additive-white-Gaussian-noise (AWGN) simulator that generates pseudo-

random AWGN noise. The other one is a stage-based Cordinate rotation digital computer

(CORDIC) system. Table 5-1 shows the results on the 7 aspects of the FPGA resources,

as well as the time required to get the estimations.

 Slices FFs BRAMs LUTs IOBs 18x18
Mults TBUFs Time

(min)
AWGN (Prev. tool) 1571 760 0 1595 27 1 0 15
AWGN (New tool) 1606 760 0 1612 27 1 0 .5

152

11-stages Cordic (Prev.
tool) 453 952 1 773 101 0 0 10

Cordic (New tool) 471 982 1 794 101 0 0 .3
Table 5-1 Comparison of estimation tools.
The proposed resource estimation tool (new tool) with map-report (previous tool) on a
couple designs. AWGN is an additive-white-Gaussian-noise simulator.

The results in Table 5-1 are representative to many other tests. Every aspect of the

resources obtained from the proposed resource estimation tool agrees with the map-report

within 10% (usually within 5%). Yet, the estimation time speeds up by 1-2 orders of

magnitude comparing with map-report method. Again, this acceleration is benefited by

the elimination of those time-consuming netlisting, synthesis, and placement-and-routing

stages in order to get a map-report.

On the other hand, as long as a System Generator design can be compiled by the

Simulink compiler, the proposed resource estimation tool is able to estimate. In this way,

resource estimation can be obtained for pre-mature designs that cannot even pass the rest

of the design flow to reach the map-report stage.

5.4 Acknowledgements

The work described in this Chapter was mostly done at Xilinx Inc. during my

summer internship. All the scholars I met there, particularly those who I mentioned in the

Acknowledgement at the beginning of this thesis, should basically be the co-authors of

this chapter. In addition, I want to thank his Ph.D. advisor, Prof. Robert W. Brodersen,

for his constant support and advice on this part of my project. He also wants to thank the

rest of the System Generator group, IP-core group, XST synthesis group and Dr. David

Square at Xilinx for their useful suggestions and supports.

153

5.5 Summary

A novel pre-netlisting FPGA resource estimation tool in System Generator has

been developed. The estimation is accurate because the architectural information of a

design is available in System Generator; it is also because IP-cores designs and trimming

effects are understood. Furthermore, total automation of the tool is realized in Matlab

functions by taking advantage of the Simulink model construction commands.

Verifications on real designs show excellent agreement with map-report. This resource

estimation tool is one essential part of our accurate and fast FFC tool as described in

Chapter 4.

Further developments can be done in several possible areas. First, a dominant

portion of the estimation time is spent on Simulink compilation to obtain the data-types at

signal nodes; so, more efficient compiler would speed-up the estimation tool. Secondly,

the aforementioned global trimming effects could be important in some designs, which

can be taken care of by having a smarter Simulink compiler that can propagate signal

date-types both forward and backward. Thirdly, similar estimation tools might be

developed for power-consumption and signal path delays.

154

Chapter 6
Possible Extensions and Future topics

A study on Automated FFC of a discrete-time digital system is proposed in

previous chapters. This is derived through the characterizations of signals, design blocks,

hardware-cost, and specification functions. A perturbation theory is developed to

understand the statistical quantization effects of a fixed-point system, with or without

decision-making errors. Based on these results, an automated FFC tool for general

communication system is demonstrated. This tool is orders of magnitude faster than

existing techniques since it utilizes the analytical results of the perturbation theory as well

as many other considerations. For the system chosen, BPSK, UWB and SVD u-sigma,

the proposed FFC showed its general applicability and advantages. This chapter

emphasizes some related problems that have not been covered in details in this work,

which hopefully inspires more researchers and engineers to work on this problem.

First, despite the large efforts in Chapter 3, the quantization effects of decision-

making errors are still far from being solved completely. Now, we have a good

understanding of the probability for this kind of error to happen. Yet how these errors,

with large magnitude, propagate in a non-linear system with feedbacks is difficult to

analyze, as being fully demonstrated in the absolute-function example and signed-

155

algorithm example of Chapter 3. Our only progress made on this topic is the

categorization of decision errors to soft ones and hard ones, based on some non-trivial

insights. This is certainly one topic to continue for both its theoretical and practical

values.

Secondly, similar to the decision errors are the overflow noise, which is probably

more difficult to analyze since, unlike decision errors, the magnitude of these errors are

also random (more strictly speaking, they are deterministically related to the IP signals).

It seems that the only reliable analysis is to trace how the probability density function

(PDF) of each signal is going to vary with the presence of overflow events. It has to be

emphasized that in non-linear systems with feedback loops the change of a PDF at one

node at one time will affects the change of this node and other nodes in the future. I have

some detailed analysis on this approach, but so far I don’t think a good solution has been

nearly found.

Thirdly, power and clock speed, in addition to area, are two other fundamental

hardware cost functions that designers want to optimize. It is therefore good if estimation

tools and analytical models for these two costs can be done in a similar way to FPGA

resources as what we have done. Furthermore, to apply the FFC methodology to ASIC

design flows, hardware estimators and the analytical models of the corresponding

hardware costs also need to be done.

Fourthly, though our analyses in Chapter 2, 3, 5 and most part of 4 include

quantization mode, our final FFC tool does not include them as a design variable as this

requires much more simulations to model and raises a combinatorial optimization

156

problem, as discussed in Chapter 2 and 4. One way to alleviate this problem is just by

pre-determine the quantization modes using some procedures. This is certainly an open

question.

Finally, it is conceived that hardware emulation engines BEE can help to alleviate

the difficulty imposed by long simulation times. However this requires fast mapping from

Simulink to FPGA hardware, at least for incremental changes. It also requires the FPGA

system large enough to contain a pseudo floating-point system (that is, a fixed-point

system with very large word lengths). Currently, these are not yet there.

 In the end, I and my research advisor, Bob, wish the methodology can be adopted

by anybody else. Our website devoted for our FFC tool [88] is for this purpose. I’d like to

provide my personal help whenever you need it.

157

Appendix A. Perturbation Theory on
LTI Systems

A.1 Derivation of (2-33) from (2-37)

First, we explain the notations in (2-37).

Bold letters represent matrices, and barred letters represent vectors;

(.)H represents the Hermitian transform—the transpose of the conjugate—

of a vector or matrix;

The
ωje ’s in the parentheses indicate that each term is a function of

frequency;

Column vectors x and y represent the multi-dimensional input and output,

respectively, whereas column vector q represents the multi-dimensional

data-path quantization noise input;

y∆ is the difference vector between the outputs of FP and IP systems, that

is, IPFP y-y ;

)(ωj
yy e∆∆R is called the power density spectrum matrix of y∆ at a

given frequency, that is, its m-th row and n-th column,)(R ωj
yy e

nm∆∆ , is

158

defined to be the cross power density spectrum between stationary random

process my∆ and ny∆ ;

)(ωj
xx eR and)(ωj

qq eR are defined similarly to)(ωj
yy e∆∆R ,

accordingly;

)(ωj
qy eH represents the frequency response matrix from q to y , that is,

its m-th row and n-th column, denoted as)(H ωj
qy e

nm
, is defined to be the

transfer function from nq to my in the frequency domain—the Fourier

transform of the corresponding impulse response;

)(ωj
xy eH∆ =)()(IPFP ωω j

xy
j

xy ee HH − , where)(IP ωj
xy eH represents the

frequency response matrix from x to y in the IP system, similarly

defined as in)(ωj
qy eH , whereas)(FP ωj

xy eH is the frequency response

matrix in the FP system where the constant coefficients such as filter tap-

gains are quantized.

As stated in Example 2 of Section VI, (2-37) can give (2-33) for LTI systems,

whereas (2-36) can give (2-37) partially. Here we will only give the proofs for the 1-

input-1-output LTI system. Again, let Hyx(ωje) be the frequency response from input x to

output y. Rewrite the difference between the frequency responses of FP and IP systems as

,),...,()(H L1 TnjnjTj
YX

ceeue ωωω ⋅⋅=∆ (A-1)

where u is the column vector formed by the differences of the Lc constant coefficients

between the FP and IP systems, whereas ni is the number of unit delays from the i-th

159

constant coefficient to the output. With Assumption 1 and round-off quantization modes,

the quantization noise correlation matrix becomes diagonal

.
00

00
00

2
L

2
1

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=

q
s

s

qq OR (A-2)

With (A-1) and (A-2), (2-37) gives the scalar power spectrum density output difference

between FP and IP systems as a function of frequency, that is,

[]
,|)(H|

),...,()(R),...,(

)(R

L
22

L1L1

∑ ⋅+

⋅⋅= ⋅⋅⋅⋅

∆∆

q

i

cc

i
i

j
yq

njnjj
xx

TnjnjT

j
yy

se

ueeeeeu

e

ω

ωωωωω

ω

 (A-3)

where neither the column vector u nor standard deviation is , of the white quantization

noises, is a function of frequency. Integrating over frequency on both sides and applies

Parcevel’s theorem (see, e.g. [4] or [5]), (A-3) gives the MSE of the steady-state output,

,|)(H|
2
1

),...,(R),...,(
2
1

)(R
2
1

])),,,,(),,,,([(

L
22

2
K21K21

L1L1

∑ ⋅⎥⎦
⎤

⎢⎣
⎡

∫ ⋅+

⎥⎦
⎤

⎢⎣
⎡

∫ ⋅=

∫ ⋅=

−

−

−
⋅⋅⋅⋅

− ∆∆

∞→

q

i

cc

i
i

j
yq

njnj
xx

TnjnjT

j
yy

t

sde

udeeeeu

de

txxxftxxxfE

π
π

ω

π
π

ωωωω

π
π

ω

ω
π

ω
π

ω
π

LL
IPFP SS

 (A-4)

This proves (2-33) at steady state by identifying the terms in the two brackets as B and ci,

respectively. (A-4) provides the explicit expressions for these coefficients that appear in

(2-33). Yet, unlike (2-33), (A-4) no longer applies in transition period.

160

A.2 Partial derivation of (2-37) from (2-36)

Let gm in (2-37) be an unbiased LTI system with frequency response gm(ωje)

with gm(0,t)=0; and again, let)(ty∆ be),,(),,(11 txftxf LL
IPFP SS − . Then, the term

()ttxftxfgm),,,(),,(11 LL
IPFP SS − can be written as the convolution

product)()(tytgm ∆⊗ , denoted as o(t). If the input is WSS (wide-sense-stationary), at

steady state (when t is large), o(t) is also a WSS random process; so, the time index can

be removed to get

()
].[])}([{lim

]}),,,(),,([{lim

22

2
11

oEtoE

ttxftxfgE

t

mt

==

−

∞→

∞→
LL

IPFP SS

 (A-5)

Let)(R ωj
oo e be the power spectrum density of o, it can be written as the product

between power spectrum density of y and the squared frequency response of LTI system

gm (see, e.g. [3] or [4]), that is,

)(R|)(g|)(R 2 ωωω j
yy

j
m

j
oo eee ∆∆= . (A-6)

Integrate over frequency domain and divide both sides by π2
1

 gives,

∫ ⋅=∫ ⋅ −−
π

π
ωωπ

π
ω ω

π
ω

π
deede j

m
j

yy
j

oo
2|)(g|)(R

2
1)(R

2
1

 (A-7)

On the other hand, (2-36) says that

()
,

]}),,,(),,([{lim

L 2

2
11

∑ ⋅+=

−
∞→

i
i

g
i

gT

mt

scuu

ttxftxfgE

mmB

IPFP SS LL

 (A-8)

161

where the right side is no longer a function of t. According to Parceval’s

theorem,][)(R
2
1 2oEde j

oo =∫ ⋅−
π
π

ω ω
π ; so (A-5), (A-7) and (A-8) are exactly the same.

Equating the right side of (A-7) and (A-8) and multiplying both sides by π2 which gives

.|)(g|)(R
2
1 L 22 ∑ ⋅+=∫ ⋅− ∆∆

i
i

g
i

gTj
m

j
yy scuudee mmBπ

π
ωω ω

π (A-9)

Now, let LTI system 0ω
mg be designed in such a way that the magnitude-square of its

frequency response, which must be periodic, approximates a sum of impulse train based

on Dirac functions, that is,

.)2(2|)(g|
setInteger

0
20 ∑ ⋅−−=

∈k

j
m ke πωωδπωω

 (A-10)

Substituting (A-10) in (A-9) and carrying out the integral on the left side gives

,)(R
L 2000 ∑ ⋅+=∆∆
i

ii
Tj

yy scuue ωωω B (A-11)

Replacing 0ω withω , we see that (A-11) is almost the same as (A-3), except that (A-3)

provides the explicit expressions for ωB and ω
ic . Remembering that (A-3) is equivalent

to (2-37), we asserts that (2-37) has been partially derived from (2-36) with much less

effort than being stated in [3].

162

Appendix B. Another Way to Derive (3-
7) for Gaussian q

When q is Gaussian distribution, we can derive (3-7) specifically by carrying out

the expectations together with some further simplification. Then, starting from (3-5), we

get

θ

γ
π

σγγ ⋅⎟
⎠
⎞⎜

⎝
⎛ ⋅−=

=−=
−)0()(

2
1

)1)(,1)((
2

2
11

xperfce

xfxfP IPSLFPSL

.

Here
θ

θ

σ
µγ
⋅

=
2

 and erfc(ÿ) gives the complimentary error function, that is,

∫⋅−= −
z

x dxezerfc
0

221)(
π .

It is more intuitive to notice that

⎪
⎪
⎩

⎪⎪
⎨

⎧

<+

≥
<

=−=

0),2(
2

)0(

0 if,
2

)0(
)1)(,1)((

θθθ

θθ

µµπσ
π

µσ
π

x

x

p

p
xfxfP IPSLFPSL

Similarly

163

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥+

<
<

⋅⎟
⎠
⎞⎜

⎝
⎛ −⋅+=

−==
−

0),2(
2

)0(

0 if,
2

)0(

)0()(
2

1
)1)(,1)((

2
2
11

θθθ

θθ

θ
γ

π

µµπσ
π

µσ
π

σγγ

x

x

x

p

p

perfce

xfxfP IPSLFPSL

It is often the sum of these two probabilities that is most relevant as

.][)0(

)22(
2

)0(
))()((

2θ

µπσ
π θθ

Ep

p
xfxfP

x

x

<

+<

≠ IPSLFPSL

This finishes a more complicated way to prove (3-7) for Gaussian-distributed q.

164

Appendix C. FFC Tutorial

Caution: for the up-to-date version of this tutorial, please refer to the version on

[88].

For the A simple BPSK communication system using root-raised-cosine filter on

both transmitter and receiver is built in this tutorial, which depicts the design processing

using Simulink and Xilinx System Generator. Starting from choosing the algorithm to

building the floating-point system with architecture information, the system is then

converted into fixed-point using our FFC tool.

C.1 Introduction

Can we design a digital chip in a day? Research efforts in Berkeley Wireless

Research Center (BWRC) and other places have indicated this is achievable [56]. Built

on top of Mathlab, Simulink and Xilinx System Generator, a number of customized

Matlab scripts and Simulink libraries automate our FFC design flow. By studying on how

our FFC tool can be used in designing a simplified transmitter-receiver system, this

tutorial will get you familiarized with it as well as the design environment.

C.2 How to start

Warning: this section of the tutorial may become outdated over time as it is

related to some administrative information that changes often. For now, it is assumed that

165

you have a BWRC account to access all the software resources on our server. Please refer

to our website for up-to-date information [88], which also provides the instructions of

how to use our source codes at your local machine.

You will need a computer with Matlab, Simulink, Xilinx System Generator

installed in order to run through this tutorial. You also need read/execute access to

BWRC file server \\hitz.eecs.berkeley.edu\designs to use our Floating-point to Fixed-

point Conversion (FFC) Tool. In addition if you want to learn how to map your design to

FPGA, you need to refer to other tutorial such as System Generator Tutorial or the

tutorial on (Berkeley Emulation Engine) BEE (link available at [88]).

A simple way to solve the problem is to login the MS Windows Remote Desktop

Servers available in BWRC, intel2650-2.eecs.berkeley.edu. You will need Remote

Desktop Connection Client on your local PC to do that. If you are using Linux, you may

use Rdesktop (http://www.rdesktop.org). The server has all the necessary tools installed

correctly.

Once you have the software ready, you need to map

\\hitz.eecs.berkeley.edu\designs to your network drive, preferably H: disk. The example

communication system in this tutorial can be found at H:\ffc\ffc_tutorial.mdl. If you

have never used one of the three tools before, you need to read Section C.2.1. Otherwise

you can proceed to C.3.

166

C.2.1 Getting familiar with the environments

The quick way to get started on these tools is to see an existing design. You can

do so by type in

 >>demo
in Matlab command line, and start to play around the demo systems there. Notice that

Xilinx demos are located at Blocksets Xilinx directory in the demo window. An

example is shown in Figure A1.

Fig. C-1 Using Matlab demos

167

If you wish to learn these tools in more a systematic way, please pay more

attention on the help file, with a window somewhat like Fig. C-2.

Fig. C-2 Using the Matlab help system

If you still have questions related to Matlab and Simulink, and could not be

answered by anybody around you, you might contact help@mathworks.com. They

usually respond within the same day.

168

C.2.2 Using FFC Tool

You should have already mapped \\hitz.eecs.berkeley.edu\designs to H: disk.

Now go to H: disk in Matlab:

 >>cd H:
 >>cd ffc
 >>ffc_init

The last command above swaps the Xilinx library to the version that is prepared

for fast hardware resource estimation. You should see some library opened and closed

when executing this command. In addition, a few Matlab paths containing FFC scripts

are added to the path file. A good way to check that you have successfully done this

initialization is to open Xilinx blockset, and see whether you have the resource estimator

block in the Basic Elements.

To place the Specification Marker block in your design as mentioned in section 7

the FFC library can be opened by the following command:

 >>ffc_lib

Now you can go to your own directory where your pseudo-floating point system

is located, and type in:

 >>ffc

The tool itself will then lead you sequentially through the FFC process. This

ffc.m script is located at H:\ffc\ffc_package directory that you have linked to in the

initialization step. The definition of many variable names and functions can be found

using:

 >>help_ffc(‘keyword’).

169

C.3 Algorithm Study

The system to be built here is a BPSK system as mentioned in Chapter 3 and 4.

Suppose we want to do base-band communication with 2-PAM modulation scheme at

1Mbits/sec. Under 2-PAM input symbols (1 symbol/ 1us), such as sequence choosing

from binary integer {0,1}, are mapped into a data sequence choosing from {-A, A}. For

convenience, we can let A = 1. The receiver needs a 2-PAM demodulator to map

received signal into original integer. Suppose the channel impose additive white

Gaussian random noise, but otherwise ideal.

Although we have assumed the channel is flat with no fading, in reality it could be

band-limited (caused by, for example, RF front-end filtering). Thus rectangular base-

band pulse in time domain (sinc(.) shape in frequency domain) through the channel will

be clearly distorted. One technique to combating this is to have a low-pass pulse-shaping

filter at the transmitter side [46]. To do so, one needs to first over-sample the data

sequence at R MHz. This is usually done by an upsampler with integer R. A condition

R>2 is necessary to satisfy the Nyquist criteria.

However there are multiple reasons to make R even higher. One of them is to

minimize the impairment on the frequency response due to finite-tap implementation of

the filter, which causes none-zero stop-band response and hence aliases after the received

signal is downsampled. This is what usually called inter-symbol-interference (ISI).

Without higher upsampling rate R, this deterioration can be alleviated with the cost of

higher filter complexity and signal latency. Another reason of having large R is for time

and frequency recovery. When the channel together with RF front-end has a fractional

170

delay of symbol period, upsampled sequences are needed to identify the right fractional

delay “adjustment” the receiver needs to tune [46].

On the other hand, choosing R too high would lead to high clock rate on the

digital filter, A/D and D/A converters, which are not desirable. In our case, without

much information of other constraints, let’s set R = 4.

On the receiver side, it is desirable to have a matched filter that matches the pulse-

shaping filter on the transmitter side. With this consideration a commonly used filter

shape, called root-raised-cosine filter is used in both transmitter and receiver. After the

downsampler on the receiver side, the signal will be perfectly reconstructed if the two

root-raised-cosine filters are ideal. Figure 1 shows the algorithms we have conceived so

far.

It should be pointed out that if the channel is really as simple as AWGN, one can

just feed the 2-PAM modulated signal into the channel. We included more blocks in the

design to combat some other channel impairments that are not present here.

C.4 Building the floating-point System – algorithm validation

We can start to write either C or Matlab codes for each of the functional block of

Fig. 3-6 and see if the output symbols agree with the input ones by doing simulations.

This is what conventionally people would do. This is still a good way to understand your

system; however, a more natural way exists to validate our algorithm; that is to use

existing Simulink library blocks to draw the diagram in Simulink quickly. A snapshot of

the completed system is shown in Figure C-3.

171

Fig. C-3 Floating-point system in Simulink™ blockset

Notice that there is almost a 1-1 correspondence between above Simulink system

with the block diagram in Fig. 3-6. Different colors of the blocks indicate different clock

rate. Here let’s explain some of them in more detail.

First of all several display blocks are used to help us debug/understand the

system. These include the Display block, Deiscrete-time Scatter Plot Scope, and

Discrete-Time Eye Diagram Scope. A number of other very useful display blocks can be

found in Simulink Sink library and Communication Blockset Comm Sink library.

Secondly, the Error Rate Calculation block is used to compare the Tx signal with

the Rx ones, and output bit-error-rate (BER).

A couple Integer Delay Blocks are used to synchronize the Tx and Rx signals. In

our design both the Tx filter and Rx filter introduce 11 delays (each delay corresponds to

1/(4MHz) = ¼ µs) on their center tap. So another 2 delays of ¼ us are introduced to

make the total delay

¼ (11+11+2) = 6 µs,

172

which is an integer multiple of the symbol period. Without using the integer delay of 2, a

large ISI would be seen on Scatter plot; that is, the down-sampler would not sample at the

wide-open instance showed in the eye diagram.

Finally two Digital Filter Design blocks are used for the two rRC filters. These

two identical blocks are specified using the design mask showed in Fig. C-4.

Fig. C-4 Design a root-raised-cosine filter

Here we choose Rectangular window method without trying others. To

understand window method, please refer to [4]. The sample frequency is 4MHz since we

choose R=4. Rolloff factor is chosen to be 0.46. The higher rolloff factor is, the more

relaxed the filter is and the less number of taps will be needed. That would also lead to

173

more excess bandwidth (total bandwidth needed will be [-(1+rolloff) MHz, (1+rolloff)

MHz]). In our system this rolloff factor is another degree of freedom in design; but let’s

fix it for simplicity. The last parameter that is adjustable is the filter order, we choose the

lowest filter order that satisfies the side-band from [1.5MHz, 2MHz] to be 40dB less than

the main-lobe, as shown in Fig. C-4. You may try to use Matlab function

 >>help rcosfir (or firrcos)

to do the task. Then a Matlab script can be written to automatically determine the lowest

filter order given different choices on Rolloff, windowing method, etc. Here we just try

some deferent filter order and found 22 is the minimum one satisfying our specification.

Other rolloff factor results to higher or the same filter order. This justifies our choice of

rolloff factor of 0.46.

Once the filter coefficients are found one can specify them in a Digital Filter

block in Simulink, which basically does the same thing as the Digital Filter Design block.

But we won’t try that approach here. The filter coefficients can be exported to workspace

choosing File Export in Fig. C-4, as also shown in Fig. C-5.

174

Fig. C-5 Exporting coefficients to workspace vector A

With the two filters designed above, and a channel noise power of 0.1 (i.e. 0.05

for both I-channel and Q-channel), we get the following system performance in Fig. C-6.

 a) b) c)

Fig. C-6 Floating-point performance of the BPSK
a) Eye diagram of the transmitted signal, b) eye diagram of the received signal, c) scatter
plot before the demodulator

It can be seen that the Tx rRC filter caused some ISI as shown in Fig. C-6-a. The

eye is further closed by AWGN noise as shown in Fig. C-6-b. Therefore, the

constellation points become blurred in the scatter plot in Fig. C-6-c. As indicated in the

175

right-most display of Fig. C-3 is the bit error rate display. The error rate calculation

block is set in such a way so that 100 bit errors are detected before we stop the

simulation. Assuming bit error comes in Poisson process, then the real BER in the

following interval with .95-confidence level [3].

].00106.0,00067.0[
00084.0]196.1,804.0[

)ˆ(]100
)10096.1100(,100

)10096.1100([

=
×=

×+− RBE

The simulation takes about 30 minutes to finish.

C.5 Building pseudo-floating-point system in System Generator

The floating-point system built in the preceding section can now serve as our

system reference. The next step is to impose the architecture information into the system.

Xilinx System Generator blocksets (Version 2.3) are used to realize the architecture

choice. Historically, we have used the granular blocks of Simulink, such as multiplier,

adder etc. for this step. However it turns out it’s just easier (for the rest of the BEE or

INSECTA flow), though not essential, to build the system directly from System

Generator library. Note that the blocks in SysGen library only support fixed-point data-

type (but with double over-ride functionality in simulation). This won’t cause much

difficulties here since we can just choose all the word lengths to be very high whenever

possible [3]; when this is done, we call the system pseudo floating-point system with

architecture information. This is a good way to validate the architecture choice.

Choosing the architecture correctly is an important task [46]. For example, in our

example for the filter structure one can use the built-in FIR block in System Generator

DSP library, which is based on distributed arithmetic to save area. But it is often not

176

power-efficient since the pre-stored partial products need to be frequently loaded from

the memory block. Without too much justification, let’s use the Delay, Cmult, AddSub,

Upsampler, Downsampler, and Gateway In/Out block only to build the system. We want

to minimize the number of such blocks in our design. Therefore we explore the linear

phase property of the rRC filter. Furthermore the center tap can be normalized to 1 to

save another Cmult. The resulting structure is shown in Fig. C-7 and Fig. C-8. A gain of

value A(12) (the 12th element of vector A) is used in order to bring the total transmitting

power the same (one can think it as analog gain, so it does not consume Cmult).

Fig. C-7 Pseudo flpt system in system generator
Simulate time is 0s to 2s (two million output bits are detected)

Fig. C-8 LP rRC filter

177

Fig. C-9 Mask parameters of LP rRC filter

Fig. C-8 and C-9 show the detailed structure of the LP rRC filter, and its mask.

We have set all the WL to be exceptionally high (60 bits). Simulation indicates the

pseudo flpt system and original flpt system performs the essentially the same—the

numerical difference is much less than what we care about.

Here be careful that since the original system has both I and Q channels, the noise

power indicates the sum of I and Q noises. So, we should choose noise power to be 0.1/2

to get the same BER as previous floating point. The reference system is also modified so

contain only the I-channel. With this modification the pseudo-flpt system and flpt system

do exactly the same thing up to each cycle—so called “cycle accurate”.

178

A long duration [0, 2s] is used for the simulation, the BER is found to be

0.0007795, i.e. 2s × 1MHz × 7.7795 ×10-4 = 1559 errors. So the 0.95 confidence interval

estimate of BER is

].00082.0,00074.0[
0007795.0]05.1,95.0[

)ˆ(]1559
)155996.11559(,1559

)155996.11559([

=
×=

×+− RBE

The simulation takes about 8 hours to finish.

C.6 Building fixed-point System using FFC

Now all the algorithm and architecture decisions have been made in our design.

What is left is to decrease the word lengths presented in the previous section, and to

determine all the overflow and quantization modes. The goal is to have this done

automatically, which results in the floating-point to fixed-point conversion (FFC) tool.

In order to have the conversion, one needs to first identify the node where the

difference between fixed-point and floating-point systems will be checked. This is

practically done by inserting a Specification Marker block from the FFC library that is

also located in H:\ffc\ffc_package\ffc_lib.mdl. From Chapter 3, we know that a natural

node to place the marker is the one after gateway-out block of the receiver, which is the

only strong decision-making block in the system. At this node, the bit error rate solely

caused by quantization noise can be detected. Theoretically, placing the Spec Marker

here is a good choice. However, as described in Chapter 4, in practice it is often less

attractive due to the long simulation time to fulfill the estimate of a BQER accurately. In

179

fact since it is normally necessary to have BQER less than BER at least the same number

of input samples as the one in previous section are needed to get a high-confidence

estimate. That corresponds to long simulation duration for each run, which is too long as

many iterations need to be performed. In general, the total BER with both channel noise

and quantization noise is not the sum of the flpt BER (without QN) and this BQER,

because a slicer (demodulator) block is a nonlinear function of noise power (it is a Q-

function of SNR).

From Chapter 3 and 4, a much more robust node to place the Specification

Marker block is the one before the 2-PAM demodulator. One reason is that we know the

rest of the receiver following this node (the only block left is just a demodulator, i.e. a

slicer) does not have word lengths to be determined. Another reason is that the

MSE(flpt-fxpt) at this node gives a good indication of the BER performance after the

demodulator. In fact, assuming QN and channel noise cause uncorrelated Gaussian noises

at this node, it is equivalent to think their sum as a total noise power. So one just needs to

make sure the QN power much less than the channel noise power at this node to quantify

the statement “fxpt system differs only little from flpt system”.

A system with the marker specified is displayed is Fig. C-10. Compared with the

previous design in Fig. C-7, many of the unnecessary blocks have been eliminated here.

For example since we already have the pseudo flpt system in System Generator blocks,

the first version of the system designed in pure Simulink block set has been deleted. You

can leave those blocks there with possibly a slow-down of simulation speed. This newer

version is named ffc_tutorial_v2.mdl. One can see that a specification marker has been

180

placed before the demodulator. In addition you can find some supporting Matlab files in

the same directory (H:\ffc\systems\ffc_tutorial1\); they are:

 System_init.m
 ffc_setting.m
 and A.mat.

In order to continue the demonstration yourself you need to copy ffc_tutorial_v2.mdl,

system_init.m, ffc_setting and A.mat into a working directory of which you have write-

access. To prevent possible hazard H:\ffc is secured as read-access only. After the copy

you can go to that directory and start the conversion tool yourself by typing in

 >>ffc

If you have your own design to FFC you might want to have a directory for that design

specifically. In that directory you should have a file named “system_init.m” that

initializes your pseudo flpt system, and a file named “ffc_setting” to save FFC design

parameters. In our current example, system_init.m basically loads the filter coefficients

A.

Fig. C-10 ffc_tutorial_v2.mdl file.
Comparing with figure 6 a specification marker and a resource estimator block are
included. Furthermore some blocks supporting the floating-point design are
eliminated/added to speed up/support simulation.

181

Fig. C-11 Analog gain subsystem in ttc_tutorial_v2.mdl

Another modification is replacing the first A(12) gain to the analog gain block

and adding the impulse input in front of the Tx rRC filter. Altogether they make sure the

average signal power to be transmitted is the same as the floating-point system. Here the

average power of the transmitted signal x(n) is

2
2

2

2

2

)]()([

]))([(

])([

AA

AA

AAlnSmnSE

AmnSE

nxE

m
m

m l
lmml

m
lm

l

m
m

==

⋅=

⋅−⋅−=

⋅−=

∑

∑∑

∑∑

∑

δ

We have used the fact that the signal after modulator is a zero mean random

process choosing from {1, -1}. Thus the signal power is just the 2-norm square of the

filter coefficients. Sometimes the quantization of transmitter filter could increase the

182

transmitting power. Without normalizing the transmitting power the comparison of

performances between floating-point and fixed-point systems is unfair.

To FFC this small system takes about 5 minutes. FFC tool sequentially asks you

to input some important information you want to choose, such as design names. On the

other hand it might be too lengthy to answer all the questions sequentially. Then you

need to create an ffc_setting.m file in the directory and set the parameter “ask_question”

to be 0. At one point it also asks you to change the model simulation time. You can

input the simulation start and stop time as [0, 1/1e3] (to change simulation time right

click your model window, and click Simulation Parameters, where you can see the

parameter Start Time and Stop Time). This will make the simulation duration to be 1ms,

which results in 1001 output samples at the Spec Marker. That is enough to have a good

MSE estimation, assuming the flpt-fxpt difference error is a stationary random process.

The assumption is justified since each quantization error is assumed to be stationary. If

you use ffc_setting.m, you can see the parameters “sim_start_time” and “sim_stop_time”

are set to be 0 and 1/1e3 separately.

Another required important user input is the MSE level you want to choose. You

can either manually do a couple tries to understand the relationship between your system

performance (e.g. BER) and MSE. You can also do what Section 3.5.2 of Chapter 3 has

suggested. On the other hand, in the following we use a different approach, which is

mostly analytical. Since the signal power before the demodulator is at about 0.6 (you can

estimate it by placing an eye-diagram scope before the demodulator, and see the signal

power), the physical noise (PN) power before the slicer of the BPSK system is about

183

 PN power =
 (Matlab command line input)
 >>fzero(‘1/2*erfc(1/sqrt(2)*sqrt(.6/x)) – 7.795e-4’, 0.1)
 = 0.0600.

So suppose the BER deterioration due to quantization noise is 10% of the original BER,

i.e. the final BER to be less than 7.995×10-4 ×(1+10%) = 8.57×10-4, we need the

quantization noise power (QNP) to be

QNP power =
(Matlab command line input)
>>fzero(‘1/2*erfc(1/sqrt(2)*sqrt(.6/(x+.06))) – 7.795e-4*(1+.1)’, 0.1)
= 0.001.

Thus we need MSE < QNP power =0.001. To be robust, we assume there could be

modeling error and estimation error, thus we set

MSE = ½ QNP power = 0.0005.

Next the grouping rules need to be defined. Without grouping, all Xilinx blocks are

independently adjustable to find the minimum hardware cost. That would result a

problem of too large optimization space (and turns out to be unnecessary in turns of

design optimality). You can type

 >>help_ffc(‘rules’)

to understand more about the rules. The rules used for the following conversion in this

section are [1, 2.1].

With the setting described above we achieve a fxpt system of about 356 slices as

shown in Fig. C-12. A final simulation of duration [0, 1s] produces 811 errors; so the

BER of the final fxpt system BER is within .95 confidence interval

].00087.0,00076.0[
000811.0]07.1,93.0[

)ˆ(]811
)81196.1811(,811

)81196.1811([

=
×=

×+− RBE

184

It is therefore of high chance the resulting fxpt system has BER less than the targeted

8.57×10-4.

Fig. C-12 The final fxpt system.
With BER ~ 8.11×10-4, and ~ 356 FPGA slices.

You can choose Format show Port Data Types to see the fxpt data-types used

for the final system. In fact, it is probably surprising to find that some of the constant

multipliers have coefficients to be zero now (since the constant value is too small to be

represented by the small WL fxpt datatypes). These logics will be automatically

eliminated in the final placement-and-routing stage.

C.7 Multiple specifications

The FFC conversion in the preceding section is subject to one MSE specification

constraint. The FFC tool can handle multiple specifications, some of which can even be

non-MSE type. Recall that the transmitter filter frequency response in [1.5MHz, 2MHz]

should be less than -40dB, it is natural to set this as the second specification. Thus one

more Spec Marker block is inserted in the system, and saved to ffc_tutorial_v3.mdl as

shown in Fig. C-13. This Spec Marker chooses “user specified spec. calculation

function” as the specification type, and use “simulation_function” as the specification

calculation function name. A snap shot of the block mask is shown in Fig. C-14. Thus

185

there is an associated Matlab function “simulation_function.m”. This function is written

to calculate the highest frequency response in interval [1.5MHz, 2MHz]. Figure C-15

shows the frequency response of the resulting system. The simulation to show BER is

again about 8 hours for duration [0, 1s].

Fig. C-13 386 slices and BER ~ 8.36 ×10-4.
With .95 confidence interval of [7.8 ×10-4, 8.9 ×10-4]; still of good chance within 8.57
×10-4 spec.

Fig. C-14 New specification Marker parameters

186

Fig. C-15 Tx rRC filter frequency response satisfies the -40 dB spec.

The conversion takes about 20 minutes, which is considerably more than the case

if there is MSE spec only. This is in general the situation. The speed-up for MSE spec

results from the careful analysis of the relationship between the MSE and wordlengths in

Chapter 2 and 3.

C.8 Some further Analyses

Rules [1 2.1] results eight groups of fractional wordlengths. Let’s see what if we

apply more or less rules.

If rules [1.1 2.1] are chosen, only 4 groups are resulted (notice from help_fcc that

rule 1.1 supercedes rule 1) and the conversion only takes about 2 minutes. The system

takes 493 FPGA slices with BER ~ 7.95×10-4, which is about 30% increase over the

187

design in Section C-7. The performance is compatible. This proves that more rules will

speed up the conversion, but introduce loss of optimality.

However that does not mean we should include no rule or grouping in our design.

In fact if we chose [1 2] as the rules, 30 groups are resulted, and conversion takes about

20 minutes to finish. The resulting system has 377 slices and BER ~8.36×10-4. This

system actually consumes about 6% more resource than the one in section 7! The reason

behind it is when groups are so small, the modeling of their analytical hardware-function

and MSE-function suffers high error. The error causes uncertainties in optimal decision.

Of course it should be emphasized that small 6% difference almost gives the conclusion

that having 30 groups won’t improve the fxpt conversion much than having 8 groups, at

least for this system.

Similar simulation is done for multi-criteria FFC case. Choosing [1.1 2.1] as the

rule a system of 650 slices with BER ~ 8.2 ×10-4. So there is a 60% reduction in

hardware cost by applying rules [1 2.1] instead of [1.1 2.1]. The gain here is conversion

time, only 5 minutes as opposed to previous 20 minutes.

All the experiments so far use rule 8 that sets “saturation” as overflow mode

everywhere. However, since the integer wordlengths are chosen well, it is in general too

conservative to use rule 8. An alternative is to use rule 8.1, which sets “wrap-around” as

the overflow mode everywhere. The resulting two systems take 256 slices and BER ~

8.11 ×10-4 (rule [1 2.1 8.1]), and 287 slices and BER ~ 8.36 ×10-4 (rule [1 2.1 8.1]),

respectively. Comparing with the previous conversions that uses rule 8, the new results

188

save about 25% slices! The simulation result are however exactly the same. So these

two results should be our final designs.

Another subject mentioned in Section C-7 and Chapter 4 is robust programming.

A robust MSE spec was chosen there. Let’s see what if MSE is chosen to be 0.001

directly. It gives 338 slices and BER ~ 8.46 ×10-4—about 7% reduction in hardware

resources causes the .95 confidence interval of BER to be [0.00079, 0.00090]. The BER

becomes much more likely to be greater than 0.000857 (recall this is 10% more than that

of the floating-point system). The small hardware reduction is usually not worth the risk

of breaking the specification. The other possible situation is the specification is also

flexible in the first place, in which case having a constraint on the spec is in some sense

robust programming itself. The message here is to be careful on choosing the MSE spec

level: you should understand there could be both under-modeling error and estimation

error associated with the specification function; therefore it is usually wise to be a little

conservative. After all, this example showed 3dB “relaxation” in MSE only causes a

variation on hardware about 7%. This is almost always the situation, due to the function

characteristics of objective and constraint functions, being quadratic and exponential ,

respectively.

C.9 An important remark

The most important remark here is that in our design procedure above, we only

did qualitative justification on choosing the algorithms (say data modulation scheme,

upsampling rate R, filter type, etc.) and architectures (say filter specification, filter form).

To have a good design these “parameters” need to be justified using careful analysis or

189

simulations. Nevertheless the purpose of this tutorial is to get you familiar with the

design process, and mainly on using FFC tool. So these design dimensions have not been

explored fully here.

On the other hand higher-level decision (such as algorithm) made without

considering the lower-level discrepancies could turn out to be unfavorable when the

lower-level design (such as choosing circuit) space is explored. For example, we decided

the number of filter taps to be the smallest one satisfying the 40dB attenuation

requirement. This was chosen since it saves hardware and results less latency. However

it’s fairly possible that with fixed-point data types, too high word lengths are needed to

maintain the 40dB attenuation because there is not much room left for WL reduction. By

relaxing the number of taps to a few more, one might dramatically drop the number of

bits needed for each tap; therefore save total hardware cost.

So ideally algorithm, architecture, and fixed-point datatypes should be optimized

jointly, maybe with other design variables such as circuit level flexibility, in order to get

the truly “best” design. The bad news is a problem like this could easily become too hard

to solve. That’s exactly the reason design of a large system is almost always divided into

different levels, and different blocks. One always tries to reduce the inter-dependency

between these levels and blocks to make each of the smaller problems more tractable.

Our introduction of MSE specification as a global justification on FFC problem is based

on this argument.

Of course one needs to bear in mind that quite often by considering the inter-

dependency more carefully one can achieve large improvements. Examples include

190

Trellis-coding (coding and modulation jointly considered), our approach on FFC problem

in some sense (different WLs jointly considered), channel coding (where algorithm is

directly done in number theory, which is already fixed-point), etc. But this interesting

trade-off is beyond the scope of this tutorial.

C.10 Conclusion

By building a simple base-band digital communication system, we showed a

design procedure, starting from algorithm to fixed-point implementation, in our design

environment combined with Matlab, Simulink, Xilinx System Generator. One major

topic is on how to use our floating-point to fixed-point conversion tool. Table C-1

summarizes the conversions done in this tutorial.

Table C-1 Summary of conversions in this tutorial.
Targeted BER for converted systems is 0.000857. “–“ means not applicable. “*” means
the design is considered to have good performance while relatively less conversion time.

 Grouping
Rules

MSE
spec
level

Max(|H(1.5MHz,
2MHz)|)

Conversion time
(minutes)

of Frac.
WL groups Slices BER (ML

estimate)

Flpt
sys - - <-40dB - - ~13500

(or -) ~0.00078

 [1 2.1 8] 0.0005 - 5 8 ~356 ~0.00081

 [1 2 8] 0.0005 - 20 30 ~377 ~0.000836

 [1.1 2.1 8] 0.0005 - 2 4 ~493 ~0.000795

* [1 2.1 8.1] 0.0005 - 5 8 ~265 ~0.00081

 [1 2.1 8] 0.001 - 5 8 ~338 ~0.000846

 [1.1 2.1 8] 0.0005 <-40dB 5 4 ~650 ~0.00082

 [1 2.1 8] 0.0005 <-40dB 20 8 ~386 ~0.000836

* [1 2.1 8.1] 0.0005 <-40dB 20 8 ~287 ~0.000836

191

Appendix D. Related Publications

[D.1] C. Shi, and R. W. Brodersen, “Floating-point to fixed-point conversion,” To be

published, IEEE Trans. Signal Processing. 2004.

[D.2] C. Shi, and R. W. Brodersen, “An automated floating-point to fixed-point

conversion methodology,” Proc. IEEE Int. Conf. on Acoust., Speech, and Signal

Processing, Vol. 2, pp. 529-532, April 2003.

[D.3] C. Shi, “Statistical method for floating-point to fixed-point conversion,” 2002,

Master Thesis, Department of EECS, Univ. of California, Berkeley. (Advisor: Robert W.

Brodersen).

[D.4] C. Shi, and R. W. Brodersen, “Floating-point to fixed-point conversion with

decision errors due to quantization,” Proc. IEEE Int. Conf. on Acoust., Speech, and

Signal Processing, 2004, Canada.

[D.5] C. Shi, and R. W. Brodersen, “A perturbation theory on statistical quantization

effects in fixed-point DSP with non-stationary input,” Proc. IEEE Int. Sym. Circs. and

Sys., 2004, Canada.

[D.6] C. Shi, R. W. Brodersen, “Automated Fixed-point Data-type Optimization Tool for

Signal Processing and Communication Systems,” Design Automation Conference, San

Diego, June 2004.

[D.7] C. Shi, et. al., “An Automated Pre-netlisting FPGA-Resource Estimation Tool,”

Submitted to International Conference, Field Programmable Logics and Its Applications,

2004

[D.8] C. Shi, and R. W. Brodersen, “A perturbation theory on quantization effects in

digital signal processing,” In preparation. IEEE Trans. Circuits and Systems II: Analog

and Digital Signal Processing.

[D.9] C. Shi, FFC website with all the source codes and related documents.

Available[online] http://bwrc.eecs.berkeley.edu/people/grad_student/ccshi/research/

192

Reference

[1] C. Shi, and R. W. Brodersen, “Floating-point to fixed-point conversion,” To be

published, IEEE Trans. Signal Processing. 2004

[2] C. Shi, and R. W. Brodersen, “An automated floating-point to fixed-point

conversion methodology,” Proc. IEEE Int. Conf. on Acoust., Speech, and Signal

Processing, Vol. 2, pp. 529-532, April 2003.

[3] C. Shi, “Statistical method for floating-point to fixed-point conversion,” 2002,

Master Thesis, Department of EECS, Univ. of California, Berkeley. (Advisor:

Robert W. Brodersen).

[4] A. V. Oppenheim, and R. W. Schafer, with J. R. Buck. Discrete-Time Signal

Processing. 2nd ed., Prentice Hall, 1999, ch. 6.

[5] L. B. Jackson. Digital filters and signal processing: with MATLAB exercises, 3rd

ed. Boston : Kluwer Academic Publishers, 1996

[6] S. S. Haykin. Adaptive filter theory. 3rd Edition. Prentice Hall, 1996.

[7] R. M. Gray, and D. L. Neuhoff, “Quantization,” IEEE Trans. Inform. Theory, vol.

44, No. 6, pp. 2325-2383, Oct. 1998.

[8] D. A. Patterson, and J. L. Hennessy, Computer Organization & Design—the

Hardware/software interface, 2nd ed., Morgan Kaufmann, 1998, ch. 4.

193

[9] C. Fang, T. Chen, and R. A. Rutenbar, “Floating-point error analysis based on

affine arithmetic,” Proc. IEEE Int. Conf. on Acoust., Speech, and Signal

Processing., vol. 2, pp. 561-564, Apr. 2003.

[10] J. H. McClellan, et al. Computer-based Exercises for Signal Processing using

Matlab. Prentice Hall, 1998.

[11] P. H. Bauer, and L. Leclerc, “A computer-aided test for the absence of limit

cycles in fixed-point digital filters,” IEEE Trans. Signal Processing, vol. 39, pp.

2400-2410, Nov. 1991.

[12] K. Chang, and W. G. Bliss, “Limit cycle behavior of pipelined recursive digital

filters,” IEEE Trans. Circuits Syst.—II: Analog and Digital Signal Processing,

vol. 41, pp. 351-355, May 1994.

[13] H. Keding, M. Willems, M. Coors, and H. Meyr, “FRIDGE: a fixed-point design

and simulation environment,” Proceedings of Design, Automation and Test in

Europe, pp. 429-435, 1998.

[14] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and I. Bolsens, “A

methodology and design environment for DSP ASIC fixed point refinement”,

Design, Automation and Test in Europe Conference and Exhibition 1999.

Proceedings, pp. 271 –276, 1999.

[15] S. Kim, K. Kum and W. Sung, “Fixed-point optimization utility for C and C++

based digital signal processing programs,” IEEE Trans. On Circuits Syst. II:

Analog and Digital Signal Processing, vol. 45, pp. 1455-1464, 1998.

194

[16] D. Menard, and O. Sentieys, “A methodology for evaluating the precision of

fixed-point systems,” IEEE Int. Conf. on Acoust., Speech, and Signal Process.,

vol. 3, pp. 3152-3155, 2002.

[17] M. A. Cantin, Y. Savaria, and P. Lavoie, “A comparison of automatic word length

optimization procedures,” IEEE Int. Sym. Circuits Syst., 2002, vol. 2, pp. 612 -

615.

[18] X. Hu, S. C. Bass, “A neglected error source in the CORDIC algorithm,”

IEEE Int. Sym. on Circuits Syst., vol. 1, pp. 766 -769, May 1993.

[19] P. W. Wong, “Quantization and roundoff noises in fixed-point FIR digital filters,”

IEEE Trans. Signal Processing, vol. 39, pp. 1552-1563, July 1991.

[20] R. M. Gray, “Quantization noise spectra,” IEEE Trans. Inform. Theory, vol. 36,

pp. 1220-1244, Nov. 1990.

[21] S. R. Parker, and P. E. Girard, “Correlated noise due to roundoff in fixed point

digital filters,” IEEE Trans. Circuits Syst., vol. cas-23, pp. 204-211, Apr. 1976.

[22] I. Tokaji, C. W. Barnes, “Roundoff error statistics for a continuous range of

multiplier coefficients,” IEEE Trans. Circuits Syst., vol. cas-34, pp. 52-59, Jan.

1987.

[23] A. B. Sripad and D. L. Snyder, “A necessary and sufficient condition for

quantization errors to be uniform and white,” IEEE Trans. Acoust., Speech, Signal

Processing, vol. ASSP-25, pp. 442-448, Oct. 1977.

[24] C. Barnes, B. N. Tran, and S. H. Leung, “On the statistics of fixed-point roundoff

error,” IEEE Trans. Acoust., Speech, and Signal Processing, vol. asp-33, pp. 595-

606, June 1985.

195

[25] J. C. M. Bermudez, and N. J. Bershad, “A nonlinear analytical model for the

quantized LMS algorithm-the arbitrary step size case,” IEEE Trans. Signal

Processing, vol. 44, pp. 1175 -1183, May 1996.

[26] N. J. Bershad, and J. C. M. Bermudez, “A nonlinear analytical model for the

quantized LMS algorithm-the power-of-two step size case,” IEEE Trans. Signal

Processing, vol. 44, pp. 2895-2900, Nov. 1996.

[27] M. Leban, and J. Tasic, “A fixed-point quantization model in the statistical

analysis of adaptive filters,” 1998.

[28] N. J. Bershad, “Nonlinear quantization effects in the LMS and block LMS

adaptive algorithms-a comparison,” IEEE Trans. Acoust. Speech, and Signal

Processing, vol. 37, pp. 1540-1512, Oct. 1989.

[29] C. Caraiscos, and B. Liu, “A roundoff error analysis of the LMS adaptive

algorithm,” IEEE Trans. Acoust. Speech, and Signal Processing, vol. 32, pp. 34-

41, Feb 1984.

[30] P. S. Chang, and A. N. Willson, Jr., “A roundoff error analysis of the normalized

LMS algorithm,” Record 29th Asilomar Conf. Signals, Systems, and Computers,

vol. 2, pp. 1337-1341, 1995.

[31] J. M. Cioffi, “Limited-precision effects in adaptive filtering,” IEEE Trans.

Circuits Syst., vol. cas-34, pp. 871-883, July 1987.

[32] J. M. Cioffi, “A finite precision analysis of the block-gradient adaptive data-

driven echo canceller,” IEEE Trans. Comm., vol. 40, May 1992.

196

[33] M. L. R. de Campos, P. S. R. Diniz, and A. Antoniou, “A finite wordlength

analysis of an LMS-Newton adaptive filtering algorithm,” IEEE Int. Sym. Circuits

and Syst., vol. 1, pp. 870-873, May 1993.

[34] P. S. R. Diniz, M. L. R. de Campos, and A. Antoniou, “Analysis of LMS-Newton

adaptive filtering algorithms with variable convergence factor,” IEEE Trans.

Signal Processing, vol. 43, pp. 617-627, Mar. 1995.

[35] S. Gazor, and B. Farhang-Boroujeny, “Quantization effects in transform- domain

normalized LMS algorithm,” IEEE Trans. Circuits and Syst. II: Analog and

Digital Signal Processing, vol. 39, pp. 1-7, Jan. 1992

[36] R. Gupta, and A. O. Hero, III, “Power versus performance tradeoffs for reduced

resolution LMS adaptive filters,” IEEE Trans. Signal Processing, vol. 48, pp.

2772-2784, Oct. 2000.

[37] R. Seara, J. C. M. Bermudez, W. P. Carpes, Jr., “An improved quantization model

for the finite precision LMS adaptive algorithm,” IEEE Int. Sym. Circuits Syst.,

pp. 858-861, May 1993.

[38] D. Sherwood, and N. Bershad, “Nonlinear quantization effects in the frequency

domain complex scalar LMS adaptive algorithm,” IEEE Trans. Acoust., Speech,

and Signal Processing, vol. 34, pp. 140-151, Feb. 1986.

[39] D. Sherwood, and N. Bershad, “Quantization effects in the complex LMS

adaptive algorithm: Linearization using dither-theory,” IEEE Trans. Circuits and

Syst., vol. 34, pp. 848-854, Jul. 1987.

197

[40] N. R. Yousef, A. H. Sayed, “A unified approach to the steady-state and tracking

analyses of adaptive filters,” IEEE Trans. Signal Processing, vol. 49, pp. 314-324,

Feb. 2001.

[41] W. Sethares, D. Lawrence, C. Johnson, Jr., and R. Bitmead, “Parameter drift in

LMS adaptive filters,” IEEE Trans. Acoust., Speech, and Signal Processing, vol.

34, pp. 868-879, Aug. 1986.

[42] S. Y. Park, and N. I. Cho, “Fixed point error analysis of CORDIC processor based

on the variance propagation,” Proc. IEEE Int. Conf. Acoust., Speech, and Signal

Processing, vol. 2, pp. 565-568, Apr. 2003

[43] B. Zeng, and L. Gu, “Roundoff noise analysis of paraunitary filter banks realized

in lattice structure,” Proc. IEEE Digital signal Processing Workshop, pp. 93-96,

Sept. 1996.

[44] C. A. Rabbath, and N. Hori, “On the implementation of filters subjected to

quantization of coefficients,” Proc. Int. Conf. Digital Signal Processing, vol. 2,

pp. 665-670. July 1997.

[45] A. Krukowski, R. C. S. Morling, L. Kale, “Quantization effects in the polyphase

N-path IIR structure,” IEEE Trans. Instrumentation and Measurement, vol. 51,

pp. 1271-1278, Dec. 2002.

[46] J. Proakis, Digital Communications, 4th ed. McGraw-Hill, 2000, ch. 1-3.

[47] V. Mathews, and S. Cho, “Improved convergence analysis of stochastic gradient

adaptive filters using the sign algorithm,” IEEE Trans. Acoust., Speech, and

Signal Processing, vol. 35, pp.450-454, Apr. 1987.

198

[48] P. J. Bickel and K. A. Doksum, Mathematical statistics: basic ideas and selected

topics. 2nd Edition, Prentice Hall, 2001.

[49] L. De Coster, M. Ade, R. Lauwereins, and J. Peperstraete, “Code generation for

compiled bit-true simulation of DSP applications,” Proceedings of 11th Int. Sym.

on system synthesis, pp. 9 –14, 1998.

[50] K. Kuusilinna, et al, "Real-time System-on-Chip Emulation," Chapter 10,

Winning the SoC Revolution, Kluwer Academic Publishers, pp. 229-253, 2003.

[51] C. Shi, and R. W. Brodersen, “Floating-point to fixed-point conversion with

decision errors due to quantization,” Proc. IEEE Int. Conf. on Acoust., Speech,

and Signal Processing, 2004, Canada.

[52] C. Shi, and R. W. Brodersen, “A perturbation theory on statistical quantization

effects in fixed-point DSP with non-stationary input,” Proc. IEEE Int. Sym. Circs.

and Sys., 2004, Canada.

[53] C. Shi, R. W. Brodersen, “Automated Fixed-point Data-type Optimization Tool

for Signal Processing and Communication Systems,” Design Automation

Conference, San Diego, June 2004.

[54] G. E. P. Box, "Simpling and Bayes inference in scientific modeling and

robustness (with discussion)," J. Royal Statist. Soc. A 143, pp. 383-430, 1979.

[55] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical

Recipes in C, 2nd Edition, Cambridge university press, 1996, pp. 28-31.

[56] W. R. Davis, et al, “A design environment for high-throughput low-power

dedicated signal processing systems,” IEEE Journal of Solid State Circuits, vol.

37, No. 3, pp. 420-431, Mar. 2002.

199

[57] Haiyun Tang, “A Unified Approach to Wireless System Design,” PhD thesis,

University of California at Berkeley, 2003. Advised by Professor Robert W.

Brodersen

[58] Ning Zhang, “Algorithm/Architecture Co-Design for Wireless Communication

Systems,” PhD thesis, University of California at Berkeley, 2001. Advised by

Professor Robert W. Brodersen

[59] The MathWorks, Inc. Simulink. [Online]. Available: http://www.mathworks.com.

[60] The Xilinx, Inc. System Generator. [Online]. Available: http://www.xilinx.com .

Once at above website, search on “System Generator” and “System Generator

Resource Estimation” for related information.

[61] SystemC system-level co-design language. [Online] Website available:

http://www.systemc.org.

[62] AccelChip Inc., [online] Website available: http://www.accelchip.com/

[63] S. Boyd, and L. Vandenberghe. Convex optimization. [Online]. Available:

http://www.stanford.edu/~boyd/cvxbook.html.

[64] C. Shi, et. al., “An Automated Pre-netlisting FPGA-Resource Estimation Tool,”

Submitted to International Conference, Field Programmable Logics and Its

Applications, 2004

[65] W. Sung, and K. Kum, “Simulation-based word-length optimization method for

fixed-point digital signal processing systems,” IEEE Trans. Signal Processing,

vol. 43, no. 12, Dec. 1995.

200

[66] N. Zhang, B. Haller, and R. W. Brodersen, "Systematic architecture exploration

for implementing interference suppression techniques in wireless receivers,”

Proc. IEEE Workshop on Signal Processing Systems, LA, October 2000.

[67] M. Nemani, and F. N. Najm, “High-level area and power estimation for VLSI

circuits,” IEEE Tran. Computer-Aided Design of Integrated Circuits and Systems,

vol 18, pp. 697-713, June 1999.

[68] Mosek optimization toolbox. [Online]. Available: http://www.mosek.com.

[69] C. Shi, and R. W. Brodersen, “A perturbation theory on quantization effects in

digital signal processing,” In preparation. IEEE Trans. Circuits and Systems II:

Analog and Digital Signal Processing.

[70] D. Markovic, R. W. Brodersen, “MIMO SVD Based Algorithm Implementation”,

2002 BWRC Winter Retreat, In publication list of MCMA group webpage at

http://bwrc.eecs.berkeley.edu/Research/MCMA

[71] Mike Shuo-Wei Chen, "Ultra Wide-band Baseband Design and Implementation",

M.S. Thesis, EECS Department, University of California, Berkeley. 2002.

(advisor: Robert W. Brodersen).

[72] J. B. Knowles and E.M. Olcayto, “Coefficient accuracy and digital filter

response,” IEEE Trans. Circuit Theory, vol. CT-15, Mar. 1968, pp. 31-41.

[73] Dietrich Schlichthärle, Digital filters: basics and design,. Berlin, New York:

Springer, 2000.

[74] K. K. Parhi, VLSI Digital Signal Processing Systems. John Wiley & Sons, INC.

1999.

201

[75] K. Chang, W. G. Bliss, “Finite word-length effects of pipelined recursive digital

filters,” IEEE Transactions on Signal Processing, Vol. 42, Aug. 1994 pp 1983 –

1995

[76] J. Ma, K. K. Parhi, E. F. Deprettere, “Pipelined CORDIC-based cascade

orthogonal IIR digital filters,” IEEE Transactions on Circuits and Systems II:

Analog and Digital Signal Processing, Vol. 47, Nov. 2000, pp 1238 –1253.

[77] R. K. Brayton, C. H. Tong, “Constructive Stability and asymptotic Stability of

Dynamical Systems” IEEE Trans. CAS-26, pp 1121-1130, 1980.

[78] K. Premaratne, E. C. Kulasekere, P. H. Bauer, L. J. Leclerc, “An exhaustive

search algorithm for checking limit cycle behavior of digital filters,” IEEE

International Symposium on Circuits and Systems, Vol. 3, 1995, pp 2035 -2038.

[79] CoCentric System from Synopsys Inc., [online] website available

http://www.synopsys.com, search for CoCentric.

[80] E. Eweda, N. Yousef, S. El-Ramly, “Reducing the effect of finite wordlength on

the performance of an LMS adaptive filter,” IEEE International Conference on

Communications, Vol.2, 1998 pp 688 -692.

[81] McLernon, D.C. “Finite wordlength effects in two-dimensional multirate

periodically time-varying filters,” IEE Proceedings Circuits, Devices and System,

Vol. 144, 1997, pp 277 –283.

[82] Al-Dhahir, N. “On finite word length effects for the FIR MMSE-DFE,” IEEE

Communications Letters, Vol. 2, Aug. 1998, pp 238 –240.

202

[83] Yasukawa, K.; Milstein, L.B., “Finite word length effects on the performance of

MMSE receiver for DS-CDMA systems,” IEEE International Symposium on

Personal, Indoor and Mobile Radio Communications, Vol. 2, 1997, pp 724 -728.

[84] Song, M.S.; Yang, P.P.N.; Shenoi, K. “Nonlinear compensation for finite word

length effects of an LMS echo canceller algorithm suitable for VLSI

implementation,” ICASSP, 1988, pp. 1487 -1490, vol.3.

[85] Sanjit K. Mitra. Digital signal processing: a computer-based approach. 2nd ed.

Boston : McGraw-Hill/Irwin, 2001

[86] M. Chen, C, Shi. “EE290s Project Report – Adaptive receiver for UWB data

Recovery,” Fall 2001, EECS, UC. Berkeley.

[87] R. Price, “A Useful Theorem for Nonlinear Devices Using Gaussian Inputs,”

IEEE Trans. Information Theory, 1958, pp 69-72.

[88] C. Shi, FFC website with all the source codes and related documents. Available

[online] http://bwrc.eecs.berkeley.edu/people/grad_student/ccshi/research/ .

[89] C. Chang, et. al., “Rapid Design and analysis of communication systems using the

BEE hardware emulation environment,” RSP, 2003.

[90] A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee, “Accurate Area and Delay

Estimators for FPGAs,” Proc. Design Automation and Test in Europe, Mar. 2002,

Paris, France.

[91] D. B. Parlour, “The reality and promise of reconfigurable computing in digital

signal processing,” Tutorial of ISSCC, Feb 15-19, 2004

[92] R. Jain, C. Chien, E. Cohen, and L. Ho, “Simulation and synthesis of VLSI

communication systems,” Proc. Int. Conf. VLSI Design 1998, pp 336-341.

203

[93] R. Jain, J. Vandewalle, and H. DeMan, “Efficient and accurate multiparameter

analysis of linear digital filters using a multivariable feedback representation,”

IEEE Trans. Circuits and Systems, Vol. 32, No.3, 1985, pp 225-235.

[94] R. Jain, P. Yang, T. Yoshino, “FIRGEN: a computer-aided design system for high

performance FIR filter integrated circuits,” IEEE Trans. Signal Processing. Vol.

39, No. 7. 1991, pp 1665-1678.

[95] SPW from CoWare Inc., [online] Website available http://www.coware.com

[96] Ptolemy project, [online] Website available http://ptolemy.eecs.berkeley.edu.

