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ABSTRACT 

 

Statistical Quantization Effects and Floating-point to Fixed-point 

Conversion 
 

Changchun Shi 

Professor Robert Brodersen, Advisor 

Department of Electrical Engineering and Computer Science 

University of California, Berkeley 

 

The digital signal processing (DSP) algorithms used by communication systems 

are typically specified as floating-point or, ideally, infinite precision operations. On the 

other hand, digital VLSI implementations of these algorithms rely on fixed-point 

approximations to reduce cost of hardware while increasing throughput rates. One 

essential step of a top-down design flow is to determine the fixed-point data type of each 

signal node, namely the word-length, truncation mode and overflow mode. This is 

commonly referred as floating-point to fixed-point conversion (FFC) problem. 

Conventional approaches are typically both time-consuming and error-prone since ad-hoc 

assignments of fixed-point data type are performed manually and iteratively. 

We first formulate FFC problem into an optimization framework. The 

optimization variables are defined by the fixed-point data-types to be determined; the 

objective function is hardware cost, and the constraint functions are system specifications. 

In this unified point of view the past techniques are compared. A primary goal is to make 

the optimization automatic and fast which requires an understanding of the relationships 

between these functions and the variables. One critical step is the identification of the 



 

 
2

right metric that judges the quality of an FFC and is sufficiently general. This metric is 

directly related to quantization effects and will serve as the constraint functions. We first 

categorize functional blocks in a system according to their quantization behavior; then, a 

novel statistical perturbation theory provides the guideline of using simulations to obtain 

constraint functions in their semi-analytical form. The theoretical work reduces the 

otherwise exponential complexity of characterizing quantization effects to a polynomial 

one. The other critical step to achieve automated FFC is the automatic acquisition of 

hardware-cost function. This has been done using a high level resource estimation tool 

and function-fitting method.  

Based on the preceding methodology, an FFC tool in Matlab and Simulink 

environment has been built for Xilinx FPGA designs as a demonstration. The FFC tool 

has been successfully tested on several complicated digital designs—namely a binary 

phase shift keying (BPSK) transceiver, a U-Sigma block of singular value decomposition 

(SVD) system and an Ultra-wide band (UWB) system. The conversions normally take 

from minutes to hours, varying according to system complexity. These are orders of 

magnitudes faster than existing tools, which are projected to take weeks to do the 

conversions. Without reducing system performance, the FFC can reduce their hardware-

costs by 1.5 to 50 times. 

The hardware resource estimation part of our FFC utility is based on my summer 

intern project in Xilinx, Inc. Unlike existing resource estimations that rely on post-

netlisting information or post-placement-and-routing map report, this pre-netlisting 

estimator (now part of System Generator 3.1) in Matlab environment speeds up 

estimations by 2-3 orders of magnitudes. 
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The proposed FFC methodology can also be applied to ASIC design when 

hardware cost is chip area, power consumption, and so on. One necessary pre-requisite is 

a similar hardware estimation tool and hardware cost function model. 
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Chapter 1 
Introduction 

This thesis analyzes some difficulties associated with floating-point to fixed-point 

conversion (FFC) problem. Several analytical results that we derived from a perturbation 

theory simplify the problem and lead to an automated FFC methodology for digital VLSI 

communication systems. As a demonstration, the methodology is implemented into a 

FFC tool in Matlab and Simulink environment that is used to convert floating-point 

FPGA systems.  

In this introduction chapter, the FFC problem is defined and motivated. A global 

optimization point of view is used to abstract the problem into mathematical level; at this 

level, various aspects of achieving both efficient and reliable FFC become easier to 

identify. Then, the organization of the thesis is described. Instead of full explanation of 

all the topics with detailed references, only an outline with a few references that are 

necessary to illustrate the general picture of FFC are given here. 

A great deal of understanding of FFC problem has been previously conducted in 

my master thesis “statistical methodology for floating-point to fixed-point conversion” 
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[3]. By studying, summarizing, and extending the results of a large number of references, 

such as [72-86], it serves as a good source of getting you familiar with the nature of FFC 

problem as well as a practical methodology for linear-time-invariant (LTI) system in 

particular. I believe it would be more beneficial if my master thesis [3] can be read 

briefly before this thesis as the latter is based on the knowledge learned there. In fact, this 

thesis, in my opinion, can be viewed as an extension of [3]. Overlaps between these two 

are tried to be minimized whenever possible. Many unsolved issues by the time that my 

master thesis was completed have found their answers here. It should be a fun experience 

to read both of them. 

1.1 Definition of Floating-point to Fixed-point Conversion 

The algorithms used in communication systems are typically first proposed as 

algebraic operations. We usually numerically verify them, especially complicated ones, 

in digital computer under some carefully designed test vectors. The underlying data types 

in this digital computing are either single precision floating-point or double precision 

floating-point [55]. Either one of these floating-point representations has limited number 

of bits used for mantissa and exponent. This inevitably causes numerical errors, either 

due to roundoff at least-significant-bit (LSB) side of the mantissa, or due to the saturation 

of the exponent. Our goal is to implement the algorithm in application specific integrated 

circuits (ASIC). So, the realization of the algorithm in digital computer is only to 

simulate its performance; thus, the designers need to assure these numerical errors are 

negligible to validate these verifications. Topics related to this kind of numerical error are 

beyond this work. Fortunately, they are almost always negligible for most 

communication and digital signal processing (DSP) systems because of the following two 
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reasons. First, in these systems, input signals are of relatively small variation in dynamic 

range. Second, only a few significant bits of an output value are meaningful, whereas 

others are corrupted by unknown physical noise anyway. Therefore, the single and double 

floating data types are practically treated as infinite-precision as mentioned in my master 

thesis [3]. As a result, unless otherwise specified, the rest of the thesis will refer floating-

point data type and infinite-precision date type interchangeably. 

 

Fig.  1-1 (a) A conceived algorithm in algebraic form, and (b) architectural form 
 

In a top-down design flow to implement these algorithms, the next step is to 

determine the system architecture, such as the amount of parallelism and pipelining 

scheme [56]. For example, in an Orthogonal-frequency-division-modulation (OFDM) 

y(n) = π  + |x(n-1)| 

x(n-1)

mux

s=≤1

|x(n-1)| 1

-1

Sel

-

z-1 x(n) 

π + + 
y(n)

(a) 

(b) 
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communication system, it is necessary to choose the architecture for its FFT unit: column 

based, CORDIC based, or fully parallel butterfly-based, and so on [57-58]. The details of 

this architectural description should reach the level of arithmetic operators, such as 

adders, multiplexers (MUX’s), and delays. In this thesis, we assume this description is 

already given, possibly by system architecture designers. Similar to algorithms, in case of 

lacking information to choose one out of several promising architectures at this moment, 

all of them should be implemented to certain level and compared. As an example, Fig. 1-

1 shows part of a conceived DSP algorithm described in both its algebraic form, and its 

architectural form. The architecture designers have to verify that the inclusion of 

structural refinements does not modify the algorithm functionality. This is done again by 

floating-point simulations under the same test vectors that are used previously.  

 

0 0 1 1 0 1 00 0 1

WInt WFr 

Sign

π = 

Overflow-mode Quant.-mode 

0 1 1 0 1 00 0 1π = 0

Overflow-mode Quant.-mode 

Binary point

(a) 

(b) 

WInt WFr 

Binary point
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Fig.  1-2 Fixed-point representations of p:  
(a) 2’s complement, and (b) unsigned magnitude. 

Recently some design environments that catch architectural information and allow 

high speed simulations have been developed. These tools include graphical platforms 

such as Simulink from MathWorks [59] and System Generator from Xilinx, Inc. [60] that 

is built on top of Simulink environment. Other non-graphical high level design 

environments such as SystemC based on C [61] and AccelChip based on Matlab [62] 

allows even faster behavioral simulation, though they are not as intuitive as the graphical 

ones. Once the structural floating-point system has been tested, the immediate task is to 

determine the data types that are feasible in a final implementation. A large number of 

digital ASIC implementations rely on purely fixed-point approximations to reduce 

hardware costs while increasing throughput rates. Other approximation methods, such as 

light-weight floating-point design [9], are beyond the scope of this thesis. Fig. 2-2 shows 

two most commonly used fixed-point data types that are considered, representing the 

irrational number p. Therefore, we need to determine the fixed-point data type of each 

signal node, namely the number type (either 2’s complement signed or unsigned), word-

length (both integer word length and fractional word length), truncation mode (either 

roundoff or truncation) and overflow mode (either saturation or wrap-around).  

A negative integer word length is valid; it represents that the first few bits in 

fractional part are unnecessary to be specified since their values do not vary. Similarly 

fractional word lengths can be negative as well. Fixed-point data type has this flexibility 

to save hardware. For example, let’s use the architecture in Fig. 1-1 to perform |x| for an 

even integer value x between -7 to 7; that is, x is -6, -4, -2, 0, 2, 4 or 6. In 2’s complement 

format, x is 1010, 1100, 1110, 0, 0010, 0100, or 0110.  At the first glance, both the 
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Negate block and the Mux block in Fig. 1-1 need to support at least 4-bit fixed-point 

operation. In fact, only 3 bits are needed in hardware because the last integer bit is always 

0. In this case, one can specify the fractional word length as -1 to save hardware.  

In the previous example, three bits are needed for two reasons. First, the range of 

x is known, and the integer word length can be 4 without any overflow. Second, we know 

the last integer bit is not needed. In information theory, the bits to the left of the 4th 

integer bit carry no information since the entropy of the ith bit given the 4th bit is 

identically 0, that is, 

,4,0
)|0(log)|0()|1(log)|1( 4444

>∀=
=⋅=+=⋅=

i
bbPbbPbbPbbP iiii

 (1-1) 

where P denotes probability and bi is the ith bit to the left of binary point. Similarly, b1 in 

our example has 0-entropy because this bit is always 0 in even integers.  

On the other hand, even with none-zero information, some bits can be eliminated 

as long as the information is not useful in particular application. For example, this 

information may be dominated by physical noises or architecture defects, or it may 

simply be ignored by the rest of the system that processes it. This thesis is largely to 

identify those bits with valuable information. Conventional approaches rely on manual 

and try-and-error assignments of fixed-point data types. These methods are both time-

consuming and error-prone [13]. As communication systems and digital signal processing 

units become increasingly complex, more intelligent methods are called for. Here, we 

assume the system is already implemented in architecture level, and the goal is to quickly 

and reliably produce the fixed-point correspondence. We define this part of design flow 

as the Floating-point to Fixed-point Conversion (FFC) problem. Finite-word-length 
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effects can drastically vary depending on the system architecture. For example, a finite 

impulse filter (FIR) implemented in different architectures, such as direct form I, direct 

form II, transposed forms, and cascaded form, all have different quantization behaviors 

[4][5][56]. Therefore a system description lacking of its structural information provides is 

not ready for FFC problem. Once the fixed-point data types are resolved, a design flow 

continues to circuit level and physical level [56], which is again beyond the scope of this 

work.  

In Section 1.2, the FFC problem is formulated into an optimization problem. 

Under this unified framework, our methodology is briefly explained in Section 1.3, which 

also points out the chapters that give detailed studies. 

1.2 FFC formulation in optimization framework 

An FFC problem often happens in one of the following two situations. First, 

under certain test vectors that the algorithm designers have carefully chosen, the floating-

point system with architectural information passing to FFC stage already satisfies some 

behavioral system specifications. A specification is usually based on some statistics of 

output data, such as output bit-error rate (BER) and signal-to-noise ratio (SNR). Since 

fixed-point data types are unknown yet, no reliable hardware-cost information can be 

introduced at the floating-point design stage. Therefore, FFC is to decide the fixed-point 

data types throughout the system, such that the system still satisfies the same 

specifications. The goal here is to minimize hardware cost. Equation (1-2) shows the 

optimization frame work described above 
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, 0,    

) , ,...; , ,; , , ; ,W ,W ,W ,(W 
     ionsspecificat subject to

) , ,...; , ,; , , ; ,W ,W ,W ,(W 
cost -hardware minimize

212121Fr,2Int,2Fr,1Int,1

212121Fr,2Int,2Fr,1Int,1HW

j

...nnqq...ooS

...nnqq...oof

j

∀<

…

…

 (1-2) 

where  

fHW- hardware-cost function, 

Sj- the jth system behavioral constraint function, 

and the following variables are associated with the fixed-point data types of the ith signal 

node, 

WInt,i- integer word length (always integer), 

WFr,i- fractional word-length (always integer), 

oi- overflow mode (0 for wrap-around, or 1 for saturation), 

qi - quantization modes (0 for truncation, or 1 for round-off to the nearest), 

ni - number systems (0 for 2’s complement, or 1 for  unsigned magnitude). 

Here we have limited the search space formed by these variables to what is 

commonly used in circuit design, as shown in parentheses.  

Second, sometimes designer have constraints in hardware-cost, such as area and 

power, together with some system specifications. And the objective is to minimize 

another system performance. Without losing generality, we let the objective function be 

S1. Then this situation can be modeled as 
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,1 0,     )data typespoint -(fixed 
, )data typespoint -(fixed 

subject to
)data typespoint -(fixed 

 eperformanc systema  minimize

0HW

1

>∀<
<

jS
ff

S

j

 (1-3) 

where the fixed-pint data types are same specified as in (1-2) and f0 is a hardware-cost 

specification value. Interestingly, this problem is essentially equivalent to (1-2) [10]. In 

fact, if we modify the first constraint in (1-2) and obtain the following variation  

,1 0,    )data typespoint -(fixed 
,    )data typespoint -(fixed 

     ionsspecificat subject to

)data typespoint -(fixed 
cost  hardware minimize

11

 HW, 1

>∀<
<

jS
sS

f

j

s

 (1-2’) 

where a slack variable s1 is introduced in the first constraint. Problem (1-2’) and (1-2) are 

only slightly different, and can be solved with the same method and complexity. In fact, 

solving (1-2’) repeatedly for different s1, we can get a tradeoff curves between fHW and s1, 

as shown in Fig. 1-3. The curve must be non-increasing due to the construction of (1’). 

Fig. 1-3 also shows the feasible regions for (1-2) and (1-3). Basically, if we can solve any 

problem in format (1-2) and (1-2’) efficiently, problem (1-3) is solved directly from the 

tradeoff curve. 
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Fig.  1-3 Tradeoff curve between minimum hardware and specification level. 
The curve shows a possible minimum hardware cost in problem (1-2’) as a function of 
slack variable s1. Both optimization problems defined in (1-2) and (1-3) become trivial 
with the curve. 

Therefore, we consider (1-2) as our basic optimization formulation of FFC. The 

constraints in (1-2) should be defined in such a way that they are satisfied at least by the 

floating-point system. If we choose very large word lengths and 2’s complement number 

systems for all signal nodes in the fixed-point system, the system becomes arbitrarily 

close to infinite-precision. Consequently, the optimization problem (1-2) must be feasible. 

On the contrary, problem (1-3) is not guaranteed feasible if, for example, f0 is set negative 

or too small for a hardware-area cost function. 

1.3 Our methodology and thesis organization 

In this section, we will briefly describe some past FFC techniques and our 

strategies. This serves the purpose of getting you familiar with many of the related 

. 

. 

Slack variable s1 

M
in

im
um

 f H
W

 in
 (1

-2
’)

 

0 

f0 

Feasible region in (1-2) 

Feasible region in (1-3) 

Minimum S1 in (1-3) 

Minimum fHW in (1-2) 



 

 
11 

problems; it also point you to the particular chapter that you are most interested in, 

including the hardware-cost estimation, the quantization effects, the optimization 

algorithm, as well as how to automate the methodology into usable a FFC tool.  

1.3.1 Brief review of the past techniques 

Recently a few strategies have been proposed to automate FFC for 

communication systems described in C/C++ [13-15]. While the integer-part word-length 

and overflow modes of the fixed-point operands are commonly determined by avoiding 

signal overflow, the determination of the fractional word-length relies on different 

methods.  In both [13] and [14], there is no gross hardware-cost function given; neither is 

the problem treated as an optimization.  However, the implicit goal is to minimize all the 

word-lengths at the same time. The task of minimizing multiple objective functions is 

unrealistic unless the constraints are special so that they all can be minimized 

simultaneously. This is done in [14] by having one constrain function for each word-

length: the input word lengths are pre-assigned; for the rest of the word lengths the 

integer part should be sufficiently large to cover the signal ranges that it governs (same 

for both [13] and [15]), and the fractional part should be sufficiently large so the local 

quantization noise power is much smaller than the one caused by quantizations of the 

inputs. These strongly decoupled constraint functions are always feasible and can 

minimize all word lengths at the same time.  However, the gross quantization effects 

from these locally justified quantization sources altogether can still be much greater than 

the one induced by input quantizations.   Therefore it is still necessary to have a final 

constraint on system performance (e.g. SNR or bit-error rate) as a function of all the word 
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lengths done by simulations.  This becomes the reason for unbounded number of 

iterations. 

In [13], the unjustified pre-assignments of date-types on some signal nodes 

provide some constraint equations. The deterministic propagation methodology yields 

inequalities among the fractional word lengths, e.g. the fractional word length at the 

output of a multiplier should be no less than the sum of those of the two inputs, while the 

output fraction word length of a delay component should be no less than the input one.  

Besides the overly pessimistic consideration of quantization effects, feedback loops such 

as the one in an accumulator can yield contradictive inequalities.  This is solved in [13] 

by possible user interaction using engineering decisions, which also yield undetermined 

design time. 

The work in [15] implies a similar problem formulation to ours, and again has the 

same treatment on integer word lengths as most other methods. The constraints are 

chosen to be the system specification functions. However the lack of investigation of the 

closed form specification function limits their optimization algorithm to be purely 

heuristic and time-consuming search. In addition, the Monte Carlo simulations among 

iterations can be inconsistent which adds further complications.  

To probe further of the vast literature, refer to Section 2.1, 2.2 and 4.1. 

1.3.2 Practical, Reliable and Cost-efficient FFC 

In this thesis, the same constraint functions as [13-15] on integer word lengths are 

adopted in the current work. The assumption that overflow noise hurt the quality of the 
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design greatly is widely reasonable. However, in some special situations occasional 

overflows in saturation mode are acceptable and even expected, which won’t be 

discussed further. For each input statistics, a single estimation is needed for the ranges of 

all signal nodes.  With all WInt and o-modes determined separately, these variables are 

dropped out from the optimization problem in (1-2).  In the following subsections the 

hardware-cost function and constraint functions will be studied.  

1.3.3 Analytical form of hardware-cost function 

A single hardware cost function is to be minimized in eq. (1-2).  This could be 

area, power consumption, and so on. High-level estimations of hardware resources such 

as area, energy and delay have been studied extensively.  For system level optimization, 

it often suffices to adopt the parameterized library based approach. The area of each 

block of the library can be modeled as a function of parameters related to fixed-point data 

types as well as other important technology factors such as feature size and voltage.  

Provided the architecture choice with all other parameters fixed, the area cost of a library 

block is uniquely characterized as a function of the fixed-point data-type parameters.  The 

total area of the system can then be estimated as a sum of all the required blocks plus a 

certain routing overhead.  This usually yields a hardware-cost that is a quadratic function 

of WFr’s and q’s. More detailed discussion can be found in part of Chapter 4 and Chapter 

5. 

1.3.4 Choices and analytical forms of constraint functions 

Unlike in [14] where a number of additional constraint functions are created to 

solve the multiple-objective-function situation, only the system specifications (such as 
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bit-error rate and SNR) that are eventually used to judge the quality of the design are 

initially considered as the constrains. Furthermore, instead of employing the system 

specifications directly as the optimization constrains as used in [15], a more robust 

specification scheme is proposed based on the statement that the fixed-point system is 

expected to deviate only little from the floating-point origin. One natural alternative 

specification replacing (NOT in addition to) the system specifications is their relative 

changes between floating and fixed point systems.  An innovative perturbation theory is 

developed, and shows that the change to the first order is a linear combination of all the 

first and second-order statistics of the quantization noise sources. With the widely used 

theoretical models of the means and correlations of the quantization noise sources and a 

couple more assumptions, Chapter 2 and 3 (the latter one concentrates on the situation 

when one of the assumption is not satisfied) tells us this alternative specification function 

can be written into closed form 
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Function fxpt(a, d) means the value among the set {integer × d} that is the closest to a, 

and ai’s are the constants (e.g. filter coefficients) that appear in the floating-point design. 

The linear coefficients M  and ci’s can be data-fitted by running polynomial 

numbers of Monte-Carlo simulations.  However unacceptably large sample sizes may be 
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needed to conduct an accurate Monte-Carlo bit-true simulation to detect the small 

perturbation on top of a large value, whose own estimation error can easily hide the small 

perturbation. This important issue is resolved by choosing the mean square error (MSE) 

as the specification function. The MSE error is the output difference between the 

floating-point system and the fixed-point system.   

 ,2CB  MSE
Data Path}{

2W ,Fr∑+=
∈

−

i
i

T iuu  

where B is positive semi-definite, denoted as Bf 0, C ≥ 0. Again, more details can be 

found at Chapter 2.  

A totally independent study on general multiple-input-multiple-out linear-time-

invariant (MIMO LTI) systems based on transfer function method has been conducted in 

my master thesis [3] which confirms the validation of the MSE formula. The present 

results are much more general since they apply to non-LTI systems with non-stationary 

input. 

1.3.5 FFC Design Automation 

Now, the FFC problem is safely reduced to 
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Here vector µ  is defined in the same way as before, and Ak is the tolerance of the kth MSE 

error.  The problem is feasible because as all WFr increase, the left sides of the constraint 
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functions asymptotically converge to -Ak’s which are always less than 0.  Physically that 

means the fixed-point system becomes infinite precision. 

(hierarchical) Flpt sys in Simulink

WInt, , o-modes

H.W.-cost Info

WFr , q-modes

Simulations

Simulations 
& data-fit

B, C & A H.W.-cost f

Compile

stopping
criteria

Pre-programmed
optimization

(hierarchical) Flpt sys in Simulink

WInt, , o-modes

H.W.-cost Info

WFr , q-modes

Simulations

Simulations 
& data-fit

B, C & A H.W.-cost f

Compile

stopping
criteria

Pre-programmed
optimization

 

Fig.  1-4 FFC design flow graph. 
 

An essential part of a practical FFC is to automate the process of obtaining the 

analytical hardware cost function and the analytical specification function.  This is 

achieved following the design flow in Fig. 1-4. First the signal ranges need to be 

estimated automatically by running one simulation.  This simulation also provides us the 

MSE tolerance vector, A.  Secondly, a number of simulations can be conducted following 

the MSE formula to find out matrix B and C.  The analytical hardware-cost function can 

be achieved by automatically reading the system parameters, provided the hardware-cost 

formula for each block.  Our current design environment is Xilinx System Generator that 

is based on Mathwork Simulink and Matlab. Chapter 4 and 5 shows that all the tasks 

above can be automated.  The number of Monte-Carlo simulations need to be done is 

proportional to [dim(B)2 + dim(C) + 1].  Chapter 4 further discusses some simplifications 
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to reduce the number of simulations. Finally, the optimization algorithm specifically 

suitable for this problem can be preprogrammed.   

1.3.6 Scalability 

A partition of the system MSE specification into block-wise MSE specifications 

can factorize the problem into several smaller optimization problems.  Moreover, many 

of the word lengths along forward-directional data path can be pre-related to reduce the 

number of optimization variables.  These two strategies ensure the applicability of the 

proposed methodology on large communication systems. 

1.4 Summary 

This chapter serves several purposes.  

First, it emphasizes my master thesis [3] and suggests it to be read first. Though 

its title is similar to this thesis, their contents are deliberately made almost non-overlap to 

efficiently present the information. One can view this thesis an extension, though my 

master thesis contains many useful results itself, such as its study of quantization effects 

of LTI systems.  

Second, a brief description of the thesis is provided to prepare you a big picture of 

the FFC problem. With pointers to specific chapters, you can go directly to the specific 

chapters for certain topics.  
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Chapter 2 
A Statistical Perturbation Theory on the 

Quantization Effects 

As mentioned in Chapter 1, any general understanding of quantization effects can 

benefits the FFC process. Most existing studies on fixed-point quantization effects rely 

on either pure simulations or pure analyses. Pure simulations require extensive computing 

power, and provide limited insights. The associated complexity is exponential function of 

the number of fixed-point parameters. Whereas pure analyses aim to find explicit 

relationships between quantization effects and all system parameters which often 

becomes too difficult to accomplish even with extensive assumptions and case-by-case 

efforts to get a result. General theory only exists for linear-time-invariant (LTI) systems.  

Based on an innovative perturbation theory and three assumptions—independent 

and white quantization noises, small noises, and no decision-error-propagation, this 

chapter derives an analytical relationship between statistical quantization effects and FP 

parameters and lump all other system parameters into some coefficients. The theory does 

not require stationary inputs. When a system description and input statistics are given, the 

theory provides a procedure to understand its statistical quantization effects both 
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analytically and numerically. In the numerical approach, only a polynomial number of 

simulations are needed, whereas in the analytical approach, existing theory in LTI 

systems with stationary inputs becomes a special case. Finally, several examples are 

given to verify and clarify the theory.   

2.1 Brief introduction 

As described in the previous chapter, the algorithms used in communication 

systems and digital signal processing are typically specified with infinite precision (IP) 

operations at the beginning. In literature, especially for circuit designers, these operations 

are sometimes referred as floating-point because floating-point computations in digital 

computers possess high precisions [1-3]. On the other hand, digital implementations of 

these algorithms rely on finite precision (FP) approximations, sometimes also called 

limited precision. Finite precision number systems are often represented by fixed-point 

realizations, among which the most popular one used in hardware implementation 

systems is binary number, such as 2’s complement and binary unsigned number (see, for 

example [4-9]). When a number cannot be represented by a given fixed-point data type 

with finite word-length, overflow on the most-significant-bit (MSB) or quantization on 

the least-significant-bit (LSB) or both take place. These finite-word-length effects cause 

the FP system behaves differently from the IP system, and this may result in 

implementation failure of an otherwise functioning IP algorithm.  

Motivated to understand this important difference, theorists study finite-word-

length effects using mathematical analysis, whereas most hardware designers do so by 

simulation methods. On the MSB side, overflow noise may cause recursive filters to 



 

 
20 

oscillate at 0-input, referred as limit cycle effects (see, for example, [4] and [10-12]). 

However, the effects of overflow noise are often understood purely based on simulations 

due to their possibly large magnitudes, low occurring probabilities, and strong 

correlations with signals [1-3][13-17]. We are not going further here on this largely open 

problem. Some analytical works related to MSB overflow effects take one step back and 

focus on mathematically predicting the signal statistics, such as variance and higher 

statistical moments, in an IP system, based on which overflow noises can  be prevented 

[3][5].  

In contrast, the finite-word-length effects on LSB side, also referred as 

quantization effects, are understood better largely benefited by their smaller magnitude, 

high occurring probabilities and weak correlations with signals. Since deterministic 

analysis of quantization noise is as difficult as studying overflow noise, theorists 

approach the problem almost purely statistically over the last few decades (see, for 

example, [18] for deterministic analysis). Given an IP algorithm, mathematical methods 

are applied to determine the statistical quantization effects at system output (or internal 

nodes) in relation to system parameters [3-5][19-51]. System parameters include 

architectural information such as the number of taps in a filter, system inputs such as 

constant filter coefficients and the signals to be processed, and FP parameters such as 

word-lengths and quantization modes. Despite some elegant successes addressing linear-

time-invariant (LTI) systems and simple nonlinear systems, doing all these tasks 

simultaneously is often difficult that requires special care for each individual case, and 

still yields results that are too complicated to comprehend, such as infinite sums. We 

characterize quantization effects on FP parameters for a general DSP system based on a 



 

 
21 

small-signal perturbation theory and three assumptions—independent and white 

quantization noises, small noises, and no decision-error-propagation. This result covers 

both stationary and non-stationary inputs. Some large quantization effects are not studied, 

which is similar to the majority existing analytical work. Statistical quantization effects 

are described as functions of FP parameters only, together with some other unknown 

system parameters as simple coefficients that can be determined numerically. Even 

without determining the coefficients, the expression itself provides valuable insights on 

understanding quantization effects in general. Procedures to determine these coefficients 

analytically are also suggested.  

On the other hand, pure pure-simulation-based approach to study quantization 

effects led by designers faces difficulties [13-17] as explained in [1]. Without any 

theoretical guidance, numerically analyzing quantization effects of FP parameters 

becomes a combinatorial problem. Its complexity is exponentially related to the number 

of FP parameters [1]. Moreover, simulation results often yield limited insight on how 

quantization effects depend on FP parameters systematically. With our results in this 

Chapter, the complexity of this numerical problem is reduced to a polynomial function of 

the number of FP parameters. 

In Section 2-2, we prepare the basic terminologies and relationships for the rest of 

the chapter while briefly reviewing the vast existing work in the literature. The first 

assumption is introduced here. Section 2-3 categorizes the functional blocks and signals 

in a system according to their different quantization effects, and explains about the 

randomness of a system. Section 2-4 introduces two more assumptions that lead to our 

perturbation theory. Section 2-5 explains the numerical concerns of the theory. Examples 
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are given in Section 2-6, and we summarize in Section 2-7. Again, overflow noise is not 

studied, and only quantization effects due to roundoff quantization and truncation 

quantization are given explicitly, which are defined in previous chapter and depicted in 

next section. 

2.2 Quantization basics and literature review 

Quantization effects have been actively studied for more fifty years [4][7]. 

Transferring analog signals using digital-communication techniques and source-coding 

theory requires quantizations, and the objective is to find a quantization scheme that 

represents the source information efficiently and reliably [7]. A different quantization 

effect emerged in the early 1970’s due to the raise of digital signal processing. The 

objective here is to understand how finite-precision (FP) signal processing differs from IP 

signal processing for a digital discrete-time signal processing system. It is important to 

discern these two topics when studying the literature. We concentrate on the second 

topic—quantization effects in DSP systems.  

Though different number systems and quantization schemes are proposed for 

DSP, most implementations rely on binary fixed-point number system—either 2’s 

complement or unsigned binary number—and quantization modes of either roundoff and 

truncation [4]. The rest of this chapter only explicitly studies the quantization effects of 

these two modes, which is relevant to current circuit implementation. 

A quantizer in our discussion is uniquely characterized by two FP parameters—its 

binary point position relative to its least-significant-bit and its quantization mode being 

either roundoff or truncation.  The binary point position is equivalent to the fractional 
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word-length, WFr, of a binary number.  That is, the output can be represented as integer 

multiples of FrW2− . WFr > 0 implies the quantized signal indeed has a fractional part. WFr 

= 0 implies the quantized signal can be any integer. And WFr < 0 means the quantized 

signal has its last |WFr| integer bits always being 0’s—thus not necessarily to be 

represented in hardware. A quantizer changes its input signal x into a quantized signal, 

denoted as Q[x]. Fig. 2-1 shows the two quantization scheme normalized by quantization 

step D, where, again, 

.2 FrW−=∆  (2-1) 

 

Fig.  2-1 Quantization function for (a) truncation, and (b) roundoff.  
Here, .2 FrW−=∆  

Quantization noise, often referred as quantization error as well, is defined as the 

difference between quantizer output and input 

.][Q xxe −=  (2-2) 

The exact expression of ε after a quantizer with roundoff mode is  

,),(fxptroundoff xxe −∆=  (2-3) 
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where ),(fxpt ∆x is defined as ∆⋅∆)(round x , and round(.) is the function that maps 

its argument to its nearest integer. Similarly with truncation mode, 

 ,)(floortruncation xxe −∆⋅∆=  (2-4) 

where floor(.) is the floor function, or called greatest integer function. The error is related 

to WFr exponentially, that is, where e is on the order of ∆ . So, as its name suggests, the 

noise is usually small when WFr is large. Fig. 2-2 depicts that a quantizer, as a nonlinear 

operator, is replaced by an adder with one input connected to the quantization noise, 

which clearly depends on its input.   

 

Fig.  2-2 Quantization error model 
 

Because both roundoff and truncation modes partition the real axis into segments 

of equal distance, the associated quantization functions are periodic. Thus, a Fourier 

series can write them as an infinite sum of basic analytical functions—such as sums, 

divisions, and exponentials—of input signal x, as shown in  [19] (see [20-24] for related 

discussions), that is 
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where 1(.) is the indicator function, which equals to 1 when its argument is true and 0 

otherwise. Similar expression can be given for truncation error. Exact analyses of 

quantization error starting from (5) face serious challenges when the quantization error 

from one quantizer starts to feed into another one. One way to alleviate these vastly 

nonlinear effects is to study the quantization effects statistically. For example, taking 

expected value of a continuous random variable x on both sides of (5) gives the mean of 

roundoff error [19], 

,)2(
2

)1(][
0

roundoff ∑
∆

−∆=
≠k

x

k k
kj

eE πφ
π  (2-6) 

where (.)xφ is the characteristic function of x. Based on this approach, [19] studied how 

the mean and variance of the quantization noise at the output of a finite-impulse-filter 

(FIR) are related to its FP parameters. Though in this model an FIR only possesses at 

most two quantizers in any data path, the analyses have already been fairly complicated. 

The results are again expressed in infinite sums and can only be evaluated numerically, 

thus it reveals limited insights. This kind of exact analysis seems surreal and inadequate 

for systems containing long data paths and feedback loops. 

Bershad and Bermudez extended the exact analysis when they studied the 

simplest adaptive filter—least-mean-square (LMS) algorithm [25-26].  To reduce the 

complexity, they assumed and numerically justified that, in many applications, a one-

quantizer model in this nonlinear recursive system is sufficiently accurate. In addition to 

a popular Gaussian distribution assumption, some critical independence assumptions— or 

“constant assumptions”, depending on how they are viewed—are used. As the result, the 

first two moments of the differences between actual filter weights and ideal Wiener filter 
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weights are obtained as iterations of infinite summations. Numerical computations of 

these iterations agrees well with simulations given the one quantizer model and 

independence assumption, but this analysis is of limited practical use and it is no longer 

“exact”.  

Almost in parallel to the exact theory, the majority of the community has been 

concentrated on purely statistical approach based on statistical assumptions of the noises. 

By giving up being “exact”, these analyses proceed much further and provide many 

useful and often inspiringly accurate results. One of the most used assumptions is  

Assumption 1: A quantization noise is uniformly distributed in its possible 

range and independent (in some analysis, a weaker version is used 

assuming only uncorrelation instead of independence) with other signals, 

other quantization noises, and itself overtime (therefore it is white). 

Exceptions are constant signals whose quantization noises can be modeled 

as constants as well. 

Examples of constant signals are filter coefficients of an FIR, step size parameter 

in an adaptive filter, and so on. These signals are deterministic and deserve special 

treatment. With Assumption 1, the quantization noise in Fig. 2-2 becomes independent to 

its signal and can be treated as additive noise statistically. Except for constant inputs, the 

noise is uniformly distributed between [-D,0) in truncation mode, whereas in roundoff 

mode the noise is uniformly distributed in [-D/2, D/2). The mean value, u, of the noise 

can be summarized as 
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where e is a constant when the signal being quantized is constant, and  

⎩
⎨
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mode roundoff in 0,

q .  

This is what we stated in eq. (1-4). When a signal or a system parameter, x, is known to 

be constant, its roundoff quantization value fxpt(x, D) as defined in eq. (2-3) is often used 

in an FP system, that is,  

econstant = fxpt(x, D) – x. (2-8) 

The variance of the noise, on the other hand, is  
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The standard deviation s is Var . 

More accurate models on the mean and variance base on the weaker version of 

Assumption 1 and take into account that the signal coming from a previous DSP block is 

already in FP and thus not continuous [3][10][27]. Nevertheless, Assumption 1 is widely 

used because it models quantization noise efficiently. Many researchers have studied the 

mathematical condition for this assumption using either simulation or exact analysis [19-

24]. For example, certain conditions on the characteristic function of the signal to be 

quantized make the quantization noise and signals exactly uncorrelated. However, 

experience shows that it is empirically sufficient to have the input random signals of 

much greater variance than the quantization noise and of reasonably wide spreads in both 
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value and frequency spectrum [5]. The first part can be easily satisfied when WFr 

becomes sufficiently large and the quantization error decreases exponentially according 

to (2-3) and (2-4). For most signals to be processed in communication systems and 

multimedia signal processing systems, signals are corrupted with various noises due to 

physical environment, referred as physical noises.  Thus, the second part of the condition 

is also satisfied. Our favorite explanation of this condition is the following. From (2-6), 

when a random input has a much wider spread than D, it’s characteristic function as its 

Fourier transfer should have values concentrated between ≤p/D. So )2(
∆

k
x

πφ becomes 

small except for k=0. This makes roundoff mean in (2-6) close to 0. Similarly, the 

variance becomes (1/12)D2 strictly. In the following analyses, Assumption 1 is considered 

strictly true.  

Based on Assumption 1, quantization effects of linear-time-invariant (LTI) 

systems have been solved [3-5], mostly focusing on statistical quantities such as the first 

moment and the second moment of a signal. In these analyses, only the uncorrelation 

version of Assumption 1 is needed instead of the more restrict full independence 

condition.  The quantization effects of an LTI system with stationary stochastic input can 

be summarized together into compact results [3-5][16]. This includes FIR, IIR (with 

feedback loops), FFT, and many other commonly used functional blocks in non-LTI 

systems. With Assumption 1, quantization noise occurred along signal data path in a 

linear system can be separated from input signals without any nonlinear interference, 

whereas quantization of constant gain coefficients is treated completely differently as 

deterministic modification of the system transfer functions. 
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Nonlinear systems such as adaptive filters, including LMS, Block LMS, RLS 

(recursive least square), and leaky LMS, are also studied extensively [6][28-41]. Because 

of the nonlinear feedback loop, the output and internal signals contain contributions from 

multiplications of input signals from various time instances. Analysis cannot proceed 

unless further assumptions are made on quantization noise and also on the statistical 

property of the input signals themselves. Efforts in [40] results in a statistical “energy 

preserving equation”, from which calculations about quantization effects (and analysis 

for IP algorithms in general) of a time-domain LMS system are eased. Some other 

nonlinear systems are also studied assuming the nonlinear part of the system is not 

apparent [42-45], such as for CORDIC (coordinate rotation digital computer) system 

[42]. Yet a general theory on quantization effects on nonlinear systems is not available.  

Furthermore, it is known that small modifications in system architecture alters 

quantization effects [1][4] and requires new derivation from the beginning despite all the 

existing results for similar systems. The situation gets worse as the system is 

implemented with a top-down design flow, because a complete analysis on quantization 

effects requires complete understandings of both algorithm and architecture. But 

algorithm, IP architecture, and FP architecture are often designed by separate designers, 

causing a communication problem. 

The quantization effects associated with the non-stationary input signals become 

more complicated to analyze, requiring simplified statistical models, such as Markov 

chain [40-41]. However, the accuracy of the results suffers due to more aggressive 

simplifications. 
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As mentioned in Section 2.1, the difficulties met in nonlinear systems are caused 

by the inefficiency to separate the quantization effects from other complicated ones 

existing in IP systems. As a result, it is widely admitted that analyses on quantization 

effects are more advanced and complicated than those for pure IP systems. However, 

with a couple more assumptions that could be strictly satisfied, we will show that general 

understanding of quantization effects is indeed possible.  

Aside from the analytical approach, advancement in computing promotes 

simulation-based approach [13-17]. However, lack of understanding, the number of 

numerical estimations to completely characterize the quantization effects is exponential 

with respect to the number of quantizers. Suppose a system has L quantizers, each of 

which has its fractional word-lengths chosen from l possible values and 2 quantization 

mode, then (2l)L estimations are required in the characterization task—usually too high to 

realize. For example, in the process of the classical floating-point to fixed-point 

conversion, an intuition, stating that higher fractional word-lengths always result to 

“better” systems, may reduce the estimation complexity greatly [15][17]. We will 

validate this by giving a sufficient condition in Section 2.7 as an example of our theory. 

Furthermore, based on our results in this chapter, we propose that only orders of L2 

number of estimations are needed to completely characterize the statistical quantization 

effects numerically. The complexity is independent to l. Our floating-point to fixed-point 

conversion tool is largely benefited by this conclusion [1].  
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2.3 Preparation for perturbation theory  

2.3.1 Categorization of signals and blocks  

Quantization effects depend on the architecture of the system implementation 

[1][4]. For example, it is well-known that finite-impulse filters (FIR) implemented in 

direct form I and direct form II produce the same result in infinite precision arithmetic, 

yet they have different quantization effects [4]. In fact, the number of quantizers is 

usually different in various finite-precision (FP) implementations, and they may locate at 

different places. The most natural way to include all the system description necessary for 

understanding quantization effects is starting from the structural description, as suggested 

in [1].  In a structural description, a large system is constructed by smaller functional 

units such as adders, multipliers, multiplexers, and so on; infinite-precision (IP) or FP 

systems with architectural information look like a block diagram. Fig. 1-1 in previous 

chapter depicts a simple algorithm in its architectural form. 

In order to identify the different types of functional modules, we first differentiate 

the types of signals in a DSP system.  This is done by comparing the FP system from its 

IP version.  Both IP and FP descriptions of a system can be viewed as different levels of 

abstractions of a physical design.  A FP system can be represented by the same block 

diagram as the IP system, with some quantizers inserted in the signal paths or after some 

constants. After each quantizer, the signal is changed from infinite-precision (or higher 

precision) to finite-precision (or lower precision).  We name this kind of signals 

arithmetic signals—new quantizations happen right after them in the FP version of the 

system.   
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Some other signals are already in their desired finite-precision even in the IP 

description. This is possible because of algorithm designers’ understanding of Boolean 

algebra, coding theory, abstract algebra, and other mathematical theory about FP 

arithmetic. Hence, it is unnecessary to place additional quantizers for these signals in the 

FP version. Doing so, the IP algorithm designers’ vision would be ignored which results 

in different systems. As an example, one may combine 8 1-bit signals after source coding 

into an 8-bit number with four of the bits being fractional. This can be done by a serial-

to-parallel converter and by thinking that the binary point being in the middle. Then, it 

would be completely wrong to treat this signal arithmetic and quantize it because the 

information associated with the bits truncated away is permanently lost. We call these 

signals that have predetermined FP data-type logical signals.  In fact, most of them are 

naturally described in Boolean or binary integer format, and IP system designers can 

identify them easily. 

Some other constraints can also cause predetermined FP data-type, for example, 

when having limited hardware resources such as fixed precision analog-to-digital 

converter, multipliers, and so on. In order to develop an algorithm to be implemented 

using these hardware, it is practical to treat signals after these blocks also of fixed finite-

precision. We will not distinguish these fixed data-type signals from logical signals.  

With the preceding signal-type description, operators (or functional blocks) and 

its inputs and output in IP system can be summarized into different types as well. Here, 

we assume one operator always have one output because an operator with multiple 

outputs can be separated into multiple copies with single output individually. 
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1 The output is an arithmetic signal.  We name the operator arithmetic 

operator.  Examples include adder, multiplier, and delay elements as 

appeared in FIR and LMS filter. 

2 All of the inputs are logical, and the output is also logical.  The operator is 

called logical operator.  These operators often appear in control logic 

circuits.  Examples are AND/NAND/OR gates. 

3 Some of the inputs are arithmetic, and the output is logical.  The operator is 

called decision-making operator.  Examples include the final slicer in a 

communication system that estimates the transmitted bit, a comparator in a 

time-synchronization unit to select the right time-offset, and a comparator in 

a stage-based CORDIC unit to decide in which direction the angle needs to 

be shifted at a particular stage. 

Let us explain this classification. It may first look non-trivial to discern signal 

types and thus operator types.  For example, an adder with arithmetic output (with 

potentially infinite-precision) is by definition an arithmetic operator.  Yet an adder 

included in control logics such as finite-state machine description that produces strict 

logic signal output is a logical operator. On the other hand, an adder as an arithmetic 

operator can also be decomposed into logical operators such as NAND gates operating on 

logical signals.  In this way, architecture description has been driven into too much detail 

for analysis of quantization effects. This is because modifying the FP parameters now 

means cutting blocks from (or adding blocks to) the architectural description. Therefore, 

fixing the architectural description rules out this kind of confusions. As another example, 

an absolute function denoted as |.| operating on an arithmetic signal is naturally treated as 

an arithmetic operator. However, as shown in Fig.1-1, it may compose a multiplexer 

selecting the input signal or input signal’s negation based on its sign, and the sign 

equivalent to a slicer—a decision-making block. 
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From another point of view, because infinite-precision operations do not exist in 

implementation, why don’t designers only design finite-precision system from the very 

beginning? The answer is that this is too “abstract” ( in the same sense as it appears in 

Abstract Algebra) for the designers, and the large combination of FP parameters make the 

task easily forbidding. Therefore, IP description normally starts as the first level of 

abstraction, which contains mostly infinite-precision operations that are easier for 

analysis. Then, architectural information is added, and then FP parameters are 

considered. Yet from the beginning, IP designers might know some signals’ final FP 

types, either inferred by algorithm itself (such as for the slicer in communication systems, 

and for the source-coding), external reasons (such as component availability in 

hardware), or even design experience. The last “knowledge”-based approach is not 

recommended: more scientific reasoning and more advanced design tools can do better 

[1].) Usually, logical signals are those that become wrong when shortening its word-

length and become awkward and unnecessary to increase; in contrast, the FP parameters 

of arithmetic signals affect the behavior of a system much more incrementally. 

In summary, signals types are often confined by and apparent from algorithmic 

and architectural descriptions of a system. If not, the IP system designers know who they 

are. 

2.3.2 Some definitions 

The inputs of a digital system can be considered as discrete-time random process 

[1][3][6][46]. The operators in a system can usually be treated as deterministic operations 

that produce random process at their output under this stochastic signal environment. At a 
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given sample time t, each input signal, internal signal, or output signal is a random 

variable—with values from different ensemble realizations will follow a probability 

density function at t. The function could be different at different t, that is, signals 

throughout the system may be non-stationary random processes. 

In reality, an operator, denoted by bold letter F, has a finite number of inputs, 

denoted as K, and they together form a random vector point (x1(t), x2(t), …, xK(t)) or, in a 

simpler notation, (x1, x2, …, xK) t , at time t. This random vector may be non-stationary. 

An operator could be as small as an adder or as large as a complete communication 

system. Inputs include normal data-path inputs such as the inputs of an adder, or constant 

inputs such as the constant coefficients of an LTI filter or adaptive update parameter. At 

t, any ensemble realization of the random vector (x1, x2, …, xK) t  becomes a regular 

vector and belongs to a domain Wt. Here, Wt consists of all the possible realizations at 

time t and is a subset of the K-dimensional Euclidean space RK if we treat Boolean 

signals True and False as real numbers, such as 1 or 0, respectively. For convenience, the 

random vector (x1, x2, …, xK) t  is considered to have domain Wt, that is, 

(x1, x2, …, xK) t  œ Wt. (2-10) 

Let t > t1 > t2 > … > 0, and suppose the system starts to run at t =0, then at a later time t, 

the output of a causal operator F depends on all its previous and current inputs, {( x1, x2, 

…, xK) t , (x1, x2, …, xK) 1t ,…, (x1, x2, …, xK) Nt , (x1, x2, …, xK)0}, and possibly a random 

initial state. In a sample based system, ti is simply t-i. Variables in the initial state are 

treated as additional inputs to the system which are brought into the system by adders at 

time 0. So, for conciseness, let’s ignore the initial state in subsequent discussion. Now, 
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the output of F at time t as fF(x1, x2, …, xK, t), called the transfer function of F, can be 

written as 

( ).),...,,(,...,),...,,(,),...,,(
),,,,(

0K21K21K21,

K21

1
xxxxxxxxx

txxxf

tttF

F

φ
=L

 (2-11) 

The functionality of F at time t is uniquely expressed by function fF,t , named as 

the instantaneous transfer function of F at t. It is convenient to rename the input 

Kä(N+2)-dimensional random vector {( x1, x2, …, xK) t , (x1, x2, …, xK) 1t ,…, (x1, x2, …, 

xK) Nt , (x1, x2, …, xK)0} to {x1, µ, xM} as 

x1= )(1 tx , x2= )(2 tx ,…,xK= )(K tx , 

xK+1= )( 11 tx , xK+2= )( 12 tx ,…,x2K= )( 1K tx , 

… 

xM-K+1= )0(1x , xM-K+2= )0(2x ,…,xM= )0(Kx , (2-12) 

where M= Kä(N+2). (x1, µ, xM) are called the expanded variables of (x1, x2, µ, xK) at 

time t with respect to operator F. Now, (2-11) reduces to 

( ).,...,,),,,,( M21,K21 ξξξφ ttxxxf FF =L  (2-13) 

Only with an ensemble realization of random vector (x1, µ, xM), a numerical value of the 

output at t becomes available using (13). By the definition in (10) and (12), the expanded 

variables belong to a expanded domain, that is (x1, µ, xM) œ WtäW 1t ä…äW0, where “ä” 

means direct product. 

It is important to notice that fF as a function is deterministic. When a system is 

physically designed, it is often to fulfill a deterministic functionality to process some 

random (or, sometimes, deterministic) inputs. This is generally accepted in modeling all 
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DSP systems; therefore, this is not made as a separated assumption in addition to 

Assumptions 1-3. In fF,t , the subscript t stresses that this deterministic function itself 

may vary over time. The technical difficulty of explicitly expressing this deterministic 

function is not crucial to understand the rest of the chapter. 

The examples below explain the definitions so far. 

 Example 1. An adder operator A at time t has output transfer function  

),()(),,( 2121 txtxtxxf +=A  

so,  

.),...,,(),,( 21M21,21 ξξξξξφ +== ttxxf AA  (2-14) 

A multiplexer, denoted by operator M, selects either of the two inputs, x1 or x2, to 

its output depending on the value of the third input—xsel; so its transfer function is 

),()1)(()()0)((),,,( 2sel1selsel21 txtxtxtxtxxxf ⋅=+⋅== 11M  

That is,  

.)1()0(                               
),...,,(),,,( 

2313

M21,sel21

ξξξξ
ξξξφ

⋅=+⋅==
=

11
MM ttxxxf

 (2-15) 

where xsel is a logical signal, and 1(.) is the indicator function as defined in (2-5).  

É 

Example 2. A timing operator G has its output at t equal to its single input at 

another time g(t), where g(t) § t for a causal G. That is,  

( ),)(),( tgxtxf =G   

so, 
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1)(M1, ),...,(),( +−== tgtttxf ξξξφGG .  (2-16) 

More specifically, a unit delay z-1 has g(t) = t-1, and its instantaneous transfer function is, 

2M1, ),...,( ξξξφ =− t1z . 

On the other hand, a 2-times down-sampler samples the input at every even time event 

(here 2 is chosen for clarity and without loss of generality) has 

 ( ) ( )1,2)mod()1(0,2)mod()( =⋅−+=⋅= tttttg 11 , 

where mod(a, b) gives the remainder of integer a divided by integer b and the underlying 

discrete clock is the one before the down-sampler (because it is of higher frequency) . So 

( ) ( )

( ) ,

),...,(),(

11,2)mod(

1)}1(1,2)mod(0,2)mod({

M1,

+=

+−⋅=−⋅=−

↓↓

=

=

=

t

ttttt

ttxf

1

11

22

ξ
ξ

ξξφ

 

where the last step is because ( )1,2)mod( =t1 + ( )0,2)mod( =t1  is just 1. Alternatively, we 

can understand the last equation as 

  If mod(t,2)=0, 

  1M1, ),...,(),( ξξξφ == ↓↓ ttxf 22 , 

 otherwise, that is, if mod(t,2)=1,  

  2M1, ),...,(),( ξξξφ == ↓↓ ttxf 22 . 

É 

In summary, all the random factors of the output of an operator are introduced by 

its random inputs, whereas the transfer function fF,t is deterministically known (as a 

function of time t). 
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2.3.3 Smooth operators 

The concept of “smoothness” of an operator provides the foundation of the 

perturbation theory to be introduced later. As defined in calculus, deterministic function 

fF,t is said to be smooth on arithmetic signals if it is continuous and differentiable to any 

desired degree over an open set in which the arithmetic signals belong to, regardless of 

the realizations of the logical signals. Then, operation F is called smooth over its 

arithmetic inputs, or briefly as F is smooth. Discussions later show differentiability to the 

third degree is usually sufficient in consideration of quantization effects. 

It is meaningless to say the operator smooth or not over its logical signal inputs as 

they have discrete values. Basic arithmetic operators, such as an adder, a multiplier, and 

so on, clearly are smooth. In Example 1, for a multiplexer whose functionality is defined 

by (2-15), fM,t is clearly smooth on its arithmetic signals ( 1ξ , 2ξ ) over all their possible 

values. So, multiplexer is indeed smooth. In Example 2, timing operator is evidently 

smooth according to (2-16) if the input is arithmetic. The following simple example 

explains the domain involved in the definition.  

Example 3. A reciprocal operator R is given by its transfer function as 

1M1, /1),...,(),( ξξξφ == ttxf RR ,  (2-17) 

where x1 is arithmetic signal. Clearly, fM,t is smooth if its input belongs to (-¶,0)»(0, 

+¶). Similarly an absolute-value operator is also smooth in the same domain. In fact, 

most mathematical operations, such as sine, cosine, logarithm, exponential and power, 

are all smooth with properly defined input domain.  

É 
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In our definition, decision-making operators with arithmetic input and logical 

output can also be treated as smooth operators over its arithmetic inputs. The unsmooth 

region contains those arithmetic input vector points that, when adding some infinitesimal 

perturbation at different direction, produce different decisions at the output. For example, 

a slicer that determines the sign of an input arithmetic signal has unsmooth region 

containing one point, 0. 

Two consequential smooth operators form a combined operator that is also 

smooth.  This is simply because smooth function acting on smooth function provides a 

joint smooth function. The smooth domain for this combined operator is usually those 

inputs that cause neither of the two operators to operator at unsmooth region.  

2.4 Perturbation theory 

Section 2.2 motivates us to understand quantization effects of a general system, 

similar to what has been successfully done for LTI systems. When the systems and 

signals satisfy two additional assumptions that are given in the first part of this section, a 

theory based on perturbation fulfills this task. 

2.4.1 Limit large quantization effects 

First, in addition to Assumption 1 in Section 2.2 that treats quantization noises as 

separate and independent system inputs, further regulations on the noise magnitude helps. 

This gives  

Assumption 2. Only the effects caused by small quantization noises in 

comparison with the magnitudes of their corresponding IP signals are 

considered.  
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Since quantization noise introduced by a quantizer is strictly bounded by 

quantization step D in (2-3) and (2-4), Assumption 2 is normally well-satisfied when 

fractional wordlength of the quantizers in the system are large since D decrease 

exponentially as the fractional word-length increase.  

One consequence of Assumption 2 is that large quantization noises due to 

aggressive quantizers are ignored. Those quantizers may cause the FP system behave 

significantly differently from the IP system. Such a system would most likely violate the 

IP designers’ original visions on the algorithm, so that it would be more properly 

considered as a new algorithm, rather than an approximation of the IP system. For 

example, an adaptive sign-algorithm (SA) is almost identical to LMS, except that it takes 

the sign of the error signal (a 1-bit quantizer) rather than the full error signal to feedback 

and update the filter tap weights [47][40]. In literature, they are indeed treated as two 

algorithms. So, Assumption 2 basically confines us to understand on FP system who 

behaves slightly different from its IP version. However, this analysis provides insights on 

explaining some phenomena in aggressively designed FP systems. 

2.4.2 Limit quantization effects caused by altered decisions 

By definition, only arithmetic signals are modified directly by FP quantizers. 

Nevertheless, the value of a logical signal in a FP system can indirectly vary from its 

counterpart in IP system. Quantization effects from quantizers that modify only 

arithmetic signals may accumulate in front of a decision-making block.  These arithmetic 

signals influenced so much that the decision of a decision-making block may be altered. 

This altered decision can further propagate through control logic operators and alter the 
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value of any logic signal following them. They can also bring large magnitude errors to 

arithmetic signals. This important mechanism is called decision-error-propagation. It 

brings more subtle quantization effects, under which the FP system may still act as an 

approximation of the IP one with occasional large deviations. These effects are much 

more difficult to study. We rule out them by having Assumption 3,  

Assumption 3. In a causal discrete-time system, assume each of the 

arithmetic operators and decision-making operators has its arithmetic 

inputs sitting in smooth regions of the operator, that is, the probability that 

its arithmetic inputs occur in the “unsmooth” region is zero.  

In Example 3, this simply translate to probability P( 1ξ =0) = 0. In practice, a safer 

version might be P(-d< 1ξ <d)=0, where d is an arbitrarily small positive number. 

One immediate inference of Assumption 3, together with Assumption 2, is that, as 

long as quantization noises are sufficiently small, logical signals can not alter due to the 

aforementioned decision-error-propagation mechanism in a FP system. Under arbitrarily 

small quantization effects, arithmetic inputs of an arithmetic operator can only change in 

an infinitesimally small neighbor around its IP point, which is still included in its open 

smooth region. So its output also changes infinitesimally small amount around its IP 

value. (Here need the operator function continuous.) Similarly, a decision-making block 

keeps its output value same as IP one because its inputs only change little from their IP 

value, sitting in the open smooth region. The whole system, even with recursive loop, 

will operate nicely similar to its IP version. In this way, only arithmetic operators 

propagate quantization effects for any finite time t. Therefore, the values of logical 
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signals in FP system are always the same as in IP system at any time instance before and 

including the current time. 

Most existing analytical studies on quantization effects focus on systems that 

satisfy Assumption 3.  A large number of these systems do not even contain logical 

signals, thus no decision-making blocks and logical blocks either. For example, linear-

time-invariant (LTI) systems consist of constant gains, adders and delays, whereas least-

mean-square (LMS) and recursive-least-square (RLS) systems contain multipliers in 

addition, yet only arithmetic operators are involved. Furthermore, all these arithmetic 

operators are basic and smooth. On the other hand, a CORDIC system does include 

decision-making and logical operators, but its quantization effects has been studied 

implicitly assuming no logical signals is different between the FP and IP systems [42]. 

2.4.3 View FP the same as IP system, but with different noise inputs 

As stated at the end of Section III, a system can be treated as a combined operator. 

Furthermore, Assumptions 2 and 3 infer that the operator is smooth on its arithmetic 

signals. Since all the internal operators operate in their smooth region, the combined 

operator also does the same thing.  

Denote the original IP system as SIP and the FP system as SFP. Assumption 1 says 

that a quantizer can be treated as an adder with the quantizer input and independent error 

noise as two of its inputs. In this way, one additional input per quantizer is brought into 

the system with an additional arithmetic adder.  By replacing all quantizers with adders in 

the FP system, we get a new system, called S . This system S can represent both the IP 

system, SIP, by setting the noise inputs of these adders constantly 0, whereas S can 



 

 
44 

represent SFP as well by having the noise inputs the corresponding noise sources. Fig. 4 

depicts these relationships. Assumption 1 allows us to treat IP and FP versions of a 

system simply as the same systemS , but with different inputs. Here S  differs from SIP 

since the former contains additional adders. 

 

Fig.  2-3 FP system SFP is treated as an IP system with changes on some error input 
signals. 
 

Let bold letters S , SIP and SFP be the operators associated withS , SIP and SFP, 

respectively.  Then S  is a combined operator of all those in SIP and the smooth adder-

operators replacing quantizers.  When all quantization noise inputs are 0, the internal 

signals of S are identical to those in SIP. Because quantization noises only modify 

arithmetic signals under Assumptions 2 and 3,  is smooth on both the original arithmetic 

inputs of SIP and on the quantization noise inputs. 
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Denote the transfer function of  as f , its signal inputs as (x1, x2, µ, xK), and the 

error inputs as (e1, e2, µ, eL), where L is the number of additional quantizers in SFP 

comparing with SIP. The expanded variables of (x1, x2, µ, xK) and (e1, e2, µ, eL)  over  

are denoted as (x1, µ, xM) and (ε1, µ, εN), respectively.  Since (ε1, µ, εN) is simply a 

rearrangement of (e1, e2, µ, eL) at different discrete time instances, (ε1, µ, εN) in the IP 

system should be constant 0’s.  

Now, the transfer function of SFP and SIP can be stated in terms of the transfer 

function of , 

),,,,,,(
),,,,,,,,(

),,,,(   

N1M1,
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teeexxxf
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 (2-18) 

and  
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The next Subsection will use the differentiability part in Assumption 3 to study the 

difference between (2-18) and (2-19). 

2.4.3 Taylor expansion 

All the discussion in previous two subsections could still hold if “continuous” was 

to substitute “smooth” in Assumption 3. A continuous operator’s output only change little 

if its inputs change little. The differentiability in Assumption 3, however, enables 
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quantitative study on infinitesimal quantization effects. This is done by using Taylor 

expansion of smooth function ),,,,,( N1M1, εεξξφ LLtS  over its arithmetic inputs signals 

(ε1, µ, εN) around their IP values that are all zeros. The expansion up to its 2nd-order 

terms gives 
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Using (2-18) and (2-19) on both side of the equation, (20) becomes 
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Thus the output of the FP system at time t has been expressed as the IP output with 

additional small perturbations due to all the quantization noises in a power series format.  

The coefficients of the power series are no longer functions of the noises themselves. 

With Assumption 2 and the smooth operator assumption, the higher order terms 

are normally negligible comparing with the first two orders. Only the first two orders of 

terms are kept for relatively easy analysis.  
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2.4.4 Statistical quantization effects 

Both the coefficients and error noises are stochastic signals. Thus, deterministic 

studies can only be conducted in ways such as the absolute bounds of the difference 

between IP and FP system.  

Commonly, it is the statistics of an output that is most informative. Studies such 

like direct analysis of the probability distribution functions may provide insights. Though 

useful, the analysis is very hard to get useful results. Yet study on statistical expectations 

provides a good tradeoff between the complexity and usefulness. 

With Assumption 1, entries of (ε1, µ, εN) are mutually independent and are 

independent to (x1, µ, xM); so, in (2-21), the power terms of (ε1, µ, εN) and coefficients 

terms that only are functions of (x1, µ, xM) are statistically independent. So, doing 

expectation of (2-21) on both sides and using identity E[a⋅b]=E[a]⋅E[b] for independent 

random variables a and b, it gives 
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where only the first two terms are kept. Note that 
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where ][ ii E εµ =  is the mean of iε , 

]])[[( 2
iii EE εεσ −=  (2-24) 

is the standard deviation of iε , and  

ji
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is the auto-correlation coefficient between iε and jε . Due to Cauchy-Schwartz 

inequality [48], | jir , |§1 always holds. Furthermore, (2-23) can be simplified by noticing 

that (ε1, µ, εN) are mutually independent as stated in Assumption 1. That is, ji,γ =0 if i ∫ 

j, and jir , =1 if i = j. Thus, (2-22) becomes 
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It is more straightforward to represent the expression in terms of the statistics of 

quantization noises (e1, e2, µ, eK) directly.  To do this, define the mean and standard 

deviation for ei according to (2-7) and (2-9) as 

][ ii eEu = , and ])[( 2
iii ueEs −= . (2-27) 

These statistics can be related to the quantization mode and fractional word-length using 

(2-7)-(2-9). Now, replacing all mi’s and si’s in (2-26) with corresponding u and s 



 

 
49 

according to the definition of expanded variables in (2-12), possibly repeatedly.  

Collecting all the coefficients in front of the same ui, si and uiuj , denoting the final 

coefficients to mi, hi and ni,j, respectively,  and moving the first term of the right side of 

(2-27) to the left side, we get 
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Here the summation is from 1 to L, rather than 1 to N used for expanded variables in (2-

26). Furthermore, (2-28) is a deterministic relationship where every term on the right side 

is no longer random. This central result (2-28) is worth interpreting below.  Examples in 

Section 2-6 provide further clarifications. 

First, if none of mi’s degenerates to 0, Assumption 2 infers that ui<<1 and the last 

summation of (2-28) is always negligible comparing with the first summation. However, 

the summation containing si
2 cannot be neglected since ui=0 strictly in roundoff 

quantization mode, in which case those terms dominate the perturbation. So, 
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This relation was first reported in [2] without giving the proof there. 

Second, the detailed expressions of the coefficients are not given. These 

expressions, together with the value of L, summarize the statistics of the input signals, 

and the algorithmic and architectural information of the system. All the FP parameters, 

such as fractional word-lengths and quantization modes, on the other hand, are exhibited 
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in the mean and variances given by (2-27). That is, (2-28) separates quantization effects 

from IP characteristics. Furthermore, our derivation actually gives a procedure to find out 

the coefficients expression explicitly. This includes getting system S as discussed in Fig. 

2-3, changing (x1, x2, µ, xK) and (e1, e2, µ, eL) to their expanded variables (x1, µ, xM) 

and (ε1,µ, εN), figuring out the analytical instantaneous transfer function 

),,,,,( N1M1, εεξξφ LLtS , conducting the derivatives as shown in (2-20), doing 

expectations for the coefficient functions in (2-22), and finally switching the variables 

back to (x1, x2, µ, xK) and (e1, e2, µ, eL) and simplifying the result. The most difficult 

tasks in this procedure are often finding the transfer function explicitly and simplifying 

the expectations of those coefficients. Not surprisingly, a closed form expression often 

cannot be acquired. Yet, however hard it is, the difficulties are only technical. Of course, 

despite the insights provided by (2-28), the result becomes quantitatively useful in 

practice only when the coefficients are evaluated. Some of the examples in Section 2-6 

try to execute the complete calculation following the preceding procedure. On the other 

hand, Section 2-5 introduces the method to achieve the numerical values of these 

coefficients computationally. 

Third, only Assumptions 1-3 are used in our derivation. Therefore, the result and 

the procedure work on non-stationary inputs with general statistical distributions, as well 

as transient analysis of a system under stationary inputs. 

2.4.5 Some useful variations of (2-28) 

Though the formula given in previous subsection can be very useful in analysis, 

various difficulties may occur in practice.  For example, the mean of the output might not 
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convey enough statistical information. Therefore, it is generally necessary to find the 

statistical difference between a smooth function, g(ÿ), of the outputs of the IP and FP 

systems. Let g be the operator whose transfer function is g, g is a smooth operator; its 

acting on the output of a system gives a new system. The new system still satisfies 

Assumptions 1-3 and is of great interest.  Then, the result (2-28) directly applies to give 
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Here L is the same as in (2-29) because no new quantizers are introduced by including g. 

The coefficients, superscripted by g, are different from those in (2-29) unless g(ÿ) is an 

identity function. Either the procedure mentioned in previous Subsection or the 

simulation method of Section 2-5 may find out the coefficients. 

This result may still lack the ability to reveal quantization effects in practice. In 

fact, (2-30) suggests the difference interested is often dominated by the means of 

quantization noises; thus, the random nature of the noises, summarized by their variances, 

does not show up in (2-30). So it is valuable to study the statistics of a function of the 

output difference between SIP and SFP. First, suppose g is a smooth memoryless function, 

that is, the function value at time t only depends on its input at time t, then, 
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where a Taylor expansion is given on g to the second order. This relationship indicates 

that )][(
IPFP SS ffE − and ])[( 2

IPFP SS ffE −  are the keys to understand the expectation of 

any memoryless function of the output difference between the FP and IP systems.  While 
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the former has been studied in previous subsection, it is straightforward to find out that 

the mean-squared error (MSE) of )(
IPFP SS ff − can be represented as 
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where bi,j(t)  is defined to equal bj,i(t) for simplicity (it is the sum bi,j(t) + bj,i(t) that is 

uniquely determined). We use coefficient bi,j(t) in (2-32) as the ith-row and jth-column to 

form a K-by-K matrix B(t) and use µ to represent the column vector formed by 

(u1,…,uK)T, where superscript T means vector transpose. Then, (2-32) becomes 
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Since the MSE quantity has to be non-negative regardless of each mi and si , matrix B(t), 

denoted by the bold letter, must be symmetric and positive semi-definite and ci(t) has to 

be positive, denoted as B(t)f 0, and ci(t) ≥ 0.  

Finally, the function g defined in (2-31) may have memory to study the 

correlation characteristics of the output quantization noise. Let gm be one such function 

where the subscript m indicates that it has memory. Then, the statistic of interest is  

( )]),,,,(),,,([ K1K1 ttxxftxxfgE m LL
IPFP SS − . (2-34)  

The following method outlines one solution to this problem. First, the difference between 

two systems SIP and SFP creates a FP system (SIP-SFP). Followed by the smooth system 

that is based on function gm, it becomes a new FP system. All the quantizers in this new 

system are the same as those in SFP. The IP version of this compound system is (SIP-SIP), 
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which is constant zero, followed by the system using function gm. The compound system 

satisfies Assumptions 1-3 if SIP does. So, the result (2-28) applies to 
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Here gm(0,t), by our definition, indicates the output of gm at time t given all its previous 

and current inputs are 0. This is a deterministic value and often zero if gm is unbiased; so, 

the expectation of the last term in (2-35) can be removed, and (2-35) essentially provides 

the statistic in (2-34). Of course, MSE of the output after gm becomes similar to (2-33), 

where the first order term disappears. That is,  
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This will be used in Example 2 of section VI. 

In summary, the output difference between IP and FP systems is a random 

variable at any time instance, as given in (2-21).  Its mean and variance given in (2-28) 

and (2-33) provide basic understandings of its regularity. In most applications, this 

information is the sufficient statistics to depict the gross quantization effects. In principal, 

this provides the statistical quantization effects for all discrete-time DSP systems under 

stochastic signal environment when Assumptions 1-3 are satisfied. The difficulties left to 

determine those coefficients are purely technical in both the analytical procedure 

suggested in previous Subsection and the computational method in the next Section. 
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2.5 Application in numerical simulations 

Advancements of digital computers promote simulation-based approach to 

understand quantization effects. This can neatly fit into the results in previous Section. 

Suppose a system has L quantizers, each of which has l possible fractional word-lengths 

and 2 quantization mode, then, (2l)L Monte-Carlo estimations are required to understand 

a statistical quantity that summarizes the quantization effect. Each of these estimations 

reveals the relationship between the statistical quantity and a specific setup of the FP 

parameters. The number of estimations needed for a complete understanding of 

quantization effects is exponentially related to number of quantizers. This exponential 

number is often too high to be practical. In some applications, such as floating-point to 

fixed-point conversion (FFC) [13-17], the situation may be alleviated. In simulation 

based FFC, an assumption based on the intuition—higher fractional word-lengths always 

result better systems—leads to great savings on the number of estimations needed [13-

16]. We will study when this assumption is appropriate in Section 2.6.  

However, the analytical results in previous sections indicate that at any time t, 

only 2L + (L+1)⋅L/2 coefficients are unknown and to be determined in (2-28), and 

(L+1)⋅L/2 + L independent coefficients are to be determined in (2-33). Together, (L+4)⋅L 

unknown coefficients are to be determined, and this is the number (and also the least 

number) of well-designed estimations needed to numerically determine the quantization 

effects as given in (2-31).  This number, on the order of L2, is a quadratic function of L—

a huge saving comparing with the previous exponential relationship (2l)L. In fact, the 

number is not a function of l—as long as the word-lengths are not too small to violate 

Assumptions 1-3. When the mean errors ui’s are all 0, which is the case as all 
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quantization modes are roundoff and no constant coefficients are involved, then only 2L 

unknown coefficients are left in (2-29) and (2-33). Then, the number of estimations 

needed becomes a linear function of L. Our floating-point to fixed-point design tool is 

largely benefited by these results [1]. 

Now, a polynomial number of estimations is needed to understand the 

quantization effects at a time t. Fortunately such efforts do not need to repeat at each time 

instance to understand the quantization effects for all the time before t. In fact, they only 

introduce a small increase to the existing numerical cost. To explain this, let’s first look 

at the components of estimation cost here. The expectations in (2-28), (2-30), and (2-33) 

can be estimated using different types of estimators, among which ensemble-average 

estimator is the most intuitive and un-biased one. It estimates the expectation by 

averaging the corresponding output at a time while running simulations from time 0 to t 

multiple times. All the simulations are based on the same input statistics but with 

different random ensample realizations. Therefore, to get the numerical output at t, all the 

outputs before the time become byproducts. So, the only overhead-cost to get 

quantization effects from 0 to t-1 is doing t more numerical averages that are fast.  

The estimation methods may still be too costly because an estimation using a 

large ensemble average means a large number of digital simulations. This can be eased 

by using ergodic averages. Whenever the input statistics (or probability density function) 

do not change rapidly over time, and the mapping from (x1, x2, µ, xK, e1, e2, µ, eL) to 

(x1, µ, xM, ε1, µ, εN) does not change over time rapidly either, over a short period of 

time, the output signal of the system can be treated as a stationary random process. As a 
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result, the expectation at a time t can be estimated using their ergodic averages over a 

short period of time around t.  In this way, only one digital simulation from time 0 to t is 

needed. This saving becomes useful in many practical applications where simulations to 

do large ensemble average become too expensive [1]. 

Another subtle point regarding the way to conduct estimation can also affects the 

estimation efficiency dramatically. At least two methods can be used to numerically 

simulate the left side of (2-28). In the first one, )],,,,([ K21 txxxfE L
FPS and 

)],,,,([ K21 txxxfE L
IPS  are estimated using separate simulations, whereas 

alternatively, )],,,,([ K21 txxxfE L
FPS - )],,,,([ K21 txxxfE L

IPS is estimated directly 

using ),,,,([ K21 txxxfE L
FPS - )],,,,( K21 txxxf L

IPS . Both methods can be done in 

run-time (then the second method requires the simulation of the two systems 

simultaneously to get their differences) or by post-processing of the saved system 

outputs. However, errors associated with any estimation often make the first method 

much less efficient. In fact, the estimation error of each of the two terms could be much 

higher than the small difference between them.  Thus, an accurate simulation of the 

difference requires a large sample size in each estimation. The second method avoids this 

numerical difficulty by testing the difference directly. In this way, either the sample size 

is greatly reduced to achieve the same accuracy, or the accuracy improves comparing 

with the first method using the same sample size. That is, the second estimation scheme 

is often more efficient.  
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2.6 Examples 

Example 1. As mentioned in previous section, in simulation based FFC, it is often 

assumed that higher fractional word-lengths always give better systems [13-16]. In fact, 

this assumption is not always true, unless some additional conditions are satisfied. This 

can be illustrated in (2-28) as it depends on the signs of the first order coefficient mi’s. 

Only when mi and ui have the same signs for all i, it is true that higher fractional word-

length cause smaller ui and therefore smaller quantization effects.  

Furthermore, the intuition is not true even for the noise power 

])[( 2
IPFP SS ffE −  in (2-33) that does not have the first order term. For example, a 

simple high precision subtractor with two quantized signal inputs gives the output 

quantization noise power as )()( 2
2

2
1

2
21 ssuu ++− . Though the standard deviation terms 

indeed decrease as any of the two WFr’s increases, the first term 2
21 )( uu − can have a 

complicated behavior.  

In general, one sufficient condition for ])[( 2
IPFP SS ffE −  to satisfy the intuition 

is that all quantizers use roundoff modes exclusively because then (2-33) reduces to 

∑ ⋅
=

L

1

2)(
i

ii stc with ci(t) ≥ 0.   

† 

Example 2. Assuming the input signals are 0-mean stationary random processes, a 

transfer function method derives that, for a multiple-input-multiple-output linear-time-

invariant (MIMO -LTI) system [2-3], 
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where the notation and every term are explained in Appendix A. the notations have been 

slightly modified from [2-3] to accommodate the present context: 

Appendix A shows that (2-33) at steady state can be derived from (2-37), whereas 

(2-37) can be partially derived from (2-36). So, (2-37) verifies the perturbation theory in 

previous sections. 

Based (2-37), a simple Biquad IIR system and other more complicated systems 

like FFT are examined [2-3]. Theoretical results of the power spectrum density at the 

output agree well with the simulation, which verifies the LTI theory and therefore the 

perturbation theory. 

† 

Example 3: Although error bounds have been studied extensively [18] for 

CORDIC algorithm, the straight-forward statistical analysis on quantization error 

variance was done only recently [42]. A CORDIC algorithm contains decision-making 

operators as well as arithmetic operators. However, ignoring decision-errors, quantization 

effects is shown in (2-14) of [42], or restated as 
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This clearly fits the pattern in (2-33).  In fact, without decision errors, the system 

becomes linear to propagate all the errors; so, the result is predictable using LTI 

relationship (2-37). 

† 

Example 4. Based on the perturbation results, various analyses for least-mean-

square algorithms have been done and published. They are listed here briefly. For more 

detail, please read the corresponding reference.  

In [52], the transient analysis of a one-tap LMS algorithm with correlated input is 

studied following both the analytical procedure mentioned after (2-29) and the 

computational approach mentioned in Section V. Both methods lead to good agreement 

with Monte-carlo simulation. This example helps to explain how to use the perturbation 

results of this chapter in multiple ways.  

In [2], by direct simulation, (2-28) and (2-33) are validated for a 12-tap LMS 

algorithm with stationary inputs. 

In fact, quantization effects of an LMS and its related algorithms are probably the 

most studied other than LTI systems [6][28-41][53]. Those results all support our results 

from perturbation theory, in one way or another.  

†  

Example 5. The perturbation theory provides the basis for the understanding of 

many other phenomena present in digital systems, sometimes in a qualitative way. As an 

example of this statement, let’s study the saturation effect of signal-to-noise ratio (SNR) 
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with respect to finite-word-length. That is, it is often observed that the SNR improves 

quickly by increasing any fractional word-length WFr of an FP system until it suddenly 

reaches a threshold, after which the SNR practically stays the same. 

Let nq, nph, and x be the accumulated quantization noise, the accumulated physical 

noise, and the signal at a certain signal node; then, the SNR, defined as the signal power 

over total noise power, becomes ])[(
][

2
ph

2

nnE
xE

q + . For simplicity, assuming nq and nph 

are uncorrelated, SNR becomes ][][
][

2
ph

2

2

nEnE
xE

q + . From (2-33), as any WFr increases, 

][ 2
qnE  decreases exponentially, which causes the SNR increase quickly. However, 

when those terms in (2-33) that are associated with this WFr are already smaller than 

][ 2
phnE , the SNR can at most change 3dB even when WFr goes to infinity. This explains 

the saturation effect. 

† 

2.7 Summary 

After a brief review of existing literature, a perturbation theory has been 

developed to study quantization effects of digital signal processing systems. The analysis 

applies to linear or non-linear systems, with stationary or non-stationary inputs. Possible 

applications are explained, followed by a few examples that support our results. 

To extending the analysis, one might study the effects of decision-errors, which 

has been emphasized and studied partially elsewhere [51]. On the other hand, statistical 
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effects might not be the most interested for all applications. It could be interesting to 

extend (2-21) in a deterministic way for those situations.  

Finally, the assumptions in this chapter limit our results. However, as Dr. Box  

[54] said, "Models of course, are never true but fortunately it is only necessary that they 

be useful." Our automated floating-point to fixed-point conversion tool for 

communication systems has taken advantage of the present results. Its success, besides 

the few examples section 2-6, proves the model here to be indeed useful [1]. On the other 

hand, Chapter 3 is going to talk the situation when Assumption 3 is not true. 
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Chapter 3 
Quantization Effects with the Presence of 

Decision-errors  

Most existing analyses of quantization effects, including those in Chapter 2, are 

given under the condition (sometimes implicitly) that all decision-making blocks, if exist 

in a system, produce identical decisions in both fixed-point and infinite-precision (IP) 

implementations. However, in doing floating-point to fixed-point conversion (FFC), a 

fixed-point design with occasional decision errors may still be an acceptable 

approximation of the IP system. In this Chapter, we study the effect of this decision error, 

and relate its probability to the fixed-point data types. The FFC methodology that is 

briefly described in Chapter 1 is then extended to include systems with possible decision 

errors due to quantization. The analytical results here are applied to both CORDIC and 

BPSK transceiver as examples.   

3.1 Introduction 

By now, it should be clear that to lower hardware costs, most implementations of 

digital systems rely on binary fixed-point number systems—either 2’s complement or 

unsigned-magnitude—with  roundoff and truncation quantization. Existing work 
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reviewed and presented in the previous chapter studies the effect of this quantization on 

systems that have no decision-making blocks, a term that is to be defined in section 2, or 

based on the assumption that there is no decision error. Therefore, the automated infinite-

precision (often also referred as floating-point) to fixed-point conversion (FFC) method 

as been briefly described in Chapter 1 is uses this assumption. However, in many 

complicated communication and DSP systems, decision errors in a fixed-point system are 

acceptable as long as its probability is small; then, the system is still a fair approximation 

of its IP correspondence. Other FFC methods based on unguided optimization and 

recursive estimations without understanding of the effects of these decision errors, on the 

other hand, require a large number of long simulations [17]. This becomes especially 

time-consuming when each simulation takes minutes to hours in bit-error-rate (BER) type 

of estimation.  

Based on a study of the types of decision making blocks and the probability of 

decision errors as a function of fixed-point data-types in a system, we extend the FFC 

method to include possible decision errors. The updated FFC problem formulation looks 

still similar with additional constraints, such that each requires one BER type of 

estimation for coefficient fitting—itself a well-defined task. Finally, we show two 

examples, BPSK transceiver with root-raised-cosine-filter and CORDIC, to support our 

analytical results. 

3.2 System Description 

In Section 2.3.1, signals of a digital system have been categorized into arithmetic 

or logical, whereas and operators have been categorized into arithmetic, logical and 
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decision-making. Operators have been further defined as either smooth or unsmooth 

depending on their continuity and differentiability. 

Let SL be the slicer operator of a slicer.  It has one arithmetic input x and one 

logic signal output y.  The slicer function transfer this input x to the output y, given below 

as 

⎩
⎨
⎧

<−
≥

==
0 if ,1

0 if ,1
)(

x
x

xfy SL . (3-1) 

It turns out all decision-making operators can be equivalently modeled as a combination 

of arithmetic operator, slicers (a basic decision-making operator), and logical operators as 

shown in Fig. 3-1.   

 

Fig.  3-1 Decomposition of a decision-making block  
 

Example: suppose A is a comparator defined as with two input x1 and x2, and one 

output y  

⎩
⎨
⎧

≤
>

==
21

21
21  if ,0

 if ,1
),(

xx
xx

xxfy A ,  
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where NAND is a logic operator that gives 0 if two inputs are the same, and 1 otherwise.  

So A is equivalent to a combination of a subtractor, a slicer and a NAND operator.  

Therefore in the subsequent discussion we will concentrate on the quantization effect of a 

slicer. 

† 

3.3 Probability of Decision Errors 

According to its definition, all arithmetic signals (and only they) can be modified 

by quantizers. However, logical signals in FP system can also differ from its counterpart 

in IP, because quantization effects from quantizers for arithmetic signals can alter the 

decision of those decision-making operators, and therefore the value of logical signal at 

its output.  These changes can further propagate through control logic operators and alter 

the value of any other logic signal following them. Chapter 2 shows that quantization 

errors propagating through smooth arithmetic operators give a small perturbation of the 

output in an IP system.  This small perturbation will be transferred as possible different 

decision through a decision-making operator.   

Let x be the IP input of a slicer, q be the difference between FP and IP version of 

x, that is, 

q = xFP – xIP = xFP – x. (3-2) 

For simplicity, assume  

Assumption 4: input signal difference q of a slicer is statistically 

independent to x at any time instant. 
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Though this assumption is not strictly true since q is a deterministic function of all the 

input signals, in a complicated system both the dependence of q and x on input signals are 

so mixed that it often suffices to consider them independent. 

Let the probability density of x and q be px and pq respectively.  Then the FP 

decision may differ from IP decision according to the following formula 

)0,0()1)(,1)(( ≥<+==−= xxPxfxfP θIPSLFPSL . (3-3) 

With preceding Assumption 4, the probability above can be written as a double integral 

over x and q,  
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Under the assumption that error magnitude is small comparing with signal x, the integral 

regarding px(x) is around px(0) in the integral, the probability becomes  

( ) )],0([)0()()0(
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xfxfP
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 (3-4) 

where the last step follows directly from definition of expectation value.  

Similarly, the probability of error from decision of -1 in IP system to decision of 1 

in FP system is given by 

)].0([)0(
)1)(,1)((
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−==

θθθ 1
IPSLFPSL

Ep
xfxfP

x
 (3-5) 

Sum (3-4) and (3-5) together, we get the probability of decision error event between IP 

and FP system as 
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)]).0([)]0([()0(
))()((

<⋅−+≥⋅⋅=
≠

θθθθ θθ 11
IPSLFPSL

EEp
xfxfP

x   

The two expectations in the parenthesis can be combined together as the expectation 

of |][|θθE . Therefore, the proceeding equation can be written as  

|].[|)0())()(( θθEpxfxfP x ⋅=≠ IPSLFPSL  (3-6) 

However, due to Cauchy-Swartz inequality,  

.])|[|(|][| 2
12θθ θθ EE ≤   

So (3-6) can finally be written into a form 

.][)0())()(( 2θγ θEpxfxfP x ⋅⋅=≠ IPSLFPSL  (3-7) 

where γ §1. Furthermore, γ is usually between 0.7 and 1 for practical distribution of q. 

For example, γ = 8.0/2 ≅π , γ = 87.02/3 ≅ , and γ =1 for cases that q has zero-mean 

Gaussian distribution, zero-mean uniform distribution, and two point masses symmetric 

around 0, respectively. 

Equation (3-7) shows that the decision difference between IP and FP system is 

proportional to the square-root of the accumulated quantization error power ][ 2θE , also 

called mean-squared error (MSE) of q.  The coefficients may vary for different systems 

and signal environment depending on how well the independence Assumption 4 applies. 

This quantity has been related directly to the fixed-point data types in Chapter 2. In fact, 

notice that ][ 2θE is just the left side of (2-28). That is, ][ 2θE  = E[| flpt – fxpt |2]. 

In the following example 
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Example: When q has a Gaussian distribution (mq, sq2), Appendix B shows a 

more complicated way to prove (3-7). 

† 

Therefore the quantization errors brought into the system in arithmetic operators 

turns into this decision error with a probability proportional to ][)0( 2θEpx .  The 

coefficients might vary in real system depending on how well assumption 4 is in reality.   

In reality, especially in communication systems, there is a more subtle system 

specification—a “desired decision” might exist, named as D(x), associated with x at each 

time instance.  Even in the IP system, the decision-making operators might produce 

“wrong” decisions simply because of physical noise or system/architecture deficiency.  In 

this case it is how much more often such error happens in a FP system that is most 

concerned.  Without losing any generality, let D(x)=1 corresponds to the correct decision, 

then let the probability density of x in this case be px|D(x)=1(x).  This function is usually 

different from px(x).  Then the probability or wrong decision in FP system differs from IP 

system by 
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Now again notice q is concentrated around 0, so  
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Therefore (3-8) becomes 
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Here both error moments are conditioned on D(x)=1.  The second order terms are 

included since mq might be 0 in some cases.  When mq>0 the probability of wrong error 

under D(x)=1 actually gets less in FP system.  However the probability of wrong error 

under D(x)=-1 gets larger.  Net wrong decision probability is the sum of these two.  In 

case q and D(x) are independent the conditional moments are the same as moments.  With 

this simplification the result becomes 
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 (3-11) 

Example: In maximum likelihood detection of BPSK signals that are corrupted by 

IID symmetrical noise, the threshold is set at 0 because  

)1)(()0()1)(()0( 1)(1)( ==−= =−= xDPpxDPp xDxxDx . 

Also note normally, as in Gaussian physical noise,  
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0)0(',0)0(' 1)(1)( <> =−= xDxxDx pp . 

Therefore only the second term is left in (3-11) and it becomes 
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. (3-12) 

That again points out the importance of studying E[q2]. 

† 

3.4 Effects of decision errors 

Decision errors are brought into the system via decision-making operators as 

described in the previous section.  These erroneous signals can further affect either logic 

signals via control operators or arithmetic signal via arithmetic operators.  The pattern of 

this error propagation becomes generally difficult to track.   

One overly simplified treatment can be given assuming decision error events at a 

node happen randomly following a Poisson process, independent to all the signals in IP 

system.  Let’s consider a slicer again as this can be treated as the building block for all 

decision-making blocks. When a random error happens, the error value is either -2 or 2 

depending on whether the signal value in IP system is 1 or -1, respectively.  So, clearly 

each error is dependent to the IP signal value. With this Poisson process assumption, one 

can do simulations to an IP system by randomly altering the decision, and examine the 

signal variation at the output of the system comparing with IP output.   

The problem of the approach above is that decision-error events are closely 

related to signal values in the IP system.  For a slicer, it has been pointed out that an error 
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usually happens when the magnitude of the input IP signal to a slicer is compatible to the 

accumulated quantization error.  Therefore, the quantization effect of this decision error 

is associated with special occasions of input signals.  The propagated error then can be 

very different to an error that happens randomly as assumed in previous paragraph. 

The following example provides the treatment for an absolute-value function and 

illustrates the previous statement.   

Example: A slicer determines the sign of input.  If positive a following 

multiplexer will select the input; otherwise the negated value is selected, as shown in Fig. 

3-2.   

 

Fig.  3-2 An implementation of absolute value function. 
 

In this example, let’s assume both IP signal x and quantization error follow zero-

mean independent Gaussian distribution with (0, sx
2) and (0, se

2), respectively. The 

actual error at output become 

x+e

mux

s=≤1

y1
-1

Sel
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Here 1(x) is again the indicator function which gives 0 when x is false and 1 when x is 

true. The last step is using Taylor expansion around 
x

e

σ
σ , considering xe σσ << .  A simpler 

method is using Price’s theorem [87].  Let y1 and y2 be both  (0,1) with cross-

correlation r. Define |]||[| 21 yyER ⋅= .  Notice the first and second derivatives of an 

absolute function is 

⎩
⎨
⎧

=
>
<−
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x δ , 

that is, the second derivative is a Delta function with a factor 2.  Thus, according to 

Price’s theorem one gets 
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This together with the first step of (3-13) gives the same result as (3-13).   

On the other hand, if it is assumed that decision errors happen independently 

according to probability given in previous subsection, the error variance should be 

roughly 
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This approximation gives an estimate of quantization error that is one order higher than 

the actual result in (3-13). Therefore, it is not acceptable to assume independency 

between decision error events and IP signal. 

† 

This example clearly indicates the independence assumption described at the 

beginning of Section 3.4 can oversimplified the problem. On the other hand, assuming 

the decision are always the same in FP and IP system, MSE(yFP - yIP) would become 

( ) 22 ])sgn())(sgn([ exxexxE σ=−+ . (3-14) 

Comparing with the result in (3-13) one can see that decision-error at the slicer only 

introduced error variance proportional to 3
eσ .  This is not surprising since decision error 

happens at rate ~ eσ , when signal-magnitude is around eσ as well; so the resulted MSE 

magnitude is expected to be ~
32
eee σσσ = .  Of course not all decision-errors influence 

the system in such a manner.  Therefore it is beneficial to categorize decision-error into 

two groups: soft decision-error and hard decision-error. 

A soft decision-error is defined to be a decision-error that when happens affect 

the system output in the same scale as the quantization error noise.  From the analysis 
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above it affects MSE(yFP - yIP)  by small magnitude on the order of
2/3)(Var e  or even 

less significantly. The decision-errors in the previous absolute value function are soft 

errors. 

On the other hand, a hard decision-error is defined to be a decision-error that 

when happens the system output may change in a magnitude much greater than 

quantization error noise.  The following example shows a system with hard decision-

errors. 

Example: A one-tap version of sign algorithm is given in Fig. 3-3.  Comparing 

with LMS algorithm where residue error e is directly used in updating equation it use 

sgn(e) to speed up the algorithm as a multiplier in the feedback loop is eliminated.  

Suppose the input signal xn is 1 or -1.  The desired tap weight wo is 1, and physical noise 

v has uniform distribution U(
bb 2

1,
2
1− ).  Let xn and vn be IID sequences that are mutually 

independent.  Assume the only difference between FP and IP system is the presence of a 

quantizer after the tap weight wn in FP system.  That is, at time instant n a quantization 

noise qn is inserted in the system, where qn follows uniform distribution U(-Dq/2+mq, 

mq+Dq/2), where  mq=0 or -Dq/2 for round-off and truncation quantizers.  To simplify the 

analysis we consider the case Dq<2má
b2

1 , where  m is update step coefficient.   
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Fig.  3-3  Sign algorithm in Example.   
Dashed box shows the desired system with noise v. 

When the corresponding signals in a FP system and IP system may be different 

use a superscript FP or IP to discern, and define the difference between them by a prefix 

D; thus 

IPFP
nnn sss −=∆ . (3-15) 

Then the updating equations for tap weight are 

µδ FPFPFP
1 nnnn xww +=+  and µδ IPIPIP

1 nnnn xww +=+ ; 

So  

µδ ⋅∆⋅+∆=∆ + nnnn xww 1  . (3-16) 
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Since FP
nδ , IP

nδ  and xn are either 1 or -1, both FP
nw  and IP

nw  can only be integer multiples of 

m.  Similarly nδ∆  is either 2, 0, or 2; so nw∆  must be integer multiples of 2m.  Now 
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 (3-17) 

An immediate observation is that if nw∆ >0, qn + nw∆ >0 as qn<2m§ nw∆  which 

suggests nδ∆  can be 2 only if xn <0 , and -2 only if xn >0.  Together with equation (3-16), 

it says 1+∆ nw < nw∆  strictly.  Similarly, if nw∆ <0, then 1+∆ nw > nw∆  strictly.  So, starting from 

0w∆ =0, the only possible values of nw∆  are 0 and ≤2m.   

On the other hand one can view ( on ww −IP ) as a random walk as well with step size 

m.  When | on ww −IP | is away from 0 the adaptive mechanism will drive it to walk towards 0 

with a higher probability than to walk further away from 0.  Thus at steady state | on ww −IP | 

will center around 0 and highly unlikely reach near 
b2

1 .  So 
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together with (3-16) one gets the transition probability 
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Where Dq<2m has been applied to secure the qn+2m always positive.  Similarly 
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Similarly 
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In steady state, interstate-transitions are balanced following two equations  
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  (3-22) 

Solving equation (3-20), (3-21) and (3-22), together with the fact that the total probability 

equals one, the state probability are shown in Table 3-1. 
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Truncation 0 
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Table 3-1 State probability of signed algorithm 
 

A number of simulations from an actual SA algorithm implemented in Matlab are 

generated to prove the analysis.  Plotting both the simulation results and calculation 

results, Fig. 3-4 shows the good agreement between these two and validates the analyses 

in this example. 
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Fig.  3-4 Semi-log plot of )2( µ=∆ nwP  for the signed algorithm. 
System parameters are m=0.01, b=2.5 and 6WFr ≤  since q∆=− FrW2 <2m.  In all simulations 
for truncation cases, 0)2( =−=∆ µnwP . 

Remark:  One can use result from Section 3.3 to directly get equation (3-18).  For 

example, )2( nn xP =∆δ  can be calculated as the following.  Given xn, the total 

quantization noise at the slicer is )( nnn qwx +∆− which is small comparing with physical 

noise  vn; so according to equation (3-4), we get 
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where )( IPIP
nonnn wwxve −+= .  As the coefficient is not important in our calculation 

of steady state probability since they cancel out, this is equivalent to the corresponding 

part of (3-18).  

In fact, if |)(| IP
non wwx − is always less than b2

1
 ,  one can prove 

bp
ne =)0(IP  regardless of the distribution of )( IP

non wwx −  under the assumption vn is 

uniformly distributed.  Then (3-23) and the corresponding case of (3-18) are exactly the 

same. 

† 

Because now the MSE( nw∆ ) is proportional to the first order of quantization 

step, the decision errors in the preceding example are indeed hard decision-errors. 

Unfortunately, a general study of the gross effects of decision errors is not 

available and is certainly one of the most interesting topics for future research. 

Nevertheless, FFC can still be done with the presence of decision errors. The basic idea is 

to suppress their probability below some tolerance, which is very small itself. Section 3.5 

continues on this topic. 
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3.5 Application in Floating-point to fixed-point conversion 

3.5.1 General Analyses 

The accumulated quantization noise power MSE(q) is related to fixed-point data-

types, namely fractional word-lengths ,...W,W 2,Fr1,Fr and quantization modes ,..., 21 qq . It 

has been stated in (2-28) and restated here for convenience, 

 ,2CB  )MSE(
Data Path}{

2W ,Fr∑+=
∈

−

i
i

T iuuθ  (3-24) 

where, again, coefficients B is a positive semi-definite matrix, denoted as Bf 0, and Ci ≥ 

0. Vector u  is related to fixed-point data-types deterministically as shown in (1-4). 

These coefficients in (3-24) can be found using simulations in an FFC problem with 

careful setups of fixed-point data types. From (3-7) and the discussion in previous 

section, using large word lengths for the setups avoids strong decision errors in the 

simulations and leads to the coefficients in the same as described in Chapter 2. That is, 

when doing simulations to get those coefficients in (3-24), decision-errors can be ignored 

when word-lengths are chosen to be large.  

Furthermore, since weak-decision-errors can be neglected in both simulation and 

analysis, we just need to regulate the chance of strong decision-errors. The quantization 

effects further caused by a strong decision-error do not affect the system performance in 

an avalanche effect, because the IP system is tested to be robust under physical noise. So 

the probability of decision error at a strong decision-making block needs to be smaller 

than those caused by physical noise, which usually corresponds to BER specification, that 

is,  
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,))()(( BERxfxfP ⋅<≠ αIPSLFPSL  

where design parameter α is a positive guard fractional number. Substituting (3-7) into 

this inequality, we get 

.][)0( 2 BEREpx ⋅<⋅⋅ αθγ θ   

Here ][ 2θθE is the same as MSE(q) in (3-24) since the effects of previous strong 

decision errors, which happen at some sample-time long before, have faded away. 

Rewriting this equation, we get  

.))0((MSE 2

xp
BER

⋅
⋅< γ

α  (3-25) 

A stronger version of (3-25) is by substituting the fractional number γ by 1. Furthermore, 

px(0) can be directly obtained by estimating the probability of decision difference 

between the IP system and an otherwise identical system, but with an additive noise n of 

power MSEn added at the input of the decision-making block. Denote this probability as 

))()((  with IPSL IPSL xfxfP n ≠ , from (3-7), we get 

,
MSE

))()(()0(  with

nn

n
x

xfxfPp
⋅

≠=
γ

IPSL IPSL
 (3-26) 

where nγ depends only on the noise shape of n, as explained shortly after (3-7).  With (3-

26), the right side of (3-25) is completely determined, denoted as A; therefore, (3-25) 

reduces to .0MSE <− A  This condition, associated with (3-24), again gives a 

constraint function on FFC problem in exactly the same form of those showed in previous 

two chapters, where no decision-making blocks have been considered. Thus, with a 

condition for each strong decision-making block, the FFC problem is re-formulated in the 
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same form as stated in Section 1.3.5. The only change is some additional constraint 

functions. One BER type estimation is needed for each of this strong decision-making 

blocks—a very well-defined task. 

3.5.2 BPSK and CORDIC examples 

The first example of weak decision errors whose quantization effects can be 

neglected are those happened in a CORDIC system with large number of rotation stages 

[42][18]. In fact, the errors at CORDIC output caused by decision errors can be 

essentially bounded by the residue error caused by finite rotation stages—one type of 

architecture imperfection that vanishes as the number of stages becomes large [18]. 

Furthermore, these errors, as shown in Section 3.3, happen with very small probability. 

These two reasons ensure that the noise power at CORDIC output can be accurately 

predicted regardless of the possible internal decision errors [42]. 

 

Fig.  3-5 A BPSK system.  
The adders, filter coefficients and gain output of the root-raised-cosine filters, as well as 
ADC, suffer quantization noises. 

Second, we validate our central result (3-7) and (3-26) of this Chapter using the 

binary-phase-shift-keying (BPSK) base-band transceiver in Fig. 3-5. Two root-raised-
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cosine FIR filters, each with 23 taps, act as band limiter and matched filter, respectively 

[46]. The slicer, as a demodulator, makes decisions on transmitted data based on the 

signal polarity of its input. Fig. 4 shows that the probability of decision errors in FP 

system, calculated as a function of MSE of quantization noise using the (3-7) and (3-26), 

indeed agrees well with simulation results with various word length realizations of all the 

fixed-point operators in the system. 

 

Fig.  3-6 Calculated and simulated probability of decision errors for BPSK. 
BPSK Calculated curve is from (3-7), where γ =1 and )0(xp  is obtained from (3-26) with 
one BER type estimation using an additive i.i.d. sequence {0.1, -0.1} with equal 
probability.  

3.6 Summary 

Two examples were given to illustrate and support our analysis of the effect and 

probability of a decision error. Based on the result, we have extended the FFC 

methodology to include decision making blocks and decision errors due to quantization. 

It should be point out that the understanding of the effect of decision errors is far from 

complete, despite the efforts done here. Nevertheless, the categorization of soft and hard 
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errors in Section 3.4 and the continuation of FFC methodology in Section 3.5 partly 

enable us deal with them. 
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Chapter 4 
Automated FFC Tool 

This chapter explains a floating-point to fixed-point conversion (FFC) tool that 

has been implemented for digital signal processing and communication systems. This tool 

automates the floating-point to fixed-point conversion (FFC) process for digital signal 

processing systems. The tool automatically optimizes fixed-point data types of arithmetic 

operators, including overflow modes, integer word lengths, fractional word lengths, and 

the number systems. The approach is based on statistical modeling explained in Chapter 2 

and 3, hardware resource estimation to be explained in Chapter 5 and global optimization 

based on an initial structural system description. The basic technique exploits the fact that 

the fixed point realization is a weak perturbation of the floating point realization which 

allows the development of a system model which can be used in the optimization process.  

4.1 Introduction 
 

The advances of software and hardware co-design environments enable us to 

capture architectural information at an early design stage and conduct bit-true and cycle-

accurate simulations. The verified design can then be mapped to hardware automatically. 
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A number of platforms that are based on Simulink have been successful, targeting either 

FPGA’s, such as in System Generator from Xilinx, or ASIC’s. Fig. 1 shows such an 

algorithm description in both algebraic form and structural form that is implemented 

using System Generator blocks. If 32-bit word-lengths are specified throughout the 

design, the numerical precision is typically sufficiently high that the structural form is 

verified to perform the target algebraic functionality without errors from finite 

wordlength effects, i.e. it is essentially a floating point description. A resource estimation 

tool based on the Simulink description has been developed that automatically calculates 

FPGA hardware requirements, such as slices, used in the design. For ASIC designs, a 

similar tool could be developed which estimates the chip area requirements based on the 

number of cells used in the block realization. To reduce these hardware-costs, increase 

the throughput, and reduce power, one essential step is to optimize the fixed-point data-

types to use the minimum word lengths possible—the task of FFC.   
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Fig.  4-1 A simple algorithm in System Generator. 
(a). The algorithm in algebraic form; (b). A high-precision architectural version with the 
output of the hardware “Resource Estimator”. 

For many application domains and algorithms, high precision in the computation 

is wasteful and significant hardware reductions are possible. However, determining the 

minimum requirements through manual optimization is time-consuming and rarely 

optimal [13].  

Chapter 1 gives the motivation and briefly describes our methodology of an 

automated floating-point to fixed-point conversion (FFC) tool. Chapter 2 and 3 provide 

some novel analytical results originated at this purpose. This chapter illustrates in more 

details on how these results can be used collaboratively to an implementable automated 

FFC. As seen in Fig. 1, the designer inserts an FFC utility block, “Spec Marker”, from 

the FFC library into the system at critical nodes, which is used to enter user specifications 

(a)

(b)

)|)1(sgn(|)( π−−⋅= nxany
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of the system performance and the tool then automatically produces a system with 

optimized fixed-point data types. Though implemented targeting FPGA’s, the same 

methodology may be applied to other hardware, such as ASIC’s, provided a hardware-

cost estimator is available. 

Section 4.2 gives a more detailed review of existing techniques. Section 4.3 

describes our strategy with emphasis on the techniques used in improving efficiency of 

the automated optimization. Sections 4 and 5 compare the performance of this approach 

on several typical designs with previously described optimization techniques. 

4.2 Further review of the past techniques and our design environment 

4.2.1 Past techniques 

Section 1.3.1 briefly reviewed existing FFC techniques without exposing too 

many details. This is extended in this section as you have been more familiar with FFC 

by now. Those existing FFC tools [13-17] using normal C or C++ for simulation and 

system description take advantage of the higher simulation speed of these tools over 

graphical editors. To push this further, [49] developed new compiler to speed up the 

simulation. However, the disadvantage of sequential language such as C or C++ is their 

lack of support for architectural information of a system. As explained in previous 

chapters, architectural information affects the finite word length effects. So, considerable 

amount of efforts of these past techniques focus on developing the support for 

architecture information in C or C++. Yet some aspects of the system architecture are still 

very implicit. As a result, hardware-cost estimations become difficult. For example, the 

system in Fig. 1 includes a MUX that would naturally be implemented as an “if-else-end” 
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statement in C or C++. Yet, in most of the past techniques, this statement is modeled to 

take no hardware area; consequently, Mux’s are often modeled to take no hardware.  

Besides their simulation environments, the other common feature in the past 

techniques is how to determine the number system, the integer word length, and the 

overflow mode for each signal node. By extracting the signal statistics using simulations, 

the signal range can be predicted. Thereafter, the fixed-point data types are set to hold 

this range with high confidence. The most complete description of this method is given in 

[15]. Let’s explain this method from our optimization point of view stated in Section 1.2. 

In fact, if overflow happens frequently, these overflow errors that are large relative to 

quantization errors on the fractional part are likely going to cause system failing the 

constraints in equation (1-2). So, a simple method that prevents it is to separate this 

“avoiding overflow” constraint from the original ones. This action results some losses of 

optimality of the solution to (1-2). Later in robust optimization part of this Chapter, we 

are going to support this idea by arguing the loss of optimality is small.  

On the other hand, the past FFC techniques mainly differ on how the fractional 

word-lengths and quantization modes are determined. In both [13] and [14], no gross 

hardware-cost function are given nor mentioned. There, the FFC problem is not treated as 

an optimization explicitly. However, their implicit goals are to minimize all the word-

lengths at the same time. The task of minimizing multiple objective functions 

simultaneously is unrealistic unless the constraints are separable to constraints that each 

only depends on one variable. 
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Fig.  4-2 “Guided” FFC methodology [14] 
 

Fig. 4-2 summarizes the FFC methodology of [14]. There, one constraint function 

is assigned for each word-length in the following way. The input word-lengths are pre-

assigned, and the fractional part are set to be sufficiently large so that the local 

quantization noise power is much smaller than the one caused by quantization of the 

inputs.  These strongly decoupled constraint functions are always feasible and can 

minimize all word-lengths at the same time.  However, the gross quantization effects 

from these locally justified quantization sources altogether can still be much greater than 

the one induced by quantizing the input. Therefore, it is still necessary to have a final 

constraint on system performance, such as SNR or BER, as a function of all the word-

lengths.  This results a possibly unbounded number of iterations in [14]. 

In [13], some unjustified pre-assignments of date types on a set of selected signal 

nodes provide a number of constraint equations. The deterministic propagation 

methodology yields inequalities among the fractional word-lengths; for example, the 

fractional word-length at the output of a multiplier should be no less than the sum of 

those of the two inputs, while the output fraction word-length of a delay component 

should be no less than the input one.  Besides being overly pessimistically considering 

∆ due to input Q.N. ⇒ WFr 

+ ×
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quantization effects, this approach may result contradictive inequalities under the 

presence of feedback loops such as the one in an accumulator.  This is prevented in [13] 

by possible user interaction using engineering decisions, which causes undetermined 

design time and design efforts. 

 

Fig.  4-3 Adhoc search FFC method [15] 
 

Fig. 4-3 summarizes [15] and some other works published by Dr. Sung’s group. 

Similar approach is taken in other works such as [92]. The problem is formulated in an 

implicitly similar way as ours. However the lack of investigations on the closed form 

specification function and simulation efficiency limits their optimization algorithm to be 

heuristic and time-consuming search.  In addition, the Monte Carlo simulations among 

iterations can be inconsistent which adds further complications. Furthermore, their 

hardware cost function is manually input to the optimization scheme, and is lack of 

justification. 
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Fig.  4-4 Impulse probing method to get transfer functions [3]. 
 

Dr. Jain and his colleagues studied the wordlength optimization of linear filters 

[93][94]. Using either extensive specialized analytical result or guided simulations, the 

word lengths of constant coefficients instead of data path are optimized. [94] further 

extend the topic to integration with synthesis and layout tools to provide a total solution 

of FIR filter design, which is beyond the scope of this thesis. However, the FFC tools 

only work for part of LTI systems.  

In my master thesis [3], I proposed an automation using the same optimization 

point of view as (1-2) for linear-time-invariant (LTI) systems. Each quantization noise 

source on the LSB side is treated white, and uncorrelated to each other. The quantization 

Biquad filter 

Probe 
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noises from all different sources accumulate at the output through linear transfer function 

in frequency domain. We insert a test impulse input, called probe, to each quantization 

source and test the output response using an impulse response simulation; therefore, we 

can obtain the impulse response for each noise source automatically. And these impulse 

responses provide the transfer function in frequency domain. Being very efficient, this 

approach requires the system to be LTI. 

 

Fig.  4-5 A graphical translation method to find quantization effects [16]. 
This figure is copied from [16]. 

Recently, [16] proposes another interesting new method that is heavily analytical. 

It also assumes a quantization at the LSB side generates a white and uncorrelated noise 

source. This noise propagates in the system. If part of the system is LTI, the transfer 

function theory similar to the one in [3] applies. However, in stead of basing on 

simulations, a graphical translator is used to directly understand the structure of the 

system to obtain the transfer function. Furthermore, the method extends to non-linear 

systems that have no feedback loops by modeling that a quantization noise propagates 

through a system one operator after another without considering the possible correlations. 

The limitations in this approach are two folds: nonlinear systems with feedbacks are not 

modeled; second, the inputs of an operator may be indeed correlated to each other since 

they originate partly from the same quantization source earlier in the system. 
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 Finally many optimization procedures similar to [15] but with different 

optimization procedures are tested and compared in [17]. It appears from the comparisons 

that the most promising procedures are those based on simulation with the assumption 

that increasing word-length improves system performance and increases hardware-cost, 

but otherwise are unguided. However, as showed in one example 1 of Chapter 2, this 

statement is not always true, which shakes the foundation of these procedures. Another 

critical drawback of this method is the simulation time which can be unreasonably large 

for complex systems and thus sub-optimal solutions are often obtained. Furthermore, 

these approaches use a system description that doesn’t contain architectural information, 

which compromises their results, since the architecture-free high-level hardware-cost 

estimations are often very crude.  

As pointed out in previous Chapters, we will also use simulations to evaluate 

various sensitivities, but will use these results to develop a model of the system which is 

then used in the optimization problem (1-2). This allows us to dramatically reduce the 

amount of simulation required.  

4.2.2 Simulation environment 

We choose Xilinx System Generator embedded in Simulink as our system input 

and simulation environment. First, it is able to capture architectural information much 

better than any of the environments built in past techniques except for [3] where we used 

Simulink which is essentially the same as System Generator. This graphical input also fit 

seamlessly with Berkeley Emulation Engine (BEE) project [89] and Simulink to Silicon 

Hierarchical Automated Flow Tools (SSHAFT) project [56] in Berkeley Wireless 
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Research Center. BEE project starts from fixed-point system in System Generator; then it 

partition and map the system to multiple Xilinx FPGA chips for fast system emulation. 

At the same time, it can map the same system to application specific integrated circuits 

(ASIC) design. We believe designs of complicated systems should eventually be done 

completely by algorithm and system designers with understanding of hardware, whereas 

the rest of the implementation should be automatically done by design flows. Our choice 

of Xilinx System Generator is based on popular software Matlab and Simulink from 

MathWorks. This environment is often familiar to these high-level designers. 

Chapter 5 describes a tool integrated in Xilinx System Generator that can estimate 

high-level hardware-resource fast and accurately [60][64][91]. This estimation tool meets 

our needs for a hardware-resource estimator to retrieve hardware information 

automatically.  

Furthermore, Xilinx System Generator blocks allows a block to be simulated as 

either floating-point (double precision) system, full-precision fixed-point system, or user-

defined fixed-point system. By applying simple parametric changes, the system can act as 

any of the three systems. This feature basically accomplishes one of some major tasks in 

some past FFC techniques. Adopting it allows us to concentrate on other important 

aspects of FFC. 

Our choice of this graphical input environment just allows us to be concrete on 

the discussion in rest of the chapter, especially regarding the automation part of our 

methodology. We foresee no important technical difficulties to effectively implement our 

methodology in other environments, such as DSP Canvas [92] based on C++, SystemC 



 

 
98 

[61][79] based on C++, AccelChip [62] based on Matlab, Simulink itself, SPW DSP 

simulation environment [95] that is similar to Simulink, Ptolemy [96] from University of 

California Berkeley, and probably many others that I do not know. In fact, the 

methodology promoted in this thesis can almost be directly applied on them. 

Implementations of a system in some higher level languages among this list make the 

simulation and initial compilation of the system relatively faster since no graphical 

information needs to be supported, that is, architectural information needs not to be 

graphically displayed and maintained. This seems to promote this kind of environment 

over block-diagram based tools. 

However, graphical information shown in platforms such as Simulink helps to 

reveal the relationship between functional blocks, and becomes invaluable in maintaining 

the system. Furthermore, Simulink has the feature of using Matlab scripts to generate and 

modify a model [3]. All these features make Simulink as well as System Generator easy 

to use and to automate. The naturally hierarchical description of the system also makes a 

library approach easy as well. In my opinion, this is the best environment to demonstrate 

different FFC methodologies. The sister EDA tools associated with Simulink, some of 

which are developed inside Berkeley Wireless Research Center by my colleagues, further 

increase the value of implementing FFC in this environment. 

More detailed descriptions of System Generator and Simulink can be found in 

Chapter 5, Appendix C, and many of the references such as [3][89]. 
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4.3 Automation and Implementation of FFC 

Admitting that numerical simulations become slower using graphical editor for 

numerical simulation, our strategy concentrates on speeding up FFC by understanding the 

problem in three important aspects of optimization problem (1-2).  

First, we ensure complete design automation by obtaining direct access and 

control of the fixed-point data types of each block. Furthermore, we implemented the tool 

in such a way that minimal cares are needed from the floating-point system designers. 

That is, our FFC tool can read a design that is either completely fresh for optimization or 

with some parts already optimized. In addition, block grouping is supported and 

recommended for faster conversion. 

Second, we make efforts on understanding the hardware cost as a function of 

fixed-point data types and how to retrieve this information automatically. This becomes 

possible since the architectural decisions have been made, either permanently or 

temporarily, before FFC. 

Third, we make efforts on understanding the constraints as functions of fixed-

point data types, and how to retrieve this information automatically. This includes not 

only the relationships themselves, but also the choice of constraint functions. We will 

show some constraint functions are time-consuming to simulate or difficult to be treated 

as constraint functions or both, whereas some others are very easy to obtain. Good 

choices of constraint functions are essential for a fast and accurate FFC tool. 
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Fig.  4-6 Detailed FFC automation and design flow graph. 
The box with bold line shows the details of the tool. The section numbers in parentheses 
show the sections in which the corresponding topics are covered in detail. 

Fig. 4-6 shows the design flow graph of our FFC. In the following subsections, 

these aspects are address one by one; some other important but probably less novel 

considerations are also described here. 

4.3.1 Tool Infrastructure 

The first task of our FFC is to copy the floating-point system, possibly with fixed-

point parts, into a temporary prototype system. This ensures the consequent modifications 

from our FFC tool leave the original system untouched.  

Get WInt , o,  and n (4.3.4) Get WFr , (4.3.7, 4.3.8) 

One simulation & Range 
Detection (4.3.4) 

Simulations & 
data-fit (4.3.6) 

MSE coeff. (4.3.6) 

Pre-programmed optimization (4.3.7) 

Place Range Detector 
(4.3.4) 

Placing “Spec. Markers” 
(4.3.6, 4.3.9) 

Copy into fix-point prototype with spec. Marker (4.3.2) 

Keep existing data-
types (4.3.2) 

(4.3.3) block  
grouping 

Get signal 
statistics (4.3.4) 

Area estimation & 
data-fit (4.3.5) 

H.W. coeff. (4.3.5) 

Automated FFC tool ( 4.3) 

Structural floating-point system (4.3.1) 

Final fix-point system (4.3.9) 



 

 
101

Total automation of our FFC tool relies on complete accessibility and 

controllability of the Simulink model in Matlab environment. Fortunately, this is well 

supported by the Model Construction Command set, including commands such as 

find_system, set_param, get_param, add_block, delete_block, add_line, and delete_line 

[3][59]. With these commands, we can write scripts to sort out all the blocks in a system, 

to understand how blocks, lines and ports are connected, to set fixed-point data types as 

variables, and so on. In fact, an extension of using these commands is to modify the 

model architecture [3], which is beyond the scope of this thesis. 

Each block may have input and output ports. System Generator allows the user to 

specify the fixed-point data types of the output ports of most blocks with some 

exceptions; for example, a Delay block has its output data type follow its input data 

always. Some signals can break into multiple branches, each of which feeds into different 

blocks. It is possible that different branches of the same signal need different word-

lengths. This can be done by inserting a Quantizer block at each branch. Nevertheless, we 

ignore this dimension of optimization because cutting the number of independent 

quantizers is one key to speed up optimization. Thus, the output data types of all blocks 

fully characterize the fixed-point implementation of a system. For better controllability, 

we maintain this output data type information in a Matlab structure, named block 

structure (bs), with fields describing data types. Fig. 4-7 shows the Matlab initialization 

of one of the block structure. The “o_wf_master” field designates the fractional 

wordlength group to which the block belongs, and this is explained in Section 4.3.3.  
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Fig.  4-7 Initialization of the ith block structure in Matlab. 
% start Matlab comment for the rest of the line.  

4.3.2 Keep useful fixed-point information 

A floating-point system in System Generator contains many signals whose fixed-

point data types are already specified. As described in Chapter 2 and 3, we call them 

logic signals. As an example, Fig. 4-8 shows that the Select port of a 2-input multiplexer 

must be 1-bit unsigned, which must be specified in this way even in a floating-point 

system. No change is needed on these signal data types. Therefore, it is important for the 

block structure to remember the floating-point data types. Fig. 4-7 shows that the fields 

bs{i}.bh=blocks{i};  % blocks{i} is the handle of the i-th  
        % block after sorting bs{i}.range=[ ];  
        % block output range statistics. bs{i}.sign= [ ]; 
        % block number system. bs{i}.omode='s';  
        % block output overflow mode.  
bs{i}.qmode='r';    % block output quantization mode. bs{i}.o_wi= 
Inf;        % block output integer word length.  
bs{i}.o_wf= ['my_fxpt_o_wf_’  int2str(i)];  
        % block output fractional  
        % word length, as a string variable 
 
%% variables on the right side of the following expressions  
%% have been obtained using get_param( ) command 
bs{i}.old_sign= arith; % block number system in     
        % floating-point (flpt) system 
bs{i}.old_o_wi= w-wf-(arith=='s');  
        % flpt output integer word length 
bs{i}.old_o_wf= wf;   % flpt block fractional word length 
 
%% in word length grouping, the following variable indicates the 
%% master word length the current block is to follow 
bs{i}.o_wf_master='';% default is empty 
 
%% following variable determines whether the output data type in  
%% flpt version is to be used in the fxpt system. 
bs{i}.use_old=0;    % default is 0 as not to use flpt. 
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“old_sign”, “old_o_wi” and “old_o_wf” are used for this reason, and the old data type is 

used when field “use_old” is set 1. 

An analysis of the library blocks is therefore initially undertaken to define the 

obvious logical signals, but even some arithmetic signals, which have been pre-defined 

(such as those determined by availability of existing hardware) are also considered to 

have “fixed” data-types and left untouched. These signals can be simply tagged by the 

system designer, or configured through an additional rule, which for example may limit 

the signal data-types to be greater than a minimum value and when that minimum level is 

reached in the optimization are set to fixed status. The remaining signals are all 

considered “arithmetic” and subject to be changed freely by the FFC tool. 

4.3.3 Block grouping 

 

Fig.  4-8 Possible grouping rules for a multiplexer 
 

Section 4.3.4 will discuss how to determine the variables on integer sides, 

whereas Section 4.3.5, 4.3.6 and 4.3.7 concentrate on the fractional part. It turns out with 

all the efforts the optimization problem in (1-2) is still too complex, and it is generally 
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to be unsigned 
1 bit 
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necessary to reduce the optimization space. This is done by grouping some blocks 

together to have the same fractional word-lengths [15]. Fig. 4-8 shows that some signal 

ports can be grouped together quite intuitively. For example, we might want to force a 

Mux’s two signal inputs to have the same fixed-point data type, and so might be its 

output. This means the block in front of the two signal inputs and the Mux itself may be 

group together to have the same fractional word-length at their outputs, that is, they 

should have the same “o_wf_master” field. Grouping more blocks together can greatly 

reduce the optimization space in (1-2), leading to faster optimization. Table 4-1 lists the 

rules that we developed so far. The more rules are used, the faster FFC becomes, and the 

less optimal the resulted conversion becomes. Sometimes, we shall not group one block 

with others because the output feeds into many other blocks, which means the output will 

largely influence hardware cost and finite word-length effects. This observation is 

reflected in rule 1, 3, 5, and 6. 
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Table 4-1 Grouping rules 
*Rule 0 is always applied. 

One example of a rule specification is “rule=[1.1, 5]”, which means rule number 

1.1 and number 5 are to be applied. Refer [60] for block descriptions.  

Group inputs and outputs of Delay, Register (except for Reset 

port), Up sampler, and Down samplers 

0* 

Same as rule 2.1, but for Logical block 7 

Always group inputs of a Logical block 6.1 

Same as rule 1, but for Logical block 6 

Always group inputs of a Relational block 5.1 

Same as rule 1, but for Relational block 5 

Same as rule 2.1, but for Mux block 4 

Always group inputs of a Mux 3.1 

Same as rule 1, but for Mux block 3 

Group inputs and output of an Add/sub, unless its inputs are not 

grouped 

2.1 

Group inputs and output of an Add/sub, unless its two inputs are 

not grouped or its output is not connected to an Add/sub block 

2 

Always group two inputs of an Add/sub 1.1 

Group inputs of an Add/sub, unless anyone of them are inputs of 

5 or more blocks 

1 

Rule description Rule number 
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Before grouping a system automatically, we have to figure out the connectivity 

among functional blocks, where we differentiate blocks in a graphical editor as either 

functional or supportive. Fig. 4-9 shows a simple system with a Multiplier following an 

Adder. Both the Adder and Multiplier block are functional since they are essential to 

accomplish the desired signal processing. On the contrary, the Subsystem block and the 

associated In and Out blocks in Fig. 4-9 are just supportive and make the hierarchical 

description possible. In current Simulink environment, the only two other supportive 

blocks are From and Goto blocks, which are used to eliminate long wires in Simulink. All 

other blocks are functional. Finding the connectivity among functional blocks is basically 

to flatten the design hierarchy. This is important since grouping involves frequent cross-

references of adjacent functional blocks.  

 

 Fig.  4-9 Resolving block connectivity. 
 

Fig. 4-10 shows our iterative strategy on resolving functional block connectivities. 

Inside the loop, we exchange the connection information between blocks and between 

ports in supportive blocks. In this way, the supportive blocks are treated to be transparent. 

The iteration is completed when all ports know their adjacent functional blocks; then the 

Understand these  
two ports are connected 

Inside the subsystem 
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port information is saved into a subfield of “userdata” cell (cell is a Matlab data type 

[59])— “userdata.appendix”— associated with each System Generator block. “Userdata” 

is a standard variable supported for each block in Simulink. To prevent possible erasion 

of “userdata” created by floating-point system designer, the original data are obtained 

using get_param(.) command and saved in a subfield “userdata.backup_userdata”. 

 

Fig.  4-10 Algorithm to resolve functional-block connectivity. 
This is done by considering supportive block transparent. 

Once connectivity is resolved, the tool proceeds to grouping according to rules 

described in Table 4-1. Fig. 4-11 shows our grouping strategy. Each rule causes more 

blocks placed in the same group list. When all rules are done, the list is simplified to 

remove any redundancy in a group. Then a master cell array variable, called “wl_master”, 

remembers the blocks in each list (group), and the index of wl_master is written to 

Exchange port information inside 
structure-supportive block 

Exchange port information 
between input and output among 

adjacent blocks 

Ready—all ports know 
their adjacent functional 

blocks? 

Save port 
information connectivity 

resolved

YES 

NO 
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“bs{i}.o_wf_master”. Then, we can easily cross-reference the corresponding 

“wl_master” and “bs”. In the mask of System Generator block, we use set_param(.) 

command to set the fractional word-lengths to be a variable, named “my_fxpt_o_wf_i” 

and saved in “bs{i}.o_wf”. Thereafter, we may easily set the value for these variables in 

Matlab, and the system automatically uses their new values for simulation or hardware 

resource estimation. This accomplishes automatic control of system parameters to 

prepare the system for a large number of Simulations in the following few sections. 

 

Fig.  4-11 Grouping methodology. 
 

If yes, add these block handles into 
the group list maintained by each 

of these blocks 

Checking each functional block to 
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Ready all rules have 
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bs{i}.o_wf_master accordingly 
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NO 

Apply next grouping rule 
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The first step in Fig. 4-11 is called pre-grouping, which figures out who are 

interpreted as logical signals in a floating-point design. Table 4-2 shows our pre-grouping 

rules that are currently used. The last pre-grouping rule simply ignores those signals that 

already are of light weight in fixed-point data type. This is to catch some logical signals 

that other rules possibly missed. Furthermore, it appreciates floating-point designer’s 

decision on fixed-point data types of some of the signals.  

The next few sections explain how to determine the other fields in the block 

structure in Fig. 4-7. Once all the fields are obtained, we can again use set_param(.) 

command to substitute the variables, which are previously set in block parameters, to 

their final values and save the system as the FFC output fixed-point system as shown in 

the last step of Fig. 4-6. 

In summary, this Section discusses our strategy on managing system 

infrastructure related to FFC problem in System Generator and MathWorks environment. 

With proper modification, similar infrastructure and grouping rules can apply to other 

structural system descriptions. 
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Table 4-2 Pre-grouping rules to identify logic signals 
Refer to [5] for detailed description of the blocks mentioned above. 

4.3.4 Integer overflow 

As stated in below, we follow a strategy similar to those used in [14-17] to treat 

the fixed-point data types related to the integer part, comprising WInt, n (number 

systems), and o (overflow-mode). We briefly repeat the strategy and describe how to 

implement it in our environment. Finally we discuss its drawbacks. 

We assume overflow noises hurt the behavioral quality of the system so greatly 

that they should be avoided by all means. Monte Carlo simulations of the floating-point 

system with the input test vector provide a large set of data for each signal node. Based 

on these data we can record the maximum and minimum value and estimate the first few 

of its statistical moments. From these statistics and a few commonly encountered signal 

probability distribution functions, we can predict the signal range and determine the 

All signals that are less than 6 bits in floating-point design are considered 

optimized and thus stay untouched

Blocks connected to Inverter block, Slice block (with some exception), Bus 

Concatenator block, and Type Reinterpreting block, stay untouched 

Outputs of Relational blocks stay untouched. 

All blocks proceeding Enable ports, Mux Select ports, Memory address ports, 

and Register Reset ports stay untouched 

All Boolean signals stay to be Boolean 

Rule description 
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integer word-length accordingly by making it just large enough to cover the range. The 

number system is set to be unsigned if the signal is always positive, and otherwise signed 

2’s complement. If the maximum value occurred in simulations is within the predicted 

range, wrap-around mode is to be used for overflow; otherwise, saturation mode is used 

(as a confidence guard). In this approach, we implicitly assume that hardware-cost 

monotonically increases as WInt increases, as n switches from unsigned to signed for a 

positive number (because of one more bit needed for the sign), or as o switches from 

wrap-around to saturation (because of the extra logics needed). Consequently, we 

effectively separate all integer fixed-point data types in the optimization problem in (1) 

into independent optimization problems, each of which has the parameters related to only 

the integer fixed-point data types of one signal node. 

One way to calculate the statistics of each signal node is by saving all its 

simulation data to a Matlab workspace variable that is processed after simulation. This 

approach becomes infeasible because possibly thousands of signal nodes can produce 

millions to billions floating-point data in a long Monte-carlo simulation—impossible to 

store. The other approach is to do running average during simulations. We write a 

Simulink s-function block in C, called Range Detector. Once placed in a system and 

linked a signal node to its input, this block can do running-average estimation of the first 

four moments of its input during a simulation. Internally only the current averages and 

sample size—totally five double precision numbers—are saved for each of these Range 

Detectors during a simulation. Only at the end of a simulation, the final averages are 

saved to Matlab workspace as our estimations of signal statistics.  
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Using add_block(.) and add_line(.) commands, one Range Detector is 

automatically placed into the system after each block corresponding to each entry of the 

block structure defined in Fig. 4-7. A simulation with all these Range Detectors tells us 

the signal statistics. Because of the extra computations during a simulation with these 

Range Detectors, the simulation time is found to increase by up to 100%. However, 

because no iterations of simulations for range detection are needed in our algorithm 

showed in Fig. 4-6, this extra simulation time is acceptable.  

After the signal statistics are estimated, our FFC tool automatically removes them 

using Matlab delete_block(.) and delete_line(.) commands. Then the system is ready for 

connectivity resolving and grouping, as mentioned in Section 4.3.3.  

Once determined, these fixed-point data-type variables on the integer side are 

dropped out from the optimization problem (1-2). Then, (1-2) becomes 

. 0, ...) , , ; ,W ,(W 
     ionsspecificat subject to

...) , , ; ,W ,(W 
cost -hardware minimize

21Fr,2Fr,1

21Fr,2Fr,1HW

jqqS

qqf

j ∀<…

…
 (4-1) 

Before discussing how to determine the fractional fixed-point data types in next 

few subsections, we need to explain the drawbacks of the proceeding approach. First of 

all, overflow-free method is only sufficient, but not necessary, to ensure that the variables 

on the integer side in (1-2) do not violate the constraint functions. Thus, the proceeding 

method trades simplicity over design optimality. Second, a more serious problem is the 

impossibility to avoid overflow completely for many distributions such as a Gaussian 

whose range is the whole real axis. We may try to model the signal using distributions 
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that only have finite ranges. This barely transfers the previous difficulty to statistical 

modeling—we still need to use finite number of data to predict the range in the model. 

The built in fixed-point data-type propagation in [59] and [60] avoid this difficulty by 

deterministically propagating integer word-lengths. Unfortunately, this is often overly 

pessimistic. For example, in a least-mean-square (LMS) algorithm, the residue error 

signal is usually relatively small after the subtractor between desired signal and filtered 

input. Then, it is uneconomical to set the integer word-length of the error signal large 

enough to hold the maximum possible value based purely on integer word-length 

propagation. The situation becomes worse in systems with feedback loops and long data 

paths.   

Theoretically, the best method is to discover a simple enough relationship 

between fixed-point data types on the integer side and the constraint functions in (1-2), as 

what we are doing for fractional quantization noise in next few sections. An unsatisfying 

attempt in [3] assumes that an overflow noise hurts the system decision with certain 

average probability. Then we can link the bit-error rate requirement to the maximum 

probability of overflow incidence. Unfortunately, this “certain probability” is indeed 

unknown, system dependent, and difficult to simulate, which makes the approach 

impractical. 

In general, the overflow noise is statistically dependent on signals, which causes 

difficulties on noise modeling. The overflow noise may also be large compare to signal, 

which causes non-linearity effects. Finally, overflow noise comes with small probability, 

which makes digital simulation of its effect difficult. Therefore, we think it remains an 



 

 
114

open question for both theorists who want to model overflow noise and also for FFC 

designers who want to avoid long and numerous digital simulations. 

Nevertheless, in practice the method adopted in our FFC works well. The robust 

optimization part of Section 4.3.8 explains some fundamental reasons for this to be true. 

4.3.5 Analytical hardware resource estimation 

The most immediate task of the optimization problem in (4-1) is to find out the 

hardware-cost function, specification functions, and their relationships to WFr, defined as 

the vector [WFr,1, WFr,2, …]T , and the q-modes.  

Only one hardware cost function is to be minimized in (4-1).  This could be area, 

power consumption, power delay product, and so on. High-level estimations of hardware 

resources such as area, energy and delay have been studied extensively, as detailed in 

Chapter 5.  For system level optimization, it often suffices to adopt the approach based on 

parameterized library.  The area of each block in the library can be modeled as a function 

of parameters related to fixed-point data types as well as other important technology 

factors such as feature size and voltage.  Provided the architecture choice with all other 

parameters fixed, the area cost of a library block is uniquely characterized as a function 

of the fixed-point data-type parameters. The total area of the system can then be 

estimated as a sum of all the required blocks plus a certain routing overhead. This usually 

yields a hardware-cost that is a quadratic function of WFr,i with coefficient affected by qi, 

that is, 

.)()(H
2
1)( 0FrFrFrHW hWqhWqWWf TT ++≈  (4-2) 
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Chapter 5 describes my summer intern work at Xilinx, Inc. on developing a resource 

estimation tool in Xilinx System Generator environment.  Given a system designed in 

System Generator environment, the tool can estimate the hardware resource accurately. 

Each type of block associates with one Matlab function, written based on complete 

understanding on how the corresponding block hardware is designed in FPGA. Once the 

block parameters, such as its input and output fixed-point data types, are provided, the 

function can calculate the hardware resources efficiently. The tool considers both input 

and output data types because trimming effects can happen at placement and routing 

stage. This happens when part of the logics are eventually trimmed away since they are 

dangling. For example, when only the LSB of a multiplier is used, the multiplier is just an 

AND gate with all other logics removed at placement and routing. (This should happen at 

least for a good placement and routing tool.) The tool estimates hardware resources 

normally within seconds, which is several orders of magnitude faster than any previously 

existing method. The relative error comparing with final implementation is usually within 

5%. The tool has been included in version 3.1 of System Generator [60]. 

We use the proceeding tool to conduct experiments, and to function-fit the 

coefficients of f in (4). Here f is an affine function of H, h, and h0, and can be written as 

longlongFrHW H )( TWWf = , (4-3) 

where the long column vector Hlong captures all the independent entries of symmetric 

matrix H, vector h, and scalar h0, 
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So Hlong has dimension [(m (m+1))/2 +m+1]×1 where m is the number of word-length 

groups given in Section 4.3.3.  Wlong is the corresponding column vector formed by the 

quadratic and linear combinations of entries from WFr , as well as a constant for h0.   Let 

fHW,est(WFr) be the estimation using the tool, the relative error can be approximated as 

.Hˆ1                                

)H( 1                                
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With different realizations of WFr, we can obtain a stack of ,...)ˆ,ˆ(ˆ long,2long,1 WWW = . Suppose 

the relative error in (4-5) forms a Gaussian random noise, the maximum-likelihood 

estimation of Hlong then is given by the following least-square problem [63]: 

.Hˆ1  minimize
2long

Hlong

TW−  (4-6) 

Furthermore we want to keep monotonicity and non-negativity of fHW(WFr), " WFr ‘ 0, 

which means the minimization in (4-6) is subject to 
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So the estimation of Hlong becomes a Quadratic programming problem [63]. In Matlab, 

lsqnonneg( 1 ,ˆ TW ) solves it efficiently. 

Once the coefficients are estimated, we obtain an analytical quadratic hardware-

cost function fHW(WFr).  The quality of the model can by justified by plotting fHW(WFr) 

versus fest(WFr) for a number of new WFr.  Fig. 10 shows the plot.  It is evident quadratic-
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fit model works well.  On the other hand, if our model of fHW does not include the 2nd-

order term H (thus probably under-modeled), it becomes the so-called “linear-modeling” 

or “linear-fit”. Later in Section 4.5, Fig. 4-15 also shows much larger relatively errors 

using linear-fit.  In certain systems, these errors could be too high to validate the model.  

This justifies the completeness of quadratic hardware-cost model.  

One problem associated the hardware-estimation tool of Chapter 5 is the 

sometime long compilation time for each hardware estimation. When a large number of 

such estimations are needed, the total compilation time may become quite long. To 

minimize this problem, after the first compilation, a Matlab script is specially generated 

using “printf” command, which list all the Matlab functions to be used for hardware-

estimation and use variable names as their input arguments. In any subsequent hardware-

estimation, the variable values are changed and this script is directly called to estimate 

the corresponding hardware-cost. This arrangement eliminates most of the compilations 

and leads orders of magnitudes of simulation time for hardware-cost estimations. 

Although we use FPGA resource as the hardware function in (4-1), the approach 

applies to other functions and to ASIC designs as well. It is therefore only a 

demonstration of the feasibility of having high level hardware cost as function of fixed-

point data types. 

4.3.6 Analytical specification functions 

To solve the optimization problem (1-2) and its simplification (4-1), we need to 

repeatedly verify the constraint functions. This is normally done using digital 

simulations. The cost associated with these verifications can be summarized as 
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    Simulation time = number of optimization iterations ä  

             simulation time for each optimization iteration. (4-8) 

A successful FFC requires total automation; so other simulation cost includes the 

time to prepare the design automation such as designer’s coding time. These additional 

costs are not considered here. In this section, we find the ways to get less simulation time 

by reducing each of the two terms on the right side of (4-8). 

4.3.6.1 Directly use the difference as specifications  

Two most common specifications used in communication systems are signal-to-

noise ratio (SNR) and bit-error rate (BER). Unfortunately, blindly adopting these 

specifications may result intolerably long simulation duration for a reliable conclusion.  

Any Monte Carlo simulation only provides finite number of data to estimate a 

statistical quantity based on a model on probability distribution function (PDF).  In 

statistics, the estimation uncertainty due to finite sample size has been well-studied using 

two dual methods—confidence interval and hypothesis testing [3][48]. For example, we 

model bit errors of a communication system as a Poisson process, and denote an 

estimation of the true BER as BER . The estimation uncertainty is denoted as an interval 

around the estimated value 

    ]BER),(BER ,BER),(BER[ ⋅+⋅− αα NaNa , (4-9) 

where a is a positive fractional number that is a function of simulation sample size N and 

confidence level 1-a. Roughly speaking, from an estimation based on N samples, with 
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probability 1-a, the true BER is within the interval given in (4-9). With large sample 

approximation,  

    2
2

BER
14

a
kN

⋅
⋅≅ α , (4-10) 

where αk  is the α
2
11−  quantile of a normal distribution [3]. The inverse relationship 

between N and BER, as well as a2, results a potentially very large sample size. In the 

optimization problem (4-1), this kind of simulation needs to be iterated many times, 

which could be too long to be acceptable [15]. 

Example 1. If a confidence level=0.95 (so αk =1.96), BER= 2ä10-4, and a= 0.05, 

(12) gives the sample size about 7ä106; that is, about 1500 errors need to occur to ensure 

the small 0.95-confidence interval of [1.9ä10-4, 2.1ä10-4] given in (11). Hypothesis 

testing yields similar conclusion [3]. This large sample size could be very slow to 

simulate in Simulink environment for a relatively complicated system. For example, a 

binary-pulse-shift-keying (BPSD) system introduced later in Section VIII takes about 8 

hours to obtain 2ä106 samples at the output for each simulation. 

É 

In an optimization scenario, even more samples for each simulation are necessary 

to compare the performances of two realizations of the same system. The two realizations 

can either be floating-point and fixed-point, or be both fixed-point. The comparison is 

used to judge if a parameter change makes the system perform better or worse. 

Confidence levels that are too large to reveal the performance difference may result either 
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wrong decision or wrong suggestions for the subsequent parameter change. Therefore, a 

very small confidence interval may be necessary.  

Example 2. Continuing Example 1, suppose that two fixed-point realizations of 

the system above have true BERF = 2.01ä10-4 and BERF’ = 2.02ä10-4. In order to make 

sure unprimed fixed-point system performs better than the primed system, one needs a 

much smaller a as small as 2.5ä10-3 for each estimation, or [2.005ä10-4, 2.015ä10-4] and 

[2.015ä10-4, 2.025ä10-4], separately; otherwise, the two confidence intervals overlaps. 

This corresponds to 2.8ä109 samples in (4-10) for both simulations. 

É 

To alleviate this situation, we directly measure the system degradation caused by 

fixed-point implementation. This is done by finding the difference at the system output 

between a fixed-point system and floating-point system under the same input signal. This 

difference is solely caused by quantization noises occurred in the system. In this way, we 

avoid the intermediate estimation errors that can easily be so large that the degradation 

caused by fixed-point implementation is covered. Example 3 below shows the saving by 

direct measuring the difference. 

Example 3: Continuing Example 2, we directly measure the errors due to 

quantization noises. Assuming these errors are independent to floating-point errors 

(strictly speaking this is an over-simplification), the BER’s due to quantization noises are 

0.01ä10-4 and 0.02ä10-4, respectively. To tell the unprimed system is better, we need the 

accuracy on BER estimation again better than 0.005ä10-4. But we only need a about 0.5 

and 0.25 for the two simulations. From (4-10), we need 1.4ä107 and 2.8ä107 samples, 

separately. This is two orders of magnitude saving from Example 2.  
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É 

The three examples shows that direct measuring the difference due to quantization 

noises may saves us a lot simulation time. The same argument applies on other statistical 

specifications such as SNR.  

We use mean squared error (MSE) to abstract the difference between floating-

point system and fixed-point system, denoted as MSE(flpt-fxpt). This difference is due to 

quantization noise. Because MSE of a random variable is 0 if and only if the variable is 0 

with probability 1 [48], MSE qualifies to reveal the difference. For example, we check 

the MSE(flpt-fxpt) after the slicer of a BPSK communication system. The slicer produce 

decisions of either 1 or -1 in both systems; so flpt-fxpt at this node is either ≤2 when 

error happens, or 0 when no error happens. Let p be the probability of an error occur at a 

time, then 

MSE (flpt-fxpt) = (≤2)2 p + 02(1- p) =4p.  (4-11) 

So MSE(flpt-fxpt) after the slicer is just equivalent to direct measuring the BER. 

As a specification, we set the difference between floating-point system and fixed-point 

system much smaller than other degradations at this node that is not controllable at FFC 

stage,  

MSE (flpt-fxpt) at a node << noises due to other sources. (4-12) 

Some sources for these additional degradations are physical noise from channel, 

physical noise from analog part, and architecture limitations such as circuit 

approximation for square-root operation. These sources are present for the floating-point 

system, and cause communication errors even for the floating-point system. In our 
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approach, we always consider fixed-point implementation an approximation of the 

floating-point system. This idea is stressed in the formulation in (1-2), where we consider 

system behavioral performance higher priority, and hardware-cost secondary; therefore, 

we never want fixed-point non-idealities to be the primary source of the system 

performance degradation. On the other hand, we do not consider how to design a fixed-

point algorithm directly. Examples of this direct approach include designing a finite-state 

machine and a communication source coder. In these designs, direct abstract (or Boolean) 

algebra are used even at the algorithm level.   

4.3.6.2 Measure the difference at the right places 

Example 1 in Section 4.3.6.1 shows that measuring MSE(flpt-fxpt) after a slicer is costly. 

This is because the probability of noisy events (errors here) is low. Chapter 3 shows that 

not all signal nodes are suitable for MSE estimation. Furthermore, Chapter 3 links the 

MSE(flpt-fxpt) after decision-making operators to the MSE(flpt-fxpt) in front of the 

operator. And the latter MSE become very easy to simulate.  

Even more essentially, the perturbation theory of Chapter 2 allows MSE(flpt-fxpt) 

after arithmetic operators to be written as an explicit function of fixed-point data types in 

the system, which is further illustrated in Section 4.3.6.3.  

4.3.6.3 Perturbation theory provides valuable information 

An innovative perturbation theory has been developed in Chapter 2.  With the 

widely used theoretical models of quantization noises, a specification function telling the 

difference between the floating-point system and fixed-point system can be written into 

closed form 
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where ei’s are constants and M  is a constant column vector, the ith entry of vector u is 

given by (1-4). Moreover, this perturbation theory works on general criterions and even 

non-stationary input, as long as they can be represented as large ensemble averages of 

functions of the signal outputs.  

Following the perturbation theory, we also get 
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where B is a positive semi-definite matrix, denoted as Bf 0, and Ci ≥ 0.  This has been 

stated several times in previous text due to its importance. 

Now we safely reduce the FFC problem (4-1) to 
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Here vector u  is defined in the same way as before, and Ak is the tolerance of the kth MSE 

error.  The problem is feasible because as all WFr’s increase, the left sides of the 

constraint functions asymptotically converge to -Ak’s which are always less than 0.  

Physically, it means the fixed-point system becomes infinite precision. The number of 

simulations is significantly less than unguided characterization in which the form in (4-

14) is not assumed. 
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4.3.6.4 Use ergodic average rather than large ensemble average 

A statistical quantity of an output at time n can be estimated based on large 

ensemble average. That is, we run the simulation M times with different random seeds 

and same statistics to generate input data, and use all the M output received at time n to 

estimate the mean squared error. Though this approach is theoretically accurate to 

estimate the expectation function, it requires too many repeated simulations. Its 

simulation time for each optimization step is  

Simulation time for M ensembles =Mä (preparation time for each simulation  

        +  n ä time to get one output sample), (4-16) 

where the preparation time for each simulation includes time for the simulation 

environment to compile the system. This compilation alone takes seconds to minutes. 

Currently, Simulink may take up to minutes to compile a large system, due to its support 

to process graphical information. Quite often, a random process at the output that is 

locally stationary; then, we can use ergodic average—an average based on different 

output samples in one simulation—to estimate the ensemble average [48]. For each 

Monte Carlo simulation, we have 

Simulation time for iteration = preparation time for each simulation +  

              (n+M-1) ä time to get one output sample, (4-17) 

and the samples between time n to n+M-1 are used for the estimation. This potentially 

saves simulation time by additional orders of magnitude over (4-16). Our tool uses this 

approach to save simulation time.  

In summary, in Section 4.3.6, we adopted multiple ways to make the verification 

of constraint function faster. First, we argued that measuring the performances of 
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floating-point system and fixed-point system separately is costly, whereas direct measure 

using MSE(fxpt-flpt) is suggested. Second, simulation error after decision-making 

operators is too costly to measure, whereas errors after arithmetic operators are faster. 

Third, based on perturbation theory, we limit the number of Monte Carlo simulations. 

Finally, we argued large ensemble average is too costly, whereas ergodic average is 

faster. All the efforts make the verification efficient. 

4.3.7 Optimization step 

4.3.7.1 Simplifications 

The inclusion of binary round-off mode qi in problem (4-1) makes the problem 

intractable with the understanding of the problem. First, the hardware cost function in (4-

2) may have very complicated relationship with qi, and it is a combinatorial problem to 

reveal this relationship. Second, according to (4-14), we need the number of digital 

simulations quadratically proportional to the word-length group size if qi are taken into 

account, rather than linear relationship otherwise. Third, even with all the functions 

extracted in (4-15), the problem is still combinatorial, and is very challenging to solve. So 

in the rest of this chapter, it is assumed that roundoff modes are used everywhere.  

The preceding simplification implies u i = 0 for i œ {datapath}. Furthermore, 

since pre-grouping of operators is done to reduce the number of simulations in Section 

4.3.3, many constant inputs are often grouped together.  These multiple quantization 

sources in each of the constant-group altogether behave similar to a random noise with 0-

mean and variance proportional to 2-2×WFr.  Assuming such 0-mean “noises” from 
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different constant-groups are uncorrelated to each other, the optimization frame work in 

(4-15) can then include constant-groups similar to data-path quantization noise.  That is, 

K1,2,....,;,...,2,1 0; and 0,C  
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It should be pointed out that all the groupings are done automatically if the structural 

information of the system is provided, as shown in Section 4.3.3. Therefore, no ambiquity 

arises in the definition of index i in (4-18) as it is just an ordering of all the word-length 

groups.  The dimension of k, denoted as K, specifies the number of critical nodes to be 

examined for MSE specifications, which is usually less than 100. 

4.3.7.2 Fractional word-length optimization 

The constraints of problem (4-18) represent a joint set of sublevels of exponential-

sum convex functions; thus it is a convex set.  So if the Hessian H of the quadratic 

hardware-cost function is positive semi-definite, (4-18) would be a convex optimization 

problem [63].  Unfortunately, H is usually not positive semi-definite.  An easy counter 

example is a multiplier of input W1 and W2, and output W1 + W2.  The hardware-cost is 

approximately proportional to 21WW , or  
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which gives a Hessian that has negative determinant and not positive semi-definite.  

Therefore, in order to proceed using convex optimization techniques, an approximation 

of the objective using a convex function, such as an affine function, is needed. A local 

affine approximation of hardware cost function after grouping is used here for this 

purpose. So, (4-18) is broken into external iterations based on the inner update as convex 

optimization. Finally, we address the complications caused by integer constraints of WFr; 

this can be done by using ceiling(WFr) as the result, and then individually adjust each 

component of the result to see whether any of them can be reduced.   

Based on the previous arguments, we can the following algorithm 

1.  Find an initial feasible WFr by noticing 
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3. Use Mosek function mskscopt(.) to solve the convex separable problem [21].  

Once the new ii WW ,0Fr,0Fr ∆+  is obtained, update it as the new iW ,0Fr . 
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4. Repeat step 2 and 3 until the optimal objective value no longer increases by 

more than 0.1 slice, or until the iteration number exceed 100 (stopping 

criteria). 

5. Use ceiling( iW ,0Fr ) as the integer solution.  Then try to decrease any of these 

m values by one bit; choose the one that decreases f the most while still 

satisfies the constraints. 

6. Repeat 5 until any bit-reduction of iW ,0Fr makes the constraints infeasible.  

 

Applying this algorithm on several systems, it is found that step size µ being too 

large (> 5) or too small (< 0.2) results large number of iterations.  By choosing µ from 1 

to 2, the iteration process in step 4 usually finishes in less than 10 iterations, with each of 

them done in a few seconds. 

On the other hand, we also found that since the number of word length groups is 

usually less than 50, so that the procedures in [15] or [17] are usually sufficiently fast. 

That is, the optimization algorithm to solve (4-18) is not essential since the problem has 

been understood very well using all the results that have been developed so far. 

4.3.8 Robust optimization 

So far, we have strived to make the FFC fast and, thus, practical. We use 

functions to represent hardware-cost and constraints, and also limit the optimization 

space using grouping methods. Meanwhile, we also try to keep the simplifications 

accurate enough so that our optimization result reflects the true optimal design choice. 

However, any simplified modeling inevitably introduces errors. Therefore, it is 

important to understand these errors and make the optimization robust. 
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Given the relationship between MSE and WFr about m experiments are enough to 

fit the m×K coefficients Ci,k’s.  Either due to estimation error or under-modeling of MSE, 

such as various simplifications in Section VI, an estimation of Ci,k is given by a range 

[Ci,k,lower , Ci,k,upper] Õ R+ , and the interval size depends on the confidence of estimation of 

Ci,k.  The design of WFr should satisfy (4-18) for any Ci,k œ[Ci,k,lower , Ci,k,upper].  Thus, it 

quickly reduces to the following robust version 
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The algorithm remains almost the same as in (4-18) except for the replacements of Ci,k’s.  

So the procedure in Section 4.3.7 still applies. Because of the exponential relationship, 

the optimal wordlength design increases only about 1/2 log2(Ci,k,upper/ Ci,k), so that word 

length optimization is quite insensitive to MSE estimation errors. 

4.3.9 User interface 

In addition to the Range Detector and Spec Marker blocks that are implemented 

as Simulink library blocks, the rest of the tool is fully implemented as Matlab functions 

that realize each proceeding subsection of Section 3 in a pre-programmed flow. The user 

places Spec Marker(s) into the high-precision system and specifies the performance 

levels, and then the tool will execute all the functions in Fig. 4-6 and output the optimal 

fixed-point design.  
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Occasionally, MSE becomes a poor way to approximate a specification. For 

example, the regulation on off-band transmitting power of a radio often translates to the 

requirement that the digital filter in the transmitter needs to satisfy a specification on the 

maximum side-lobes of its frequency response. Therefore, there is an option of Spec 

Marker to choose as a specification function using customized Matlab functions. In this 

case, convex optimization method as described in Section 3.7, often can not be used. 

For systems with non-stationary inputs, the program monitors the MSE at each 

Spec Marker at different times. There will be a specification level corresponding to each 

time. So, (4-19) retains its format, but with more constraints.  

Finally, for comparison purposes the tool can also easily provide the capability of 

using a pure-simulation-based approach, similar to those in [15]. That is, no analytical 

hardware-cost function and constraint functions are drawn. However, it still takes 

advantage of the discussions in 3.6.1 and 3.6.4, as well as 4.3.2 and grouping method in 

4.3.3. 

4.4 Applications 

4.4.1 Simple binary phase shift keying (BPSK) transceiver 

The first system that is automatically converted is a BPSK transceiver system 

mentioned earlier in Chapter 3. By applying robust optimization, one obtains the final 

conversion result in about 5 minutes, with only 265 FPGA slices, as shown in Fig. 4-12. 
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Fig.  4-12 BPSK communication system in System Generator. 
 

4.4.2 U-Sigma block of singular value decomposition (SVD) system 

The second system is a SVD-USigma system used in multi-carrier multi-antenna 

system.  This system is nonlinear with feedbacks.  Fig. 4-13 shows the system. It takes 40 

minutes to FFC, and most time is spent on running the m simulations in Section VI.  The 

converted system takes 1704 FPGA slices, which is about 5 times smaller than previous 

known result of about 8800 slices obtained by floating-point designer with hand-tuning 

[70].  Fig. 4-13 (b) and (c) show that the convergence behavior of the fixed-point system 

does not change much from the one in floating-point system. 
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(a) 

 

  (b)       (c) 

Fig.  4-13 SVD algorithms 
 (a) SVD U-sigma block with 1704 slices. (b) Eigen-value tracking versus time of the 
floating-point system to be converted. (c) Eigen-value tracking versus time of the fxpt 
system. 
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4.4.3 Ultra-wide band (UWB) baseband implementation 

The third system converted is an ultra-wideband system designed by UWB 

subgroup at Berkeley Wireless Research Center [71].  This is a complicated system 

contains about 2000 arithmetic and logic units.  The system has been hand-tuned to take 

6695 slices in fixed-point implementation. The FFC tool works on this partly optimized 

system and produces a version of 4610 slices.  Not much improvements can be done over 

the original system since on average only 2~3 slices per unit are consumed. 

 

Fig. 4-14 Ultra-wide-band (UWB) baseband  
This UWB system contains 16-tap matched filter and 7-entry PN sequence. Right bottom 
is PN sequence generator; upper right shows control units.  10 specification markers were 
inserted as shown in red give the constraints. 

The conversion takes about 2 hours.  Some final tests on the converted fixed-point 

system show its matching performance to the original system. 

In Table 4-3 the results for the three systems are summarized. 
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Systems: SVD-Usigma UWB BPSK 
Transceiver 

Direct system 
specifications 

Eigenvalue 
convergence 

Detection error and 
BER BER 

FPGA slices of 
hand-tuned 
system  

8858 6695 N/A* 

Number of 
MSE Spec. 
Markers 

1 10 1 

MSE spec 
levels 0.1 4äones(1,10) 0.0005 

Grouping rules [1.1 2.1 3 4 5 6 
7] [1.1 2.1 3 4 5 6 7] [1 2.1] 

FPGA slices of 
the system after 
FFC 

1704 4610 265 

FFC duration 40 minutes 2 hrs 5 minutes 
Table 4-3 Summary of the three systems that are FFC’ed 
*The fixed-point data types in the system are not hand-tuned before automated FFC; so, 
no information available. 

4.5 Comparison with existing techniques 

This section compares the FFC tool with those techniques that are based on pure-

simulation. The FFC techniques are superior to other existing tools because of its more 

general applicability and due to the improved optimality obtained [17]. 
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Fig.  4-15 Hardware-cost using various models for the estimate.  
The curve shows that a quadratic model is adequate for the BPSK transceiver in Section 
4.4.1 (a) using quadratic-fit as proposed in this section, or (b) no 2nd-order term H is 
modeled—so called linear-fit. 
 

First of all, our tool uses accurate resource estimation instead of handwritten 

linear hardware model that is used in all previous techniques. Fig. 4-15 shows that a 

linear model can differs greatly from actual the hardware-cost, while a quadratic model is 

quite accurate. Furthermore, since existing techniques that do not start from a structural 

description often do not model the hardware required for blocks such as a MUX, they 

suffer significant modeling errors.  

Second, using simulation based FFC, but without adapting our techniques 

discussed in Section 4.3.6, the conversion becomes often intolerably long. Even using the 
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ergodic approach described in Section 4.3.6.4 does not make it acceptable. For example, 

for the relatively simple BPSK system in Section 4 that has BER=0.00078 in the floating-

point design, and a target BER=0.00085 for the fixed-point, each BER simulation take 

hours to finish. The iterations needed for optimization would further prolong the 

conversion time. In fact, without using the methods in Section 4.3.6.1, 4.3.6.2 and 

4.3.6.3, to finish the conversion listed in Table 4-3 for the BPSK system would take at 

least 7 days, which is 103-104 times slower than our proposed method.  

Even by further adopting part of our techniques in Section 4.3.6 to avoid BER 

type of simulation—using MSE(flpt-fxpt) as a direct measure of fix-point system 

performance, existing techniques are still at least 5 to 6 times longer. This is because the 

number of simulations in any unguided optimization is at least 5 or 6 times the number of 

independent wordlength groups, denoted by m [15], while the FFC approach described 

here only requires approximately m simulations to characterize all the specification 

functions.  

Finally, since the tool first completely characterizes the hardware functions and 

specifications, optimizations against different specification levels just repeat the 

optimization procedure, which is usually performed in seconds. Therefore, it becomes 

straightforward to produce curves such as shown in Fig. 4-16 in which the hardware cost 

versus specification can be clearly presented. 
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Fig.  4-16 Hardware-cost and specification trade-off for the SVD U-sigma. 
The system is described in Section 4.4. 

4.6 Summary 

A comprehensive automated approach for floating-point to fixed-point conversion 

(FFC) has been presented. With tens of thousands of lines of Matlab codes as the 

underlying engine, an implementation in a self contained tool in the Xilinx System 

Generator and Mathworks Simulink environment has been developed and the application 

of this tool to several real designs has been presented. Hardware-cost information has 

been modeled and a perturbation approach to determining the specification sensitivity has 

been implemented and found to give orders of magnitude in speedup over our simulation 

based techniques. The tool uses FPGA’s as the hardware model merely to demonstrate 
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the feasibility of our methodology, but a similar approach would apply to ASIC designs 

as well. The essential step is to obtain an accurate model of the hardware-costs.  

Our goal is not to find the last few percent improvement of objective function in 

(1-2), but is to quickly and intuitively determine the data type. Our efforts on 

understandings of specifications and hardware cost functions shows one promising way 

to attack this problem, which we hope to inspire similar approach on other design and 

verification problems, such as architecture and algorithm design.  On the other hand, it 

is important to understand the “loss of optimality” by doing robust optimization. 

A few open questions are explained. More strict treatments on the integer side can 

be valuable. Moreover, the combinatorial optimization problem associated with 

quantization-modes, which may also be chosen from truncation-mode and round-off 

modes, also needs further studies. They are emphasized again in Chapter 6. 
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Chapter 5 
FPGA Hardware Resource Estimation 

Section 4.3.5 of Chapter 4 mentions the usage of a hardware-cost estimation tool 

to solve the FFC optimization problem (1-2). This tool is the topic of this Chapter.  

When a system is mapped to Xilinx FPGA chip, the consumed slices, LUTs, 

Block RAMs, Virtex-II embedded multipliers (when applicable), flip-flops, tri-state 

buffers and IOB counts are referred as its hardware resource information. Existing 

hardware resource estimations suffer either inaccuracy, slowness or high complexity. A 

strategy of fast hardware resource estimation in Xilinx System Generator environment is 

proposed in this Chapter, and is implemented purely in Matlab and Simulink 

evnironment. Only the pre-netlisting Simulink compilation is required to prepare for the 

estimation, and each estimation typically takes only seconds or a few minutes. In our 

verifications, every aspect of the resource estimation agrees within 10% from the map 

report. The resource information of each System Generator block is characterized into a 

Matlab function, based on the understanding of IP-core design, as well as the 

considerations of the trimming effects from the subsequent synthesis tool and mapper. 

Finally, it is explained how these functions get integrated together with Similink to form 
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a user-friendly and automated infrastructure. This estimator has been included in System 

Generator since version 3.1. 

5.1 Introduction 

Field-programmable gate arrays (FPGAs) have become increasingly important in 

implementing digital signal processing (DSP) systems such as digital communications, 

and multimedia. On an FPGA chip, the following basic resources are normally available 

to realize a system: slices which contains look-up tables (LUTs) and flip-flops (FFs), 

block memories (BRAM), tri-state buffers (TBUFs), In and Out bonds (IOBs), and 

dedicated 18x18 multiplies (currently available for Virtex-II chips). A top-down design 

methodology has been recognized to dramatically speed-up the design process without 

substantially compromising the performance of the hardware implementation. In fact, 

together with high level hardware-cost estimation tools, the top-down design flow opens 

the possibility of global optimization at the system level, which often leads to even more 

hardware-efficient designs. Our FFC strategy is one excellent example in this trend. 

FPGA resource usage, as one type of hardware-cost (others are like critical path delay or 

active-power consumption), is particularly important when the goal is to find the best 

behavioral system performance (such as signal-to-noise ratio) while fitting into a specific 

chip, or when the goal is to find the lowest resource meeting a performance specification. 

As another example, it is sometimes necessary to partition a large system to multiple 

FPGA chips, which requires estimations of the resources for sub-systems. An 

optimization process further requires numerous iterations of resource estimations. This 

motivates a fast resource estimation tool at high level.  
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Among many available CAD tools, System Generator1 [60][91] for DSP is a 

successful example for modeling and designing Xilinx FPGA-based signal processing 

systems in Simulink and Matlab2 [59]. Section 5.2 starts by providing some necessary 

information of System Generator environment. Then it proceeds to introduce some 

existing or possible resource estimation methodologies, followed by a proposal of our 

method. In our method, only the Simulink compilation stage is needed for each estimate. 

Our method differs from existing ones in that it requires complete understanding of how 

the IP-cores are designed. Furthermore, it predicts those logics that are trimmed away by 

synthesis tools and mappers. What is also covered is the topic of how the methodology 

can be integrated with Simulink GUI and Matlab command line to form a user-friendly 

infrastructure, which enables estimation for selected parts of a system. Section 5.3 

validates the fully implemented resource estimator by studying the estimation results of a 

couple DSP designs. A few possible future developments are summarized in Section 5.4.  

5.2 Resource estimation in System Generator 

Our resource estimation is implemented in the System Generator design 

environment that is described in Section 2.1. Though the methodology is portable to other 

platforms, the architectural description of a DSP system, as System Generator does 

naturally, is indeed necessary for accurate estimation. 

                                                 
1 System Generator is a registered trademark of Xilinx Inc. 

2 Simulink and Matlab are registered trademarks of Mathworks Inc. 
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5.2.1 System Generator design environment 

At simulation level, System Generator for DSP maintains an abstraction level 

very much in keeping with the traditional Simulink blocksets, but at the same time 

automatically translates designs into hardware implementation [60][91]. The system 

model and hardware implementation are bit-true and cycle-true. Besides some 

synthesized blocks, the implementation is also made efficient through the instantiation of 

high-speed and area-efficient intellectual property (IP) cores that provide a range of 

functionality from arithmetic operations to complex DSP functions. In System Generator, 

the capabilities of IP cores have been extended transparently and automatically to fit 

gracefully into a system level framework. For example, although the underlying IP cores 

operate on unsigned integers, System Generator, through the so called wrapper logics, 

allows signed and unsigned fixed point numbers to be used, including saturation 

arithmetic and rounding. While providing functional abstraction of IP cores, the System 

Generator blocks also provide the FPGA-literate designer access to key features in the 

underlying silicon, which is often necessary to achieve the highest performance 

implementation in an area-efficient manner. For example, the System Generator 

multiplier block has an option to target embedded high-speed 18x18 multipliers in the 

Virtex-II family of FPGAs. 
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5.2.2 Resource estimation methodologies 

 

Fig.  5-1 Resource estimation methods 
 

The hardware resource information can be exactly retrieved from the post-

placement-and-routing map-report.  As shown in Fig. 5-1, the hardware resource 

information of a model can only become available after Simulink compilation, Netlister, 

IP-Core generation, synthesis and mapping stages.  The whole process can take minutes 

or even hours, depending on the size of the system. 

Fig. 5-1 also shows an estimator can simply sum the resource information 

available at each core after core-generation. However, the method becomes slow—often 
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only a couple times faster than to map-report method. Also, all the synthesized logics 

other than the IP cores are not considered, making the result inaccurate as well. 

Several possible ways can be done for the pre-netlisting resource estimation. One 

of them is to build a database, listing the resources given all the possible combination of a 

particular block. Each entry of in the database is obtained by a complete design 

experiment. However, an initial implementation3 of this methodology shows that many 

blocks involve too many combinations that the tests may easily takes months or more of 

computing time to complete. Even when this done, the database for some blocks may 

consume hundreds of Megbytes and is no longer practical. Therefore, only for a few 

blocks that have less than tens of parameter combinations, this method is useful (and 

indeed used sparsely in our current estimation tool).  

An alternation of this aforementioned method is to build database for IP-cores 

only, while estimating all other synthesized logics by simple functions [90]. Yet, this 

method still suffers from the complexity difficulty as complicated cores can have too 

many parameter combinations. One way to alleviate the preceding complexity difficulties 

is by ignoring block parameters. As the tradeoff, the estimation become less accurate 

(e.g. up to 30% or more [89]).  

A common problem associated with all these third-part estimation methods is the 

lack of understanding of IP-core design. The present methodology, however, is based on 

complete reverse-engineering the IP-core designs. Moreover, trimming effects caused by 

                                                 
3 This was tried by C. Shi under Prof. Robert W. Brodersen’s advice at University of California, Berkeley. 
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synthesis tool and mappers are understood by doing experiments and by collaborative 

working with the designers of these tools. 

5.2.3 Resource estimation at the system level 

 

Fig.  5-2 A simple System Generator design with block output data-type displayed.  
Here UFix_20_10 means an unsigned signal with 20 bits in total and 10 bits of them are 
fractional. UFix_15_7 is defined accordingly. Fix_8_4 is a 2’s-complement signed signal 
with 8 bits in total and 4 of them are fractional. This design shows the trimming effects. 

 Fig. 5-2 shows a simple design in System Generator composed by some basic 

blocks. To estimate the resources of one type of blocks, such as adders, a Matlab function 

in the following framework is written and called: 

function tarea=get_BlockType_area(system) 
% find out all the blocks of a particular masktype 
r = find_system(system, ‘masktype',…)  
% Initial a Simulink compilation if not yet 
% Get area for each of these blocks using a for-loop 
for i=1:length(r), 
    % Get the data-type of the block inputs and outputs 
% as well as all other block parameters 
    get_param(r{i},…); 
% Use a dedicated function to get the resource 
[area(i,:), input_type]=BlockType_area(...); 
% update the resource info for block r{i} 
end 
% End the Simulink compilation if it has not been done 
% Get the total area of the particular type 
tarea=sum(area,1); 
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The functions find_system(.) and get_param(.) are Simulink model construction 

commands [3][59]. They allow the control of Simulink system using Matlab scripts, 

which makes the design automation possible. Simulink compilation is needed to retrieve 

signal (port) data-types and to compute those formula-based or hierarchically defined 

mask parameters. 

In Fig. 5-2, a full-precision adder would grow its input data-type to UFix_21_10 

(with one more integer bit than the input to accommodate overflow). But as the user 

defines that only 15 bits of the adder output are needed, some of the adder logics will be 

trimmed away by the synthesis tool or mapper. This trimming effect is referred as block-

level trimming and is further studied in Section 5.2.4. Furthermore, if the Convert block 

uses truncation mode at the LSB side and wrap-around mode on the MSB side, the 

synthesis tool or the mapper will directly propagate its output wordlengths backward to 

its input, making the true output of the adder block as UFix_8_4 instead of UFix_15_7. 

As a result, more logics will be trimmed away from the adder by the synthesis tool. This 

trimming mechanism is referred as system-level. In the current version of the tool, the 

system-level (or global) trimming effects are not implemented. 

5.2.4 Resource estimation at the block-level 

A Matlab function is written for each type of block, initiated as 

 Function [area,input_type] = BlockType_area(block_params). 

Normally, each BlockType_area(.) function is written in the following steps, 

1 case-divide the following steps according to block parameters;  

2 understand the data-types for output wrapper and all the sub-cores;  
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3 calculate the resource for the wrapper and each sub-core with trimming 

effect;  

4 sum different resources together;  

5 get input data-types after backward trimming effects . 

Whenever applicable, vector signal processing is used to speed-up the calculation. 

A great amount of efforts are paid to take care the aforementioned block-wise trimming 

effects. The last step of this procedure prepares the inclusion of the system-level (or 

global) trimming effects in the future. Extensive map-report tests are done to make sure 

the estimation function gives either less than a couple units or less than 5% relative error. 

The following two subsections illustrate these steps using two examples. 

5.2.4.1 Resource estimation for an Adder/subtractor block 

 

Fig.  5-3 A possible realization of a 32-bit adder.  
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The blank boxes denote pipeline flip-flops. The logics in the dashed box would be 
trimmed away if output Q<7:0> is truncated at the output. 
 

The adder/subtractor block, or in short add/sub, is used as the first example. In the 

get_addsub_area(.) function, the following function is called 

function [area, input_type]= addsub_area(at_a, wa,wfa, at_b, wb, wfb, at_o, 
wo, wfo, prec, q, o, latency, use_core, use_rpm, pipeline, mode) 
% This particular function contains about 200 lines of  
% Matlab code that are not shown here. 

Here at_a is arithmetic type of input a; wa is the total wordlength of input a; wfa 

is the fractional wordlength of input a; at_b, wb, and wfb are similarly defined for input 

b; at_o, wo, and wfo are similarly defined for the output; q and o are the output 

quantization and overflow  modes; latency is the extra latency at the output; use_core 

indicates whether the add/sub block is generated using ip-core or freshly synthesized; 

use_rpm indicates whether the block use RPM feature; pipeline indicates whether the 

block is pipelined internally to the greatest extend; mode indicates the block is an adder, 

subtractor or add/sub combination. All these block parameters are obtained in 

get_addsub_area(.) function before it calls addsub_area(.). 

Experiments show that using RPM results slightly higher resources, but usually 

negligible. The three modes—subtractor, add/sub or adder—usually take similar 

resources; the difference is negligible except that when two unsigned numbers add each 

other, some logic LUTs will be replaced by route-through LUTs. 

There are three main cases for the add/sub block, or abbreviated as add/sub. They 

will be described one by one in this section, followed by some major observations that 

need to be pointed out. 
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The first case is the pipelined add/sub using IP-core. Then, the adder is divided 

into pipelined sessions depending on the latency chosen. The main challenge here is to 

figure out the implementation style of the core, based on different choice of latency and 

output width. This has been done by reverse-engineering the way the add/sub core is 

designed. 

The second case is the none-pipelined add/sub using IP-core. Here, the challenge 

is to discern the logic LUTs with the route-though LUTs. One level of latency is absorbed 

by the slices containing LUTs, and the rest latencies are handled by the SRL17 

implementations.  All LUTs on the most-significant-bit side are trimmed away when 

these bits are not needed, whereas only the flip flops and shift-register LUTs are removed 

in the least significant parts, as shown in Fig. 3.  

The third case is the fully synthesized add/sub. This is similar to the none-

pipelined core add/sub, with important difference. First, all the latencies are handled by 

the SRL17s.  Secondly, some of the least-significant-bit logics can be trimmed away only 

one input has none-trivial bits there. 

In general, the addsub_area function is designed to understand how trimming 

affects the add/sub resources, and includes the additional resources needed for the 

synthesizable wrapper. 

Finally, the possible trimming on input bits is described in addsub_area(.) 

function, which is prepared for handling global trimming effect in the future, when the 

compiler is able to handle backward data-type propagation. 
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5.2.4.2 Resource estimation of 18x18 Embedded Multipliers 

As another example of writing block level resource estimation function, let’s look 

at the usage of 18x18 embedded multipliers that are currently available in Virtex-II 

family. When the target multiplier size is less than 18x18, it can be fit into one embedded 

multiplier. Otherwise, multiple embedded multipliers are needed, each of which 

generates a partial product, followed by adder logics to sum all the partial products 

together to form the final output. 

By understanding the way the embedded multiplier is used, the usage of these 

embedded primitives can be written as a simple function of the parameters of the target 

multiplier, that is, 

⎟
⎠
⎞⎜

⎝
⎛ +×⎟

⎠
⎞⎜

⎝
⎛ +

=×

17
1)-  Unsigned (NCeil17

1)-  Unsigned (NCeil

 era Multipli in  Mults Embedded1818 ofNumber 

BBAA  (5-1) 

where subscripts A and B denote the two inputs of the multiplier, NA denote the number 

of bits of input A, UnsignedA is either 1 or 0 representing signal A is unsigned or signed, 

similarly for B. and ceil(.) is the ceiling function as defined in Matlab. The total number 

of 18x18 multiplier primitives used in a model is simply the sum of the numbers for each 

parallel multiplier. 

5.2.5 User interface and design automation 

Fig. 4-1 shows the user interface of the initial resource estimation tool (which has 

subsequently been slightly changed in the commercially available one [60]). Every Xilinx 

block that requires FPGA resources has a mask parameter that stores a vector containing 
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its resource requirements. The Resource Estimator block can invoke underlying functions 

to populate these vectors (e.g. after parameters or data types have been changed), or 

aggregate previously computed values that have been stored in the vectors. Each block 

has a checkbox control "Use Area Above for Estimation" that short-circuits invocation of 

the estimator function and uses the estimates stored in the vector instead.  

In Fig. 4-1, by activating the resource estimator block, a Simulink compilation is 

initiated. When the complication is done, all the underlying resource estimation functions 

get_BlockType_area(.)’s can be called, which in turn calls those core functions 

BlockType_area(.)’s to get the estimated area. The results are then displayed on the 

estimator box. Furthermore, the resource vector of each individual block is also updated 

and displayed. 

5.3 Experimental results 

The Matlab function BlockType_area(.) for each block type has been tested 

extensively, sometimes exhaustively, against the map-report result under various block 

configurations. In this section, the complete resource estimation tool is further tested 

against a number of complicated DSP designs, two of which are reported here. One 

design is an additive-white-Gaussian-noise (AWGN) simulator that generates pseudo-

random AWGN noise. The other one is a stage-based Cordinate rotation digital computer 

(CORDIC) system. Table 5-1 shows the results on the 7 aspects of the FPGA resources, 

as well as the time required to get the estimations.  

 Slices FFs BRAMs LUTs IOBs 18x18 
Mults TBUFs Time 

(min)
AWGN (Prev. tool) 1571 760 0 1595 27 1 0 15 
AWGN (New tool) 1606 760 0 1612 27 1 0 .5 
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11-stages Cordic (Prev. 
tool) 453 952 1 773 101 0 0 10 

Cordic (New tool) 471 982 1 794 101 0 0 .3 
Table 5-1 Comparison of estimation tools.  
The proposed resource estimation tool (new tool) with map-report (previous tool) on a 
couple designs. AWGN is an additive-white-Gaussian-noise simulator. 

The results in Table 5-1 are representative to many other tests. Every aspect of the 

resources obtained from the proposed resource estimation tool agrees with the map-report 

within 10% (usually within 5%). Yet, the estimation time speeds up by 1-2 orders of 

magnitude comparing with map-report method. Again, this acceleration is benefited by 

the elimination of those time-consuming netlisting, synthesis, and placement-and-routing 

stages in order to get a map-report. 

On the other hand, as long as a System Generator design can be compiled by the 

Simulink compiler, the proposed resource estimation tool is able to estimate. In this way, 

resource estimation can be obtained for pre-mature designs that cannot even pass the rest 

of the design flow to reach the map-report stage.  
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5.5 Summary 

A novel pre-netlisting FPGA resource estimation tool in System Generator has 

been developed. The estimation is accurate because the architectural information of a 

design is available in System Generator; it is also because IP-cores designs and trimming 

effects are understood. Furthermore, total automation of the tool is realized in Matlab 

functions by taking advantage of the Simulink model construction commands. 

Verifications on real designs show excellent agreement with map-report. This resource 

estimation tool is one essential part of our accurate and fast FFC tool as described in 

Chapter 4. 

Further developments can be done in several possible areas. First, a dominant 

portion of the estimation time is spent on Simulink compilation to obtain the data-types at 

signal nodes; so, more efficient compiler would speed-up the estimation tool. Secondly, 

the aforementioned global trimming effects could be important in some designs, which 

can be taken care of by having a smarter Simulink compiler that can propagate signal 

date-types both forward and backward. Thirdly, similar estimation tools might be 

developed for power-consumption and signal path delays.  
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Chapter 6 
Possible Extensions and Future topics 

A study on Automated FFC of a discrete-time digital system is proposed in 

previous chapters. This is derived through the characterizations of signals, design blocks, 

hardware-cost, and specification functions. A perturbation theory is developed to 

understand the statistical quantization effects of a fixed-point system, with or without 

decision-making errors. Based on these results, an automated FFC tool for general 

communication system is demonstrated.  This tool is orders of magnitude faster than 

existing techniques since it utilizes the analytical results of the perturbation theory as well 

as many other considerations. For the system chosen, BPSK, UWB and SVD u-sigma, 

the proposed FFC showed its general applicability and advantages. This chapter 

emphasizes some related problems that have not been covered in details in this work, 

which hopefully inspires more researchers and engineers to work on this problem. 

First, despite the large efforts in Chapter 3, the quantization effects of decision-

making errors are still far from being solved completely. Now, we have a good 

understanding of the probability for this kind of error to happen. Yet how these errors, 

with large magnitude, propagate in a non-linear system with feedbacks is difficult to 

analyze, as being fully demonstrated in the absolute-function example and signed-
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algorithm example of Chapter 3. Our only progress made on this topic is the 

categorization of decision errors to soft ones and hard ones, based on some non-trivial 

insights. This is certainly one topic to continue for both its theoretical and practical 

values.  

Secondly, similar to the decision errors are the overflow noise, which is probably 

more difficult to analyze since, unlike decision errors, the magnitude of these errors are 

also random (more strictly speaking, they are deterministically related to the IP signals). 

It seems that the only reliable analysis is to trace how the probability density function 

(PDF) of each signal is going to vary with the presence of overflow events. It has to be 

emphasized that in non-linear systems with feedback loops the change of a PDF at one 

node at one time will affects the change of this node and other nodes in the future. I have 

some detailed analysis on this approach, but so far I don’t think a good solution has been 

nearly found.  

Thirdly, power and clock speed, in addition to area, are two other fundamental 

hardware cost functions that designers want to optimize. It is therefore good if estimation 

tools and analytical models for these two costs can be done in a similar way to FPGA 

resources as what we have done. Furthermore, to apply the FFC methodology to ASIC 

design flows, hardware estimators and the analytical models of the corresponding 

hardware costs also need to be done. 

Fourthly, though our analyses in Chapter 2, 3, 5 and most part of 4 include 

quantization mode, our final FFC tool does not include them as a design variable as this 

requires much more simulations to model and raises a combinatorial optimization 
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problem, as discussed in Chapter 2 and 4. One way to alleviate this problem is just by 

pre-determine the quantization modes using some procedures. This is certainly an open 

question. 

Finally, it is conceived that hardware emulation engines BEE can help to alleviate 

the difficulty imposed by long simulation times. However this requires fast mapping from 

Simulink to FPGA hardware, at least for incremental changes. It also requires the FPGA 

system large enough to contain a pseudo floating-point system (that is, a fixed-point 

system with very large word lengths). Currently, these are not yet there.  

 In the end, I and my research advisor, Bob, wish the methodology can be adopted 

by anybody else. Our website devoted for our FFC tool [88] is for this purpose. I’d like to 

provide my personal help whenever you need it. 
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Appendix A. Perturbation Theory on 
LTI Systems 

A.1 Derivation of (2-33) from (2-37)  

First, we explain the notations in (2-37). 

Bold letters represent matrices, and barred letters represent vectors; 

(.)H represents the Hermitian transform—the transpose of the conjugate—

of a vector or matrix; 

The 
ωje ’s in the parentheses indicate that each term is a function of 

frequency; 

Column vectors x  and y represent the multi-dimensional input and output, 

respectively, whereas column vector q represents the multi-dimensional 

data-path quantization noise input; 

y∆ is the difference vector between the outputs of FP and IP systems, that 

is, IPFP y-y ;  

)( ωj
yy e∆∆R  is  called the power density spectrum matrix of y∆  at a 

given frequency, that is, its m-th row and n-th column, )(R ωj
yy e

nm∆∆ , is 
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defined to be the cross power density spectrum between stationary random 

process my∆ and ny∆ ;  

)( ωj
xx eR and )( ωj

qq eR are defined similarly to )( ωj
yy e∆∆R , 

accordingly; 

)( ωj
qy eH  represents the frequency response matrix from q  to y , that is, 

its m-th row and n-th column, denoted as )(H ωj
qy e

nm
, is defined to be the 

transfer function from nq to my in the frequency domain—the Fourier 

transform of the corresponding impulse response;  

)( ωj
xy eH∆ = )()( IPFP ωω j

xy
j

xy ee HH − , where )(IP ωj
xy eH  represents the 

frequency response matrix from x  to y  in the IP system, similarly 

defined as in )( ωj
qy eH , whereas )(FP ωj

xy eH is the frequency response 

matrix in the FP system where the constant coefficients such as filter tap-

gains are quantized.  

As stated in Example 2 of Section VI, (2-37) can give (2-33) for LTI systems, 

whereas (2-36) can give (2-37) partially. Here we will only give the proofs for the 1-

input-1-output LTI system. Again, let Hyx( ωje ) be the frequency response from input x to 

output y. Rewrite the difference between the frequency responses of FP and IP systems as 

,),...,()(H L1 TnjnjTj
YX

ceeue ωωω ⋅⋅=∆   (A-1) 

where u is the column vector formed by the differences of the Lc constant coefficients 

between the FP and IP systems, whereas ni is the number of unit delays from the i-th 
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constant coefficient to the output. With Assumption 1 and round-off quantization modes, 

the quantization noise correlation matrix becomes diagonal 

.
00

00
00

2
L

2
1

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=

q
s

s

qq OR  (A-2) 

With (A-1) and (A-2), (2-37) gives the scalar power spectrum density output difference 

between FP and IP systems as a function of frequency, that is, 
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where neither the column vector u nor standard deviation is , of the white quantization 

noises, is a function of frequency. Integrating over frequency on both sides and applies 

Parcevel’s theorem (see, e.g. [4] or [5]), (A-3) gives the MSE of the steady-state output, 
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This proves (2-33) at steady state by identifying the terms in the two brackets as B and ci, 

respectively. (A-4) provides the explicit expressions for these coefficients that appear in 

(2-33). Yet, unlike (2-33), (A-4) no longer applies in transition period. 
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A.2 Partial derivation of (2-37) from (2-36)  

Let gm in (2-37) be an unbiased LTI system with frequency response gm( ωje ) 

with gm(0,t)=0; and again, let )(ty∆ be ),,(),,( 11 txftxf LL
IPFP SS − . Then, the term 

( )ttxftxfgm ),,,(),,( 11 LL
IPFP SS −  can be written as the convolution 

product )()( tytgm ∆⊗ , denoted as o(t). If the input is WSS (wide-sense-stationary), at 

steady state (when t is large), o(t) is also a WSS random process; so, the time index can 

be removed to get 
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Let )(R ωj
oo e be the power spectrum density of o, it can be written as the product 

between power spectrum density of y and the squared frequency response of LTI system 

gm (see, e.g. [3] or [4]), that is, 

)(R|)(g|)(R 2 ωωω j
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j
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j
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Integrate over frequency domain and divide both sides by π2
1

 gives, 
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On the other hand, (2-36) says that  
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where the right side is no longer a function of t. According to Parceval’s 

theorem, ][)(R
2
1 2oEde j

oo =∫ ⋅−
π
π

ω ω
π ; so (A-5),  (A-7) and (A-8) are exactly the same. 

Equating the right side of (A-7) and (A-8) and multiplying both sides by π2 which gives 
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2
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Now, let LTI system 0ω
mg be designed in such a way that the magnitude-square of its 

frequency response, which must be periodic, approximates a sum of impulse train based 

on Dirac functions, that is, 

.)2(2|)(g|
setInteger   
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Substituting (A-10) in (A-9) and carrying out the integral on the left side gives 

,)(R
L 2000 ∑ ⋅+=∆∆
i

ii
Tj

yy scuue ωωω B  (A-11) 

Replacing 0ω withω , we see that (A-11) is almost the same as (A-3), except that (A-3) 

provides the explicit expressions for ωB and ω
ic . Remembering that (A-3) is equivalent 

to (2-37), we asserts that (2-37) has been partially derived from (2-36) with much less 

effort than being stated in [3]. 
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Appendix B. Another Way to Derive (3-
7) for Gaussian q 

When  q is Gaussian distribution, we can derive (3-7) specifically by carrying out 

the expectations together with some further simplification. Then, starting from (3-5), we 

get 

  
θ

γ
π

σγγ ⋅⎟
⎠
⎞⎜

⎝
⎛ ⋅−=

=−=
− )0()(

2
1

)1)(,1)((   
2

2
11

xperfce

xfxfP IPSLFPSL

. 

Here 
θ

θ

σ
µγ
⋅

=
2

 and erfc(ÿ) gives the complimentary error function, that is, 
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It is more intuitive to notice that 
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Similarly  
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It is often the sum of these two probabilities that is most relevant as 
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This finishes a more complicated way to prove (3-7) for Gaussian-distributed q. 
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Appendix C. FFC Tutorial 

Caution: for the up-to-date version of this tutorial, please refer to the version on 

[88].  

For the A simple BPSK communication system using root-raised-cosine filter on 

both transmitter and receiver is built in this tutorial, which depicts the design processing 

using Simulink and Xilinx System Generator. Starting from choosing the algorithm to 

building the floating-point system with architecture information, the system is then 

converted into fixed-point using our FFC tool.  

C.1 Introduction 

Can we design a digital chip in a day?  Research efforts in Berkeley Wireless 

Research Center (BWRC) and other places have indicated this is achievable [56]. Built 

on top of Mathlab,  Simulink and Xilinx System Generator, a number of customized 

Matlab scripts and Simulink libraries automate our FFC design flow. By studying on how 

our FFC tool can be used in designing a simplified transmitter-receiver system, this 

tutorial will get you familiarized with it as well as the design environment.  

C.2 How to start 

Warning: this section of the tutorial may become outdated over time as it is 

related to some administrative information that changes often. For now, it is assumed that 
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you have a BWRC account to access all the software resources on our server. Please refer 

to our website for up-to-date information [88], which also provides the instructions of 

how to use our source codes at your local machine. 

 

You will need a computer with Matlab, Simulink, Xilinx System Generator 

installed in order to run through this tutorial.  You also need read/execute access to 

BWRC file server \\hitz.eecs.berkeley.edu\designs to use our Floating-point to Fixed-

point Conversion (FFC) Tool.  In addition if you want to learn how to map your design to 

FPGA, you need to refer to other tutorial such as System Generator Tutorial or the 

tutorial on (Berkeley Emulation Engine) BEE (link available at [88]). 

A simple way to solve the problem is to login the MS Windows Remote Desktop 

Servers available in BWRC, intel2650-2.eecs.berkeley.edu.  You will need Remote 

Desktop Connection Client on your local PC to do that.  If you are using Linux, you may 

use Rdesktop (http://www.rdesktop.org).  The server has all the necessary tools installed 

correctly. 

Once you have the software ready, you need to map 

\\hitz.eecs.berkeley.edu\designs to your network drive, preferably H: disk. The example 

communication system in this tutorial can be found at H:\ffc\ffc_tutorial.mdl.  If you 

have never used one of the three tools before, you need to read Section C.2.1. Otherwise 

you can proceed to C.3. 
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C.2.1 Getting familiar with the environments 

The quick way to get started on these tools is to see an existing design.  You can 

do so by type in 

 >>demo 
in Matlab command line, and start to play around the demo systems there.  Notice that 

Xilinx demos are located at Blocksets Xilinx directory in the demo window.  An 

example is shown in Figure A1. 

 
Fig.  C-1 Using Matlab demos 
 



 

 
167

If you wish to learn these tools in more a systematic way, please pay more 

attention on the help file, with a window somewhat like Fig. C-2. 

 
Fig.  C-2 Using the Matlab help system 
 

If you still have questions related to Matlab and Simulink, and could not be 

answered by anybody around you, you might contact help@mathworks.com. They 

usually respond within the same day. 
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C.2.2 Using FFC Tool 

You should have already mapped  \\hitz.eecs.berkeley.edu\designs to H: disk.  

Now go to H: disk in Matlab: 

 >>cd H: 
 >>cd ffc 
 >>ffc_init 

The last command above swaps the Xilinx library to the version that is prepared 

for fast hardware resource estimation.  You should see some library opened and closed 

when executing this command.  In addition, a few Matlab paths containing FFC scripts 

are added to the path file.  A good way to check that you have successfully done this 

initialization is to open Xilinx blockset, and see whether you have the resource estimator 

block in the Basic Elements.  

To place the Specification Marker block in your design as mentioned in section 7 

the FFC library can be opened by the following command: 

 >>ffc_lib 

Now you can go to your own directory where your pseudo-floating point system 

is located, and type in: 

 >>ffc   

The tool itself will then lead you sequentially through the FFC process.  This 

ffc.m script is located at H:\ffc\ffc_package directory that you have linked to in the 

initialization step.  The definition of many variable names and functions can be found 

using: 

 >>help_ffc(‘keyword’). 
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C.3 Algorithm Study 

The system to be built here is a BPSK system as mentioned in Chapter 3 and 4.  

Suppose we want to do base-band communication with 2-PAM modulation scheme at 

1Mbits/sec.  Under 2-PAM input symbols (1 symbol/ 1us), such as sequence choosing 

from binary integer {0,1}, are mapped into a data sequence choosing from {-A, A}.  For 

convenience, we can let A = 1.  The receiver needs a 2-PAM demodulator to map 

received signal into original integer.  Suppose the channel impose additive white 

Gaussian random noise, but otherwise ideal.   

Although we have assumed the channel is flat with no fading, in reality it could be 

band-limited (caused by, for example, RF front-end filtering). Thus rectangular base-

band pulse in time domain (sinc(.) shape in frequency domain) through the channel will 

be clearly distorted.  One technique to combating this is to have a low-pass pulse-shaping 

filter at the transmitter side [46].  To do so, one needs to first over-sample the data 

sequence at R MHz.  This is usually done by an upsampler with integer R.  A condition 

R>2 is necessary to satisfy the Nyquist criteria.   

However there are multiple reasons to make R even higher.  One of them is to 

minimize the impairment on the frequency response due to finite-tap implementation of 

the filter, which causes none-zero stop-band response and hence aliases after the received 

signal is downsampled.  This is what usually called inter-symbol-interference (ISI).  

Without higher upsampling rate R, this deterioration can be alleviated with the cost of 

higher filter complexity and signal latency.  Another reason of having large R is for time 

and frequency recovery.  When the channel together with RF front-end has a fractional 
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delay of symbol period, upsampled sequences are needed to identify the right fractional 

delay “adjustment” the receiver needs to tune [46].    

On the other hand, choosing R too high would lead to high clock rate on the 

digital filter, A/D and D/A converters, which are not desirable.  In our case, without 

much information of other constraints, let’s set R = 4. 

On the receiver side, it is desirable to have a matched filter that matches the pulse-

shaping filter on the transmitter side.  With this consideration a commonly used filter 

shape, called root-raised-cosine filter is used in both transmitter and receiver.  After the 

downsampler on the receiver side, the signal will be perfectly reconstructed if the two 

root-raised-cosine filters are ideal.  Figure 1 shows the algorithms we have conceived so 

far. 

It should be pointed out that if the channel is really as simple as AWGN, one can 

just feed the 2-PAM modulated signal into the channel.  We included more blocks in the 

design to combat some other channel impairments that are not present here.  

C.4 Building the floating-point System – algorithm validation 

We can start to write either C or Matlab codes for each of the functional block of 

Fig. 3-6 and see if the output symbols agree with the input ones by doing simulations.  

This is what conventionally people would do.  This is still a good way to understand your 

system; however, a more natural way exists to validate our algorithm; that is to use 

existing Simulink library blocks to draw the diagram in Simulink quickly.  A snapshot of 

the completed system is shown in Figure C-3. 
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Fig.  C-3 Floating-point system in Simulink™ blockset 
 

Notice that there is almost a 1-1 correspondence between above Simulink system 

with the block diagram in Fig. 3-6. Different colors of the blocks indicate different clock 

rate.  Here let’s explain some of them in more detail. 

First of all several display blocks are used to help us debug/understand the 

system.  These include the Display block, Deiscrete-time Scatter Plot Scope, and 

Discrete-Time Eye Diagram Scope.  A number of other very useful display blocks can be 

found in Simulink Sink library and Communication Blockset Comm Sink library.   

Secondly, the Error Rate Calculation block is used to compare the Tx signal with 

the Rx ones, and output bit-error-rate (BER).   

A couple Integer Delay Blocks are used to synchronize the Tx and Rx signals.  In 

our design both the Tx filter and Rx filter introduce 11 delays (each delay corresponds to 

1/(4MHz) = ¼ µs) on their center tap.  So another 2 delays of ¼ us are introduced to 

make the total delay 

¼ (11+11+2) = 6 µs, 
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which is an integer multiple of the symbol period.  Without using the integer delay of 2, a 

large ISI would be seen on Scatter plot; that is, the down-sampler would not sample at the 

wide-open instance showed in the eye diagram. 

Finally two Digital Filter Design blocks are used for the two rRC filters. These 

two identical blocks are specified using the design mask showed in Fig. C-4. 

 
Fig.  C-4 Design a root-raised-cosine filter 
 

Here we choose Rectangular window method without trying others. To 

understand window method, please refer to [4].  The sample frequency is 4MHz since we 

choose R=4.  Rolloff factor is chosen to be 0.46.  The higher rolloff factor is, the more 

relaxed the filter is and the less number of taps will be needed.  That would also lead to 
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more excess bandwidth (total bandwidth needed will be [ -(1+rolloff) MHz, (1+rolloff) 

MHz]).  In our system this rolloff factor is another degree of freedom in design; but let’s 

fix it for simplicity.  The last parameter that is adjustable is the filter order, we choose the 

lowest filter order that satisfies the side-band from [1.5MHz, 2MHz] to be 40dB less than 

the main-lobe, as shown in Fig. C-4. You may try to use Matlab function 

  >>help rcosfir (or firrcos) 
 

to do the task.  Then a Matlab script can be written to automatically determine the lowest 

filter order given different choices on Rolloff, windowing method, etc.  Here we just try 

some deferent filter order and found 22 is the minimum one satisfying our specification.  

Other rolloff factor results to higher or the same filter order.  This justifies our choice of 

rolloff factor of 0.46.   

Once the filter coefficients are found one can specify them in a Digital Filter 

block in Simulink, which basically does the same thing as the Digital Filter Design block.  

But we won’t try that approach here.  The filter coefficients can be exported to workspace 

choosing File Export in Fig. C-4, as also shown in Fig. C-5. 
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Fig.  C-5 Exporting coefficients to workspace vector A 
 

With the two filters designed above, and a channel noise power of 0.1 (i.e. 0.05 

for both I-channel and Q-channel), we get the following system performance in Fig. C-6. 

 

 

  a)          b)        c) 

Fig.  C-6 Floating-point performance of the BPSK 
a) Eye diagram of the transmitted signal, b) eye diagram of the received signal, c) scatter 
plot before the demodulator 

It can be seen that the Tx rRC filter caused some ISI as shown in Fig. C-6-a.  The 

eye is further closed by AWGN noise as shown in Fig. C-6-b.  Therefore, the 

constellation points become blurred in the scatter plot in Fig. C-6-c.  As indicated in the 
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right-most display of Fig. C-3 is the bit error rate display.  The error rate calculation 

block is set in such a way so that 100 bit errors are detected before we stop the 

simulation.  Assuming bit error comes in Poisson process, then the real BER in the 

following interval with .95-confidence level [3]. 

].00106.0,00067.0[
00084.0]196.1,804.0[

)ˆ(]100
)10096.1100(   ,100

)10096.1100([

=
×=

×+− RBE

 

The simulation takes about 30 minutes to finish. 

C.5 Building pseudo-floating-point system in System Generator 

The floating-point system built in the preceding section can now serve as our 

system reference.  The next step is to impose the architecture information into the system. 

Xilinx System Generator blocksets (Version 2.3) are used to realize the architecture 

choice. Historically, we have used the granular blocks of Simulink, such as multiplier, 

adder etc. for this step.  However it turns out it’s just easier (for the rest of the BEE or 

INSECTA flow), though not essential, to build the system directly from System 

Generator library.  Note that the blocks in SysGen library only support fixed-point data-

type (but with double over-ride functionality in simulation). This won’t cause much 

difficulties here since we can just choose all the word lengths to be very high whenever 

possible [3]; when this is done, we call the system pseudo floating-point system with 

architecture information.  This is a good way to validate the architecture choice. 

Choosing the architecture correctly is an important task [46].  For example, in our 

example for the filter structure one can use the built-in FIR block in System Generator 

DSP library, which is based on distributed arithmetic to save area.  But it is often not 
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power-efficient since the pre-stored partial products need to be frequently loaded from 

the memory block. Without too much justification, let’s use the Delay, Cmult, AddSub, 

Upsampler, Downsampler, and Gateway In/Out block only to build the system.  We want 

to minimize the number of such blocks in our design. Therefore we explore the linear 

phase property of the rRC filter.  Furthermore the center tap can be normalized to 1 to 

save another Cmult.  The resulting structure is shown in Fig. C-7 and Fig. C-8.  A gain of 

value A(12) (the 12th element of vector A) is used in order to bring the total transmitting 

power the same (one can think it as analog gain, so it does not consume Cmult).   

 

 
Fig. C-7 Pseudo flpt system in system generator 
Simulate time is 0s to 2s (two million output bits are detected) 

 

 
Fig. C-8 LP rRC filter 
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Fig.  C-9 Mask parameters of LP rRC filter 
 

Fig. C-8 and C-9 show the detailed structure of the LP rRC filter, and its mask.  

We have set all the WL to be exceptionally high (60 bits).  Simulation indicates the 

pseudo flpt system and original flpt system performs the essentially the same—the 

numerical difference is much less than what we care about. 

Here be careful that since the original system has both I and Q channels, the noise 

power indicates the sum of I and Q noises.  So, we should choose noise power to be 0.1/2 

to get the same BER as previous floating point.  The reference system is also modified so 

contain only the I-channel.  With this modification the pseudo-flpt system and flpt system 

do exactly the same thing up to each cycle—so called “cycle accurate”. 
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A long duration [0, 2s] is used for the simulation, the BER is found to be 

0.0007795, i.e. 2s × 1MHz × 7.7795 ×10-4 = 1559 errors.  So the 0.95 confidence interval 

estimate of BER is 

].00082.0,00074.0[
0007795.0]05.1,95.0[

)ˆ(]1559
)155996.11559(   ,1559

)155996.11559([
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The simulation takes about 8 hours to finish. 

C.6 Building fixed-point System using FFC 

Now all the algorithm and architecture decisions have been made in our design.  

What is left is to decrease the word lengths presented in the previous section, and to 

determine all the overflow and quantization modes.  The goal is to have this done 

automatically, which results in the floating-point to fixed-point conversion (FFC) tool.  

In order to have the conversion, one needs to first identify the node where the 

difference between fixed-point and floating-point systems will be checked.  This is 

practically done by inserting a Specification Marker block from the FFC library that is 

also located in H:\ffc\ffc_package\ffc_lib.mdl. From Chapter 3, we know that a natural 

node to place the marker is the one after gateway-out block of the receiver, which is the 

only strong decision-making block in the system. At this node, the bit error rate solely 

caused by quantization noise can be detected.  Theoretically, placing the Spec Marker 

here is a good choice.  However, as described in Chapter 4, in practice it is often less 

attractive due to the long simulation time to fulfill the estimate of a BQER accurately.  In 
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fact since it is normally necessary to have BQER less than BER at least the same number 

of input samples as the one in previous section are needed to get a high-confidence 

estimate.  That corresponds to long simulation duration for each run, which is too long as 

many iterations need to be performed. In general, the total BER with both channel noise 

and quantization noise is not the sum of the flpt BER (without QN) and this BQER, 

because a slicer (demodulator) block is a nonlinear function of noise power (it is a Q-

function of SNR). 

From Chapter 3 and 4, a much more robust node to place the Specification 

Marker block is the one before the 2-PAM demodulator.  One reason is that we know the 

rest of the receiver following this node (the only block left is just a demodulator, i.e. a 

slicer) does not have word lengths to be determined.  Another reason is that the 

MSE(flpt-fxpt) at this node gives a good indication of the BER performance after the 

demodulator. In fact, assuming QN and channel noise cause uncorrelated Gaussian noises 

at this node, it is equivalent to think their sum as a total noise power.  So one just needs to 

make sure the QN power much less than the channel noise power at this node to quantify 

the statement “fxpt system differs only little from flpt system”.    

A system with the marker specified is displayed is Fig. C-10.  Compared with the 

previous design in Fig. C-7, many of the unnecessary blocks have been eliminated here.  

For example since we already have the pseudo flpt system in System Generator blocks, 

the first version of the system designed in pure Simulink block set has been deleted.  You 

can leave those blocks there with possibly a slow-down of simulation speed.  This newer 

version is named ffc_tutorial_v2.mdl.  One can see that a specification marker has been 
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placed before the demodulator.  In addition you can find some supporting Matlab files in 

the same directory ( H:\ffc\systems\ffc_tutorial1\ ); they are: 

 System_init.m 
 ffc_setting.m 
 and A.mat. 
 

In order to continue the demonstration yourself you need to copy ffc_tutorial_v2.mdl, 

system_init.m, ffc_setting and A.mat into a working directory of which you have write-

access.  To prevent possible hazard H:\ffc is secured as read-access only.  After the copy 

you can go to that directory and start the conversion tool yourself by typing in  

 >>ffc 
 

If you have your own design to FFC you might want to have a directory for that design 

specifically. In that directory you should have a file named “system_init.m” that 

initializes your pseudo flpt system, and a file named “ffc_setting” to save FFC design 

parameters.  In our current example, system_init.m basically loads the filter coefficients 

A. 

 

 
Fig.  C-10 ffc_tutorial_v2.mdl file.   
Comparing with figure 6 a specification marker and a resource estimator block are 
included.  Furthermore some blocks supporting the floating-point design are 
eliminated/added to speed up/support simulation. 
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Fig.  C-11 Analog gain subsystem in ttc_tutorial_v2.mdl 
 

Another modification is replacing the first A(12) gain to the analog gain block 

and adding the impulse input in front of the Tx rRC filter.  Altogether they make sure the 

average signal power to be transmitted is the same as the floating-point system.  Here the 

average power of the transmitted signal x(n) is  
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We have used the fact that the signal after modulator is a zero mean random 

process choosing from {1, -1}.  Thus the signal power is just the 2-norm square of the 

filter coefficients.  Sometimes the quantization of transmitter filter could increase the 
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transmitting power.  Without normalizing the transmitting power the comparison of 

performances between floating-point and fixed-point systems is unfair.   

To FFC this small system takes about 5 minutes.  FFC tool sequentially asks you 

to input some important information you want to choose, such as design names.  On the 

other hand it might be too lengthy to answer all the questions sequentially.  Then you 

need to create an ffc_setting.m file in the directory and set the parameter “ask_question” 

to be 0.  At one point it also asks you to change the model simulation time.  You can 

input the simulation start and stop time as [0, 1/1e3] (to change simulation time right 

click your model window, and click Simulation Parameters, where you can see the 

parameter Start Time and Stop Time).  This will make the simulation duration to be 1ms, 

which results in 1001 output samples at the Spec Marker.  That is enough to have a good 

MSE estimation, assuming the flpt-fxpt difference error is a stationary random process.  

The assumption is justified since each quantization error is assumed to be stationary.  If 

you use ffc_setting.m, you can see the parameters “sim_start_time” and “sim_stop_time” 

are set to be 0 and 1/1e3 separately.  

Another required important user input is the MSE level you want to choose.  You 

can either manually do a couple tries to understand the relationship between your system 

performance (e.g. BER) and MSE. You can also do what Section 3.5.2 of Chapter 3 has 

suggested. On the other hand, in the following we use a different approach, which is 

mostly analytical.  Since the signal power before the demodulator is at about 0.6 (you can 

estimate it by placing an eye-diagram scope before the demodulator, and see the signal 

power), the physical noise (PN) power before the slicer of the BPSK system is about 
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 PN power = 
 (Matlab command line input) 
 >>fzero(‘1/2*erfc(1/sqrt(2)*sqrt(.6/x)) – 7.795e-4’, 0.1)  
 = 0.0600. 

So suppose the BER deterioration due to quantization noise is 10% of the original BER, 

i.e. the final BER to be less than 7.995×10-4 ×(1+10%) = 8.57×10-4, we need the 

quantization noise power (QNP) to be  

QNP power = 
(Matlab command line input) 
>>fzero(‘1/2*erfc(1/sqrt(2)*sqrt(.6/(x+.06))) – 7.795e-4*(1+.1)’, 0.1) 
= 0.001. 

Thus we need MSE < QNP power =0.001.  To be robust, we assume there could be 

modeling error and estimation error, thus we set  

MSE = ½ QNP power = 0.0005.    

Next the grouping rules need to be defined.  Without grouping, all Xilinx blocks are 

independently adjustable to find the minimum hardware cost.  That would result a 

problem of too large optimization space (and turns out to be unnecessary in turns of 

design optimality).  You can type 

 >>help_ffc(‘rules’)  
 

to understand more about the rules.   The rules used for the following conversion in this 

section are [1, 2.1]. 

With the setting described above we achieve a fxpt system of about 356 slices as 

shown in Fig. C-12.  A final simulation of duration [0, 1s] produces 811 errors; so the 

BER of the final fxpt system BER is within .95 confidence interval 
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It is therefore of high chance the resulting fxpt system has BER less than the targeted 

8.57×10-4. 

 

Fig.  C-12 The final fxpt system. 
With BER ~ 8.11×10-4, and ~ 356 FPGA slices. 

You can choose Format show Port Data Types to see the fxpt data-types used 

for the final system.  In fact, it is probably surprising to find that some of the constant 

multipliers have coefficients to be zero now (since the constant value is too small to be 

represented by the small WL fxpt datatypes).  These logics will be automatically 

eliminated in the final placement-and-routing stage. 

C.7 Multiple specifications 

The FFC conversion in the preceding section is subject to one MSE specification 

constraint.  The FFC tool can handle multiple specifications, some of which can even be 

non-MSE type.  Recall that the transmitter filter frequency response in [1.5MHz, 2MHz] 

should be less than -40dB, it is natural to set this as the second specification.  Thus one 

more Spec Marker block is inserted in the system, and saved to ffc_tutorial_v3.mdl as 

shown in Fig. C-13.  This Spec Marker chooses “user specified spec. calculation 

function” as the specification type, and use “simulation_function” as the specification 

calculation function name.  A snap shot of the block mask is shown in Fig. C-14. Thus 
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there is an associated Matlab function “simulation_function.m”.  This function is written 

to calculate the highest frequency response in interval [1.5MHz, 2MHz]. Figure C-15 

shows the frequency response of the resulting system.  The simulation to show BER is 

again about 8 hours for duration [0, 1s].   

 

 
Fig.  C-13 386 slices and BER ~ 8.36 ×10-4. 
With .95 confidence interval of [7.8 ×10-4, 8.9 ×10-4]; still of good chance within 8.57 
×10-4 spec. 
 

 
Fig.  C-14 New specification Marker parameters 
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Fig.  C-15 Tx rRC filter frequency response satisfies the -40 dB spec. 
 

The conversion takes about 20 minutes, which is considerably more than the case 

if there is MSE spec only.  This is in general the situation.  The speed-up for MSE spec 

results from the careful analysis of the relationship between the MSE and wordlengths in 

Chapter 2 and 3. 

C.8 Some further Analyses 

Rules [1 2.1] results eight groups of fractional wordlengths.  Let’s see what if we 

apply more or less rules. 

If rules [1.1 2.1] are chosen, only 4 groups are resulted (notice from help_fcc that 

rule 1.1 supercedes rule 1) and the conversion only takes about 2 minutes.  The system 

takes 493 FPGA slices with BER ~ 7.95×10-4, which is about 30% increase over the 
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design in Section C-7.  The performance is compatible.  This proves that more rules will 

speed up the conversion, but introduce loss of optimality.   

However that does not mean we should include no rule or grouping in our design.  

In fact if we chose [1 2] as the rules, 30 groups are resulted, and conversion takes about 

20 minutes to finish.  The resulting system has 377 slices and BER ~8.36×10-4.  This 

system actually consumes about 6% more resource than the one in section 7!  The reason 

behind it is when groups are so small, the modeling of their analytical hardware-function 

and MSE-function suffers high error.  The error causes uncertainties in optimal decision.  

Of course it should be emphasized that small 6% difference almost gives the conclusion 

that having 30 groups won’t improve the fxpt conversion much than having 8 groups, at 

least for this system. 

Similar simulation is done for multi-criteria FFC case.  Choosing [1.1 2.1] as the 

rule a system of 650 slices with BER ~ 8.2 ×10-4.  So there is a 60% reduction in 

hardware cost by applying rules [1 2.1] instead of [1.1 2.1].  The gain here is conversion 

time, only 5 minutes as opposed to previous 20 minutes. 

All the experiments so far use rule 8 that sets “saturation” as overflow mode 

everywhere.  However, since the integer wordlengths are chosen well, it is in general too 

conservative to use rule 8.  An alternative is to use rule 8.1, which sets “wrap-around” as 

the overflow mode everywhere.  The resulting two systems take 256 slices and BER ~ 

8.11 ×10-4 (rule [1 2.1 8.1]), and 287 slices and BER ~ 8.36 ×10-4 (rule [1 2.1 8.1]), 

respectively.  Comparing with the previous conversions that uses rule 8, the new results 
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save about 25% slices!  The simulation result are however exactly the same.  So these 

two results should be our final designs. 

Another subject mentioned in Section C-7 and Chapter 4 is robust programming.  

A robust MSE spec was chosen there.  Let’s see what if MSE is chosen to be 0.001 

directly.  It gives 338 slices and BER ~ 8.46 ×10-4—about 7% reduction in hardware 

resources causes the .95 confidence interval of BER to be [0.00079, 0.00090].  The BER 

becomes much more likely to be greater than 0.000857 (recall this is 10% more than that 

of the floating-point system).  The small hardware reduction is usually not worth the risk 

of breaking the specification.  The other possible situation is the specification is also 

flexible in the first place, in which case having a constraint on the spec is in some sense 

robust programming itself.  The message here is to be careful on choosing the MSE spec 

level: you should understand there could be both under-modeling error and estimation 

error associated with the specification function; therefore it is usually wise to be a little 

conservative.  After all, this example showed 3dB “relaxation” in MSE only causes a 

variation on hardware about 7%.   This is almost always the situation, due to the function 

characteristics of objective and constraint functions, being quadratic and exponential , 

respectively. 

C.9 An important remark 

The most important remark here is that in our design procedure above, we only 

did qualitative justification on choosing the algorithms (say data modulation scheme, 

upsampling rate R, filter type, etc.) and architectures (say filter specification, filter form).  

To have a good design these “parameters” need to be justified using careful analysis or 
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simulations.  Nevertheless the purpose of this tutorial is to get you familiar with the 

design process, and mainly on using FFC tool.  So these design dimensions have not been 

explored fully here. 

On the other hand higher-level decision (such as algorithm) made without 

considering the lower-level discrepancies could turn out to be unfavorable when the 

lower-level design (such as choosing circuit) space is explored.  For example, we decided 

the number of filter taps to be the smallest one satisfying the 40dB attenuation 

requirement.  This was chosen since it saves hardware and results less latency.  However 

it’s fairly possible that with fixed-point data types, too high word lengths are needed to 

maintain the 40dB attenuation because there is not much room left for WL reduction.  By 

relaxing the number of taps to a few more, one might dramatically drop the number of 

bits needed for each tap; therefore save total hardware cost. 

So ideally algorithm, architecture, and fixed-point datatypes should be optimized 

jointly, maybe with other design variables such as circuit level flexibility, in order to get 

the truly “best” design.  The bad news is a problem like this could easily become too hard 

to solve.  That’s exactly the reason design of a large system is almost always divided into 

different levels, and different blocks.  One always tries to reduce the inter-dependency 

between these levels and blocks to make each of the smaller problems more tractable.  

Our introduction of MSE specification as a global justification on FFC problem is based 

on this argument.  

Of course one needs to bear in mind that quite often by considering the inter-

dependency more carefully one can achieve large improvements.  Examples include 
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Trellis-coding (coding and modulation jointly considered), our approach on FFC problem 

in some sense (different WLs jointly considered), channel coding (where algorithm is 

directly done in number theory, which is already fixed-point), etc.   But this interesting 

trade-off is beyond the scope of this tutorial. 

C.10 Conclusion 

By building a simple base-band digital communication system, we showed a 

design procedure, starting from algorithm to fixed-point implementation, in our design 

environment combined with Matlab, Simulink, Xilinx System Generator. One major 

topic is on how to use our floating-point to fixed-point conversion tool.   Table C-1 

summarizes the conversions done in this tutorial. 

Table C-1 Summary of conversions in this tutorial.   
Targeted BER for converted systems is 0.000857. “–“ means not applicable. “*” means 
the design is considered to have good performance while relatively less conversion time. 

 Grouping 
Rules 

MSE 
spec 
level 

Max( |H(1.5MHz, 
2MHz)|) 

Conversion time 
(minutes) 

# of Frac. 
WL groups Slices BER (ML 

estimate) 

Flpt 
sys - - <-40dB - - ~13500

(or -) ~0.00078 

 [1 2.1 8 ] 0.0005 - 5 8 ~356 ~0.00081 

 [1 2 8] 0.0005 - 20 30 ~377 ~0.000836 

 [1.1 2.1 8] 0.0005 - 2 4 ~493 ~0.000795 

* [1 2.1 8.1] 0.0005 - 5 8 ~265 ~0.00081 

 [1  2.1 8] 0.001 - 5 8 ~338 ~0.000846 

 
 [1.1 2.1 8] 0.0005 <-40dB 5 4 ~650 ~0.00082 

 [1  2.1 8] 0.0005 <-40dB 20 8 ~386 ~0.000836 

* [1  2.1 8.1] 0.0005 <-40dB 20 8 ~287 ~0.000836 
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[D.2] C. Shi, and R. W. Brodersen, “An automated floating-point to fixed-point 

conversion methodology,” Proc. IEEE Int. Conf. on Acoust., Speech, and Signal 

Processing, Vol. 2, pp. 529-532, April 2003.  

[D.3] C. Shi, “Statistical method for floating-point to fixed-point conversion,” 2002, 

Master Thesis, Department of EECS, Univ. of California, Berkeley. (Advisor: Robert W. 

Brodersen). 

[D.4] C. Shi, and R. W. Brodersen, “Floating-point to fixed-point conversion with 
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Signal Processing, 2004, Canada. 
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