
2002/9/8

Fall 2002 - Lecture 8
State Machine Design Methods

© 2002 Dr. James P. Davis

CSCE 611CSCE 611
HighHigh--level VLSI Designlevel VLSI Design

Page 2© 2002 Dr. James P. Davis

OutlineOutline
Methods.

Structural – decomposition, refinement
Functional – input/output response specification.
Behavioral/ASM – sequencing and scheduling of operations in the data path.
Behavioral/Timing – input/output response over some time frame.

Clocking specification.
Use waveform specification as a means for defining characteristic system behavior, based
on arrival of input signals and the resultant response of the system, and its internal,
intermediate actions.

ASM/Flow diagram.
We can also start with a truth table to define the equations for the outputs based on value
combinations of the inputs.
If we include all inputs—both data and control—then the truth tables can become quite
large.
However, what we are looking to identify from the equations is the Sum of Products (SoP)
form, that can be used to identify which operations are to be scheduled in which states of
the state machine (should one be required).
Note: we use truth tables for combinational logic function specification, but sometimes
these combinational logic functions are under the sequencing control of a state machine.

Page 3© 2002 Dr. James P. Davis

Finite State Machine Design Finite State Machine Design -- IntroductionIntroduction

Components of FSM Model
State registers, input synchronization registers (optional) and output filter registers (optional).
Next state decoding logic, and output decoding logic - combinational logic blocks.
Input signals to the state machine, which are inputs to the next state and output decoding logic blocks (could
be synchronized to clock with input registers).
Next state information, which is generated as a result of input/next state decoding logic.
Present state information, output from the state registers, which is fed back as an input to both next state and
output decoding logic blocks.
Outputs from the state machine - either generated synchronously from the output of the state registers (also
used as present state information), or asynchronously as output of the output decoding logic block (which
takes input and present state information to produce outputs). Could be filtered using output registers to
eliminate possible signal transients.

CLK

State
Registers

input/next state
decoding logic

inputs

present state information

next state
information

output decoding
logic

CLK

input
synchronizing
registers

CLK

control
outputs

output
filtering
registers

inputs

Page 4© 2002 Dr. James P. Davis

Finite State Machine Design Finite State Machine Design ––Model TypesModel Types

Moore machines:
Control outputs generated by the
state machine are dependent only
on the present state information.
The control outputs are
synchronized to the clock that
controls state transitions.
Moore machines are used when it
is important to synchronize all
control actions with the change in
state, and thus, by the clock.
Moore machines effectively filter
out transients, and can be used to
eliminate race conditions when
inputs are unfiltered.

input/next state
decoding logic

next state
present
state

output decoding
logic

control
outputs

inputs

State Registers

Page 5© 2002 Dr. James P. Davis

Finite State Machine Design Finite State Machine Design –– Model TypesModel Types

Mealy machines:
The control outputs of the state
machine are dependent on the
inputs and present state
information.
The control outputs can be
asynchronous, in that outputs can
change value as the inputs
change value, provided the
appropriate present state
information is maintained.
The control outputs are gated by
the present state.
Mealy machines are used to
create control blocks that respond
quickly to external signal changes.
Care must be taken to isolate the
design from transients and race
conditions.

input/next state
decoding logic

next state

present
state

output

logic

control
outputs

inputs

State
Registers decoding

Page 6© 2002 Dr. James P. Davis

Finite State Machine Design Finite State Machine Design –– StatesStates

States in real-world
domain applications

States of devices are
generally determined from
its specification.
Certain device applications
are easy to discover the
states. Other applications
may require more work to
uncover them.
Sometimes, the list of
identified states must be
modified to eliminate
unused or unspecified
states, redundant states, or
missing and hidden state
behaviors.
NOTE: this model was
created using state chart
notation in Rational Rose®.

RedLight

YellowLight

GreenLight

NoO pposingTraffi cTimeO ut
OR ChangeRequest

TimerExpired

TransitionExpired

EmergencyFlashing

EmergencyS ignal

EmergencySignal

~EmergencySignal

Reset

Synchronize

Page 7© 2002 Dr. James P. Davis

Finite State Machine Design Finite State Machine Design –– NotationNotation

FSM State Diagram
Allows designer to represent
individual states, triggering
events, state transitions, and
outputs for a state machine.
Notation:

“bubble” is a state, with
state name
“arc” is a transition from
one state to another, or
from a state to itself. It has
the inputs indicated as a
logical expression.
Moore-style FSM has
outputs associated with
state itself.
Mealy-style FSM has
outputs associated with
transition arc.

Page 8© 2002 Dr. James P. Davis

Finite State Machine Design Finite State Machine Design –– NotationNotation
Algorithmic State
Machine (ASM) Chart

Uses notation of flow chart for
modeling the sequencing and
control in state machines.
Actions to be scheduled in
each particular state are
attached to the state,
represented by the “state box”.
State transition decisions are
modeled explicitly using VHDL
control constructs, for If-Then
and Case.
Actions attached to state box
indicate Moore machine, but
actions on “oval” after a state
imply Mealy style of state
machine.

s0

s1

s3
s5

input1 & input2

10

^RES
CLK1 (rising)

signal1
Areg <- '0'

Areg <- input1

Breg <- input2

Output <- NMUX (Areg, Breg, in1)
MDR <- ScratchPad [MAR]

!signal4s4

0110 default

s2

1001

Clocking definition

Enabling event definition

State

Moore Machine Actions:

Signal Assertion

Bus Assignment

Macro-function

Input Conditions:

Binary Decision Condition

Multiway Branch Condition
Mealy Machine Actions:
(synchronous or asynchronous)

 Boolean input expression

A<- '0'

(synchronous or asynchronous)

(CASE)

Assignment

!signal5

(If-Then)

Memory Read/Write
with Relative Addressing

IObus

Page 9© 2002 Dr. James P. Davis

Finite State Machine Design Finite State Machine Design –– NotationNotation

Sequence Diagrams
Allow designer to model
interactions between multiple
design blocks containing
state machines or data path
units.
Represents the time
sequenced actions and
events between units.
Clearly shows the
sequencing associated with
handshaking or design
protocol being implemented.
Should be verifiable using
VHDL simulation.

Light-1 Light-2 CarLightMaster

1: Reset

2: State = GreenLight

3: Synchronize

4: State = RedLight
5: SetTimer

6: Car Detected

7: Set TrafficTimeout Tim er

Either one or the
other timer on the
lights will expire.
W hichever one
expires first will
s ignal the other to
make an appropriate
state change. 8: TimerExpired

9: State = Yellow

10: SetTransitionTimer

11: TransitionExpired

12: St ate = Red

13: ChangeRequest

14: State = Green

Page 10© 2002 Dr. James P. Davis

Finite State Machine Design Finite State Machine Design –– EncodingEncoding

State Assignment
One technique for assigning states
to flip flop encoding is to start with
the State Table.

State Encoding Schemes
Binary: the state assignment is
made based on the order of the
states, with the total number of flip
flops used for state assignment
being a power of two (so as to
eliminate problems with unassigned
states). See rules on Pages 20, 23
of Roth text.
One-Hot: For FPGA design, where
the goal is to minimize interconnect
across cells, this scheme is used to
have one flip flop per state, instead
of encoding as a power of 2.
Grey Code: Different ordering of the
states according to adjacency and
prioritization.

Page 11© 2002 Dr. James P. Davis

Finite State Machine Design Finite State Machine Design –– ReductionReduction

State Equivalence
Two states in an FSM are
“equivalent” if they have the
same input and output
sequence.
The output sequence (not just
individual outputs) must be the
same for all possible
combinations of input
sequences.
We can do this without having to
look internally to the FSM if we
can say that, for all input
sequences, the outputs and next
states are the same.

Implication Reduction
Technique

Starting with State Table, we
create an implication Table and
follow algorithm in text.

Page 12© 2002 Dr. James P. Davis

Finite State Machine Design Finite State Machine Design –– ReductionReduction

State Table Constructed Implication Chart

Page 13© 2002 Dr. James P. Davis

Finite State Machine Design Finite State Machine Design –– ReductionReduction

Subsequent passes minimizing the Implication Chart

Page 14© 2002 Dr. James P. Davis

Finite State Machine Design Finite State Machine Design –– ReductionReduction

Page 15© 2002 Dr. James P. Davis

^RES
CLK (rising)

C1 <- '1'
AS1 <- '1'

AS1 <- '0'
C1 <- ^C1

Thread 1

AS1
C1 (rising)

C2 <- '1'
AS2 <- '0'

AS2 <- '1'
C2 <- ^C2

Thread 2

^AS2
C2 (falling)

ASSERT_1

Thread 3

!ASSERT_2

s0

s1

s6

s2

s3

s8

s4

s5

s7

Modeling Concurrency:
Multiple model FSM "threads" having shared buses.
Independent clocking schemes and enabling events (e.g., ^RES).
Types of concurrent interaction:

SynchronizationSynchronization
-- coordinated activities (e.g., handshaking, coordinated activities (e.g., handshaking,

pipelining)pipelining)
-- implicit references to shared busesimplicit references to shared buses

Competition
- shared resources (for example, bus arbitration)
- explicit use of other concurrent processes,

components, or entities to model the arbitration
protocol.

Finite State Machine Design – Concurrency

Page 16© 2002 Dr. James P. Davis

Finite State Machine Design Finite State Machine Design –– PatternsPatterns

Sequencing
This pattern has the
sequencing of data path
operations by one or more
state machines
The example shown is the
data path for a small CPU,
where micro-operations
based on program
instructions are decoded
and staged to execute
multi-cycle instructions out
of memory.
This example also used
pipelining (discussed
later).

Page 17© 2002 Dr. James P. Davis

Finite State Machine Design Finite State Machine Design –– PatternsPatterns

Pipelining - 1
There are two kinds of
pipelining: data path
pipelining and control
pipelining.
An example of control
pipelining is the Instruction
Fetch, Decode, Execute cycle
used in all CPU architectures.
Another example is Bus
Reads and Writes, which are
generally pipelined so as to
interleave the control cycles,
thus saving clock cycles
(shown in the figure).

Page 18© 2002 Dr. James P. Davis

Finite State Machine Design Finite State Machine Design –– PatternsPatterns

• Pipelining - 2
– The sequence of

figures show how
pipelining works in
the control path.

– The control
pipelining is the
Instruction Fetch,
Decode, Execute
cycle used in all
CPU architectures.

– Each stage of the
control pipeline is
buffered by
registers that
provide setup of
data.

– The different
stages of the
pipeline also use
handshaking.

Page 19© 2002 Dr. James P. Davis

Finite State Machine Design Finite State Machine Design –– PatternsPatterns

Handshaking
Polled handshaking:

FSM A thread waits in a
polling loop, testing for
signal ZB to be asserted by
FSM B.
FSM B thread waits in
IDLE loop for signal ZA to
be asserted by FSM A.

Asynchronous handshaking:
FSM threads use an
asynchronous interrupt
mechanism to alert it to
when the event has
occurred.
However, to minimize the
effects of timing skew, it is
most likely gated to a clock
signal.

Page 20© 2002 Dr. James P. Davis

Finite State Machine Design Finite State Machine Design –– PatternsPatterns

Arbitration-1
The pattern works in situations
where multiple service
“requesters” want access to a
scarce resource (such as a
Bus).
There are different arbitration
schemes for requesting and
granting control of the resource
by one requester by the
“arbiter” module.
Some use daisy chaining, or
prioritization schemes to grant
access.
Arbitration can be centralized,
using an “arbiter” module, or it
can be decentralized.

Page 21© 2002 Dr. James P. Davis

Finite State Machine Design Finite State Machine Design –– PatternsPatterns

Arbitration-2
The one scheme involves use of a
separate “arbiter” module, as is
the case with most bus schemes.
Another scheme involves no
centralized arbiter:

CSMA/CD: Carrier Sense Multiple
Access/Collision Detect. Sense
for a distributed “carrier” signal,
and detect for collisions as a
means to gain access to the
shared resource (wired network
medium).
CSMA/CA: Carrier Sense Multiple
Access/Collision Avoidance.
Sense for “carrier” signal, but
don’t rely on it solely as the
means for gaining access. Use
an additional timing mechanism
passed among the data frames
(needed because of the “hidden
node” problem).

8 0 2 .1 1 W ire le s s
M e d iu m

(C S M A /C A)

S ta tio n -1

S ta tio n -3
(In te rn e t G a te w a y)

S ta tio n -2

S ta tio n -4
(P rin t S e rv e r)

