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SUMMARY

The paper describes a system for automatic
design of large Finite State Machines and Boolean
Functions with an aid of Electronically Programm-
able Devices. This system will be used as a prepro-
cessor to standard logic minimization/fitting
software systems available for EPLD's. It is particu-
larly suitable to the optimization of large state
machines and functions as well as partitioning them
onto several devices. The design stages of the sys-
tem are described and some algorithms are illus-
trated with examples,

1. INTRODUCTION

Software systems for automatic design of fin-

ite state machines (FSM) have been created since
early 1960’s, and are in industrial use, typically in
large companies. However a reneved high interest
has been recently created in designing digital cir-
cuits with state machines. It can be also noticed in
small companies, universities, and hobbyists appli-
cations. It is due to the advantages created by the
LSI technology that enables to design efficiently
such machines with the Programmable Devices

(PLD’s). By PLD’s, we understand after Coppola

[Copp 86] any device which can be programmed by
the user to realize a chunk of combinatorial or
sequential logic: PAL’s, PLE’s (Monolitic Memories),
EPLD’s (Iatel, Altera), EEPLD’s (Lattice), FPLA’s,
FPLS’s (Signetics). The PLD devices permit to
design relatively large FSM’s and logic functions
(also multi-level ones) in single chips or just with a
few of them. A lot of software” packages have been
impiemented to aid the designers in these tasks.
Such packages are available from some universities
(like U.C. Berkeley) and also sold from companies
like Intel, Altera, Signetics, Data I/O and others.

‘To the best of our knowledge the packages have

several drawbacks: they are not especially tuned for
EPLD design- (Berkeley), automatic multi-level
Boolean minimization is not allowed, partitioning
and decomposition of FSM's and Boolean functions
is either absent or is not minimal, there is usually
no state assignment or other optimization of
abstract Finite State Machine descriptions.

This paper describes a CAD system that is
under design in the Department of Electrical
Engineering at Portland State University. The sys-
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tem is used for designing with EPLD’s, but can be
adopted for any generic PAL's with two-level

AND/OR registered array logic. This system per-

mits 2 state minimization of FSMs (both completely
and incompletely specified machines), FSM state
assighment and decomposition, multi-level logic
design, Boolean decomposition of multi-cutput
incompletely = specified Boolean functions and
machine type convertion (Mealy machine to Moore
machine and vice versa).

The FSM design methodologies and some of
our FSM design tools have been described in [Perk
86a]. The tools used for optimization of the PLD's,
particularly from Intel, are presented  in [Copp 86].
In this paper, we will briefly describe the entire
PLD CAD system but the main topic of our interest
are the new tools, '

2. PARTITIONING OF THE HIGH LEVEL
DESCRIPTIONS OF CIRCUITS WITH EPLD'S

The Electronically Programmable Devices
[Inte 86] permit to design a variety of sequential
and combinational circuits. However, when the cir-
cuit under design-is too large, a user has to perform
the fitting process either manually {see page 2-68 in
[Inte 86]) or even to partitionate his/her design onto
several devices.- Sometimes the partitioning process
is straightforward and originates directly from the
description of the circuit, by being the composition
of several "small cooperating state machines and/or
logic functions. However, when a single large
machine is initially described, as there is a case for
a microprogrammed control unit of a special pro-
cessor, the partitioning process can be very difficult
when performed manually,

There are basically three possible approaches
to the partitioning of large Finite State Machines:

1)  partitioning (decomposition) on the level of the
machine’s structure description, before logic
realization or even before states’ assignment.

2} decomposition of the Boolean functions which
realize the excitation functions of the
machine. This decomposition is based on the
principles of the Boolean logic and s
performed before or during the logic minimj-
zation. :

3) partitioning of the realizations of the Boolean
(these are usually

functions the minimized




Boolean equations, the truth tables in the form

of arrays of cubes or the netlists) based on the

graph-theoretical methods (min-cut, maximum

clique and other algorithms).

In this paper oniy the first approach will be
illustrated. The second approach is described in
[Perk 87b].

Each type of EPLD device comes with some

technological constraints that has to be satisfied
during a mapping of the machines and functions in
the design process. For simplification, we will
assume that the following constraints exist

1. number of dedicated inputs to the device
(denoted by NDI),

2. number of inputs/outputs to the device (NIO),

3. number of macrocells with OR gates and flip-
flops (NMCQC),

4. number of AND gates on the inputs to the OR
gates in the macrocells (number of products in
the Sum-of -Products realizations) (NAG).

For instance, for some well-known Intel’s
EPLD’s these parameters are:

for 5C031:

NDI = 10, NIO = 8§, NMC = §, NAG =8,
for 5C060:

NDI = 4, NIO = 16, NMC = 16, NAG = 8.
for 5C090:

NDI = 12, NIO = 24, NMC = 24 NAG = 8.

for 5C180:
NDI = 16, NIO = 48, NMC = 48, NAG = 8.

3. DESIGN FLOW OF THE SYSTEM

The general data flow of our system is shown
in Fig, 1.

There are several data input formats to our system.

The flow-diagram of a control unit can be
read in the format *flow similiar to the input file
of the program Peg from University of California
in Berkeley [Hama 84]. A description of the
register-transfer flowchart in format *.flow can be
converted to either a completely or an incompletely
specified machine by program Conversion [Perk
87a]. These machines are described in the input
format of the Kiss state assignment program from
UC Berkeley [DeMi 85] (called *kiss format). (This
is a standard form used for benchmarking of the
CAD programs that deal with the FSM's.
exarples of machines in this format can be
received from SIGDA, UC Berkeley or other
sources [MCNC 87].) The *Xkiss format description
is stored in a file, that can be converted to our state
table format (called *.stab format) by program
KissToStab.

A classical form of the FSM state-table with
the rows corresponding to symbolic internal states
and the columns corresponding to symbolic input
states can be entered interactively by the user [Perk

Many -

- 183~

flaw  (Flow-diagram) """““"‘
I F3n caplurs |‘_' action
.Hu
Ktu]’usm ltlb
rhr-
Incomolste Camol
Specified v serT.:" o Concurrant
Maching Mechine ) :‘l:imlznum
) ) - sigte
\\[j / -
atad  (Minimslor
mintmized
/ st tabies)
Automstic interactive e ton
State Staa =3 sglact nuenber of F¥'s
«> salact types of FF's
=3 salect assignment of inputs
/ = sslect asstgnmont of outputs
1 .
Caleulation
of
excitetion
function
Lt {Pertitioned
j Boolean —
At —*  Minimization [ <8GR functions)
{truth tables) —» .ADF
Fig.1.

85a], [Perk 86b). A *stab format file is created.

The textual ASCI file with the description of
a regular expression or a nondeterministic Rabin-
Scott machine can be read and converted to the
state table with a use of the Prolog program [Perk
86]. The Brzozowski’s method of the derivatives of
regular expressions is applied. Machines produced
by this program are not always minimal, since the
fast equivalency c¢heck of regular expressions is
applied, that can not recognize equivalency of some
expressions. Hence, further minimization of the
number of internal states is recommended.

The output from the system is in the form of a
set of partitioned logic functions that is described
in the truth table format (LIF, U.C, Berkeley} or as
the logic equations format (Eqntott format from
U.C. Berkeley). For the future, the ADF format of
Intel's PLD software tools will be aiso generated.
Hence, the system would be designed as a prepro-
cessor to the existing university and commercially
developed tools, especially those of U.C. Berkeley,
Intel and Altera. '
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Qur goal is to develop the integrated CAD sys-
tem which will permit for completely automatic
design of Finite State Machines, starting from vari-
ous input descriptions (flow-graphs, graphs, tables,
regular expressions) and producing different parti-
tioned PLD-based realizations (also other than
Sum-of-Products generic PAL architectures).

The design stages illustrated in the Figure 1
will be discussed in the next paragraphs.

4. STATE MACHINE DESIGN

4,1, STATE TABLES

By a Mealy machine we will understand an
ordered 5-tuple
M=<A4,X,Y,6, A>,
where
‘A -is a set of internal states,

X -is a set of input states (symbols),

Y -is a set of output states,

§:A x X -> A is a next-state (transition) function,
A: A x X ->Y is an output function.

A state table of the machine is a 2-dimensional
array with internal states as rows and input states
as columns. A table’s cell on the intersection of row
Ai and colume X; includes next state 4, upon slash
and a present output state ¥, below slash. This
means that: .

&Ais X J ) = A?"
MAis XJ. ) = Yn,

A Moore machine is defined as an ordered 5-
tuple like a Mealy machine, the only difference
being the fact that §: 4 - ¥, which means that the
output states are functions of only the memory ele-
ments, and not memory elements and . input signals
as in the case of the Mealy machine.

4.2. THE ROLE OF THE DON'T CARES
AND STATE TABLE MINIMIZATION

4.2.1. USING INVARIANTS TO INCREASE
THE NUMBER OF DON'T CARES
IN THE STATE TABLE

We have noticed that the decrease of the
number of the PLD chips necessary to design a
large machine can be obtained when the initial
description (the FSM state table or the Boolean
function) includes don’t cares in one form or
another. Therefore, our input formats permit to
specify the don’t cares directly or our algorithms
generate them automatically from input descrip-
tions. Direct specification of don’t cares is done for
the state tables (in format *.stab), for the state tran-
sitions of FSM’s (in format *.kiss) and for the truth
tables of Boolean functions (in format *.tt).

The flow-diagram is transformed to the Mealy
machine’s state table, whose columns correspond to
disjoint cubes of input signals, and rows to the
internal states of the machine [Perk 86b]. The
number of states in this table can be now minim-
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ized, but better results are often obtained, when at
first the number of the don’t care cells in the table
is increased. This can be done by using the invari-
ants of the flow-diagram, which are inserted in the
flow-diagram description by the user or are gen-
erated automatically from the flow-diagram [Perk
87a). Increase in the number of don’t care .cells in
the table permits in general case to minimize the
number of the internal states of the machine better
(which means less flip-flops), to find better state
assignment and realization with smaller number of
PLD devices. The number of internal states in the
table can be minimized with use of one of the two
algorithms: one of them for completely specified
machines, and one for incompletely specified
machines. The algorithm for the completely
specified machines is a modification of one from
{Koha 70}. The variant of the program that is to
be applied is selected by the user. The branch-and-
bound program for incompletely specified state
table minimization is described in [Perk 85a). The
new, improved variant for incompletely specified
machines is presented in [Perk 87]. It permits to
optimize machines with up to 100 internal states.
State minimization is especially wuseful when the

- state table is genmerated automatically from a high

level description like a regular expression or a
flow-diagram, or when the Mealy to Moore or the
Moore to Mealy transformation had been previously
executed.

One variant of our state minimization algo-~
rithm differs slightly from the classical approach.
By symbol ¢ we denote "no operation” output which
is treated during the state minimization as an out-
put don’t care. It means, that two internal states
can be combined, with respect to some column of
the state table, when; :

-they have compatible next states,

- they have consistant output states or "no opera-
tion" states and any other output state in this
column,

After minimization of the state table and
before the state assignment, the symbols ¢ are
replaced with vectors of zeros, with as many zeros
as the number of output signals of this machine.
This replacement is dome in order to prohibit crea-
tion of too large output implicants (ie. the impli-
cants which have a number of literals reduced too
much) at the stage of Boolean minimization. Gen-
eration of such implicants could undesirably
change the specification of the behavior of the
state table (the behavior would be not equivalent to
the initial specification).

Example 1.

A flow-diagram of the multiplying wnit is
shown in Fig.2. This unit calculates w =y * x by
using only up- and down- counters in the data path.
The multiplication by repetitive counter addition is
applied.
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Fig. 2.

Let us assume at first (for comparison) that the
invariants are not taken into account. From the
flow-diagram of Fig. 2 the Mealy state table of Fig.
3 is created.

pb 1 s=1
poi=0 . po:j=0
po pl 92 e
A ’ :00 001 o1 oo 110 Tt 10t 100
Sgo So Sq So Si 51 S S
§ 0 {7 ﬁ {7 Cy Cq Cq Cq
s2 /152 /15021 S04 1504|504 152/ {52
ST 2| B 2| % Ca| /C2
S Sy S, S2 /152 S St S2
$2/7%¢H B cs| Scs| B B 3
p1:i=0
Fig. 3.

The number of internal states in this table- cannot
be. minimized because any pair of states, like the
pair of §; and S or the pair of pair S7 and So
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have different outputs for the same input signal
combinations (for instance Sg and S5; have outputs
C1and Cq, respectively, for input combination

Pop1Pz
{corresponding to column 100 of the state table)).

The respective realization of excitation func-
tions is shown in Figs. 4 a, b and output functions
in Figs. 4 ¢, d.
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As we see, two D flip-flops are required to realize
excitation functions D and D, of the sequential
control unit. .

Now, let us assume that the invariants of the
flow-diagram from Fig. 2 are used. Since in S¢ the
invariants (i=0) and (j=0) hold, then the transitions

i in the state table of Fig. 3 are specified for p1 = p2
.= 1. Similiarly, since in §; the invariant (j=0)
holds, in S the transitions are specified for py = 1.
After introducing of all don't cares this way, the
_table of Fig. 3 takes the form of that of Fig. 5a.

a) pp 5=l
po:j=0 po:j=0
po pi p2 ———e ———
A Q00 001 o1t 010 110 111 161 100
S So S
0 - - z — _— 1C|' - -_—
S S , S S
S 1l — 2C2 Og - = Oﬁ G| —
S S S S S s1./1s1 So
52 2C3 1% ‘ﬂ 2C3 2C3 2)' ﬁ C3
p1:i=0
b)
000 003 on 210 1o 18 o1 100
. cs Cy &) Cx | Cx C1 Ca c3'
Ci =PoPiP2
Co= I’J_l p2
C3=p2
Fig. 5.

'The Mealy table from Fig. 5a can be now minimized
(internal states minimization) as in Fig. 5b. Let us
observe, that the minimized machine from Fig. 5b
has only one state! The output functions are:
Ci=po&p1&ps, Ca2=p1p2

Hence, in this particular case the control unit
has been reduced from a sequential to a purely
combinational circuit.

Such deep reductions of control units are rare,
but very substantial reduction in state machine
complexity through generation of don’t cares in the
control wunit description is very common and I?as
been observed by us in many practical control units.

Cs=ps.
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4.2.2. MINIMIZATION OF THE NUMBER
OF INTERNAL STATES

Minimization of internal states of the state
table consists in finding such groups of states that
all states from each group can be joined together
into one new state and the resultant machine with
new states will be still behaviorally equivalent to
the initial machine. This is achieved when the
groups of states are complete and closed. Completes
means, that all machine's internal states are
included in (at least) one of the selected groups.
Closed means, that each pair of states whose compa-
tibility is implied by any pair of states from any
selected group of states is also included in at least
one of the selected groups {for these basic defini-
tions see [Koha 70] or [Perk 85a]).

Example 2.
Given is a state table from Fig. 6,

AXX‘I Xz X3 X
A
24.0 —_—1—
VAV A e
5——-—%_
o|— 281 40A
s 20| — 12614

Fig. 6.

Now the groups of compatible states for this table
are found according to the method from [Perk 85a).
They are shown as nodes of the implication graph
in Fig. 7.

—— —" et — — . —— -

For instance, the states 2 and 5 are compatible, as




are also the states 2 and 3. Arrows of the graph
denote the relation of the implied compatibility
between the pairs of states. For instance arrows
from pair {4, 6} to pair {I, 2} and {3, 5} mean that
states 4 and 6 are compatible under condition that
states I and 2 are compatible and states 3 and 5 are
compatible. This can be observed in the table: when
we want to merge states 4 and 6, the successors
(next states) in column Xg (states I and 2) and in
column X4 (states 5 and 3) must be compatible as
well. The set of compatible groups {{1,5}, {2,4),
{3,6}) is compatible and closed, since there are no
arrow going out of the respective subgraph {(no pair
is implied that do not belong to it). Similiarly com-
patible and closed are the following sets of of
groups of internal states: ({1,2), {3,5), {4,6}} and
{{(1,2}, {2,3,5}, {4,6). (group {2,3,5} is created from
pairs (2,3}, (3,5} and {2,5}). A set with three groups
can be used to generate a machine with three states.
All these three sets have three groups, so any of
them is selected for further minimization (it can be
proven that no better set exists)) When the set
{€1.2}, {3.5), {4,6)} is selected, states 1 and 2, 3 and
5, 4 and 6 are merged (see Fig. 6 and Fig. 8a. After
renaming states: {1,2} to A, {3,5} to B and {4,6) to C
the new state table from Fig. 8b is created. The set
of states that is included into other sets is renamed
by the symbol of any set that inclfudes it. For
instance state 4 in the intersection of row {i,2} and
column X; of table from Fig. 8 is replaced with C,
since 4 is included in set {4,6) to which symbol C
was assigned.

a X b} ¥
ANCX1 X2 X3 Xo ANUXi X2 X3 X

02l 5134 144144 AlS8 84191841
B P 2 e D A 2
L&,61351;1513 7017 1 1515,9’6 f>?§55<(

Fig. 8.

m
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The number of the internal states of our machine
has been then minimized from 6 to 3 and the
number of flip-flops {assuming state assignment
with the minimum number of flip-flops) from 3 to
2.

Such minimization permits for better fitting of
large machines or groups of machines to PLD dev-
ices. The number of the devices can be reduced.

Minimization of the number of states can .
sometimes increase the complexity of the excitation
and/or output functions. We cannot then treat the
minimization stage dogmatically, as a must in the
design process. What we wanted to achieve in our
system, was rather to create an integrated environ-
ment in which the user can experiment with various
optimization methods. These methods can be
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sometimes complementary, but for other machines
the effects of transformations are mutually anihi- °
lating. Hence, the design trade-offs must be
investigated in each particular case by the designer.

4.2.3. COLUMN MINIMIZATION
OF STATE TABLES

Besides state minimization for internal states,
discussed in many textbooks, another type of state
minimization can be sometimes useful; minimization
of the number of columns. Such minimization can
be performed either before or after the minimiza-
tion of number of the internal states. These two
types of minimization can be iterated. Minimiza-
tion of the number of columns is done using the
method of the graph coloring of a graph, whose
nodes correspond to the columns of the initial state
table. We will call this graph a column coloring
graph. An edge exists between two nodes' if the
corresponding columns are not compatible (not
compatible are the columns that cannot be merged
together into a single column). The graph is colored
in a proper way: ie. any two nodes linked with an
edge should be assigned different colors. The
number of different colors used in coloring is to be
minimized. All columns colored with the same
color are next merged together into a single column.
If the number of colors in the coloring is smaller
than the number of the nodes, then the number of
columns of the machine is reduced.

Example 3.

Given is a state graph from Fig. 9. Such graph
corresponds to the *Xiss format, obtained from a
flow-diagram in *.flow format.

cd/C&
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To find the cubes being the headers of the columns
of the state machine a set of formulas is generated
for each internal state of the graph, for which a
branching exists. Such states are S3, S5 and S6. The
" formulas are:

for state S3: F(S3) ={a,a},
Y or state S5: F(S5) = {5 AR
‘or state S6: F(S6) = {c, &d, &d ).
To find a set of column cubes we calculate 2
formuia:
F(3) & F(5) & F(6) =
{ abe, abcd , abéd ,abe , abéd , abéd , abe,
abed , abed , abe , abéd , abéd ) .

Now the state table is created from the graph
of Fig. 9 with the above cubes as columns (Fig. 10).

abc 3bcd abcd abc 8bod abod ab¢ abod 2bed abe sbed sbed
Si Iml'szfcl S2/C11S2/C1| S2/CH &lclisz/clszlcl S2/CHS2/C1) s2/0 52/C))

s2 js3rc2] wmiwmm s3vcafssicz) ssnzls:vcz:wcz s3rc4 5370

S3IpaCcs $4/C3L4/CS [S4/C35 B4 /C3{54/C3 B5/C5 SICS&IC} [55/CS 155/C3|SS/C3

S4|54 /- | 54/~ | 54 /-] 547-) 54/~ | 547 ] 547~ ] 54/= |54 /-] 54/~ ] 54/ sS4/~

SS[SGIM%IGSHM /C4] S4/C4S6/CS{S6/CS 6 /05 | S4/04] 54/C4 S4/C4

56 B4/C6136/C5[51/CT] S4/C6{S6/CEIS1/CT [54/C5 35/06]5]/67 [54/C6 [56/06¢ $6/G7]

. ' Fig. 10.

Let us now assume, that the following invari-
ants exist for the graph:

-for state SI: a #b,
~for state §2: a=c¢,
~-for state S3: b=0, :
-forstate 84: a=1&b=1,
. -forstate 85: (a=1&¢=0)or{a=0&c=1),
~for state S6:- b=0.

By a specified transition we understand a pair
of the next state and the present output in a table’s
cell, where at least one of the symbols is other than
a don’t care. Let us discuss now how the specified
transitions are calculated for internal state Sl. By
Boolean multiplication of all_the header cubes of
the table with the function ab +ab (corresponding
to the invariant of state S1) we get the following
cubes:
abc, abcd , abcd , abéd , abe , abéd , abed .

Hence, the cells of the table being on the intersec-
tion of the columns with these cubes as headers and
the row S1 remain as they have been specified in
table of Fig. 10. Transitions from state Sl for
columns corresponding to other input cubes are

/4

non-specified and are filled with don’t cares sym-
bols (dashes). By continuing this process for other
internal states the table from Fig. 11 is created.

1 2 3 4 5 [ 7 8 9 01 12

abc 2bod abcd abc abed abed apc abcd abcd abe abed abod

st Iszrc: sreifsziet] o- | wfes J - | - |- }wc! s2rcq s2s89

safssn2] — [-- 2| - |- | - |- [ssm -- [szrc2(szsc2] -

s3fsarcs|sarcisarcy -- [ -- |- Issicdissicfssned -] .. |

saf == | —{ - - jsarfsar| -] v - |~ ] |-~

§5| -~ pe/cs|sercs| -- fasca|sascaisescs| - | -~ fsasca -- |-

sﬁfsm:swcslslm | = | - Bandssccesicr --| - | --
Fig. 11,

To optimize this table we will first minimize
the number of columns. Two columns are compati-
ble and can be merged together when in each row
one of the following conditions is satisfied:

- they have the same next states and outputs,
- there is a don't care in at least one of the two
columns. .

For the table from Fig. 11 a coloring graph is
created (Fig. 12a). This graph is colored as in Fig.
12b. :

Fig. 12.
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After merging columns of the same color the table
of Fig. I3 is generated. For instance, the first
column of this table originates from columns 1, 5, §
and 10 merged together.

53 }s«cs 54/C3| 54763 55/0355/¢3{55/C3

s4 ,54/- s4/-| - |- | -] -

55 [54/C4|56/csl sescdseicd —- | --

56 [54/C6(|56/C6| 51/C% S4/CE S6/C6{S1/C7

Fig. 13,

This table is now minimized wusing standard
methods for incompletely or completely specified
machines (incompletely specified in this particular
case). Comparison of all pairs of states (triangle
table of Fig. 142) produces the relation of implied
compatiblity of states. For instance the triangle
table shows, that states S1 and S4 are compatible
under conditions that states S2 and S4 are compati-
ble. Recursive process is used to mark all incompa-
tible pairs of states with symbols X. (In this partic-
ular example no new symbols X are introduced).

a)

S2 | X

S3I | X X

S4 |S254]8354

55| X X ] X |s458

56 | X X1 X X

St S2 53 5S4 S5

c)
{s1, 54}
[52,L54] [54,‘55]
153, 54) {54, 56)
Fig. 14.
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The merging graph created from the triangle table
of Fig. 14a is presented in Fig. 14b. The nodes of
the graph correspond to the internal states. An
edge is created between two states, when these
states in the triangle table are compatible (no sym-
bol X exist in the corresponding cell of the table).
The maximum cliques of the merging graph are:
{{S1,54), (S2,84), (83,84}, (S4,85), {S4, S6}). The
implication graph is shown in Fig. 14¢c. The closed
and complete groups are in this example the same as
the maximum cliques. As the result the table of
Fig. 15 is obtained from the complete and closed
groups and the table of Fig. 13. Now the column
minimization process ¢an be repeated. The column

X y 2z u v w

156,10 2,411,12 3 7 8 9
51,54 | 52,54/Cl| 52,54/C1 |52,54/C1 - - -

52,54 | S3,54/C2| 83,54/C2 - - - §3,54/C2

53,54 | 54,85/C3| $4,55/C3 [ 54,55/C3 | 54,55/C3 | 54,55/C3 | 54,55/C3

34,55 | 54,56/C41 34,56/C5| 54,36/C5 ] 54,56/C5 - -

54,56 | 54,56/C6| 54,56/C6] 51,54/C7 | 54,56/C6 | 51,547C7 | S1,54/C7

Fig. 15.

coloring graph is shown in Fig. 16. The nodes
(columns) x and v are colored with color a, the
nodes y and u with color b, and the nodes z and w
with color c. After merging the respective columns
(x with v, y with u, and z with w) and renaming the
states the table of Fig, 17 is created.

Fig. 16.
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. ‘ o Drc3 D/C3 D/C3

X, v y,u Z,W
156,108 2411127 39

B/C} B /CY BsCt

c/c2 c/C2 c/c2

D E/C4 E/CS E/CS
E E/C6 E/C6 A/CT7
Fig. 17.

The resultant state table of Fig. 17 cannot be
further minimized by state minimization. The first
column of the table corresponds now to columns 1,
5, 6, 10, and 8 of the initial table. To design the
state machine and the combinational inputs decoder
the columns of the table of Fig. 17 are encoded

m,n
00 01 11 10
A B/C1 B /C) B/Cl -
cre2 | cre2 | o2 -
D/C3 D/C3 D/C3 ——
D E/C4 E/CS E/CS -
e [ e | ecs | avcr -
Fig. 18.

with values 00, 01, and 11 of signals m and n,

. respectively - see Fig. 18. Such -assignment deter-
. mines certain correspondence between signals a, b,
‘g, d and signals m, n. This correspondence is

represented as an array of cubes (truth table in *.tt
format) and for illustration purposes is shown here
in the form of a Karnaugh map (Fig. 19a). The
equations:

m ZI;EJ,
n =abc +abé +abc +abc +acd

are created by Boolean minimization. The structure
of the entire realization of our machine is shown in
Fig. 19b. The inputs decoder is described with the
above equations and the FSM is described with the
state table of Fig. 18. Similiarly, the output decoder
can be created for signals Ci -C7.
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ab

00 o1 1" 10
9 8 7 7
00
o1 00 q o 1)
12 11 10 10
o
| o1)| oo | oo
6 5 4 4
nl ool oo 1] o
3
/ \CZD oo |
ol Xl oDl oo oo
m, n
> C1
. —C2
b : m —» C3
—»| inputa
| omeodor FSM [ c4
¢ > cs5
d n —» C6
I c7
Fig. 19.

4.3, MEALY TO MOORE MACHINE TRANSFOR-
MATION

It is in general case difficult to predict, which
of the two possible realizations of the given
machine is in the simpler form: a Mealy type, or an
equivalent to it, Moore type. The Moore machine
has a separate realization of output functions
which can permit to fit it to a separate device.
However, the possibilities of

i partitioning/minimizing/fitting of the transition
functions are enhanced, since this functions have
now less outputs and product terms (cubes) than the
initial transitions/outputs functions. The
equivalency of the machines is understood here in
the sense of the same input/output behavior: being
in equivalent states the machines respond with the
same output sequences to any input sequence appli-
cable to both of them (for the exact definitions see

for instance [Koha 70)).




Let us observe, that the output states for the
internal states of the Moore’s machine are written
in an additionat column, as in Fig. 20d. Only the
transition functions are written into the cells of the
Moore maps, and not transitions (above slash) and
output functions (below slash) as in the Mealy maps.

a) b) c)

t t . ‘
AN X X2 ArS X1 X2 gtx X1 Xz Y
BY (B
A1AG% A1(4% Bj B3 Bf. 0
A8 aBEB B.| B B
A ")6 ;6
A 156 1% i Ba| By| Bs| 0
AL/A 3
Ay A){ {507 (Bg BsfBsl— | 0O
AS A11 I AL A()vﬁA)/‘] BS B8 —_ 0
Bs
A5A11 - AsjArgl — Bs|Bs|—| O
A7A"0 - AGA&}:’— Byt B} B2f O
11 .
Ayt Jpqmt/ﬂav_. Bg | B1| Bz| 1
t+1
o
Fig. 20.

+

a) Mealy machine, b) allocation of states,
c) partially filled Moore table,
d) complete Moore table equivalent

to the Mealy table of Fig. 20a. .

Transformation of the state table of the Mealy
machine into the table of an equivalent Moore
machine is performed according to the following
algorithm. :

Algorithm to transform Mealy machine to an
equivalent Moore machine.

1. Allocate the internal state symbol B; of the
new Moore machine to each different pair of
next internal state and present output state
(45, Y;) from the cells of the Mealy machine’s
state table - identical states of the Moore
machine will then correspond to identical pairs
(Fig. 20b).

2. Create the Moore type state table, with as -
many rows as there are different state symbols
Bj. Allocate to each state By = (4;,7Y; ) the
corresponding output signal ¥; from the pair
(Aj,Y; ) as for the Moore type state output
(Fig. 20c). :

3. Fill the cells of the Moore table with the next
state functions. The next states, B,, for each
Xi, are allocated to state B; = (4;,Y;) in the

same manner as the state A4; has had, ie. ’

(61(‘4] sX‘L) ,RI(A] 3X1'-).)= ( A’U’ Yz )= BT"

10
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For instance, for Mealy state table of Fig. 20a
the allocation of Moore machine’s states is specified .
in Fig. 20b. We will allocate state By to pair A,/0,
state B2 to pair A3/ 0, and so on. Because the pair
A3/ 0 corresponds to state B, the output signal for
state will be equal 0 and the next states will be Bg
for input X, and B, for X4, while these states exist
in row As of the state table from Fig. 20b. The
complete state table of Moore machine is given in
Fig. 20c.

The basis for the Moore to Mealy transforma-
tion shown above is the following theorem.

Theorem.
If My=<X,Y, 4,08, A\ > is a Mealy machine then
the Moore machine Mz = <X,Y,By, 03 Ap> is
equivalent to it. The set B; and functions &; and Ag
are defined as follows:

By = {(4;,%): (exists A;&A Xexists Xi£X)
[4; = &4 Xe) and (¥; =N(4e, X)) 3,
62(3_? sz) = 62((Aj 9)? )’Xl) = (61(Aj 9X1:)a A1(‘4] 1X‘i)) ’
A2(Bj) = Ao((4; Y5 ) =Y,
Example 4.

State minimization is often necessary after
execution of Mealy to Moore or Moore to Mealy
transformations. Fig. 21 presents a Moore machine
obtained from a Mealy machine of Fig. 3.

000 Q01 110 111 101 100

Bl 1Bl |B1i Bl |Bl|B2]|B2 |B2| B2

Q11 010

B2 | 83 1 B3 | B1 | Bl Bl B1{B3 | B3 | Ct

B3 |B4|BS |85 |B4]| B4 BS|B5 | B4 | C2

B4 | B4]BS |85 ] B4 B4l BS|{B5 | B4 | C3

B5 | B3| B3} B1| B! Bi| B1| B3| B3

Fig. 21.

This new machine is not minimal and requires 3
flip-flops. In the process of minimization states B2
and B5 are merged and hence the minimized
machine requires only two flip-flops. It is left to
the reader to generate don’t care cells for this
machine, find realization and compare to the solu-
tion from Example 1. A machine from examples 1
and 4 is useful to demonstrate how combinations of
various techniques, like invariants generation, state
minimization, state assignment, Mealy <-> Moore
transformations, and executed in different order,
can essentially influence the quality and the form
of the realization. -
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4.4. MOORE TO MEALY MACHINE TRANSFOR-
MATION

The transformation of Moore state table into
an equivalent Mealy state table consists in writing
under. slash, in each cell of the table with the next
state A; , the value of the Moore machine that
corresponds to this state, Next the column of out-
puts is removed from the table. Fig. 22 illustrates a
transformation of the Moore table {Fig. 22a) into an
equivalent Mealy table (Fig. 22b).

al
x Xoo Xor Xu X Xoo Xot Xn X

AND00° 01 11 10 %Y, AN D0 01 91 10

111331 ]2]o00 R PA T4 PA 74
2{z213lz2]2]10 z%%zozm

3 /13 413 /12
3j313{13{2]01 -3 a0

Y

- Fig. 22.

We have to bear in mind, that notation A4; / Y;

in the intersection of row 4; and column X; means,
that being in state 4; and receiving input state X
the machine produces immediately the output state
Y; and only in the moment of time mext (in the
next clock’s pulse) it transits to state 4;. Hence, let
us assume, that the machine from Fig. 22a and the
machine from Fig. 22b are both in their states 1
when input state Xg; arrives. The Mealy machine
produces an output state 01 immediately, while the
Moore machine transits in the next pulse to state 3
and not earlier than then it produces an output 0l.
The Mealy and Moore machines are then
equivalent, but the equivalency is with an accuracy
of one clock pulse. We must remember this fact
since it can sometimes have an influence on the
design. '
In our software package, the transformations
between Moore and Mealy tables are possible for
both before and after the state minimization. Dif-
ferent program pipelines can be organized by the
user in the UNIX environmerit.

4.5. CONCURRENT MINIMIZATION
AND STATE ASSIGNMENT

The currently used design approach is first to
minimize the number of machine’s internal states
and follow it with the states’ assignment. Both the
state minimization and the state assignment prob-
lems are classical in the Automata Theory, and a
number of approaches has been proposed. Most of
the optimal state assignment algorithms are NP-
hard, which means that they can practically find
optimal solutions for only the small machines (12 -
15 states). The known approximate algorithms (like

the approach of De Mitchelli, Sangiovanni-
Vincentelli et al [DeMi 85]) yield non-minimal solu-
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tions, sometimes of poor quality. Minimization of
the number of internal states results from the
adopted assumption: "the more internal states, the
more complicated is the realization, hence more
memory elements are needed, there are more excita-
tion functions, and therefore their realization is .
more complicated". Practical examples show the evi-
dence, that we should neither seek a machine with
the minimal number of internal states, nor the one
that has excitation functions depending on the
minimal number of varisbles - as lot of textbooks
suggest, and as has been implemented in the
current design automation systems. The examples
of machines that have minimal realizations with
the greater than minimum number of flip-flops can
be easily found. Also, the attempt to find a realiza-
tion of the set of excitation functions with minimal
number of argument variables is often useless,
because such realizations can have more chips than
the other realizations of these functions., When
these partitions are used for coding, the number of
machine states are reduced, being a result of assign-
ing the same codes to groups of compatible states.
This corresponds to conducting a search for a
machine, equivalent to the initial one, that minim-
izes the layout realization. Algorithms of this type,
as well as algorithms for state assignment of
minimal machines free from the above mentioned
deficiencies, have been presented in [Lee 82], [Lee
84]. Each partition is evaluated separately: the
value of its quality function is found by minimizing
the corresponding Boolean function with multiple-
valued input functions. Next, the branch-and-
bound search in the space of sets of partitions is
done, to minimize the value of the cost function, We
use a2 method known from AI to guide this search
by a calculated values of the quality function for
nodes of the tree. The other advantages of the
approach are the following ones: the cost of the
output functions’ realizations is taken into account
as a part of the total cost; various types of flip-
flops can be selected (D, JK, T -the best for each
function); such an approach 1is especially advanta-
geous for PLD devices in which various types of
flip~flops are available.

Example 5.

A machine from Fig. 23a has been minimized
to the form of Fig. 23c (states 6 and 7 were merged
into new state 6). Next the machine from Fig. 23c
has been optimally  encoded as in Fig. 23d.

This state assignment leads to the following
excitation and output functions:
D1=01X +01x,
D2=Q2% +02x,
Ds=Qz +%¥ Qs +Q1 x,
z2=01Q20s +0:1070s +X Q102 + 50103,
which requires 4-input OR gates in PLD (NAG =4)
in the PLD.

Let us assume now that we use an algorithm




-y

for concurrent state minimization and state assigx}—
ment. For the non-minimized machine, the parti-

tions are found:

7, = (1567 , 2348 },

Ty = (1258 , 3467 ),

Ty = {1368, 2457 ).
See Fig. 23b.

These partitions are applied for state assign-
ment of the machine from Fig. 23a apd lead to the
following excitation and output functions:

Dy=01. L
Da=Qsx +Q2x,

o)x b}
ANO 1 T 5T
1451 % 00O
2| 7 1 0 1
37150 110
471 5-1 »',11
58/;"0 0 0 1
5‘0,20 010
7‘%‘-20 0 1 1
851"% 100
c:)>< d}

AN O 1 T T2 T3
12451%% 110
r} A VA 0 1 1
| AV 100
A7 1.0 1
s| 9414 1 1 1
6|°/512% 0 0 1
8%80 010
Fig. 23,
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D3=Q3 +x03 +x Qs,

z=xQ1 +Q10s. ,

This last realization requires OR gates with only
three inputs. This example showes, that concurrent
state minimization and state assignment (which
corresponds to the not one-to-one assignment of an
initial machine) can produce better results than the
classical approach. This was confirmed on several
practical examples. However, in general the
designer has to try both approaches and compare
the results.

4,6. STRUCTURE OF DECOMPOSED MACHINES
AND ASSIGNMENT

Classical theory of state machines distin-
guishes two types of machines: Mealy and Moore
machines. The structures that are used in order to
implement such concepts in hardware are presented
in Fig. 24a, b, c¢. The excitation (transition) and
output functions of a Mealy machine can be real-
ized either jointly (Fig. 24a) or separately (Fig. 24b).
In both cases the functions are realized with PLA’s,
EPLD's, in TTL random logic or with any other
method. In the case of EPLD’s both realizations are
used, depending on the size of the machine or
machines that are to be mapped together.

MEALY MACHINES

MOORE MACHINE

Fig. 24.

A Moore machine (Fig. 24c) can have the
advantage of separate transition and output func-
tions, as well as simpler realization of output func-

...]58..

tion, which sometimes permits for better fitting of

an abstract machine(s) to PLD devices.

To simplify the FSM realization, and especially
to decrease number of inputs/outputs/flip-flops
(depending on machine's type), realization of

.machines with separate logic for encoding of input

andfor output signals is recommended. For
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instance, Fig. 25 shows a Mealy machine with
encoded inputs and encoded outputs, Such machines
are designed by encoding combinations of input sig-
nals with symbolic input states and combinations of
output signals with symbolic output states. Next, in
the assignment process the assignments are found

not for internal states only, as it is ususally done,

but also for input and ouput symbolic states. In the
phase of finding excitation functions and output
functions of the internal machine the functions are
created with encoded input signals as inputs and
encoded output signals as outputs from the
machine. Next descriptions of the two code con-
verters are created in the form of truth tables:

- from original input signals to encoded input sig-
nals,

- from encoded output signals to original output
.signals,

rout X | tealy Louput
encoding machine sncoding

MEALY MACHINE WITH INPUT AND QUTPUT ENCODING

Fig. 25.

These truth tables are minimized with standard
tools and realized .in EPLD’s.

The applied by us assignment methods are
very similiar for each of the three assignment
processes: ‘

- assignment of internal states,
- assignment of input states,
- assignment of output states.

Moreover, the order of these assignments can
be arbitrary, and each next assignment process
takes into account the results of the previously
found assignments. This minimizes global con-
straints, and permits to iavestigate various con-
straints and compare many variants of structures
and assignments.

It can be observed, that in practise two types
of FSM’s are realized:

small (less than 16) number of input states,
internal states and output states. All or almost
all of combinations of input signals are
allowed as input states in most of the internal
states (like in a machine from the last exam-
ple).

la}ge (more than 30) number of input signals,
output signals, and internal states. Most of the
combinations of the input signals are however
never used. Such machines are created from
flow-diagrams (as in Example 1). They have
limited branching factor, usually 2 (like predi-

a)

b)
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cates p0 and pO0 in Example 1, or some small
integer (for subsequent if statements or case
statements in the flow-diagram description}.

The machines of the first type are realized
with the methods presented above. ‘

The machines of the second type are realized
in our system with various types of special units,
like machines with selection of input signals (Fig.
26) or various types of microprogrammed units
(Figs. 27 and 28).

MEALY MACHINE WITH SELECTIONS OF INPUT SIGNALS
Fig. 26.
;p—oﬁf HICROPROGRAMHED
MACHINE WITH ROM
AV
Fig. 27.
f HI@WD
HMACHINE WITH PLA
SELECTED INPUTS
17“_]_/‘“ AND ENCODED OUTPUTS
[ L I l |
Xf Y
Fig. 28.
Although these machines are designed from the

state graphs (tables with non-disjoint cubes as
column headers) and not states tables (tables with
disjoint cubes as column headers, as in the previous
examples), many of the design methods for them
are similiar to those presented here. They are based
on the same graph-theoretical and combinatorial
principles as graph coloring, set covering, maximum
clique, and so on. The results produced are gen-
erally of worse quality, but the optimizations can
be applied to the machines of much larger sizes.
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The optimization methods include state minimiza-
tion, decomposition, Mealy <-> Moore transforma-

tions, state assignment based on embedding to
hypercubes, microcode placement in ROM, PLA
minimization for microprogrammed FSM's and
other. ‘

S5, BOOLEAN FUNCTION MINIMIZATION
METHODS TO FIT A FUNCTION
TO THE DEVICE(S)

The Boolean minimization process of the sys-
tem includes at present basically four stages:

1. Reduction of the number of input variables to
a function,

2. Decomposition of a Boolean function to combi-
national blocks,

3, Two-level Boolean minimization of each block

4, Multi-level of each
block.

In the first stage a tree search algorithm is
used to find all minimal sets of variables on which
the initial function depends. This is done in order
to fit functions to single devices, since the number
of inputs NDI + NIO for devices is limited.

In the second stage we use new algorithms (see
[Perk 87b]) which generalize ideas of the method
presented recently by T. Sasao [Sasa 87). The func-
tion is decomposed into chains’ of interconnected
combinational blocks, each block being an arbitrary
Boolean functior of some subset of the input vari-
ables. Multi-wire connections between two blocks
are allowed for better decomposability. The goal of
the decomposition is to reduce the numbers of
inputs to blocks in such a2 way, that each block will
fit to a single PLD. We extend the approach of
Sasao for the case of incompletely specified, multi-
output functions. Some efficient coding methods

Boolean minimization

for multiple-valued signals between logxcal blocks.

have been also introduced.

In the third stage an algorithm described in
[Nguy 86] and [Nguy 87] is used, for each single-
output function of each block separately. When
required by the user, the output polarity of any
function can be inverted. If necessary (for instance
when asynchronous machines are realized) a free of
hazards solution is generated.

The fourth stage uses an algorithm of stage 3,
modified to design multi-level functions.

6. CONCLUSION

Some techniques to minimize and partitionate
Finite State Machines have been described. They
are particularly wuseful in EPLD design but their
applications are broader and include semi-custom
and ASIC design, where gains like speed improve-
ment or semiconductor area optimization can be
obtained. These methods can be extended for asyn-
chronous machines applving the approaches similiar

14
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to those from [Perk 79], [Perk 80), [Zaso 79] as well
as microprogrammed synchronous, asynchronous
and mixed synchronous/asynchronous machines as
described in [Perk 70]. An important aspect is the
attempt to build an integrated environment, where
various methods of state table transformations can
be applied and compared.

The algorithms are tested on the examples of
industrial FSM's from the benchmarks of MCNC
[MCNC 87]. These examples are in the * kiss format
so we are not able to understand their meaning. It
is however more appropriate to understand the
benchmark machine examples, which would permit
to perform more interesting optimizations and par-
titions in comparison to the manual and the current
automatic designs. The authors would be very
obliged to obtain more examples of large Finite
State Machines, especially those described with
flow-diagrams and partitioned manually to EPLD’s,
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