

Integration of the FONIX Speech Recognition library to the

Prof. Perky Humanoid Robot Project.

Final Report

for

Intelligent Robotics I (ECE 578)
Portland State University, winter 2003/2004

Author: Stefan Gebauer

1. Abstract

In 1921, when the Czech author Karel Capek produced his best known work, the play
R. U. R. (Rossum’s Universal Robots) he created the word “robot” to give the intelligent
machines a name. The actual meaning of the word robot was derived from the Czech word
robota which means “forced worker”. Since then, a lot of Science Fiction authors used the
story and created a picture of the humanoid robot as it is in our heads nowadays. A funda-
mental feature of such a robot is an own voice as well as the capability to understand a hu-
man which speaks to the robot. Hence, Speech Recognition is one of the basic and neces-
sary components of the auditory system of a robot. The auditory system is the interface be-
tween humans and robots. On the other hand it may be used for teaching purposes. This
report deals with the integration of Speech Recognition to the PSU Prof. Perky Humanoid
Robot Project.

2. Project Overview

The architecture of the whole project is
depicted in Fig. 1. The box with the grey
background indicates the modules, which
I’m responsible for. At this time I de-
scribe the recognition module, which is
the path between the microphone and the
interpreter. Last term I programmed the
Text-To-Speech (TTS) module. When I
tested it, it turned out that it still has a
bug. (it speaks a little bit more than it is
supposed to speak. It doesn’t really make

sense, what it says additionally.) But it
works though. I think I should add
Fonix’s TTS library to the module as a
future project. Fonix TTS has a good
quality and comes along with a bunch of
male and female voices.
The actual reason for going to do this can
be seen in Fig. 1. The synchronization of
the robot’s lips is not easy to solve with
Microsoft’s Speech API 5.1.Whereas
Fonix TTS API is not that much encap-
sulated like MS SAPI is. The programmer

has access to main TTS functions. I hope
to be able to solve the synchronization
issue with Fonix TTS.
The interpreter plays a central role. There,
all information get together. The inter-
preter evaluates it and sends correspond-
ing actions to the single modules. The
Interpreter is not designed so far. We are
going to have a database which stores
information about people the robot will
interact with. At this point, I’m not sure
where to put the database. Should rather
the interpreter have access to the database
than the chat bot, like it is shown in the
picture?
In any case, the interpreter will have a
link to a learning module. The communi-
cation is based on the OF-Table[4,5]. The
communication between the face recogni-
tion module and the interpreter will be
kept simple. The interpreter will request
face recognition and the module will
follow the command. After a successful
detection the module sends the name of
the person. If the person is unknown the
interpreter requests the TTS module to

ask for the name of the person. The
speech recognition module will be acti-
vated by the interpreter. Eventually the
name of the person will be obtained and
sent to the face detection module which
stores the name in its own database (com-
pare with Fig. 1). For the pragmatically
implementation of the interpreter, thread
programming will be highly recom-
mended.

3. Why did I decide for Fonix?

There are a lot of reasons. First, after a
couple of tests, it turned out the recogni-
tion performance of Microsoft’s SAPI is
fairly poor. Second, the MS SAPI comes
as a whole encapsulated package. It is
hard to customize it or get control to core
functions, if it is possible at all. Third,
there is already some knowledge about
Fonix Embedded Speech SDK 2.1 [2].
Hung et al. evaluated the recognizer [3].
When I’m comparing the results of MS

Fig. 1 Architecture of the Prof. Perky Robot

SAPI with those that they got, the superi-
ority of Fonix’s recognizer is obvious.
Key elements of its capabilities are:

• Speaker-independent or dependent,
as desired

• Performs with background speech
and music

• Small memory footprint
• Computing capacity is adaptable

(starts at 20 MIPS)
• Dynamic optimization--minimize

memory and MIPS
• Word spotting
• Letter recognition
• Finite state grammars
• Far-field microphone

4. Description of the Speech
 Recognition Module (Technical)

The flow chart of the Recognition module
can be seen in Fig. 3Fig. 2. The source
code of the project has been moved to a
separate document (appendix.doc) which
makes the project report document
handier. The first part of the code
initializes and sets the directories. The
shared path needs to be set. This done by
the Fonix API
FnxCoreSetSharedPath. The shared
path contains the dictionary file (.dcc),
the ASR (automatic speech recognition)
rules file as well as the neural net files for
digits (to recognize numbers) and the
general neural net file to recognize words.
In essence by setting the shared path
means to select a certain language. Fonix
supports UK English and German apart
from US English.
The dictionary file (.dcc) can be a the
large vocabulary dictionary, like the one
that provides Fonix, or a smaller vocabu-
lary dictionary created with the

DccCreate tool and containing just the

Fig. 2: flow chart of the ASR
module

required words.Valid dictionaries have a
 File
Extension

Description

.dic

Limited-vocabulary TTS file.
Used by the FonixCore API.
Contains a fixed number of phrases and their pronunciation.
Can be created by the Fonix Builder program or by Fonix by special
request.

.dcc

ASR phoneme file.
Used by the FonixCore API.
Contains a fixed number of words and their phonemic representation.
Large versions of the dcc files are provided; however customized ones
with a smaller subset of words can be created using CreateDcc.exe.

.mtx ASR confustion matrix file. Used by the FonixL2WAsr API. Contains
data used to accomplish letter-to-word recognition.

.pni
ASR neural network file.Used by the FonixCore and FonixL2WAsr
API's. Contains language-specific neural network data used in
recognition.

.rules
ASR rules-based recognition file. Used by the FonixCore API.Contains
rules which may be used to derive phonemic representations of words
not found in the .dcc file.

.suffix ASR suffix recognition file. Used by the FonixCore API. Contains
suffixes which can assist the rules-based recognition.

.vocab
ASR vocabulary file. Used by the FonixL2WAsr API. Contains the
vocabulary and pronunciations of words used in letter-to-word
recognition.

Table 1: FileTypes: Description of the various file types and file usage by extension. [1]

.dcc extension and must be located in the
shared path. How to create a custom
dictionary is described in section 6.
The rules file is used to perform ASR for
words not found in the ASR dictionary.
Rules files must be located in the shared
path, too.

Digit nodes recognize a combination of
digits. Digit nodes use the digit neural net
for recognition. The general purpose neu-
ral net is used in all non-digit nodes.
The speech recognizer is then initialized
by making the files known to the instance
through the Fonix ASR APIs

FnxCoreSetDigitNNetFile,
FnxCoreSetGeneralNNetFile,
FnxCoreSetAsrDictionaryFile,
FnxCoreSetAsrRulesFile,
respectively.
The next step creates the nodes. By using
the following API functions, nodes can be
created
FnxCoreCreateDigitNode(),
FnxCoreCreateWordNode(),
FnxCoreCreateKeyWordNode()
and
FnxCoreCreateGrammarNode(),
respectively. I use the API functions
FnxCoreCreateDigitNode() and

FnxCoreCreateWordNode() in the
recognition module. The DigitNode func-
tion gets a grammar array (compare with
source code, explanation of a grammar
file can be found in section 7). The other
function takes a word list. The word list
represents a subspace of the dictionary.
Here, I pass only some colors. The
WordSpotter node then, recognizes a
word from the list of words which has
been passed.
FnxCoreRunNode runs the given node.
Audio input is gathered, and recognition
takes place depending on how the node
has been configured. The whole process
is hidden to the user and it is not
influenceable by the user. After a
recognition node is run,
FnxCoreGetFirstAsrResult retrieves the
highest scoring word from the subset of

recognizable words for that node, or the
very first spoken word for nodes which
can return multiple valid words. The total
word score is calculated using wordScore
- garbageScore. The pBeginFrame and
pEndFrame provide relative locations of
where the recognized word occurred
within the entire utterance [1].
FnxCoreGetNetxtAsrResult either
retrieves the next highest scoring word
from the subset of recognizable words for
that node, or the next spoken word for
nodes which can return multiple words
like a special grammar node. I used the
method for the number node (compare
with source code). The word spotter node
works only with
FnxCoreGetFirstAsrResult().

Fig. 3: The Robot Control Utility with the new ASR feature

5. Description of Speech Recognition
 Module

Because the module isn’t connected to
another module, I decided to display the
output just on the screen. As in Fig. 3
shown, the dialog has been enhanced by
an edit box, named “Recognized Words”,
three buttons and a drop down menu. In
the drop down menu, the user can choose
the speech recognition system. Right
now, only Fonix works. The Demo button
(I added the source code to the appendix
file) executes a demo application that
loads a project which has been created by
the Fonix ASR Builder. This is a GUI
based application which simplifies
building simple ASR projects [3]. By
clicking the “Recogntn” button the re-
cognition program will be invoked. It
calls the functions that I explained in the
previous section. At first, it asks the user
to say some numbers between 0 and 9.
Results will be displayed in the edit box.
If the user says three times in series 999,
the program will terminate and the next
program “color recognition” starts. It is

only possible to recognize colors, that
was making known to the program . Re-
sults will be displayed in the edit box, as
before. The program will be terminated if
the user says “exit”. After each recog-
nized word, a number in parenthesis is
printed. A high number is good and
means the word was recognized correctly
with a high probability.

6. Create a User Defined Dictionary

The Fonix Automatic Speech Recognition
(ASR) Dictionary Tool (Fig. 4) helps to
create custom ASR dictionaries. It is
useful to create sub dictionaries with
smaller word lists. The ASR Dictionary
Tool takes two inputs (Fig. 4). The word
list text file is just a text file containing
the desired words in it. Usually, there is
one word at each line. The Large ASR
dictionary is a file with *.dcc extension
that comes along with Fonix. The file can
be found in %fonix-installation-
path%\fre\fd01\english\asr. There is a dcc
file for each language version (German,
UKenglish).

Fig. 4: Tool to create custom dictionaries

Eventually, the Tool looks up and
searches in the Large dictionary for the
word which were given in the word list
file. If they were found it creates two
files. First the customized dictionary
(*.dcc) that contains the word list and
additional ASR information. Second a
phonetic content text file with an
extension of *.phon.txt that contains the
specified word list and their
corresponding phonetic symbols. [1]
The method of creating smaller user
defined dictionaries is very powerful.
Thus, it will gain the recognition rate
since the space for finding the correct
word is smaller.

7. Grammar Nodes
Due to processing time, it only is possible
to spot words. Thus, it is not possible to
get complete sentences from the
recognition module. However, a Gram-
mar node can extract a series of words
from a speech utterance, according to the
set of rules that are defined by the gram-
mar. The rules may dictate sequence,
repetition, groupings, optional items, and
Boolean expressions. Recognition words
can be mapped to a value or word. Gram-
mar syntax definitions are divided into six
categories: variables, repetition,
grouping/optional items, Boolean, output
directives, and keywords. You will use
these syntax definitions as you create a
grammar [1]. The API prototype is
defined as:
int FnxCoreCreateGrammarNode
(FnxCore, char *
szNodeName, char * szGrammar
)
Lets see an example for creating a
grammar for a receptionist in the
university. Creating a grammar is a kind
of solving a story problem. For example,
one could ask for directions or could

inquire for faculty staff. For simplicity,
say someone asks for directions to find
room 155 and the office in the ECE
building. Another person asks for Dr.
Morris and Dr. Perkowski.

The word sets look then like:

inquire set: where, is, looking for
Person set: Dr. Morris, Dr. Perkowski
location set: Office, 155

Now, the word sets have to be assigned to
a variable. It is a sort of pruning the
space. For each variable, there are only a
few possibilities. Note: I introduce more
possibilities for saying 155:

$inquire = where is looking for;
$person = Morris Perkowski;
$location = office 155 one fifty five one
hundred fifty five;

The relationship between the words in a
group must be expressed in terms of
Boolean relationships. There are two
Boolean characters defined, OR (|), AND
(a space):

$inquire = where | is | looking for;
$person = Morris | Perkowski;
$location = office | 155 | one fifty five |
one hundred fifty five;

In some cases it may be useful to assign
to the output another word as the re-
cognized output. In the case above I do it
with “one fifty five” and “one hundred
fifty five” both are the same number 155:

$inquire = where | is | looking for;
$person = Morris | Perkowski;
$location = office | 155 | one fifty
five%155 | one hundred fifty five%155;

Finally, the grammar sequence has to be
created.A person who’s looking for Prof.
Morris or Prof. Perkowski could ask the
following sentences:

Where is Prof. Perkowski?
Is Prof. Morris in his office?
I’m looking for Prof. Perkowski?
Do you know where Prof. Morris is?

Hence the grammar of those sentences
may have to following structure:

$grammar = $inquire $person [$location].

The last variable is in brackets. This
indicates location is optional which
makes sense because not all of the
sentence may have a location word in the
question.

Same can be applied to the direction
questions like.

Where can I find room 155?
Where is the ECE Office?

$grammar = $inquire $location.

8. Results
So far, I can demonstrate that the Fonix
ASR module works. The results are much
better than with Microsoft’s SAPI 5.1.
With a word list representing a subset of
the main dictionary the recognition per-
formance is quite good – even with a
cheap microphone. I was able to show
how to recognize numbers, words from a
certain list and eventually how to put pro-
jects that have been developed by Fonix’s
ASR Builder to the robot utility. Hence, it
is possible to develop speech applications
easily with the Builder and make later on

the whole functionality available to the
robot utility.

8. 1 Limitations and Extensions

So far, the whole program depends on
speaker independent recognition which
seems to be practical. In most cases the
person who talks to the robot will change.
However, speaker dependent speech re-
cognition might be practical, too. Care-
givers (persons who teach the robot and
evaluate new functions) will appreciate
this function since the recognition rate
will be higher. To implement the feature,
the usage of
FnxCoreGetUnrecognizedRawData
or FnxCoreGetRawData is useful.
The raw data can be immediately passed
to FnxSDAsrRecognizeFromRaw to
achive speaker-dependent recognition on
the data. More details about that can be
found in [1].

Performance is still an issue. I run the
ASR program on my INTEL Pentium M
1.4 GHz. Even though we’re only spot-
ting a single word, the processing load is
high. Up to now, I integrated the standard
recognition routines only. There are opti-
mization methods available but this
means in essence a reduced complexity of
the neural nets
(FnxCoreSetGeneralNNetFile(
pCore, GEN_NNET, 1), If
optimizeSpeed is 1 the neural net will be
pruned for faster recognition and a
smaller footprint. A smaller footprint will
have decreased ability to accurately reject
out-of-vocabulary words. [1]). As a re-
sult, the recognition accuracy will be
lower [1]. I’m integrating this feature and
it will be available in the next version.

Every system that obtains analog data has
to struggle with noise. Noise is always in
the signal and affects the recognition rate.
FONIX Embedded Speech SDK was de-
signed for noisy environments such as
hands free kits in cars. However, there is
another kind of noise - more than one
voice at a time. It really influences the
system and it recognizes words that it is
not supposed to recognize. As Hung
Nguyen et. al [2], I made some tests in
multi voice environments, with some
microphones. In addition they tested the
recognizer in a car and figured out that
the microphone array is very useful to
reduce noise. I used for the tests the Sony
ECM R-100 Microphone and the built in
microphone of my Laptop. The first
evaluation environment was the room 155
in the PSU FAB where we used to have
our Friday meeting. Other people were
speaking when I was running the speech
recognition module. The second place
was my room. There were three people
talking in the background when I was
recognizing words. In both situations, it
turned out that the recognition accuracy
was not very much effected by the
microphone. It was almost the same. But
the background voices were grabbed and
occasionally there were words recognized
that I didn’t say.
There might be two approaches to work
around this. First, as introduced two
paragraphs above, speaker dependant
recognition could have the same affect as
a filter. The recognition module is then
more sensitive to a particular voice.
Moreover the speaker dependant data
could be loaded when the face recognition

module knows the name of the person.
This approach is very natural, since
everyone knows the voice of a familiar
person. Second possibility is to use a
microphone that only obtains data from a
smaller area (high impedance mic). A
head set microphone seems to be the best
solution for that.

The recognizer will have a hard time to
get the right word for all those words
which are not in the dictionary file. Our
program could encounter this problem
when it asks for names of persons. The
recognizer wouldn’t recognize the words
properly. However, Fonix provides a
special API, which may be useful to get
around. The Letter to word ASR API
supports recognition of words spelled
letter by letter. The neural nets for this
API are trained for alphabet letter
recognition. A user who is communicat-
ing with the robot could tell the robot his
name. Even though the name is very
exotic like names of some foreigners, the
name will be correctly recognized by the
system. Once, the name is stored in the
system, the TTS system will be able to
pronounce correctly the name with its
rules (English).

For the future, I’ll wrap the most essential
functions in a C++ class. I’m going to
develop some applications for it like the
scissor, rock and paper game. With a
compact C++ code in an extra file, I’ll be
able to create a clear file with the
mentioned game. Therefore, it will be
easy for other users to add more games.

9. Literature

[1] FONIX Embedded Speech SDK 2.1 ASR Help, 2002
[2] Hung Nguyen, Phuong Than and Honghuong Nguyen, “External Design
 Documentation of Direction Software Version 1.1”, Portland, OR, winter 2003
[3] Hung Nguyen, “Speech Recognition Report – Fonix Product Evaluation”, Portland,
 winter 2003
[4] Stefan Gebauer, “Project Report ECE 572 – Advanced Logic Synthesis”, Portland
 2003
[5] Normen Giesecke, “Project Report ECE 578 – Intelligent Robotics I”, Portland 2004

