Synthese (2011) 178:237-270
DOI 10.1007/511229-009-9542-8

Information theory, evolutionary computation,
and Dembski’s ‘“‘complex specified information”

Wesley Elsberry - Jeffrey Shallit

Received: 23 March 2009 / Accepted: 25 March 2009 / Published online: 16 April 2009
© Springer Science+Business Media B.V. 2009

Abstract Intelligent design advocate William Dembski has introduced a measure
of information called “complex specified information”, or CSI. He claims that CSI is
areliable marker of design by intelligent agents. He puts forth a “Law of Conservation
of Information” which states that chance and natural laws are incapable of generating
CSI. In particular, CSI cannot be generated by evolutionary computation. Dembski
asserts that CSI is present in intelligent causes and in the flagellum of Escherichia
coli, and concludes that neither have natural explanations. In this paper, we examine
Dembski’s claims, point out significant errors in his reasoning, and conclude that there
is no reason to accept his assertions.

Keywords Information theory - Evolutionary computation - Artificial life -
Pseudomathematics - Complex specified information

1 Introduction

In recent books and articles (e.g., Dembski 1998, 1999, 2002, 2004), theologian and

mathematician William Dembski uses a semi-mathematical treatment of information
theory to justify his claims about “intelligent design”. Roughly speaking, intelligent

W. Elsberry (<)
Lyman Briggs College, Michigan State University, East Lansing, MI 48825, USA
e-mail: elsberry @msu.edu

W. Elsberry
National Center for Science Education, 420 40th Street, Suite 2, Oakland, CA 94609-2509, USA

J. Shallit

School of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
e-mail: shallit@graceland.uwaterloo.ca

@ Springer

238 Synthese (2011) 178:237-270

design advocates attempt to infer intelligent causes from observed instances of com-
plex phenomena. Proponents argue, for example, that biological complexity indicates
that life was designed. This claim is usually presented as an alternative to the theory
of evolution.

Christian apologist William Lane Craig has called Dembski’s work “groundbreak-
ing” (Dembski 1999, blurb at beginning). Journalist Fred Heeren describes Dembski
as “a leading thinker on applications of probability theory” (Heeren 2000). How-
ever, according to a 2006 search of MathSciNet, the American Mathematical Soci-
ety’s online version of Mathematical Reviews, a journal that attempts to review every
noteworthy mathematical publication, Dembski has not published a single paper in
any journal specializing in applied probability theory, and a grand total of one peer-
reviewed paper in any mathematics journal at all. Dembski’s CV (available at http://
www.designinference.com) lists another paper in Journal of Statistical Computation
and Simulation in 1990 that was not reviewed by Mathematical Reviews. These papers
have received very few citations, suggesting the lack of mathematical impact. For more
details, see Shallit (2004).

University of Texas philosophy professor Robert Koons (2001) called Dembski the
“Isaac Newton of information theory.” However, according to Mathematical Reviews,
Dembski has not published any papers in any peer-reviewed journal devoted to infor-
mation theory, although recently he has made available some preprints dealing with
this topic on his website.

Is the effusive praise of Craig, Heeren, and Koons warranted?

We believe it is not. As we will show, Dembski’s work is riddled with inconsisten-
cies, equivocation, flawed use of mathematics, poor scholarship, and misrepresentation
of others’ results. As a result, we believe few if any of Dembski’s conclusions can be
sustained.

Many writers have already taken issue with some of Dembski’s claims (e.g., Fitelson
et al. 1999; Pigliucci 2000, 2001; Wein 2000; Roche 2001; Edis 2001; Wilkins and
Elsberry 2001; Godfrey-Smith 2001; Shallit 2002; Elsberry and Shallit 2003; Perakh
2004; Young and Edis 2004; Forrest and Gross 2004; Olofsson 2007). In this paper,
we focus on the mathematical aspects of Dembski’s work that have received compar-
atively little attention thus far.

Here is an outline of the paper. First, we summarize what we see as Dembski’s
major claims. We examine his generic chance elimination argument (GCEA) and
briefly show how it is flawed. We then turn to one of Dembski’s major concepts,
“complex specified information” (CSI), arguing that he uses the term inconsistently
and misrepresents the concepts of other authors as being equivalent. We criticize
Dembski’s concepts of “information” and “specification”. We then address his “Law
of Conservation of Information”, showing that the claim has significant mathematical
flaws. We then discuss Dembski’s attack on evolutionary computation, showing his
claims are unfounded.

Some of the criticisms in this paper have already appeared in an abbreviated form
(Shallit 2002) and in a more popular treatment (Young and Edis 2004).

@ Springer

http://www.designinference.com
http://www.designinference.com

Synthese (2011) 178:237-270 239

2 Dembski’s claims

Dembski makes a variety of different claims, many of which would be revolutionary
if true. Here, we try to summarize what appears to us to be his most significant claims,
together with the section numbers in which we address those claims.

(1) There exists a multi-step statistical procedure, the “generic chance elimination
argument”, that reliably detects design by intelligent agents (Sects. 3, 4).

(2) Thereis a “souped-up” form of information (Dembski 2002, p. 142) called “spec-
ified complexity” or “complex specified information” (CSI) which is coherently
defined and constitutes a valid, useful, and non-trivial measure (Sects. 4, 5, 6).

(3) Many human activities exhibit “specified complexity” (Sect.4).

(4) CSIcannotbe generated by deterministic algorithms, chance, or any combination
of the two. In particular, CSI cannot be generated either by genetic algorithms
implemented on computers, or the process of biological evolution itself. A “Law
of Conservation of Information” exists which says that natural processes cannot
generate CSI (Sects. 7, 8).

(5) Life exhibits specified complexity and hence was designed by an intelligent agent
(Sect.9).

3 The generic chance elimination argument

Dembski’s generic chance elimination argument (GCEA) exists in at least two differ-
ent forms (Dembski 1998, 2002). We roughly summarize one version here:

An intelligent agent A witnesses an event £, and assigns it to some reference class
of events Q. A lists all possible hypotheses Hy, Ha, H3, ... involving deterministic
and random processes that could account for E. Next, A invents a rejection function
f and a rejection region R of a certain special form that includes E. A determines
“background knowledge” that “explicitly and univocally identifies” f. (This knowl-
edge must be independent of the hypotheses in a certain technical sense, as discussed in
Sect. 6.) A selects a significance level « and computes the probability of R given each
of the hypotheses H;. If the probability of R given each of the H; is less than «, then
the event E exhibits “specified complexity” and represents design by an intelligent
agent, not ascribable to ordinary deterministic and chance processes.

Previous papers (Fitelson et al. 1999; Wilkins and Elsberry 2001) have already
identified many problems with the GCEA. Let us mention two. First, as an elimina-
tive argument, it privileges design as an explanation: we are instructed to consider
every known non-design explanation first, and then conclude design when all of these
fail. There is no means to conclude that the event occurred by a non-intelligent pro-
cess not currently known. Thus, Dembski’s method will consistently assign design to
events whose exact causal history is obscure—precisely the events Dembski is most
interested in.

Second, there is no reasonable and effective procedure to determine many of the
objects the intelligent agent A is expected to produce. Given E, for example, how
should A select €2, the reference class to which E belongs? The choice of 2 can dra-
matically effect the probability of the rejection region R, as we show below in Sect. 5.

@ Springer

240 Synthese (2011) 178:237-270

How should A select f, the rejection function? And even if A could enumerate all
relevant chance hypotheses (H;), how can A determine the probabilities of R given
each H;, especially when these hypotheses may involve extremely complicated inter-
acting processes? Dembski offers no good answers to these questions, despite having
claimed to answer “the toughest questions about intelligent design” (Dembski 2004).

We now turn to two cases where Dembski applies his GCEA. Let us first consider
Dembski’s analysis of the Nicholas Caputo case.

Caputo was an Essex County, New Jersey official required to fairly assign the order
of political parties on the ballot in local elections. Caputo, a Democrat, chose the
Democrats first in 40 of 41 elections. Writing D for Democrat and R for Republican,
Dembski proposes considering the string

¢ = DDDDDDDDDDDDDDDDDDDDDDRDDDDDDDDDDDDDDDDDD

that represents the sequence of choices to head the ballot. The string ¢ may not represent
the actual sequence of choices. Since the actual sequence was apparently unavailable,
Dembski made up a reasonable sequence of choices to illustrate his methodology, and
we follow him here.

Did Caputo cheat?

Dembski attempts to apply the GCEA. His space of events € is the space of all 2*!
possible sequences of D’s and R’s representing which party headed the ballot on each
occasion. Although Dembski claims the GCEA is supposed to “sweep the field clear”
of all relevant chance hypotheses, in practice, he only considers a single hypothesis:
that Caputo’s selections arose by the flipping of a fair coin. For his rejection function f,
Dembski chooses the number of D’s that occur in a string, and a rejection region R
that consists of all strings with at least 40 D’s. Then the probability of landing in the
rejection region is 42 - 27#!, which is considered small enough to conclude design as
the only legitimate explanation.

This case nicely illustrates one of our objections. Although Dembski instructs us
to consider all relevant chance hypotheses, in this example, he considers only one:
that Caputo’s selections arose by the flipping of a fair coin. He does not consider other
possibilities, such as

(a) Caputo really had no choice in the assignment, since a mobster held a gun to
his head on all but one occasion. (On that one occasion the mobster was out of
town.)

(b) Caputo, although he appears capable of making choices, is actually the victim of a
severe brain disease that renders him incapable of writing the word “Republican”.
On one occasion his disease was in remission.

(c) Caputo attempted to make his choices randomly, using the flip of a fair coin,
but unknown to him, on all but one occasion he accidently used a two-headed
trick coin from his son’s magic chest. Furthermore, he was too dull-witted to
remember assignments from previous ballots.

(d) Caputo himself is the product of a 3.8-billion-year-old evolutionary history
involving both natural law and chance. The structure of Caputo’s neural net-
work has been shaped by both this history and his environment since conception.

@ Springer

Synthese (2011) 178:237-270 241

Evolution has shaped humans to actin a way to increase their relative reproductive
success, and one evolved strategy to increase this success is seeking and maintain-
ing social status. Caputo’s status depended on his respect from other Democrats,
and his neural network, with its limited look-ahead capabilities, evaluated a fit-
ness function that resulted in the strategy of placing Democrats first in order to
maximize this status.

What are we trying to say in this list of possibilities, some less serious than others?
Simply that if Caputo flipping a fair coin is one of the possibilities to be eliminated,
it is unclear why Caputo himself cannot figure in other chance hypotheses we would
like to eliminate. Some of these chance hypotheses, such as (b), involve Caputo, but
do not involve design as we understand the word. Others, such as (a) and (c), involve
design as generally understood. Hypothesis (d), which could well be the correct expla-
nation, is based on a very complex causal chain of billions of steps, most of which we
will probably be unable to judge the probability of with any certainty. Currently we
cannot rule (d) in or out based solely on estimates of probability; we must rely on its
consilience with other facets of science, including evolutionary biology, psychology,
and neuroscience.

This case exemplifies one of the weakest points of Dembski’s argument: if, as he
suggests, design is always inferred simply by ruling out known hypotheses of chance
and necessity, then any observed event with a sufficiently complicated or obscure
causal history could mistakenly be assigned to design, either because we cannot reli-
ably estimate the probabilities of each step of that causal history, or because the actual
steps themselves are currently unknown. We call this the “Erroneous Design Inference
Principle.”

The existence of the Erroneous Design Inference Principle receives confirmation
from modern research in psychology. For one thing, humans are notoriously poor
judges of probability (Kahneman et al. 1982). On the other hand, humans are good
detectors of patterns, even when they are not there (Catania and Cutts 1963; Yelen
1971; Heltzer and Vyse 1994; Rudski et al. 1999). Humans also have “agency-detec-
tion systems” which are “biased toward overdetection”, a fact some have explained as
consonant with an evolutionary history where systems for detecting prey were strongly
selected for (Boyer 2001). Taken together, these factors suggest that it will be common
for design to be inferred erroneously, and perhaps explains the large number of cases
falling under the Erroneous Design Inference Principle: ghosts, UFO’s, and witchcraft.

But back to our analysis of the Caputo case. If the only chance hypothesis that is
being considered is that the sequence of ballot assignments resulted from the flips of
a fair coin, then Dembski’s analysis has little novelty to it. As Laplace remarked,

In the game of heads and tails, if heads comes up a hundred times in a row then
this appears to us extraordinary, because the almost infinite number of combi-
nations that can arise in a 100 throws are divided in regular sequences, or those
in which we observe a rule that is easy to grasp, and in irregular sequences, that
are incomparably more numerous. (Laplace 1952, pp. 16-17)

Laplace’s argument has been updated in modern form to reflect Kolmogorov com-
plexity; see, for example, the wonderful article (Kirchherr et al. 1997) or our own

@ Springer

242 Synthese (2011) 178:237-270

(Elsberry and Shallit 2004). Let C (x) denote the Kolmogorov complexity of the string
of symbols x; roughly speaking, this is the length of the shortest combination of pro-
gram P and input i such that P outputs x on input i. The probability that a string
x of length n (whose bits are chosen with uniform probability p = 1/2) will have
C(x) < m canbeshowntobe < 2”1~ The Kolmogorov complexity of ¢ is very low;
we cannot compute it exactly, but let us say for the sake of argument that C(¢) < 10.
Thus, the hypothesis that ¢ is due to flipping a fair coin has probability < 2739, or
about 1 in a billion, and it seems fair to reject it.

After ruling out the chance hypothesis that the sequence resulted from flips of a fair
coin, what next? Dembski would have us believe that design by an intelligent agent
is now a purely mathematical implication. But what of the possibilities (a)—(d) given
above? Dembski does not consider them. We conclude that determining design cannot
be a purely eliminative argument as Dembski suggests; instead, hypotheses involving
intelligent design must be considered alongside non-design hypotheses.

An alternate view is that if specified complexity can be used to detect something,
what is detected is the output of simple computational processes. (Of course, it is
possible for complicated computational processes to generate simple outputs. The
point is that simple outputs do not demand an inference of complicated computational
processes; simple ones will suffice.) This is consonant with Dembski’s claim “It is
CSI that within the Chaitin—Kolmogorov—Solomonoff theory of algorithmic informa-
tion identifies the highly compressible, nonrandom strings of digits” (Dembski 2002,
p. 144). Dembski’s inference of design is then undermined by the recent realization
that there are many naturally occurring tools available to build simple computational
processes. To mention just four, consider the recent work on quantum computation
(Hirvensalo 2001), DNA computation (Kari 1997), chemical computing (Kuhnert et al.
1989; Steinbock et al. 1995; Rambidi and Yakovenchuk 2001), and molecular self-
assembly (Rothemund and Winfree 2000). While most of these references deal with
how these naturally occurring tools can be adapted to serve human ends, to us they
suggest that chemical and physical processes could well perform computation without
intelligent intervention.

Furthermore, it is now known that even very simple computational models, such as
Conway’s game of Life (Berlekamp et al. 1982), Langton’s ant (Gajardo et al. 2002),
and sand piles (Goles and Margenstern 1996) are universal, and hence compute any-
thing that is computable. Finally, in the cellular automaton model, relatively simple
replicators are possible (Byl 1989).

Under this interpretation, inferring design upon observing specified complexity
implicitly ranks “production by unintelligent natural computational process” as less
likely than “production by intelligent agent.” Again, this is an explicit comparison of
design and non-design hypotheses, which Dembski rejects.

We now turn to Dembski’s second example of the GCEA: his discussion of a SETI
primes sequence

11 13 89 73
—— — — | ——
t.-=110111011211101111121210111...20111...10...111...101112...1,

@ Springer

Synthese (2011) 178:237-270 243

which is a variation on a signal received by fictional researchers in the movie Contact.
As Dembski describes it, t consists of blocks of consecutive 1’s separated by 0°’s,
whose lengths encode the prime numbers from 2 to 89 , with extra 1’s at the end to
make the length 1,000. Dembski suggests the specified complexity of this sequence
implies a design inference.

Yet is that the case? We know that prime numbers arise naturally in simple pred-
ator-prey models (Goles et al. 2001), so it is at least conceivable that prime number
signals could result from some non-intelligent physical process. To infer intelligent
design upon receiving t simply means that we estimate the relative probability of nat-
ural prime-number generation as lower than the probability that the signal arises from
some intelligence that considers prime numbers an interesting way to communicate. In
other words, we compare two hypotheses, one involving design, one not. This decision
method is explicitly ruled out by Dembski’s method.

Dembski is fond of argument based on fictional examples, so it is instructive to
compare Dembski’s treatment of the cinematic SETI sequence from Contact with the
history of an actual reception of an extraterrestrial signal. Pulsars (rapidly pulsating
extraterrestrial radio sources) were discovered by Jocelyn Bell in 1967. She observed
a long series of pulses of period 1.337s. In at least one case the signal was tracked
for 30 consecutive minutes, which would represent approximately 1,340 pulses. Like
the Contact sequence, this sequence was viewed as improbable (hence “complex”)
and specified (see Sect. 6), hence presumably it would constitute complex specified
information and trigger a design inference. Yet spinning neutron stars, and not design,
are the current explanation for pulsars.

Bell and her research team immediately considered the possibility of an intelligent
source. (They originally named the signal LGM-1, where the initials stood for “little
green men”.) The original paper on pulsars states “The remarkable nature of these
signals at first suggested an origin in terms of man-made transmissions which might
arise from deep space probes, planetary radar, or the reflexion of terrestrial signals
from the Moon” (Hewish et al. 1968).

However, the hypothesis of intelligent agency was rejected for two reasons. First,
parallax considerations ruled out a terrestrial origin. Second, additional signals were
discovered originating from other directions. The widely separated origins of multiple
signals decreased the probability of a single intelligent source, and multiple intelligent
sources were regarded as implausible. In other words, hypotheses involving design
were considered at the same time as non-design hypotheses, instead of the eliminative
approach Dembski proposes. In this real-life example, Dembski’s approach was not
used, which is fortunate, as it would have provided the wrong answer.

4 Complex specified information
As we have seen, Dembski’s generic chance elimination argument requires the elimina-

tion of all relevant chance hypotheses. If all such hypotheses are eliminated, Dembski
concludes design is the explanation for the event in question.

@ Springer

244 Synthese (2011) 178:237-270

Although Dembski spends significant space discussing the GCEA, in practice he
rarely uses it. Instead, he employs an alternate approach. This method is a short-
cut version of the GCEA, based on eliminating a single chance hypothesis, usually
evaluated relative to a uniform distribution. We might call it the “sloppy chance elim-
ination argument.”

According to Dembski, both approaches serve to detect a certain property of events,
called “specified complexity” or “complex specified information” (CSI). Dembski
insists that “if there is a way to detect design, specified complexity is it.” (Dembski
2002, p. 116) While the GCEA is a statistical procedure that must be followed, CSI
seems to be a property that inheres in the record of the event in question.

Dembski conflates his procedure to eliminate hypotheses with the property of CSI
(Dembski 2002, p. 73) with no significant explanation. It seems to us a major jump
in reasoning to go from eliminating hypotheses about an event E to the positing of a
property, CSI, that inheres in E.

Then again, the choice of the term “complex specified information” is itself
extremely problematic, since for Dembski “complex” means neither “complicated”
as in ordinary speech, nor “high Kolmogorov complexity” as understood by algo-
rithmic information theorists. Instead, Dembski uses “complex” as a synonym for
“improbable”.

Not all commentators on Dembski’s work have appreciated that CSI is not infor-
mation in the accepted senses of the word as used by information theorists; in partic-
ular, it is neither Shannon’s entropy, surprisal, nor Kolmogorov complexity. Although
Dembski claims that CSI “is increasingly coming to be regarded as a reliable marker
of purpose, intelligence, and design” (Dembski 2002, p. xii), it has not been defined
formally in any reputable peer-reviewed mathematical journal, nor (to the best of
our knowledge) adopted by any researcher in information theory. A 2006 search of
MathSciNet, the on-line version of the review journal Mathematical Reviews, turned up
0 papers using any of the terms “CSI”, “complex specified information”, or “specified
complexity” in Dembski’s sense. (The term “CSI” does appear, but as an abbrevia-
tion for unrelated concepts such as “contrast source inversion,” “conditional symmet-
ric instability,” “conditional statistical independence,” “channel state inversion,” and
“constrained statistical inference.”)

(A recent paper by creationist Stephen C. Meyer (2000) states

99 ¢

Systems that are characterized by both specificity and complexity (what infor-
mation theorists call “specified complexity”) have “information content.”

The second author was curious about the plural use of “information theorists” and at
a recent conference asked Meyer, what information theorists use the term “specified
complexity”? He then admitted that he knew no one but Dembski.)

Despite his insistence that his “program has a rigorous information-theoretic under-
pinning” (Dembski 2002, p. 371), the term CSI is used inconsistently in Dembski’s
own work. Sometimes CSI is a quantity that one can measure in bits: “the CSI of a
flagellum far exceeds 500 bits” (Dembski 1999, p. 178). Other times, CSI is treated as
a threshold phenomenon: something either “exhibits” CSI or does not: “The Law of
Conservation of Information says that if X exhibits CSI, then so does Y (Dembski
2002, p. 163). Sometimes numbers or bit strings “constitute” CSI (Dembski 1999,

@ Springer

Synthese (2011) 178:237-270 245

p. 159); other times CSI refers to a pair (T, E) where E is an observed event and
T is a pattern to which E conforms (Dembski 2002, p. 141). Sometimes CSI refers
to specified events of probability < 107130; other times it can be contained in “the
16-digit number on your VISA card” or “even your phone number” (Dembski 1999,
p- 159). Sometimes CSI is treated as if, like Kolmogorov complexity, it is a property
independent of the observer—this is the case in a faulty mathematical “proof™ that
functions cannot generate CSI (Dembski 2002, p. 153). Other times it is made clear
that computing CSI crucially depends on the background knowledge of the observer.
Sometimes CSI inheres in a string regardless of its causal history (this seems always to
be the case in natural language utterances); other times the causal history is essential
to judging whether or not a string has CSI. CSI is indeed a measure with remarkably
fluid properties! Like Blondlot’s N-rays, however, the existence of CSI seems clear
only to its discoverer.

Here is a brief catalogue of some of the things Dembski has claimed exhibit CSI
or “specified complexity”:

(1) 16-digit numbers on VISA cards (Dembski 1999, p. 159),
(2) phone numbers (Dembski 1999, p. 159),
(3) “all the numbers on our bills, credit slips, and purchase orders” (Dembski 1999,

p. 160),

(4) the “sequence corresponding to a Shakespearean sonnet” (Dembski 2002,
p. xiii),

(5) Arthur Rubinstein’s performance of Liszt’s “Hungarian Rhapsody” (Dembski
2002, p. 95),

(6) “Most human artifacts, from Shakespearean sonnets to Diirer woodcuts to Cray
supercomputers” (Dembski 2002, p. 207),
(7) Scrabble pieces spelling words (Dembski 2002, pp. 172-173),
(8) DNA (Dembski 2002, pp. 151),
(9) error-counting function in an evolution simulation (Dembski 2002, p. 217),
(10) a “fitness measure that gauges degree of catalytic function” (Dembski 2002,
p. 221),
(11) the “fitness function that prescribes optimal antenna performance” (Dembski
2002, p. 221),
(12) “coordination of local fitness functions” (Dembski 2002, p. 222),
(13) what “anthropic principles” explain in fine-tuning arguments (Dembski 2002,
p. 144),
(14) “fine-tuning of cosmological constants” (Dembski 2002, p. xiii),
(15) what David Bohm’s “quantum potentials” extract in the way of “active infor-
mation” (Dembski 2002, p. 144), and
(16) “the key feature of life that needs to be explained” (Dembski 2002, p. 180).

What is really remarkable about this list is both the breadth of Dembski’s claims and
the complete and utter lack of quantitative justification for those claims. We cannot
emphasize this point strongly enough: although the decision about whether some-
thing possesses CSI appears to require, by Dembski’s own formulation, at the very
least a choice of probability space, a probability estimate, a discussion of relevant

@ Springer

246 Synthese (2011) 178:237-270

background knowledge, an independence calculation, a rejection function, and a rejec-
tion region, none of these have been provided for any of the items on this list.

Dembski also identifies CSI or “specified complexity” with similarly worded con-
cepts in the literature. But these identifications are little more than equivocation. For
example, Dembski quotes Paul Davies’ book, The Fifth Miracle, where Davies uses
the term “specified complexity,” and strongly implies that Davies’ use of the term
is the same as his own (Dembski 2002, p. 180). This is simply false. For Davies,
the term “complexity” means high Kolmogorov complexity, and has nothing to do
with improbability. In contrast Dembski himself associates CSI with low Kolmogorov
complexity:

It is CSI that within the Chaitin—Kolmogorov—Solomonoff theory of algorithmic
information identifies the highly compressible, nonrandom strings of digits...
(Dembski 2002, p. 144)

(Note that in algorithmic information theory, “highly compressible” is synonymous
with “low Kolmogorov complexity.”) Therefore, Dembski’s and Davies’ use of “spec-
ified complexity” are incompatible, and it is nonsensical to equate them.

Now compare the list of 16 items above with the complete list of all examples for
which Dembski claims to have identified the presence of CSI and provides at least
some accompanying mathematical justification:

— (17) The record
¢ := DDDDDDDDDDDDDDDDDDDDDDRDDDDDDDDDDDDDDDDDD

of political parties chosen by election official Nicholas Caputo to head the ballot
in Essex County, New Jersey (D = Democrat; R = Republican) (Dembski 2002,
pp- 55-58);

— (18) The primes sequence

11 13 89 73
—t—— —— —~—— ——
t.=11011101212111011111110111...10111...10...111...10111...1,

representing a variation on a fictional radio signal received from extraterrestrials
in the movie Contact (Dembski 2002, pp. 69, 143—144); Dembski also discusses
the original sequence from Contact, where all the primes up to and including 101
are represented.

— (19) The phrase METHINKS IT IS LIKE A WEASEL output by an evolu-
tionary algorithm (Dembski 2002, pp. 188-189);

— (20) The flagellum of Escherichia coli (Dembski 2002, Sect.5.10).

The number of unsupported examples Dembski asserts is much larger than the number
of putatively supported examples. Further, we have critiques of the arguments Demb-
ski makes for each of these examples. We examined the Caputo example, #17, and
the Contact primes sequence, #18, in Sect. 3. We continue with the Contact example
(#18) in Sect. 5, and treat the weasel example (#19) in Sects. 5 and 8, and the flagellum
example (#20) in Sect. 9. However, we now make one remark about claim #17.

@ Springer

Synthese (2011) 178:237-270 247

As we have remarked previously, sometimes CSI is treated as if it inheres in the
record of events, independent of their causal history. We would like to point out that
a record of events isomorphic to ¢ can be obtained from any number of infrequent
natural events. For example, such a record of events might correspond to

— records of whether or not there was an earthquake above 6 on the Richter scale in
California on consecutive days (D =no earthquake; R = earthquake);

— records of whether or not overnight temperatures dipped below freezing in Tucson,
Arizona on consecutive days (D=above freezing; R =below);

— records of whether or not Venus transited the sun in consecutive years (D=no
transit; R = transit).

If Dembski wishes to infer intelligent design from the Caputo sequence alone, inde-
pendent of context, then it seems to us that to be consistent he must also infer intelligent
design for the three examples above.

5 Information, complexity, and probability
For Dembski, the terms “complexity”, “information” and “improbability” are all essen-
tially synonymous. Drawing his inspiration from Shannon’s entropy, Dembski defines
the information contained in an event of probability p to be —log, p, and measures it
in bits.

It is important to note that Dembski’s somewhat idiosyncratic definition of “com-
plexity” is often at odds with the standard definition as used by algorithmic information
theorists. For Dembski the string

11111111122121111111111011111121211111111111,

if drawn uniformly at random from the space of all length-41 strings, has probability
274! and hence is “complex” (at least with respect to a “local probability bound”),
whereas for the algorithmic information theorist, such a string is not complex because
it has a very short description.

Even if we accept equating “complexity” with “improbability”’, we must ask, prob-
ability with respect to what distribution? Events do not typically come with probability
spaces already attached, and this is even more the case for the singular events Dembski
is interested in studying. Unfortunately, Dembski is quite inconsistent in this regard.
Sometimes he computes a probability based on a known or hypothesized causal his-
tory of the event; we call this the causal-history-based interpretation. Sometimes the
causal history is ignored entirely, and probability is computed with respect to a uniform
distribution. We call this the uniform probability interpretation.

Dembski’s choice of interpretation seems to depend on the nature of the event in
question. If the event involves intelligent agency, then he typically chooses the uniform
probability interpretation. This can be seen, for example, in his discussion of archery.
To compute the probability that an arrow will hit a prespecified target on a wall, he
says “probability corresponds to the size of the target in relation to the size of the wall”
(Dembski 2002, p. 10), which seems to imply a uniform distribution. Yet arrows fired
at a target will almost certainly conform to a normal distribution.

@ Springer

248 Synthese (2011) 178:237-270

If, on the other hand, the event does not involve intelligent agency, Dembski typi-
cally chooses a probability based on the causal history of the event. For example, in his
discussion of the generation of the protein URF13, some aspects of causal history are
taken into account: “First off, there is no reason to think that non-protein-coding gene
segments are themselves truly random—as noted above, T-urf 13, which is composed
of such segments, is homologous to ribosomal RNA. So it is not as though these seg-
ments were produced by sampling an urn filled with loosely mixed nucleic acids. What
is more, it is not clear that the recombination is itself truly random” (Dembski 2002,
p. 219). Since much of Dembski’s argument involves computation and comparison of
probabilities (or “information”), this lack of consistency is troubling and unexplained.

This inconsistent use of two approaches can be seen even in Dembski’s discus-
sion of a single example, his analysis of a version of Dawkins’ METHINKS IT IS
LIKE A WEASEL program. Dembski characterizes Dawkins’s “weasel” program as
having three steps. The second and third steps which Dembski gives appear nowhere
in Dawkins’s text and are Dembski’s own inventions, upon which he bases a number
of criticisms. Dembski proposes a “more realistic” variant later, which is notable for
coming much closer to an accurate description of Dawkins’s “weasel” program than
the one Dembski originally gave. The first author informed Dembski of this problem
in October 2000, but no correction has been forthcoming.

Using this program, Dawkins shows how a simple computer simulation of muta-
tion and natural selection can, starting with an initially random length-28 sequence of
capital letters and spaces, quickly converge on a target sentence taken from Hamlet.
In one passage of No Free Lunch, Dembski writes:

Complexity and probability therefore vary inversely—the greater the complexity,
the smaller the probability. It follows that Dawkins’s evolutionary algorithm, by
vastly increasing the probability of getting the target sequence, vastly decreases
the complexity inherent in that sequence. As the sole possibility that Dawkins’s
evolutionary algorithm can attain, the target sequence in fact has minimal com-
plexity (i.e., the probability is 1 and the complexity, as measured by the usual
information measure is 0). Evolutionary algorithms are therefore incapable of
generating true complexity. And since they cannot generate true complexity, they
cannot generate true specified complexity either. (Dembski 2002, p. 183)

Here Dembski seems to be arguing that we should take into account how the phrase
is generated when computing its “complexity” or the amount of “information” it con-
tains. Since the program that generates the phrase does so with probability 1, the
complexity of the phrase is —log, 1, or 0.

But in other passages of No Free Lunch, Dembski seems to abandon this viewpoint.
Writing about another variant of Dawkins’ program, he says

...the phase space consists of all sequences 28 characters in length compris-
ing upper case Roman letters and spaces (spaces being represented by bullets).
A uniform probability on this space assigns equal probability to each of these
sequences—the probability value is approximately 1 in 10*C and signals a highly
improbable state of affairs. It is this improbability that corresponds to the com-
plexity of the target sequence and which by its explicit identification specifies

@ Springer

Synthese (2011) 178:237-270 249

the sequence and thus renders it an instance of specified complexity (though as
pointed out in Sect. 4.1, we are being somewhat loose in this example about the
level of complexity required for specified complexity—technically the level of
complexity should correspond to the universal probability bound of 1 in 10'39).
(Dembski 2002, pp. 188-189)

Here the choice of uniform probability is explicit.
Later, he says

It would seem, then, that E has generated specified complexity after all. To be
sure, not in the sense of generating a target sequence that is inherently improb-
able for the algorithm (as with Dawkins’s original example, the evolutionary
algorithm here converges to the target sequence with probability 1). Nonethe-
less, with respect to the original uniform probability on the phase space, which
assigned to each sequence a probability of around 1 in 10*°, E appears to have
done just that, to wit, generate a highly improbable specified event, or what we
are calling specified complexity. (Dembski 2002, p. 194)

In both of these latter quotations, Dembski seems to be arguing that the causal his-
tory that produced the phrase METHINKS IT IS LIKE A WEASEL should be
ignored; instead we should compute the information contained in the result based on
a uniform distribution on all strings of length 28 over an alphabet of size 27 (note that
2728 = 1.197 x 10%0).

Sometimes the uniform probability interpretation is applied even when a frequen-
tist approach is strongly suggested. For example, when discussing the Contact primes
string

11 13 89 73
—~— —— —~—— ——
t=1101110111110121111101121...10121...10...111...10111...1,

Dembski claims its probability is “1 in 21909 (Dembski 2002, p. 144), a claim which is
viable only under the uniform probability interpretation. But, viewing only the singular
instance t, there are in fact many possibilities:

(a) both 0 and 1 are emitted with probability 1/2;

(b) 1 is emitted with probability 0.977 and 0 is emitted with probability 0.023;

(c) the emitted bits correspond to the unary encodings of 24 numbers between 1 and
100 chosen randomly with replacement;

(d) the emitted bits correspond to the unary encodings of 24 primes between 1 and
100 chosen randomly with replacement;

(Note: the probabilities in (b) and the choice of the number 24 in (c) and (d) reflect
the actual frequencies of the symbols and the number of blocks of 1’s in the string as
actually printed in Dembski’s book; see Sect. 6.)

We do not see how, in the absence of more information, to distinguish between
these possibilities and dozens of others. And the choice is crucial. A purely frequ-
entist approach, as in (b), results in a markedly different probability estimate from
(a)—the pa(gbability of tincreases from 271090 = 9,33 x 107392 t0 0.977°770.023%3 =
2.8 x 1077°.

@ Springer

250 Synthese (2011) 178:237-270

9., &

This latter probability, although small, is significantly larger than Dembski’s “uni-
versal probability bound” of 10~15% and would presumably not lead to a design infer-
ence. (The “universal probability bound,” 107139, is Dembski’s estimate for the small-
est probability of a specified event that could occur randomly sometime during the
history of the universe.) An approach such as (d) gives an even higher probability of
25724 =28 x 10734,

Clearly if Dembski gets to choose whether to apply the causal-history-based inter-
pretation or uniform probability interpretation, as he wishes, little consistency can be
expected in his calculations. Furthermore, each of the two approaches has significant
difficulties for Dembski’s program. The causal-history-based interpretation is the only
one that is mathematically tenable; its probability estimates are necessarily based on a
thorough understanding of the origin of the event in question. But this very fact makes
it essentially inapplicable to the kinds of events Dembski wishes to study, which are
events where “a detailed causal history is lacking” (Dembski 2002, p. xi). We expand
on this in Sect. 7.

The uniform probability interpretation is, at first glance, easier to apply, and may be
viewed as a form of the classical Principle of Indifference. But this principle has long
been known to be quite problematical; as Keynes has remarked, “This rule, as it stands,
may lead to paradoxical and even contradictory conclusions.” (Keynes 1957, p. 42).
We will see in Sect. 7 that the uniform probability interpretation is incompatible with
Dembski’s “Law of Conservation of Information”.

Further, even the uniform probability interpretation entails subtle choices, such
as (when dealing with strings of symbols) the size of the underlying alphabet and
appropriate length. If we encounter a string of the form

1000
000000000...0

should we regard it as chosen from the alphabet ¥ = {0} or £ = {0, 1}? Should we
regard it as chosen from the space of all strings of length 1,000, or all strings of length
< 1,000? Dembski’s advice (Dembski 2002, Sect.3.3) is singularly unhelpful here;
he says the choice of distribution depends on our “context of inquiry” and suggests
“erring on the side of abundance in assigning possibilities to a reference class.” But
following this advice means we are susceptible to dramatic overinflation of our esti-
mate of the amount of information contained in a target. For an example of this, see
our discussion of the information content of Dawkins’ fitness function in Sect. 7.

Because Dembski offers no coherent approach to his choice of probability distri-
butions, we conclude that Dembski’s approach to complexity through probability is
very seriously flawed, and no simple repair is possible.

6 Specification
The second ingredient of CSI is specification. By “specification” of an event E,

Dembski roughly means a pattern to which E conforms. Furthermore, Dembski
demands that the pattern, in some sense, be given independently of E. Dembski’s

@ Springer

Synthese (2011) 178:237-270 251

initial metaphor for “specification” and “fabrication” is that of an archer loosing an
arrow at a wall. If we find that the archer places his arrow into a pre-painted target,
Dembski says that this corresponds to his idea of specification. If the archer instead
paints his target around the arrow after the fact, the pattern is instead not one from
which we may infer design, and this sort of pattern Dembski calls a “fabrication.”
However, Dembski’s metaphor is inapt. Our task in detecting design in the artifacts of
biology is not one of observing an agent at work who either uses a target or tries to
make it appear that a target existed falsely. We do not have any information bearing
upon such an agent. If we were to re-work the metaphor for somewhat better accuracy,
Dembski’s situation is that upon finding an arrow stuck in a wall, he tries to convince
himself that he is justified in painting a target in place around it. “Specification” is a
long, but specious, argument for the practice of cherry-picking.

To understand specification, at least in one formulation (Dembski 2002, pp. 62-63),
we must return to the GCEA and examine it in more detail. Recall that in the GCEA
an intelligent agent A witnesses an event E and assigns it to some reference class of
events €2. The agent then chooses from its background knowledge K’ a set of items of
background knowledge K such that K “explicitly and univocally” identifies a rejection
function f : Q — R. Then a target T is defined by either T = {w € Q2 : f(w) > y}
orT ={we Q: f(w) < §} for some given real numbers y, 8. If K’ is “epistemically
independent” of E (by this Dembski means that P(E|H&K’) = P(E|H)), then T
is said to be “detachable” from E. (Here H is a hypothesis that E is due to chance.)
Finally, if E C T, then T is a specification for E and E is said to be “specified”.

Dembski’s account of specification has evolved over time. His original definition
in The Design Inference included a demand that T further be tractable, in the sense
that A can formulate 7" within certain constraints on its resources, such as time. This
condition is dropped in No Free Lunch (though it now appears in Dembski’s definition
of his GCEA). Further, the original definition did not restrict 7 to be of the form
{weQ: flw)y>=ylorT ={w e Q2 : f(w) < §}. In this article, however, we will
focus on Dembski’s more recent account, as summarized above.

We find Dembski’s account of specification incoherent. Briefly, here are our objec-
tions. First, we contend that Dembski has not adequately distinguished between legit-
imate and illegitimate specifications (which he calls fabrications). Second, Dembski’s
notion of specification is too vague. Third, Dembski’s discussion of the generation of
the target T and its independence of the event E is problematic.

Now let us look at each of these objections in more detail. When does a specification
become illegitimate? To illustrate this objection, consider Dembski’s Contact primes
sequence discussed in Sect.4. As Dembski describes it, this sequence is of the form

11 13 89 73
—~— —— —t~—— ——
t=1101110111110121111110112...10121...10...111...10111...1,

which encodes “the prime numbers from 2 to 89 along with some filler at the end”
(Dembski 2002, p. 144) to make the length exactly 1,000. According to Dembski,
this sequence is specified, although he does not actually produce a specification.
(What is f, the rejection function? What is R, the rejection region?) And when we
try to create a specification, we immediately run into difficulty. What item or items of

@ Springer

252 Synthese (2011) 178:237-270

background knowledge create a legitimate specification (and not a fabrication) for t?
Our background knowledge may well include prime numbers, the notion of a unary
encoding, and the notion of arranging elements of a sequence in increasing order, but
it is hard to see that this background knowledge “explicitly and univocally” identi-
fies an appropriate rejection function f. After all, why stop at the prime 89? Why a
filler at the end containing 73 1’s? (We suppose the notion of powers of 10 might be
background knowledge, but why 103 as opposed to 10% or some other power?) We are
leading to the following question: how contrived can a specification be and yet remain
a specification? Dembski is most unhelpful here.

To see this objection in another way, assume we have a specification for a string,
perhaps something like “a string of length 41 over the alphabet {D, R}, containing at
most one R”; this is apparently a valid specification for the Caputo string

¢ = DDDDDDDDDDDDDDDDDDDDDDRDDDDDDDDDDDDDDDDDD.

Now suppose we witness Mr. Caputo produce yet another choice to head the ballot. If
his choice is D, it is easy to produce a new specification by changing “41 to “42.” If
his choice is R, it is easy to produce a new specification by changing “one” to “two.”
(It is true that this new specification increases the probability that the target is hit, but
that is not relevant here.) But if this is the case, what prevents us from extending the
process indefinitely? And if we can extend the process indefinitely, we can produce a
specification for any string of which c is a prefix, a result hardly likely to increase our
confidence in specification.

More precisely, suppose we are witnessing a series of events over time. Let E (¢)
be the record of such a series at time ¢, viewed as a bit string over the alphabet {0, 1}
and let 7'(¢) be the corresponding target we have chosen. Now suppose we witness
the next state of the event, perhaps E(t + 1) = E(¢) x {a}, wherea € {0, 1} and x is
the product operator. It seems to us churlish to claim that 7 (¢) is a valid specification
for E(t), but T(t + 1) = T(t) x {a} is not for E(¢ + 1). And if it is valid, what
prevents us from continuing this process indefinitely? What we have here, of course,
is the classical heap paradox in disguise (Sainsbury 1995). Dembski denies that this
is a problem for CSI by asserting that CSI is “holistic”” (Dembski 2002, pp. 165-166),
meaning that incremental additions are not allowed. It is true that adding an event
to a time series requires a concomitant adjustment of the specification, but it seems
unreasonable to assert that the new form of the time series cannot be found to have
the CSI property on that basis alone.

We also believe Dembski’s current notion of specification is too vague to be use-
ful. More precisely, Dembski’s notion is sufficiently vague that with hand-waving he
can apply it to the cases he is really interested in with little or no formal verification.
According to its formal definition, a specification is supposed to be a rejection region
R of the form {w € Q@ : f(w) > y}or{w € Q: f(w) < §} for an appropriate choice
of arejection function f and real numbers y, §. Now consider Dembski’s discussion of
the “specification” of the flagellum of Escherichia coli: ““...in the case of the bacterial
flagellum, humans developed outboard rotary motors well before they figured out that
the flagellum was such a machine.” We have no objection to natural language spec-
ifications per se, provided there is some evident way to translate them to Dembski’s

@ Springer

Synthese (2011) 178:237-270 253

formal framework. But what, precisely, is the space of events €2 here? And what is the
precise choice of the rejection function f and the rejection region R? Dembski does
not supply them. Instead he says, “At any rate, no biologist I know questions whether
the functional systems that arise in biology are specified.” That may be, but the ques-
tion is not, “Are such systems specified?”, but rather, “Are the systems specified in
the precise technical sense that Dembski requires?” Since Dembski himself has not
produced such a specification, it is premature to answer affirmatively.

Third, we find Dembski’s account of how the pattern is generated problematic. He
says “For detachability to hold, an item of background knowledge must enable us to
identify the pattern to which an event conforms, yet without recourse to the actual
event.” (Dembski 2002, p. 18). This is a strangely worded requirement. For how could
anyone verify that the event actually does conform to the pattern, without actually
examining every bit of the event in question? To illustrate this example, let us return
to the sequence t mentioned above.

Dembski says t is specified. Let us now restate his specification as § = “a string
containing the unary representations of the first 24 prime numbers, in increasing order,
separated by 0’s, and followed by enough 1’s at the end as to make the string of length
1,000.” Presumably Dembski believes it self-evident that S could enable us to identify
t “without recourse to the actual event.” But we cannot, for in fact, S is not a specifi-
cation of the actual printed sequence! A careful inspection of the string presented on
pages 143—-144 of No Free Lunch reveals that it is indeed of length 1,000, but omits
the unary representation of the prime 59. In other words, the string Dembski actually
presents is

t'=110111011111011111110
11 13 53 61 89 73

— I —— ———~ —— —~—— ——
111...1202111...20...2211...20122...10...112...101211...1,

So in fact our proposed specification S does not entail t', but instead t, and any pretense
that we could have identified S without explicit recourse to t’ vanishes.
We conclude that Dembski’s account of specification is severely flawed.

7 The Law of Conservation of Information

Dembski makes many grandiose claims, but perhaps the most grandiose of all con-
cerns his so-called “Law of Conservation of Information” (LCI) which allegedly “has
profound implications for science” (Dembski 2002, p. 163). One version of LCI states
that CSI cannot be generated by natural causes; another states that neither functions
nor random chance can generate CSI. We will see that there is simply no reason
to accept Dembski’s “Law”, and that his justification is fatally flawed in several
respects.

Furthermore, Dembski uses equivocation to suggest that his version of LCI is com-
patible with others in the literature. In the context of a discussion on Shannon informa-
tion, Dembski notes that if an event B is obtained from an event A via a deterministic
algorithm, then P(A&B) = P(A), where P is probability (Dembski 2002, p. 129).

@ Springer

254 Synthese (2011) 178:237-270

He then goes on to say “This is an instance of what Peter Medawar calls the Law
of Conservation of Information” and cites Medawar’s book, The Limits of Science.
Dembski repeats this claim when he discusses his own “Law of Conservation of Infor-
mation” (Dembski 2002, p. 159). But is Medawar’s law the same as Dembski’s, or
even comparable?

No. First of all, Medawar’s remarks do not constitute a formal claim, since they
appeared in a popular book without proof or detailed justification. In fact, Medawar
acknowledges (Medawar 1984, p. 79), “I attempt no demonstration of the validity of
this law other than to challenge anyone to find an exception to it—to find a logical
operation that will add to the information content of any utterance whatsoever.”

Second, Medawar is concerned with the amount of information in deductions from
axioms in a formal system, as opposed to that in the axioms themselves. He does not
formally define exactly what he means by information, but there is no mention of
probabilities or the name Shannon. Certainly there is no reason to think that Meda-
war’s “information” has anything to do with CSI. (Medawar’s law, by the way, can be
made rigorous, but in the context of Ko/mogorov information, not Shannon informa-
tion or Dembski’s CSI; see Chaitin (1974). As we have already seen above in Sect. 4,
Dembski’s CSI and Kolmogorov complexity, if related at all, are related in an inverse
sense.)

One of Dembski’s most important claims is that functions cannot generate CSI.
More precisely, Dembski claims that given CSI j = (71, E1), based on a “reference
class of possibilities €217, and a function f : Q¢ — € with f(i) = j for some
i = (To, Ep), then i is “itself CSI with the degree of complexity in both being iden-
tical”. Notice that Dembski makes no restrictions on f at all; it could be known to
the agent who observes j, or not known. If the domain of f is strings of symbols, it
could map strings of symbols to strings of the same length, or longer or shorter ones.
It could be computable or non-computable.

Dembski’s “proof” of this claim, given on pages 152-154 of No Free Lunch, is
flawed in several ways. For the purposes of our discussion, let us restrict ourselves to
the case where Q9 C X* and Q| C A*, where ¥ and A are finite alphabets. By this
we mean that events are represented by strings of symbols.

First of all, let us consider the uniform probability interpretation of CSI. Dembski
justifies his assertion by transforming the probability space €2 by f~!. This is reason-
able under the causal-history-based interpretation. But under the uniform probability
interpretation, we may not even know that j is formed by applying f to i. In fact,
it may not even be mathematically meaningful to perform this transform, since j is
being viewed as part of a larger uniform probability space, and ! may not even be
defined there.

This error in reasoning can be illustrated as follows. Given a binary string x we may
encode it in “pseudo-unary” as follows: append a 1 on the front of x, treat the result
as a number 7 represented in base 2, and then write down n 1’s followed by a 0. For
example, the binary string 01 would be encoded in pseudo-unary as 111110. This
encoding is reversible as follows: count the number of 1’s, write the result in binary,
and delete the first 1. If we let f : £* — X* be the mapping on binary strings giving
a unary encoding, then it is easy to see that f can generate CSI. For example, suppose
we consider an 10-bit binary string chosen randomly and uniformly from the space

@ Springer

Synthese (2011) 178:237-270 255

of all such strings, of cardinality 1,024. The CSI in such a string is clearly at most 10
bits. Now, however, we transform this space using f. The result is a space of strings
of varying length [, with 1,025 <[< 2, 048. If we viewed the event f (i) for some
i we would, under the uniform probability interpretation of CSI, interpret it as being
chosen from the space of all strings of length /. But now we cannot even apply f~! to
any of these strings, other than f'(i)! Furthermore, because of the simple structure of
f(@) (all 1’s followed by a 0), it would presumably be easily specified by a target with
tiny probability (cf. Sect. 3). The result is that f (i) would be CSI, but i would not be.

Another error in Dembski’s analysis is as follows. To obtain the detachability of
£~1(Ty), Dembski says that “f merely [needs] to be composed with the rejection
function on 2;: if g is the rejection function on €21 that induces the rejection region
Ty that is detachable from E7, then g o f, the composition of g and f, is the rejec-
tion function on €2 that induces the rejection region Ty that is detachable from E.”
Here Dembski seems to be forgetting that the rejection function is supposed to be
“explicitly and univocally” identifiable from background knowledge K. While g is
presumed identifiable in this sense relative to K, in what sense is g o f so identifi-
able? It may not be, for two reasons. First, in the uniform probability interpretation
of CSI, the intelligent agent who identified g may be entirely unaware of f. Recall
that Dembski’s claim that functions cannot generate CSI was a universal claim about
all functions f, not just functions specifiable by the intelligent agent’s background
knowledge K. Second, under both interpretations of CSI, even if the intelligent agent
knows f, the composition g o f may not be identified “explicitly and univocally” from
K, since another function g’ identifiable from K, when composed with f, might give
a compatible rejection function for Ty in 2.

Here is an example illustrating this error. Suppose j is an English message of 1,000
characters (English messages apparently always being specified), f(i) = j, and f is
a mysterious decryption function which is unknown to the intelligent agent A who
identified j as CSI. Perhaps f is computed by a “black box” whose workings are
unknown to A, or perhaps A simply stumbles along j which was produced by f at
some time in the distant past. The intelligent agent A who can identify j as CSI will be
unable, given an occurrence of i, to identify it as CSI, since f is unknown to A. Thus,
in A’s view, CSI j was actually produced by applying f to i. The only way out of
this paradox is to change A’s background knowledge to include knowledge about f.
But then Dembski’s claim about conservation of CSI is greatly weakened, since it no
longer applies to all functions, but only functions specifiable through A’s background
knowledge K.

This error becomes even more important when j arises through a very long causal
history, where thousands or millions of functions have been applied to produce j. Itis
clearly unreasonable to assume that both the initial probability distribution, which
may depend on initial conditions billions of years in the past, and the complete
causal history of transformations, be known to an intelligent agent reasoning about j.
(Dembski seems to admit this when he says that ““...most claims are like this (i.e., they
fail to induce well-defined probability distributions)...” (Dembski 2002, p. 106).) But
in applying the causal-history-based approach, it is absolutely crucial that every sin-
gle step be known; the omission of a single transformation by a function f has the

@ Springer

256 Synthese (2011) 178:237-270

potential to skew the estimated probabilities in such a way that LCI no longer holds,
as in our example of pseudo-unary encoding.

Finally, there is a third error in Dembski’s claim about functions and CSI, which
holds in both the causal-history-based interpretation and the uniform probability inter-
pretation. On pages 154 —155 of No Free Lunch Dembski acknowledges that his proof
that functions cannot generate CSI (pp. 152—154) is, in fact, not a proof at all. He forgot
“the possibility that functions might add information”. (Strange, we thought that was
what the previous proof was intended to rule out.) To cover this possibility Dembski
introduces the universal composition function U, defined by U (i, f) = f(i) = j. He
then argues that the amount of CSI in the pair (i, f) is at least as much as j. Of course,
this claim also suffers from the two problems mentioned above, but now there is yet
another error: Dembski does not discuss how to determine the CSI contained in f.

This is not a minor or insignificant omission. Recall that under one interpretation
of LCI, f is supposed to correspond to some natural law. If f contains much CSI
on its own, then by applying f we could accumulate CSI “for free”. Furthermore,
since if we consider f to be chosen uniformly from a space of all possible functions
with the same choice of domain and range, then the amount of CSI in f could be
extraordinarily large.

For example, consider the information contained in a fitness function in Dawkins’
METHINKS IT IS LIKE A WEASEL example. A typical such fitness function f
might map each string of length 28 into an integer between 0 and 28, measuring the
number of matches between a sequence and the target. The cardinality of the space of

all such fitness functions is 292728, or about 23-816x10°’ Dempski says “To say that E
has generated specified complexity within the original phase space is therefore really
to say that E has borrowed specified complexity from a higher-order phase space,
namely, the phase space of fitness functions” (Dembski 2002, p. 195). It is not clear
what Dembski thinks the CSI of f is, since he never tells us explicitly. But if the
model is uniform distribution over the space of all fitness functions, as his remarks
suggest, we are led to conclude that the information in f is given by — log, p, where
p is the probability of choosing f uniformly from the space of all fitness functions, or
5.816 x 100 bits. We regard this implication as evidently absurd—the fitness function
can be described by a computer program of a few dozen characters—but do not know
how else Dembski would evaluate the amount of information in f.

Furthermore, there remains the possibility that large amounts of CSI could be accu-
mulated simply by iterating f a random number of times starting with a short string.
If f: ¥* — ¥*isalength-preserving map on strings, our objection can be countered
simply by considering f”, the n-fold composition of f with itself. Then f” would be
a map with the same domain and range as f. However, our objection gathers more
force if f is a length-increasing map on strings. Then the composition f” has a larger
range than f does, so the amount of CSI added by applying f could itself increase
with every iteration of f.

To illustrate this possibility, consider the following procedure: starting from an
empty string x = €, we successively choose randomly between applying the transfor-
mation fo(x) = 0x0 or fi(x) = 1x1. After n steps we will have produced a string y
of length 2n that is a palindrome, i.e., it reads the same forward and backward. Under

@ Springer

Synthese (2011) 178:237-270 257

the uniform probability interpretation, upon viewing y we would consider it a member
of the uniform probability space £, where ¥ = {0, 1}. Assuming our background
knowledge contains the notion of palindromes, the specification “palindrome” iden-
tifies a target space with 2" members, and so the probability of a randomly-chosen
element of X2 hitting the target is 27", In other words, y contains n bits of CSI. As
n increases in size, we can generate as much CSI as we like.

7.1 Naturally-occurring CSI

Dembski seems to be of two minds about the possibility of CSI being generated by
natural processes. For example, it would seem that the regular patterns formed by ice
crystals would constitute CSI, at least under the uniform probability interpretation. If
we consider a piece of glass divided into tiny cells, and each cell either can or cannot
be covered by a molecule of water with equal probability, it seems likely even in the
absence of a formal calculation that the probability that the resulting figure will have
the symmetry observed in ice crystals is vanishingly small. Furthermore, the symmetry
seems a legitimate specification, at least as good as specifications such as “outboard
rotary motor” that Dembski himself advances. Yet in addressing this claim Dembski
falls back on the causal history interpretation, stating that “...such shapes form as a
matter of physical necessity simply in virtue of the properties of water (the filter will
assign the crystals to necessity and not to design)” (Dembski 2002, p. 12).

Just a paragraph later, Dembski discusses the occurrence of the Fibonacci sequence
in phyllotaxis (the arrangement of leaves on plants). Once again his discussion is not
completely clear, but he seems to be saying (if we understand him correctly) that the
occurrence of the Fibonacci sequence is, like the Confact primes sequence, a legiti-
mate instance of CSI. However, he argues that the CSI is not generated by the plant,
but rather is a consequence of intelligent design of the plant itself. (He compares the
generation of the Fibonacci sequence here to the Fibonacci sequence produced by a
program, and then asks, “whence the computer that runs the program?”’) Here he seems
to be invoking not the causal-history-based interpretation, but the uniform probability
interpretation.

This seems inconsistent to us. If we apply the uniform probability interpretation
consistently, it would seem that many natural processes, including some that are not
biological, generate CSI. In a moment we will list some candidates, but first let us
note that it seems unlikely Dembski will accept these as invalidating his specified
complexity filter. Indeed, in response to one such challenge (the natural nuclear reac-
tors at Oklo) he says

But suppose the Oklo reactors ended up satisfying this criterion after all. Would
this vitiate the complexity-specification criterion? Not at all. At worst it would
indicate that certain naturally occurring events or objects that we initially
expected to involve no design actually do involve design. (Dembski 2002,
p-27)

In other words, Dembski’s claims are, for him, unfalsifiable. We find this good evi-
dence that Dembski’s case for intelligent design is not a scientific one.

@ Springer

258 Synthese (2011) 178:237-270

7.1.1 Dendrites

Dendrites are tree-like or moss-like structures that arise through crystal growth, par-
ticularly with iron or manganese oxides. If “tree-like in appearance” is a valid spec-
ification, it would seem that such structures could well constitute CSI. Indeed, their
tree-like appearance often causes them to be confused with plant fossils. Dendrites
were a puzzle until relatively recently (Glicksman 1984). Thus, until recently, they
would have been assigned to design by Dembski’s generic chance elimination argu-
ment. Despite the currently accepted physical explanation, they might still constitute
CSI under the uniform probability interpretation.

7.1.2 Triangular ice crystals

Under certain rare conditions snow crystals form triangular plates. Unlike the case of
ordinary six-sided snowflakes, there is currently no detailed physical explanation for
the formation of triangular plates.

Since there is no detailed causal hypothesis, when trying to infer whether trian-
gular snowflakes are designed, we must fall back on a single hypothesis, the chance
hypothesis. Triangular snowflakes would then seem to qualify as CSI, at least under
the uniform probability interpretation. They cannot be rejected as “necessity” since
no known law accounts for their formation.

Under Dembski’s design inference, we would therefore conclude that triangular
plates are the product of design, but ordinary six-sided snowflakes are the product of
necessity. This seems like an absurd conclusion to us.

7.1.3 Self-ordering in collections of spheres of different sizes

Under certain conditions, mixtures of small spheres of different sizes will spontane-
ously self-organize in mysterious ways. This would seem to be an instance of CSI,
at least under the uniform probability interpretation. However, this phenomenon has
recently been explained as a consequence of entropy (Kaplan et al. 1994; Kestenbaum
1998; Dinsmore et al. 1998).

7.1.4 Fairy rings

Fairy rings are circular structures formed by the growth of fungi, particularly the fun-
gus Marasmius oreades. They grow outward in a circle, starving the grass above, and
sometimes to a diameter of 200 m. Under the uniform probability interpretation, fairy
rings would be considered extremely improbable, and their circular shape would make
them specified.

7.1.5 Patterned ground

Repeated freeze—thaw cycles in cold environments can generate interesting circu-
lar and polygonal patterns. Under a uniform probability interpretation, such patterns

@ Springer

Synthese (2011) 178:237-270 259

would constitute CSI; yet there is now an explanation involving lateral sorting and
“stone domain squeezing” (Kessler and Werner 2003).

8 Evolutionary computation

As mentioned in Sect. 2, one of Dembski’s principal claims is that evolutionary
computation cannot generate CSI. This is essentially just a corollary of his Law of
Conservation of Information, which as we have seen in the previous section, is
invalid. More precisely, he concedes that the “Darwinian mechanism” can gener-
ate the “appearance” of specified complexity but not “actual specified complexity”
(Dembski 2002, p. 183).

In Chap. 4 of No Free Lunch, Dembski examines several examples of genetic algo-
rithms and concludes that none of them generate CSI in his sense. He spends much of
his time in this chapter doing detective work, attempting to determine if CSI has been
illegitimately inserted (or in Dembski’s terms, “smuggled in”’) by genetic algorithm
researchers who are presumably considered intelligent agents. Not surprisingly, in
each case, he finds that it has.

We remark that it is perfectly legitimate for Dembski to examine existing genetic
algorithms in an attempt to see whether they can generate CSI as he understands it.
However, since the researchers he discusses do not claim in their articles to have gen-
erated anything that falls under Dembski’s idiosyncratic definition of information, the
imputation of dishonesty in the choice of the term “smuggling”, not to mention the
patronizing analogy of correcting undergraduate mathematics assignments (Dembski
2002, p. 215), seems to us completely unwarranted.

Dembski considers a number of genetic algorithms: variations on Dawkins’s
METHINKS IT IS LIKE A WEASEL example, an evolution simulation due to
Thomas Schneider, an algorithm of Altshuler and Linden for the design of antennas,
and an evolutionary programming approach to checkers-playing by Chellapilla and
Fogel.

In each case he identifies a particular place where he believes CSI has been “smug-
gledin.” In Dawkins’ weasel example, it is the choice of fitness function. In Schneider’s
simulation, it is the error-counting function and “fine tuning” of the simulation itself.
In the Altshuler—Linden algorithm, it is the “fitness function that prescribes optimal
antenna performance” (Dembski 2002, p. 221). In the Chellapilla—Fogel example, it
is the “coordination of local fitness functions” (emphasis his).

It is certainly conceivable, a priori, that Dembski’s objections might be correct in
the context of his particular measure. (However, Schneider (2001) argues they are not
in the case of Shannon information.) But to show that his objections have substance,
it does not suffice to simply assert that CSI has been “smuggled in.” After all, Demb-
ski’s claim is a quantitative, not a qualitative one: the amount of CSI in the output
cannot exceed that in the program and input combined. In order for his objections to
be convincing, Dembski needs to perform a calculation, calculating the CSI in output,
program and input, and showing that the claimed inequality holds. This he simply
fails to do for each of the examples. (The closest he comes to a quantitative analysis
is for the case of Dawkins’ weasel example, where he views the fitness function as

@ Springer

260 Synthese (2011) 178:237-270

an element of the space of all fitness functions. As we have remarked previously, this
view implies an absurd estimate for the complexity of the fitness function.)

8.1 CSI and computation

Dembski (1999, p. 170) makes a strongly worded claim that no instance of natural
causes can produce CSI.

“Since natural causes are precisely those characterized by chance, law or a combi-
nation of the two, the broad conclusion of the last section may be restated as follows:
Natural causes are incapable of generating CSI. I call this result the law of conservation
of information, or LCI for short.”

Dembski’s claim is broader than he admits. Saying that natural causes cannot pro-
duce CSI means that any source processing information by strictly rational means
are also barred from producing CSI, including computers, human agents, non-human
animals, and disembodied agents. That follows from consideration of deterministic
processes, which include symbol manipulation by the rules of logic, as well as many
computer algorithms. Given a deterministic process and some input to it, the output
is uniquely determined. The amount of information resulting by applying a single
deterministic algorithm is bounded by the amount of information in the input, the
algorithm, and a small constant. The question then becomes, under what conditions
can some agency or process produce substantial new information? A stochastic pro-
cess is one that uses randomness, leading to the possibility of different outputs each
time it is performed. This means that the information concerning a particular output
of a stochastic process is not reducible to the information in the process itself and the
input to it.

That then leads to another question, can algorithms described in computer science
fulfill that role? Yes, they can. As we have seen above in Sect. 7, Dembski sometimes
claims that problem-solving algorithms cannot generate specified complexity because
they are not “contingent.” In his interpretation of the word, this means they produce a
unique solution with probability 1. While we have already noted the facileness with
which Dembski adopts whatever probability distribution best fits his agenda, we can
take care to overcome this objection by deploying truly randomized algorithms in
response. This means the algorithm uses a source of random numbers, and there is a
well-defined probability distribution on the results. We will present two different ran-
domized algorithms that meet and refute a number of objections made by Dembski or
others concerning the ability of various forms of computation to produce CSI. We will
briefly describe how our algorithms meet the objections, and follow with the technical
description of each algorithm.

The first algorithm we call TSPGRID, because it solves the traveling salesman
problem (TSP) on a grid layout of cities to be visited by a stochastic process, such as
evolutionary computation. The TSP is a well-studied problem in computer science,
where the goal is to find the shortest closed path visiting each city in the tour once
and only once. The TSP is notable in part because there is no known algorithm that
efficiently solves it; the TSP is classified as an NP-hard problem. Neither computers
nor humans are privileged when it comes to solving the TSP.

@ Springer

Synthese (2011) 178:237-270 261

TSPGRID takes one input parameter, n, that determines a grid size to be solved; let
us call the total number of cities in a tour k. The output from TSPGRID is a sequence
of cities on the grid, which means that there are k! possible tours in the problem space
that TSPGRID examines. Given the grid layout, the shortest tour length is shared
in common with many different tours. TSPGRID avoids the “contingent” objection
under one interpretation of specified complexity, because it chooses randomly among
all the possible optimal solutions, and there are many of them. There is a bounded
range of optimal Hamiltonian cycles of cities on the grid that at once is a large number,
but also is a tiny fraction of the total number of possible tours k!.

Dembski sometimes objects that the CSI produced by algorithms is contained in
the program and input. TSPGRID also can demonstrably show that the information
contained within the program and its input is much smaller than the CSI of the output.
One can select an input, #, such that any optimal tour output has more CSI than the
program and input have bits.

The second algorithm we will call Q. It is constructed so that

(a) there are many possible outputs, and any particular output of Q occurs with low
probability (it is “complex” by Dembski’s standards);

(b) every possible output string is specified because it is highly compressible, per
Dembski;

(c) every output string has a different specification, and no two specifications inter-
sect, that is, every output string is generated by a different program/input pair.

Suppose Q on input n generates an output, but we do not know how Q works; we
could, perhaps, call it “Dembski’s Black Box.” As intelligent agents we see an output
v of Q and try to fit a pattern to it. If we assume that we will eventually discover a
good compression for v (we could, for example, simply do some dovetailing, a tech-
nique well known in computer science), then v is specified, and the probability that
the particular specification we discover matches a random output of Q is 27". Thus,
v constitutes CSI, and so every output of Q constitutes CSI.

There is a possible objection to this construction, which runs as follows: if we
assume that we are looking for low Kolmogorov complexity per se in the output string,
there is no obvious way to produce the good compression for v in a reasonable length
of time, and so perhaps it is contestable whether an intelligent agent could discover it
with reasonable background knowledge. To counter this criticism, Q can return output
strings that are compressible with respect to some other compression scheme which is
easily computable. One such encoding is run-length encoding, where a binary string
is encoded by successively counting the lengths of successive blocks of identical sym-
bols, starting with 0. For example, the run-length encoding of 0001111011111
would be (3, 4, 1, 5). We may then express this encoding in binary using a self-delim-
iting encoding of each of the terms. So the implementation of Q now returns a bit
string w for which the run-length encoding of w is shorter than [w|/100, or any easily
computable function of |w]|.

Now it is easy, upon seeing an output v of Q, to compute its run-length encoding
and produce that as a specification. (In fact, this is similar to several of Dembski’s
examples, such as the Caputo example and the Contact primes example, both of which
are notable for their short run-length encodings.) In analogy with Dembski’s remarks

@ Springer

262 Synthese (2011) 178:237-270

about Kolmogorov complexity, we assume these would be valid specifications. So in
this case all the specifications would be easily derivable with background knowledge,
and they would all be different.

Another objection might be that the “real” specification for any observed output v
should be simply “compressible” or “short run-length encoding”, and not the partic-
ular specific compression or run-length encoding we produce. But this is hardly fair
in light of Dembski’s injunction to make the rejection region as small as possible.
Furthermore, this objection would be like seeing both the Contact prime sequence
and the Caputo sequence as outputs of some program and saying, “The specification
is just that these strings have short run-length encodings, so whatever is generating
them is just hitting this target with probability 1.” We do not believe Dembski would
accept this objection for the Caputo sequence and the Contact primes sequence.

We conclude that Dembski’s claims about natural causes and computation cannot
be sustained.

8.1.1 TSPGRID Details

The TSPGRID algorithm takes an integer n as an input. It then solves the traveling
salesman problem on a 2n x 2n square grid of cities. Here the distance between any
two cities is simply Euclidean distance (the ordinary distance in the plane). Since it is
possible to visit all 4n? cities and return to the start in a tour of cost 4n%, an optimal
traveling salesman tour corresponds to a Hamiltonian cycle in the graph where each
vertex is connected to its neighbor by a grid line.

Gobel has proved that the number of different Hamiltonian cycles on the 2n x 2n grid
is bounded above by c- 28”2 and below by ¢’- 2.538”2, where c, ¢’ are constants (Gobel
1979). We do not specify the details of how the Hamiltonian cycle is actually found,
and in fact they are unimportant. A standard genetic algorithm could indeed be used
provided that a sufficiently large set of possible solutions is generated, with each solu-
tion having roughly equal probability of being output. For the sake of ease of analysis,
we assume our algorithm has the property that each solution is equally likely to occur.

Now there are (4n?)! different ways to list all 4n? cities in order. But, as Gobel
proved, there are at most c - 28" different ways to produce a Hamiltonian cycle. Let
us now compute the specified complexity using the uniform probability interpretation.
The probability that arandomly chosen list of 47 cities forms a Hamiltonian cycle is <

c. 28"
(4n2)!

and the number of bits of specified information in such a cycle is therefore >

c-28"
—10g2 W .

By Stirling’s approximation the number of bits of specified information is bounded
below by a quantity that is approximately 8n> log, n — 2.6n2.

@ Springer

Synthese (2011) 178:237-270 263

The CSI produced by TSPGRID can be greater than the information in the program
and input. Here the input is n, which has at most log, n bits of information, and the
algorithm is of fixed size, and can have at most c bits of information. Since for large n
we have 8n%log, n — 2.6n% > (log, n) + ¢, we conclude that TSPGRID has indeed
generated specified complexity with respect to the uniform probability interpretation.

8.1.2 Q Details

Here are the details for the implementation of Q: first, one can construct a deterministic
algorithm P that on input i produces the i’th string w (in some particular enumeration
that we identify below, not necessarily the i th string in lexicographic order) such that
the Kolmogorov complexity (or an easily computable function, as discussed above)
C(w) of w is smaller than any reasonable function of the length |w| of w. For exam-
ple, P (i) could be the i’th string w for which C(w) < |w|/100, or C(w) < +/]w], or
C(w) < (log |w|)?, or anything similar. This can be accomplished by “dovetailing.”

Let i (n) be any computable function of n. The algorithm P works as follows. Based
on some choice of computing model (e.g., Turing machines), P works with an enumer-
ation P, P, P3, ... of all possible programs, and another enumeration of all binary
strings as xp, x2, x3, Now P initializes an empty list L of strings. We now do the
following for all N > 3 until the program halts: for every integeri > 1, j > 1,k > 1
such that N =i + j + k, P runs program P; on input x; for k steps. If P; halts and
generates a string y with |P;| + |x;| < h(|y|), we compare y to see if it is already
on L. If not, we append it to L. Now continue, trying the next program (or increment-
ing N if we are done with all the triples (7, j, k) such thati 4 j +k = N). We continue
until the list L is of length n, and at this point we output the last string on the list.

Now we construct our randomized algorithm @, which on input n first generates a
randomly chosen length-n bit string ¢, using access to a source of genuinely random
bits. (In practice, low-quality random bits can be obtained from environmental sources
(e.g., counting keystrokes or time between keystrokes) and high-quality random bits
can be obtained from physical sources (e.g., counting radioactive decays). Indeed, there
is even a web site, http://www.fourmilab.ch/hotbits/, where random bits obtained from
a Geiger counter can be downloaded.) Next, O places a “1” in front of the base-2 rep-
resentation of ¢, and treats the result as an integer u. (If f = 5, or 101 in base 2, then
u = 1101 in base 2, or 13.) Finally, it outputs P (u). For every different input n, Q
outputs a different string, and for large n it becomes highly unlikely that Q will output
the same output string more than once if given n as input again.

9 CSI and biology

It is no surprise to anyone who has studied the intelligent design movement that the
real goal is to cast doubt on the biological theory of evolution. In Intelligent Design,
Dembski began an attack on evolution which he continues in No Free Lunch. However,
many of his claims appear suspect.

For example, consider Dembski’s claims about DNA. He implies that DNA has CSI
(Dembski 2002, p. 151), but this is in contradiction to his implication that CSI can be

@ Springer

http://www.fourmilab.ch/hotbits/

264 Synthese (2011) 178:237-270

equated with highly compressible strings (Dembski 2002, p. 144). In fact, compression
of DNA is a lively research area. Despite the best efforts of researchers, only minimal
compression has been achieved (Grumbach and Tahi 1994; Schmitt and Herzel 1997;
Chen et al. 1999; Lanctot et al. 2000; Apostolico and Lonardi 2000; Li 2002).

Dembski devotes many pages of No Free Lunch to his claim that the flagellum of
Escherichia coli contains CSI. We have already noted in Sect. 6 that his treatment of
specification in this case leaves much to be desired. But even if one accepts “outboard
rotary motor” as a valid specification, is it true that the E. coli flagellum matches
this specification? There are significant differences. To name a few, a human-engi-
neered outboard rotary motor spins continuously, but the flagellum moves in jerks. An
outboard rotary motor drives a propeller, but the flagellum is whip-like. No human-
engineered outboard rotary motor is composed entirely of proteins, but the flagellum is.

Specification is just one half of specified complexity; Dembski must also show
matching the specification is improbable and thus complex in his framework. To do
so, he ignores the causal history and falls back on a uniform probability approach,
calculating the probability of the flagellum’s origin using a random assembly model.
Biologically his calculations verge on the ridiculous, since no reputable biologist
believes the flagellum arose in the manner Dembski suggests. Further, even if an
E. coli flagellum appeared according to the chance causal hypothesis Dembski pro-
poses, it would not establish a heritable trait of flagellar construction in the lineage
of E. coli, and thus is under no account an evolutionary hypothesis. Dembski justi-
fies his approach by appealing to the flagellum’s “irreducible complexity”, a term
coined by fellow intelligent-design advocate Michael Behe. But Dembski ignores the
fact that sequential evolutionary routes for the flagellum have indeed been proposed
(Rizzotti 2000; Pallen and Matzke 2006). True, such routes are not as detailed as one
might like. Nevertheless, they seem far more likely than Dembski’s random assem-
bly model. Further, the purported basis of “irreducible complexity” in this case, the
uniqueness and interdependence of protein parts in the flagellum, has been shown to
be steadily dwindling as research uncovers homologies in other organisms and in-
essentialness of particular proteins in making functional flagella (Pallen and Matzke
2006).

Even taken as a non-evolutionary account of flagellar construction, the specifics
of Dembski’s approach reveal a number of problems. Dembski applies the phrase
“discrete combinatorial object” to any of the biomolecular systems which have been
identified by Michael Behe as having “irreducible complexity.” By analogy to the
Drake equation from astronomy, Dembski proposes the following equation for esti-
mating the probability of a “discrete combinatorial object” (DCO):

Pdco = Porig * Plocal * Pconfig-

This should be read as meaning the probability of the DCO is the product of the prob-
abilities of the origination of its constituent parts, the localization of those parts in
one place, and the configuration of those parts into the resulting system. Dembski’s
calculation of pjocq is relatively straightforward:

Plocal = (prOtsys : SubSt/PVOItotal)prmsys*col”es

@ Springer

Synthese (2011) 178:237-270 265

where

— protyy; is the number of proteins in the system being analyzed;

— subst is the number of different proteins which might provide an adequate substi-
tute for each of the proteins in the system;

— protyal 18 the total number of different proteins available in context; and

— copies is the number of copies of each protein that will be required to construct
the system.

The only number that Dembski provides a citation for in this group is the one for
Protoal: 4,289. The others are either unreferenced or admittedly made-up. For exam-
ple, consider subst. The number of possible substitutions is not known, and in any
case is quite likely highly variable with different proteins being examined. Dembski’s
equation, though, is exquisitely sensitive to changes in this value. A change from
Dembski’s recommended value of 10 to a value of 11 produces a change in the proba-
bility of about eleven orders of magnitude. If the value were 22 or more, the probability
resulting would rise above Dembski’s universal probability bound of 107130,

If we look closely at the calculation Dembski provides for pj,cqi, we note that it
hides a critical assumption, that the E. coli cell should be considered as a grab-bag of
proteins, all of them available in equal proportion at any location within the cell. That
this assumption is untrue should come as no surprise to the reader.

Moving on to the other factors in Dembski’s calculation, we find that variants of
what Dembski calls a perturbation probability are used for finding both pgie and
Peonfig- This concept appears to be original to Dembski. A perturbation probability
calculates the ratio of the number of ways that a protein or string of symbols can
differ while still preserving functionality to the number of ways which it may differ
while still uniquely identifying the function under consideration. This in itself is prob-
lematic, for biological proteins commonly serve two or more distinct functions. No
time is wasted by Dembski in considering such empirically verified but mathemati-
cally inconvenient sloppiness. Dembski’s general formula for an approximation of a
perturbation probability is

(quv) (N(g—r))
Ty k= D
(rN)

where N is the length of the protein or string, k is alphabet size, g is the perturbation
tolerance factor, and r is the perturbation identity factor. Dembski uses the Gettysburg
address as an example. If we think of the Gettysburg address as composed of capital
letters, the space, and some punctuation marks, there are thirty symbols in the rele-
vant alphabet. A thousand characters of that address could be presented with some
proportion of the characters changed around, and it would still convey the meaning
to a recipient. The largest proportion of changes to unchanged text which preserves
the meaning corresponds to the perturbation tolerance factor. If some of the characters
were missing, a recipient would still be able to identify it as the Gettysburg address.
The largest proportion of missing characters to characters present which permits accu-
rate identification corresponds to the perturbation identity factor. Dembski provides
arbitrary values of 0.1 and 0.2 for the perturbation tolerance and perturbation iden-

@ Springer

266 Synthese (2011) 178:237-270

tity factors, respectively. These are used both for the case of the English text of the
Gettysburg Address and also for the proteins of the E. coli flagellum.

There are three things to note about these numbers in Dembski’s calculation. The
first is the complete lack of any rigorous justification for the selection of these particu-
lar values. In the case of the Gettysburg Address, Dembski completely ignores Claude
Shannon’s seminal work on the redundancy of English text, which is highly relevant
to the determination of these values and suggests that Dembski is far off the mark
in his assignment of values (Shannon 1950). The second is the extreme sensitivity
of Dembski’s proffered equation to any change in these values. A change in either
value of just one percent of its original amount causes at least two orders of magnitude
difference in the calculated probability for the “Gettysburg Address” example. This
indicates that for the calculation to have any meaning whatsoever, the values utilized
need to be empirically determined to a high degree of precision for the relevant context.
Our third observation is that Dembski’s centerpiece calculation based on perturbation
probability is wrong. In (Dembski 2002, p. 297) he claims that

(1100000) 2919

(200) - 29%

is “on the order of 107288 In fact, it is actually about 107223 an error of about
65 orders of magnitude. (Dembski finally acknowledged this error, more than 3 years
after he was informed of it.)

Even if Dembski’s calculation were right, and his intuition concerning the values
he assigned to these factors was proven to be uncannily precise, there remains an
interesting observation concerning the application of a perturbation probability to the
calculation of porig for a particular protein. Dembski utilizes an analogy of a super-
market stocked with a plenitude of different grocery products. Each of those prod-
ucts, he argues, may have its own poig value (Dembski 2002, p. 301). Given Demb-
ski’s values for the perturbation tolerance and identity factors, what one finds without
much difficulty is that porig for any individual protein of length > 1, 153 is less than
Dembski’s universal probability bound. Further, any collection of proteins with a com-
bined length > 1, 153 also has pgyig less than Dembski’s universal probability bound.
Dembski elsewhere tags biological function as a sufficient stand-in for “specification.”
The result is that, using Dembski’s proffered values and equations, any functional pro-
tein of length > 1, 153 has CSI and must be considered to be “due to design.” This is
already a low bar for finding CSI in biological systems, but the universal probability
bound is not in any sense a threshold. Dembski merely argues that a probability below
the universal probability bound obviates the need to justify a greater “local small
probability.” By doing so, many shorter proteins may also be found to have CSI and
be classed as “due to design.” A Dembskian designer intervening in biology would
appear to be exceedingly busy over the course of life’s history.

9.1 Dembski and artificial life

Artificial life attempts to model evolution not by solving a fixed computational prob-
lem, but by studying a “soup” of replicating programs which compete for a resources

@ Springer

Synthese (2011) 178:237-270 267

inside a computer’s memory. Artificial life is closer to biological evolution, since the
programs have “phenotypic” effects which change through time.

The field of artificial life evidently poses a significant challenge to Dembski’s claims
about the failure of algorithms to generate complexity. Indeed, artificial life research-
ers regularly find their simulations of evolution producing the sorts of novelties and
increased complexity Dembski claims are impossible. Yet Dembski’s coverage of arti-
ficial life is limited to a few dismissive remarks. Indeed, the term “artificial life” does
not even appear in the index to No Free Lunch.

Consider Dembski’s appraisal of of the work of artificial life researcher Tom Ray:

Thomas Ray’s Tierra simulation gave a similar result, showing how selection
acting on replicators in a computational environment also tended toward simplic-
ity rather than complexity—unless parameters were set so that selection could
favor larger sized organisms (complexity here corresponding to size). (Dembski
2002, p. 211)

We have to wonder how carefully Dembski has read Ray’s work, because this is not
the conclusion we drew from reading his papers. One of us wrote an e-mail message
to Ray asking if he felt Dembski’s quote was an accurate representation of his work.
Ray replied as follows:

No. I would say that in my work, there is no strong prevailing trend towards either
greater or lesser complexity. Rather, some lineages increase in complexity, and
others decrease. Here, complexity does not correspond to size, but rather, the
intricacy of the algorithm.

Dembski also does not refer to papers that demonstrate the possibility of increased
complexity over time in artificial life: see, for example (Ray 1994, 2001; Adami
et al. 2000; Channon 2001). Neither does he cite the pioneering work of Koza, who
showed how self-replicating programs can spontaneously arise from a “primordial
ooze of primitive computational elements” (Koza 1994). Neither does he mention the
complex adaptive behaviors evolved by Karl Sims’ virtual creatures (Sims 1994), or
the work of Lipson and Pollack (2000), showing how an evolutionary approach can
automatically produce electromechanical robots able to locomote on a plane. These
omissions cast serious doubt on Dembski’s scholarship.

After the publication of No Free Lunch, a paper by Lenski et al. (2003) offered
another reason to reject Dembski’s claims. The authors show how complex functions
can arise in an artificial life system, through the modification of existing functions.

10 Conclusions

We have argued that Dembski’s justification for “intelligent design” is flawed in many
respects. His concepts of complexity and information are either orthogonal or opposite
to the use of these terms in the literature. His concept of specification is problematic
and ill-defined. Dembski’s use of the term “complex specified information” is incon-
sistent, and his proof of the “Law of Conservation of Information” is flawed. Finally,

@ Springer

268 Synthese (2011) 178:237-270

his claims about the limitations of natural causes and computation are incorrect. We
conclude that there is no reason to accept his claims.

Acknowledgements We are grateful to Anna Lubiw, Ian Musgrave, John Wilkins, Erik Tellgren,
Glenn Branch, and Paul Vitanyi, who read a preliminary version of this paper and gave us many use-
ful comments. We owe a large debt to Richard Wein, whose original ideas have had significant impact on
our thinking. We thank Norman Levitt for suggesting the pulsars example.

References

Adami, C., Ofria, C., & Collier, T. C. (2000). Evolution of biological complexity. Proceedings of the
National Academy of Sciences of the United States of America, 97, 4463—-4468.

Apostolico, A., & Lonardi, S. (2000). Compression of biological sequences by greedy off-line textual
substitution. In Proceedings of the IEEE data compression conference (DCC), pp. 143-152.

Berlekamp, E. R., Conway, J. H., & Guy, R. K. (1982). Winning ways, for your mathematical plays. London:
Academic Press.

Boyer, P. (2001). Religion explained. New York: Basic Books.

Byl, J. (1989). Self-reproduction in small cellular automata. Physica D, 34, 295-299.

Catania, A. C., & Cutts, D. (1963). Experimental control of superstitious responding in humans. Journal of
Experimental Analysis of Behavior, 6, 203-208.

Chaitin, G. (1974). Information-theoretic limitations of formal systems. Journal of the Association for
Computing Machinery, 21, 403-424.

Channon, A. (2001). Passing the ALife test: Activity statistics classify evolution in Geb as unbounded. In
J. Kelemen & P. Sosik (Eds.), Proceedings of the 6th European conference on advances in artificial life
(ECAL 2001), Vol. 2159 of Lecture notes in artificial intelligence (pp. 417-426). Berlin: Springer.

Chen, X., Kwong, S., & Li, M. (1999). A compression algorithm for DNA sequences and its applications
in genome comparison. In Proceedings of the 10th workshop on genome informatics, pp. 52—61.

Dembski, W. A. (1998). The design inference: Eliminating chance through small probabilities. Cambridge:
Cambridge University Press.

Dembski, W. A. (1999). Intelligent design: The bridge between science & theology. Illinois: InterVarsity
Press.

Dembski, W. A. (2002). No free lunch: Why specified complexity cannot be purchased without intelligence.
Tanham, MD: Rowman & Littlefield.

Dembski, W. A. (2004). The design revolution: Answering the toughest questions about intelligent design.
Illinois: InterVarsity Press.

Dinsmore, A.D., Wong, D. T., Nelson, P., & Yodh, A. G. (1998). Hard spheres in vesicles: Curvature-induced
forces and particle-induced curvature. Physical Review Letters, 80, 409—412.

Edis, T. (2001). Darwin in mind: ‘Intelligent design’ meets artificial intelligence. Skeptical Inquirer, 25(2),
35-39.

Elsberry, W., & Shallit, J. (2003). Eight challenges for intelligent design advocates. Reports of the NCSE,
23(5-6), 23-25.

Elsberry, W., & Shallit, J. (2004). Playing games with probability: Dembski’s complex specified informa-
tion. In M. Young & T. Edis (Eds.), Why intelligent design fails (pp. 121-138). Piscataway, NJ: Rutgers
University Press.

Fitelson, B., Stephens, C., & Sober, E. (1999). How not to detect design—critical notice: William A.
Dembski, the design inference. Philosophy of Science, 66, 472-488.

Forrest, B., & Gross, P. R. (2004). Creationism’s Trojan horse: The wedge of intelligent design. New York:
Oxford University Press.

Gajardo, A., Moreira, A., & Goles, E. (2002). Complexity of Langton’s ant. Discrete Applied Mathematics,
117, 41-50.

Glicksman, E. (1984). Free dendritic growth. Materials Science and Engineering, 65, 45.

Gobel, F. (1979). On the number of Hamiltonian cycles in product graphs. Technical report #289. Technische
Hogeschool Twente, Netherlands.

Godfrey-Smith, P. (2001). Information and the argument from design. In R. T. Pennock (Ed.), Intelligent
design creationism and its critics (pp. 577-596). Cambridge, MA: The MIT Press.

@ Springer

Synthese (2011) 178:237-270 269

Goles, E., & Margenstern, M. (1996). Sand pile as a universal computer. International Journal of Modern
Physics C, 7(2), 113-122.

Goles, E., Schulz, O., & Markus, M. (2001). Prime number selection of cycles in a predator-
prey model. Complexity, 6(4), 33-38. http://www3.interscience.wiley.com/cgi-bin/fulltext?
ID=84502365&PLACEBO=IE.pdf.

Grumbach, S., & Tahi, F. (1994). A new challenge for compression algorithms: Genetic sequences. Infor-
mation Processing and Management, 30, 875-886.

Heeren, F. (2000). The deed is done. American Spectator, 33(10), 28-29.

Heltzer, R. A., & Vyse, S. A. (1994). Intermittent consequences and problem solving: The experimental
control of “superstitious” beliefs. Psychological Record, 44, 155-169.

Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., & Collins, R. A. (1968). Observation of a rapidly
pulsating radio source. Nature, 217, 709-713.

Hirvensalo, M. (2001). Quantum computing. Berlin: Springer.

Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. Cam-
bridge: Cambridge University Press.

Kaplan, P. D., Rouke, J. L., Yodh, A. G., & Pine, D. J. (1994). Entropically driven surface phase separation
in binary colloidal mixtures. Physical Review Letters, 72, 582-585.

Kari, L. (1997). DNA computing: Arrival of biological mathematics. Mathematical Intelligencer, 19(2),
9-22.

Kessler, M. A., & Werner, B. T. (2003). Self-organization of sorted patterned ground. Science, 299, 380-383.

Kestenbaum, D. (1998). Gentle force of entropy bridges disciplines. Science, 279, 1849.

Keynes, J. M. (1957). A treatise on probability. London: Macmillan.

Kirchherr, W., Li, M., & Vitanyi, P. (1997). The miraculous universal distribution. Mathematical Intelli-
gencer, 19(4), 7-15. http://www.cwi.nl/paulv/papers/mathint97.ps.

Koons, R. C. (2001). Remarks while introducing Dembski’s talk at the conference. Design, self-organization
and the integrity of creation, Calvin College, Grand Rapids, Michigan.

Koza, J. R. (1994). Artificial life: Spontaneous emergence of self-replicating and evolutionary self-improv-
ing computer programs. In C. G. Langton (Ed.), Artificial life IlI, (pp. 225-262). Redwood City, CA:
Addison-Wesley.

Kuhnert, L., Agladze, K. L., & Krinsky, V. 1. (1989). Image processing using light-sensitive chemical waves.
Nature, 337, 244-247.

Lanctot, J. K., Li, M., & Yang, E. (2000). Estimating DNA sequence entropy. In Proceedings of the 11th
ACM-SIAM symposium on discrete algorithms (SODA), pp. 409—418.

Laplace, P. S. (1952). A philosophical essay on probabilities. New York: Dover.

Lenski, R. E., Ofria, C., Pennock, R. T., & Adami, C. (2003). The evolutionary origin of complex features.
Nature, 423, 139-145.

Li, M. (2002). Compressing DNA sequences. In T. Jiang, Y. Xu, and M. Q. Zhang (Eds.), Current topics in
computational molecular biology, (pp. 157-171). Cambridge, MA: The MIT Press.

Lipson, H., & Pollack, J. B. (2000). Automatic design and manufacture of robotic lifeforms. Nature, 406,
974-978.

Medawar, P. B. (1984). The limits of science. New York: Harper & Row.

Meyer, S. C. (2000). DNA and other designs. First Things, 102, 30-38.

Olofsson, P. (2007). Intelligent design and mathematical statistics: a troubled alliance. Biology and Philos-
ophy, 23(4), 545-553.

Pallen, M. J., & Matzke, N. J. (2006). From the origin of species to the origin of bacterial flagella. Nature
Reviews Microbiology, 4(10), 784-790.

Perakh, M. (2004). Unintelligent design. New York: Prometheus.

Pigliucci, M. (2000). Chance, necessity, and the new holy war against science. A review of W. A. Dembski’s
the design inference. BioScience, 50, 79-81.

Pigliucci, M. (2001). Design yes, intelligent no: A critique of intelligent design theory and neocreationism.
Skeptical Inquirer, 25(5), 34-39.

Rambidi, N. G., & Yakovenchuk, D. (2001). Chemical reaction-diffusion implementation of finding the
shortest paths in a labyrinth. Physical Review E, 63, 026607.

Ray, T. (1994). Evolution, complexity, entropy, and artificial reality. Physica D, 75, 239-263.

Ray, T. (2001). Evolution of complexity: Tissue differentiation in network Tierra. http://www.isd.atr.co.jp/
ray/pubs/atrjournal/index.html.

@ Springer

http://www3.interscience.wiley.com/cgi-bin/fulltext?ID=84502365&PLACEBO=IE.pdf
http://www3.interscience.wiley.com/cgi-bin/fulltext?ID=84502365&PLACEBO=IE.pdf
http://www.cwi.nl/paulv/papers/mathint97.ps
http://www.isd.atr.co.jp/ray/pubs/atrjournal/index.html
http://www.isd.atr.co.jp/ray/pubs/atrjournal/index.html

270 Synthese (2011) 178:237-270

Rizzotti, M. (2000). Early evolution: From the appearance of the first cell to the first modern organisms.
Boston: Birkhiuser.

Roche, D. (2001). A bit confused: Creationism and information theory. Skeptical Inquirer, 25(2), 40-42.

Rothemund, P. W. K., & Winfree, E. (2000). The program-size complexity of self-assembled squares. In
Proceedings of the thirty-second annual ACM symposium on theory of computing, pp. 459-468. ACM.

Rudski, J. M., Lischner, M. I, & Albert, L. M. (1999). Superstitious rule generation is affected by probability
and type of outcome. Psychological Record, 49, 245-260.

Sainsbury, R. M. (1995). Paradoxes (2nd ed.). Cambridge: Cambridge University Press.

Schmitt, A. O., & Herzel, H. (1997). Estimating the entropy of DNA sequences. Journal of Theoretical
Biology, 188, 369-377.

Schneider, T. D. (2001). Rebuttal to William A. Dembski’s posting. http://www.lecb.ncifcrf.gov/toms/
paper/ev/dembski/rebuttal.html.

Shallit, J. (2002). Review of William Dembski, no free lunch. BioSystems, 66, 93-99.

Shallit, J. (2004). Dembski’s mathematical achievements. Retrieved May 12 2004, from http://www.
pandasthumb.org/pt-archives/000207.html.

Shannon, C. (1950). Prediction and entropy of printed English. Bell System Technical Journal, 3, 50-64.

Sims, K. (1994). Evolving 3D morphology and behavior by competition. In R. A. Brooks & P. Maes (Eds.),
Artificial life IV: Proceedings of the fourth international workshop on the synthesis and simulation of
living systems (pp. 28-39). Cambridge, MA: MIT Press.

Steinbock, O., T6th, A., & Showalter, K. (1995). Navigating complex labyrinths: Optimal paths from chem-
ical waves. Science, 267, 868-871.

Wein, R. (2000). What’s wrong with the design inference. http://www.metanexus.net/metanexus_online/
show_article2.asp?id=2654.

Wilkins, J., & Elsberry, W. (2001). The advantages of theft over toil: The design inference and arguing from
ignorance. Biology and Philosophy, 16, 711-724. ftp://ftp.wehi.edu.au/pub/wilkinsftp/dembski.pdf.
Yelen, D. R. (1971). The acquisition and extinction of superstitious behavior. Journal of Experimental

Research in Personality, 5, 1-6.
Young, M., & Edis, T. (Eds.) (2004). Why intelligent design fails. Piscataway, NJ: Rutgers University Press.

@ Springer

http://www.lecb.ncifcrf.gov/toms/paper/ev/dembski/rebuttal.html
http://www.lecb.ncifcrf.gov/toms/paper/ev/dembski/rebuttal.html
http://www.pandasthumb.org/pt-archives/000207.html
http://www.pandasthumb.org/pt-archives/000207.html
http://www.metanexus.net/metanexus_online/show_article2.asp?id=2654
http://www.metanexus.net/metanexus_online/show_article2.asp?id=2654
ftp://ftp.wehi.edu.au/pub/wilkinsftp/dembski.pdf

	Information theory, evolutionary computation, and Dembski's ``complex specified information''
	Abstract
	1 Introduction
	2 Dembski's claims
	3 The generic chance elimination argument
	4 Complex specified information
	5 Information, complexity, and probability
	6 Specification
	7 The Law of Conservation of Information
	7.1 Naturally-occurring CSI
	7.1.1 Dendrites
	7.1.2 Triangular ice crystals
	7.1.3 Self-ordering in collections of spheres of different sizes
	7.1.4 Fairy rings
	7.1.5 Patterned ground

	8 Evolutionary computation
	8.1 CSI and computation
	8.1.1 TSPGRID Details
	8.1.2 Q Details

	9 CSI and biology
	9.1 Dembski and artificial life

	10 Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

