
Evolutionary Synthesis of Nand Logic: Dissecting a
Digital Organism

Winston Ewert
Department of

Computer Science,

Baylor University,

Waco, Texas

William A. Dembski
Professor of Philosophy,

Southwestern Baptist

Theological Seminary

Fort Worth, Texas

Robert J. Marks II
Distinguished Professor of

Electrical & Computer Engineering,

Baylor University,

Waco, Texas

Abstract—According to conservation of information theorems,
performance of an arbitrarily chosen search, on average, does no
better than blind search. Domain expertise and prior knowledge
about search space structure or target location is therefore
essential in crafting the search algorithm. The effectiveness of
a given algorithm can be measured by the active information
introduced to the search. We illustrate this by identifying sources
of active information in Avida, a software program designed
to search for logic functions using nand gates. Avida uses
stair step active information by rewarding logic functions using
a smaller number of nands to construct functions requiring
more. Removing stair steps deteriorates Avida’s performance
while removing deleterious instructions improves it. Some search
algorithms use prior knowledge better than others. For the
Avida digital organism, a simple evolutionary strategy generates
the Avida target in far fewer instructions using only the prior
knowledge available to Avida.

Index Terms—conservation of information, active information,
assisted search, evolutionary search, endogenous information,
importance sampling, sea of gates, nand logic, no free lunch
theorems.

I. INTRODUCTION

Even moderately sized search problems require external

assistance to be successful. The contribution of the external

source to the search can be measured as active information [4],

[5], [7]. Sources of active information include (a) an oracle that

provides fitness information (or scores) for the search, (b) the

initialization, properly chosen, can improve the probability of

success, and (c) knowledge about the search space structure. If

prior assumptions about the search are incorrect, the search can

perform worse than a random search. Since every constructive

choice of priors has a corresponding deleterious choice, the

average performance over all searches is the same as a random

search [3], [4], [5], [8], [15], [19], [20], [21], [22], [23], [27],

[28], [29], [30]. This search property is dubbed conservation
of information [4], [5], [7], [9], [23] as popularized by the no
free lunch theorem [3], [8], [15], [30].

The open source Avida program [16] performs logic func-

tion synthesis using nand gates [11], [13], [25], [26], [32] and

evolutionary search [18]. We show that, as a search algorithm,

Avida generates active information from a number of knowl-

edge sources provided by the programmer and, with respect to

an evolutionary strategy, performs poorly with respect to other

search strategies using the same prior knowledge.

A. Information Measures

To assess the performance of a search, we use the following

information measures [4], [5], [7].

1) The endogenous information is a measure of the diffi-

culty of a search and is given by

IΩ = − log2 p (1)

where p is a reference probability of a successful unas-

sisted random search.

2) Let the probability of success of an assisted search under

the same set of constraints be q. Denote the exogenous
information of a search program as

IS := − log2 q.

3) The difference between the endogenous and exogenous

information is the active information.

I+ := IΩ − IS = − log2

p

q
.

If the knowledge about the space is not accurate or is otherwise

misleading, the active information can be negative.

For a computer program generated by an alphabet of in-

structions as is the case with Avida, a resource constraint must

be imposed. Otherwise, unlimited time and computer resources

allows an exhaustive search. Let ג denote the instruction count

and ג́ the maximum allowable number of instructions before

abandoning the search. Under an instruction count constraint,

� = ג|ג} ≤ {ג́ the active information per instruction (AIPI)

is

I⊕ := E

[
I+

ג

]
(2)

where E denotes expectation [17]. The AIPI can be estimated

by averaging the active information per instruction over K
trials of ג́ instructions or less. For the kth simulation, there

are two possibilities.

1) Success is achieved with kג ≤ ג́ instructions in which

case the point estimate of the AIPI is IΩ/גk.

2) If a success is not achieved with kג = ג́ instructions,

then the point estimates of the active information and

the AIPI both have a value of zero.

978-1-4244-2794-9/09/$25.00 c© 2009 IEEE

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
3047

Thus, with ςk = 1 for a success in ג́ or fewer instructions and

ςk = 0 and kג = ג́ for a failure, we can estimate the AIPI as

the harmonic average over K trials.

I⊕ � 1
K

K∑
k=1

ςk

(
IΩ

kג

)

=
IΩ

K

∑
successes

1
kג

. (3)

The AIPI needs to be interpreted with the same caution as the

average speed of an auto on a road trip. Instantaneous values

can be significantly higher or lower than the average. We dub

I⊕/IΩ the normalized AIPI, or the NAIPI.

II. EVOLUTIONARY SEARCH USING NAND LOGIC

The information measures of many search algorithms are

beyond direct analytic evaluation and require empirical analy-

sis using, for example, Monte Carlo simulation. One is evolu-

tionary search for synthesis of logic functions.

The nand gate is one of two logic functions from which

all other logic can be synthesized [14]. The other is the nor

gate. Chips containing a sea of gates [6], [11], [13], all nand,

are therefore capable of universal logic. This property allows

evolutionary development of logic functions using the nand

gate as the single logic component [1], [12], [25], [26], [32].

Avida [16], illustrated in Figure 1, performs logic synthesis

using only the nand gate. The motivation behind Avida is not

engineering design, but is rather to [16]

“... show how complex [biological] functions can

originate by random mutation and natural selection.”

Avida generates an output equal to a logic combination of

the inputs, X and Y. The logic operation under consideration

that requires the most nand gates (five) is the XNOR. This

is the ultimate goal of the search. The example of Avida in

Figure 1 has performed the XNOR. The first bits X and Y are

1 and 0 and the XNOR of 1 and 0 is 0. This then is the first bit

of the output string. The second bits of X and Y are both ones

and the XNOR of two ones is 1. This is the second bit in the

output. Continuing with subsequent bits, we say the machine in

Figure 1 generates an XNOR if the bitwise XNOR’s of X and

Y is equal to the corresponding output bit. Since the XNOR is

1 if both input bits are the same and 0 if they are not, Avida

refers to the XNOR as an EQU [16].

Avida uses a small alphabet of instructions (see Table I) to

import the inputs, perform manipulation, and export the output.

The instruction tape runs in a continuous loop. The number of

entries can change during the search process. Each letter in

the loop in Figure 1 corresponds to the lettered instructions

in Table I. The highlighted instruction (q) IO, for example,

outputs the target register, checks to see if any logic function

in Table II has been performed, and reads the next input into

the target register. Each of the registers in the Avida contains 32

bits although, as we will see, the number of bits in each register

does not significantly impact the search. The inputs X and Y

are assigned randomly, are read only, and forever remain fixed.

There are read-write scratch pad registers in the organism, AX,

Fig. 1. The digital organism used by Avida, similar to that shown in the
original Avida paper [16]. Generating a program from a fixed alphabet of 26
instructions (see Table I) to perform a specified function like XNOR (EQU)
is similar to generating a specified word or phrase from the English alphabet
somewhere within an alphabet of characters. The Avida simulation actually
make use of three inputs, X, Y and Z, in a circular queue. Whenever an input is
read by the program, it is removed from the queue and then placed at the back
of the queue. As a result, three consecutive reads will read in three different
inputs, whereas the fourth will read the first input in again. This property was
not addressed in the original paper.

BX, and CX, on which to perform the operations. There is also

a stack that can pop a stored 32 bit word into AX, BX and

CX. An element from AX, BX and CX can likewise be pushed

onto the top of the stack. The goal is to choose instructions

from Table I so that the output, written by operation (q) IO,

is the bitwise XNOR of the input registers X and Y. For most

generations of the evolutionary search, Avida uses 3600 of the

digital organisms in Figure 1.

A. Problem Difficulty

Like choosing letters from the alphabet to form a sequence

of words that will pass a spell check, the goal of Avida is to

search for a sequence of instructions that has meaning with

respect to the logic functions in Table II. The question is -

how difficult is it to generate the logic functions in Table II

using the N = 26 instructions in Table I in a sequence of

instructions?
1) Instruction Count: We want to evaluate the relative per-

formance between Avida and competing algorithms. The most

straightforward measure of computational cost is measurement

of the actual CPU time of the process. CPU time, however,

can differ considerably on different hardware. Other external

factors, such as user interaction with the system, may also

result in a non-accurate measure of the computational cost.

Another measure of the cost in search algorithms is a query

count. In Avida, however, the computational demands of a

3048

TABLE I
N = 26 INSTRUCTIONS FOR PERFORMING THE LOGIC FUNCTIONS IN

TABLE II. THE DEFAULT TARGET REGISTER IS BX.

Operation Description
(a) nop-A No-Operation. May modify the operation of

the instruction before it.
(b) nop-B No-Operation. May modify the operation of

the instruction before it.
(c) nop-C No-Operation. May modify the operation of

the instruction before it.
(d) if-n-equal Compares two values, skips the next instruc-

tion if they are equal.
(e) if-less Compares two values, skips the next instruc-

tion if the first is less.
(f) push Puts a copy of the value in the target register

onto the top of the stack.
(g) pop Removes a value from the top of the stack

and places it into the target register.
(h) swap-stk Switches the stack between two available

stacks
(i) swap Swaps the value of the target register with

the next register
(j) shift-r Shift the bits of the value in the target

register to the right. This is the same as
dividing by two and rounding down.

(k) shift-l Shift the bits of the value in the target
register to the left. This is the same as
multiplying by two.

(l) inc Increments the value in the target register
by one.

(m) dec Decrements the value in the target register
by one.

(n) add Adds the values of the BX and CX register,
placing the result in the target register.

(o) sub Subtract the value of CX from BX, placing
the result in the target register.

(p) nand Bitwise-nands the values of BX and CX
together, placing the result in the target
register.

(q) IO Outputs the target register, checking if for
any tasks completed. Reads the next input
into the target register.

(r) h-alloc Allocates additional memory to be used for
a daughter organism.

(s) h-divide Splits the daughter and the parent into seper-
ate organisms.

(t) h-copy Copies a single instruction from the read
head to the write head

(u) h-search Searches the genome for a pattern of nops,
moving the flow-head to their location.

(v) mov-head Moves one of the other heads to the flow-
head.

(w) jmp-head Causes one of the heads the jump forward
by the value in the CX register.

(x) get-head Copies the position of one of the heads into
the CX register.

(y) if-label Checks to see whether a certain pattern of
nops has just been copied. If they have not,
skips an instruction.

(z) set-flow Sets the position of the flow head to the
value in target register.

TABLE II
NAND LOGIC ILLUSTRATED IN FIGURES 2 THROUGH 4. THE “&”

DENOTES A LOGIC AND, THE “+” IS AN OR AND THE OVERLINE DENOTES

COMPLEMENT. IN THE THREE ”EITHER-OR” FUNCTIONS, A SUCCESS IS

CLAIMED IF EITHER ONE OF THE TWO FUNCTIONS IS PERFORMED. THE

NUMBER IN THE “NANDS” COLUMN IS THE LOG2 OF THE “SCORE”
COLUMN.

Logic OUT NANDS Score
NOT either X or Y 1 2

NAND X&Y 1 2
AND X&Y 2 4

OR N either X+Y or X+Y 2 4
OR X+Y 3 8

AND N either X&Y or X&Y 3 8

NOR X + Y 4 16

XOR X⊕Y=(X&Y)+(X&Y) 4 16

EQU X ⊕ Y=(X&Y)+(X&Y) 5 32

query can vary widely.

A reasonable accounting metric for Avida is an instruction

count. We define an instruction as the execution of any one of

the entries in Table I.

2) A Single Avida Organism: Avida’s performance can be

evaluated using Monte Carlo simulation. Here are some useful

definitions.

• A program is a list of 100 instructions. 85 are chosen ran-

domly and 15 are specified.1 The number of instructions

in an executed program varies. The same instruction, for

example, can be executed more than once.

• A query is a sequence of programs executed until either

an EQU is found, or until

ג́ = 10.8 billion instructions (4)

are used. This number is roughly the number of instruc-

tions used by the Avida default.2

• A program or query is diminished if instructions (v)

mov-head and (w) jmp-head in Table I are not used.

They nearly always cause the failure of an EQU calcula-

tion.3 A program or query including all of the instructions,

including (v) mov-head and (w) jmp-head, is dubbed

full.
• Let D denote diminished and F full. PD and PF denote

diminished and full programs while QD and QF corre-

spond to diminished and full queries. An S will denote

success in finding an EQU, so PS|F and QS|F denote

successful full programs and queries, while PS|D and

QS|D are the diminished equivalents.

1These 15 instructions, native to the Avida digital organism, allow the
process of replication in the evolutionary search.

ג2́ = 100,000 updates × 3600 programs × 300 instructions (on average)
per program per update [16].

3The instructions (v) mov-head and (w) jmp-head both manipulate
various heads in the Avida CPU. There are three heads which can be
manipulated by these instruction, the read-head, write-head, or the instruction
pointer. The read and write heads are setup for the copying process at the
beginning of an Avida program. If they are moved, the replication process will
not work correctly. If the instruction pointer is changed the Avida program
will jump to a different position in its program, in all probability causing it
to loop in a particular portion of its program never reaching the copy loop.

3049

3) An Estimate of the Endogenous Information of a Full
Program: A total of |QD| = 1420 diminished queries were

performed and a total of |S| = 21 EQU’s resulted. The average

number of instructions per diminished program, PD, was

E[ג per PD] � 637.9 instructions (5)

so the total number of diminished programs simulated is

|PD| =
ג́ |QD|

E[ג per PD]
� 2.40 × 1010

A separate run of full programs4 gave

E[ג per PF] � 1972 instructions. (6)

The maximum number of instructions allowed by Avida was

2000.

Of the NF = 2685 = 1.87 × 10120 possible full programs,

there are over 10108 that compute an EQU. To show this,

consider first the number of diminished programs. ND =
2485 = 2.08 × 10117. The probability a diminished program

will compute an EQU is about Pr[EQU|PD] � |S|/|PD| =
8.73.5 × 10−10. The number of diminished programs capable

of computing EQU is therefore |PS|D| = ND×Pr[EQU|PD] �
1.82 × 10108. If we assume all programs containing (v)

mov-head or (w) jmp-head will fail, this is also the number

of full programs that will compute EQU, i.e. |PS|F | � |PS|D|.
The probability of choosing a successful program randomly

from the set of full programs is thus

p = Pr[PS|F] � |PS|D|
NF

= 9.69 × 10−13. (7)

The endogenous information of the difficulty of generating

an EQU with 85 randomly selected instructions from Table I

follows from (1) as

IΩ � 40 bits

4) Algorithm Q, Repeated Diminished Programs: Running

a program a repeated number of times generates more infor-

mation than a single run [5]. For the |QD| = 1420 diminished

query simulations each to a maximum of ג́ instructions each,

the NAIPI, calculated using (3), was

I⊕/IΩ � 5.78 × 10−12 (8)

This is the (small) NAIPI obtained from (a) repeated queries

and (b) using only diminished programs.

5) Stair Step Active Information in the NAND Search:
Knowledge that higher level nand logic can be built on lower

level nand logic can be used to introduce stair step active
information into the search for the EQU. Stair step active

information, discussed in detail elsewhere [5], is an important

source of active information in Avida.

Examples of synthesizing the nine logic functions in Ta-

ble II using only nand gates is well known and is illustrated

in minimal form5 in Figures 2 through 4. They are included

410,272,633 full programs
5Figures 2 through 4 show configurations using the fewest possible number

of nand gates. Other configurations are possible.

here to show that the logic can build on itself. For example,

Figure 2 logic function #3 shows the AND as simply a cascade

connection of the NOT circuit #1 and the NAND function in

#2. Higher up the list, the #9 XNOR (EQU) in Figure 4 is a

simple cascade connection of the #8 XOR circuit with the #2

NAND. The #8 XOR, in turn, can be synthesized using other

lower numbered logic circuits. Not all of the steps need be

directly useful to the subsequent target.
In the nand gate synthesis, logic functions with fewer gates

are rewarded as possible steps towards achieving the ultimate

EQU target at the top of the stairs. The rewarding in Avida

is done using the Score column in Table II. The log2 of the

Score is equal to the minimum number of gates required to

perform the logic function. If two or more logic functions are

generated by a digital organism, the fitness of the organism

is the product of the scores. Each logic function is counted

only once in this tally. For example, if an organism generates

three separate cases of the NOT function, the fitness rule only

counts them as one occurrence.

Fig. 2. Minimal NAND logic. Logic function is synthesized using the
minimum possible number of NAND gates. Continued in Figure 3.

For all of the subsequent simulations, a resource bound of

ג́ in (4) is imposed.

1) Performance of Avida. Using 3600 digital organisms of

3050

Fig. 3. NAND logic. Continued from Figure 2.

Fig. 4. NAND logic for the XNOR operation. Continued from Figure 3.

the type shown in Figure 1, Avida weighs the fitness of

an organism from the Score given in Table II. A detailed

description of other operations used in Avida, including

mutation rates and replication properties, are available

elsewhere [16].

• Algorithm A1. Results using Avida’s default values,

including all of the stair steps in Table II and all

N = 26 instructions in Table II, are shown in the

first row of Table III. Most of the trials resulted

in a success. The NAIPI for A1 is I⊕/IΩ = 1.9 ×
10−9. This value is due, in part, to active information

introduced by the stair steps.

• Algorithm A2. As is shown in the second line

TABLE III
THE EFFECTS OF REMOVING STAIR STEPS FROM AVIDA (A)AND THE

RATCHETED EVOLUTIONARY STRATEGY SEARCHES (R) FOR THE EQU.
THE ESTIMATE OF NAIPI IS COMPUTED USING (3). THE COMPARATIVE

NUMBERS FOR REPEATED RUNNING OF RANDOMLY GENERATED

DIMINISHED AVIDA PROGRAMS, AS DESCRIBED IN SECTION II-A4, IS IN

THE LAST ROW. ALL SIMULATIONS, EXCEPT Q, HAVE 353 RUNS. THE RUN

COUNT FOR Q IS 1420 QUERIES. THE VALUES IN THE I⊕/IΩ COLUMN

SHOULD BE MULTIPLIED BY 10−9 .

Model Steps Removed Successes I⊕/IΩ
A1 None (All Steps Enabled) 346 1.90
A2 XOR/NOR 319 1.37
A3 XOR/NOR/OR/AND N 227 0.62
A4 XOR/NOR/AND/OR N 222 0.52
R1 None (All Steps Enabled) 353 25.30
R2 XOR/NOR 353 16.26
R3 XOR/NOR/OR/AND N 353 6.72
R4 XOR/NOR/AND/OR N 353 8.05
Q None (Random) 21 5.78 × 10−3

in Table III, the NAIPI is reduced by excluding

the XOR and NOR steps. Removing these steps

therefore makes the search more difficult.6

• Algorithms A3 and A4. Taking away additional stair

steps worsens the performance even more. In A3, the

additional functions of OR and AND N are removed

resulting in an NAIPI of less than half when com-

pared to using all of the stair steps. If, instead, AND

and OR N are removed, the NAIPI reduction is

over two thirds. These stair steps therefore contribute

significantly to the active information of the search.

2) Performance of a ratcheted evolutionary strategy. Avail-

able knowledge for a given search problem can be used

with varying efficiency to produce active information.

The stair step knowledge available to Avida is a rich

source of active information and, in terms of efficient

search, is used poorly by Avida in the search for EQU.

We consider an alternate ratchet search strategy using

only a single digital organism. A generation in the search

consists of replacing an instruction in the loop by a ran-

domly chosen instruction. If the fitness of the organism

does not decrease, we keep the mutation and repeat the

iteration. If the fitness does increase, the mutation is

discarded and the process repeated. Different versions of

this procedure are shown in Table III and are labeled R1

through R4. Each uses the same stair steps as algorithms

A1 through A4. The same instruction bound and trial

number are used in the ratchet simulations. R1 uses

the same resources as A1 and increases the NAIPI over

an order of magnitude. The NAIPI for R2 through R4

are likewise bettered significantly with respect to their

corresponding Avida implementations in A2 through A4.

As was the case with the Avida program, removing steps

in the ratchet approach decreases algorithm performance

as measured by active information.

Will Avida work without the stair step active information

6There are searches where removing steps can actually improve performance
[4].

3051

TABLE IV
EFFECTS OF INSTRUCTION REMOVAL ON AVIDA (A) AND THE RATCHETED

EVOLUTIONARY STRATEGY SEARCHES (R) FOR EQU. THE LETTERS IN

THE INSTRUCTIONS COLUMN CORRESPOND TO THE LETTER LABELING OF

THE INSTRUCTIONS IN TABLE I. THE ENTRIES FOR A1 AND R1 IN

TABLE III ARE REPEATED HERE FOR EASE OF COMPARISON. RATCHET

ALGORITHMS R5 AND R6 USED THE SAME INSTRUCTIONS AS A5 AND

A6 . ALL SIMULATIONS HAVE 353 RUNS. THE VALUES IN THE I⊕/IΩ
COLUMN SHOULD BE MULTIPLIED BY 10−9 .

Model Instructions Successes I⊕/IΩ
A1 abcdefghijklmnopqrstuvwxyz 346 1.90
A5 abc--fghi--lmnopqrstuv--y- 353 5.16
A6 abc--fg-i------pqrstuv--y- 353 10.00
R1 abcdefghijklmnopqrstuvwxyz 353 25.30
R5 abc--fghi--lmnopqrstuv--y- 353 197.76
R6 abc--fg-i------pqrstuv--y- 353 593.80

being hard wired into the process? The Avida paper reports

that, in all case studies using stair step active information [16],

“... at least one population evolved EQU.”

What happens when no stair step active information is applied?

“At the other extreme, 50 populations evolved in an

environment where only EQU was rewarded, and no

simpler function yielded energy. We expected that

EQU would evolve much less often because selection

would not preserve the simpler functions that provide

foundations to build more complex features. Indeed,

none of these populations evolved EQU, a highly

significant difference from the fraction that did so in

the reward-all environment.” [16]

Therefore, hard wired stair step active information is essential

in order for Avida to produce results in reasonable time. We

were able to do so in Section II-A2 only because the instruction

set was diminished and the query count far exceeded the effort

reported in the Avida paper [16].

6) Instruction Selection Active Information in the NAND
Search: Some of the instructions in Table I are essential to do

any of the logic functions in Table II. Performing any logic

function without the (p) nand instruction, for example, would

be difficult. Conversely, there are instructions in Table I that

make little or no contributions to the goals of Avida. The

instructions (j) shift-r, (k) shift-l, (l) inc, (m) dec
(n) add, and (o) sub, for example, are typically deleterious

to the performance of a logic operation.

The effects of removing various sets of instructions in Avida

and the ratcheted evolutionary strategy searches are shown

in Table IV. For both Avida and the ratchet search, removal

of deleterious or otherwise nonessential instructions increases

the active information significantly. Using only 14 of the 26

instructions in R6 increases the NAIPI with respect to the

vanilla Avida in A1 by a factor of over 300.

7) Initialization Active Information in the NAND Search:
Another potential source of active information in search al-

gorithms is initialization. If a search can be initialized in

some sense closer to a solution, then we might expect faster

convergence. Like any source of active information, the prior

knowledge must be right. If we place the initialization farther

TABLE V
EFFECTS OF DIFFERENT INITIALIZATIONS ON THE AVIDA (A) FOR EQU.

THE DOA DESIGNATION INDICATES THAT NEARLY ALL ORGANISMS DIED

BEFORE PRODUCING ANY OFFSPRING. IN A9 , DEATHS WERE CAUSED

LARGELY BY INSTRUCTIONS (V) mov-head AND (W) jmp-head. THESE

ENTRIES WERE REMOVED IN A11 AND SUCCESSES WERE ACHIEVED. A
RANDOM SELECTION OF nop-A, nop-B, nop-C IN ALGORITHM A10

ALSO RESULTED IN A DOA SCENARIO. [THE REASON IS AS FOLLOWS. AS

PART OF THE REPLICATION LOOP, AVIDA SEARCHES FOR PATTERNS OF

nop’S. IN PARTICULAR THE END OF THE AVIDA PROGRAM IS MARKED BY

nop-A, nop-B. IF THAT PATTERN APPEARS ANYWHERE ELSE IN THE

PROGRAM IT WILL BE DETECTED AS THE END OF THE PROGRAM THUS

CAUSING THE REPLICATOR TO FAIL. WITH 85 RANDOMLY CHOSEN nop’S,
THAT PATTERN IS ALMOST CERTAIN TO APPEAR.] THE ENTRY FOR A1

FROM TABLE III IS REPEATED HERE FOR EASE OF COMPARISON. ALL

SIMULATIONS HAVE 353 RUNS. THE VALUES IN THE I⊕/IΩ COLUMN

SHOULD BE MULTIPLIED BY 10−9 .

Model Initialization Successes I⊕/IΩ
A1 nop-C 346 1.90
A7 nop-B 318 0.81
A8 nop-A 324 0.85
A9 Random DOA DOA
A10 Random-nops DOA DOA
A11 Random w/o (u) and (v) 274 0.84

from a solution, for example, convergence can take much

longer.

In Avida, the instruction (c) nop-C plays an important role.

The BX register is used as a default register and is used unless

changed by a (a) nop-A or or (c) nop-C instruction. In the

default operation of nand, for example, the nand operation of

registers BX and CX is performed and deposited in register

BX. Storing intermediate values of Avida’s computation in

register CX is therefore mandatory in computing the nand and

can only be done using the (c) nop-C instruction. Apparently

aware of this requirement, the designer of Avida set the

initial value of all instructions not dedicated to organism

replication to nop-C. The performance of Avida with this

initialization is superior to initialization using nonmandatory

nop-A or nop-B instructions. The performance of these and

other initializations are summarized in Table V. In all cases,

the NAIPI deteriorates by at least a factor of a half, or as

described in the figure caption, is DOA.

III. CONCLUSIONS

A. Active Information

The Avida program uses numerous sources of active infor-

mation to guide its performance to successful discovery of the

EQU logic function. The sources include the following.

• Stair step active information. In the initial description of

Avida, the authors write [16]

“Some readers might suggest that we stacked the

deck by studying the evolution of a complex feature

that could be built on simpler functions that were

also useful.”

This, indeed, is what the writers of Avida software do

when using stair step active information. The importance

of stair step active information is evident from the inabil-

3052

ity to generate a single EQU in Avida without using it

[16].

• Active information from Avida’s initialization. The ini-

tialization in Avida recognizes the essential role of the

nop-C instruction in finding the EQU. Initializing using

all nonessential nop-A or nop-B instructions results in

the a decrease in NAIPI in Avida.

• Mutation, fitness, and choosing the fittest of a number
of mutated offspring [5] are additional sources of active

information in Avida we have not explored in this paper.

B. Disclosure

According to the principle of conservation of information
[3], [4], [5], [7], [9], [10], [19], [20], [21], [22], [23], [28], [30],

all computer search algorithms of moderate to high difficulty

require active information.

The conservation of information principle in computer

search, as manifest in the No Free Lunch Theorems, are [2]

“... very useful, especially in light of some of the

sometimes outrageous claims that had been made of

specific optimization algorithms.”

To have integrity, computer simulations of evolutionary

search like Avida should make explicit

(1) a measure or assessment of the difficulty, IΩ, of the

problem being solved,

(2) the prior knowledge that gives rise to the active infor-

mation in the search algorithm, and

(3) a measure or assessment of the active information, e.g.
either I+ or I⊕, introduced by the prior knowledge.

REFERENCES

[1] Pak K. Chan, Digital System Design Using Field Programmable Gate
Arrays, Prentice Hall (1994)

[2] S. Christensen and F. Oppacher, “What can we learn from No Free
Lunch? A First Attempt to Characterize the Concept of a Searchable,”
Proceedings of the Genetic and Evolutionary Computation (2001).

[3] William A. Dembski, No Free Lunch: Why Specified Complexity
Cannot Be Purchased without Intelligence. Rowman & Littlefield
Publishers, Inc., 2006.

[4] W.A. Dembski and R.J. Marks II, “The Search for a Search: Measuring
the Information Cost of Higher Level Search,” International Journal of
Information Technology and Intelligent Computing, Vol. 3, No. 4, 2008.

[5] W.A. Dembski and R.J. Marks II, “Conservation of Information in
Search: Measuring the Cost of Success,” IEEE Transactions on Systems,
Man and Cybernetics A, Systems and Humans, in press. Available online
at www.BobMarks.org

[6] Manoel E. de Lima and David J. Kinniment, “Sea-of-gates architecture,”
Microelectronics Journal, Volume 26, Issue 5, July 1995, pp. 431-440

[7] W.A. Dembski and R.J. Marks II, “Life’s Conservation Law: Why
Darwinian Evolution Cannot Create Biological Information,” in Bruce
Gordon and W.A. Dembski, editors, The Nature of Nature, (Wilming-
ton, Del.: ISI Books, 2010).

[8] Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classifi-
cation, Wiley-Interscience; 2 edition (2000).

[9] T.M. English, “Some information theoretic results on evolutionary opti-
mization,” Proceedings of the 1999 Congress on Evolutionary Compu-
tation, 1999. CEC 99. Volume 1, 6-9 July 1999.

[10] T.M. English, “Evaluation of Evolutionary and Genetic Optimizers: No
Free Lunch,” in Evolutionary Programming V: Proceedings of the
Fifth Annual Conference on Evolutionary Programming, L. J. Fogel,
P. J. Angeline, and T Bäck, Eds., pp. 163-169. Cambridge, Mass: MIT
Press, 1996.

[11] A. E. Gamal, J. L. Kouloheris, D. How, and M. Morf, “Bi-NMOS: A
basic cell for BiCMOS sea-of-gates,” in Proc. IEEE Custom Integrated
Circuits Conf., 1989, pp. 831-834.

[12] J.D. Golic, “ Techniques for Random Masking in Hardware,” IEEE
Transactions on Circuits and Systems I: Regular Papers, Volume 54,
Issue: 2, 2007, pp. 291-300

[13] T. Hanibuchi, K. Higashitani, M. Hatanaka and A. Tada, “A bipolar-
PMOS merged basic cell for 0.8 μm BiCMOS sea of gates,” IEEE
Journal of Solid-State Circuits, Volume 26, Issue 3, Mar 1991, pp.427 -
431.

[14] James L. Hein, Discrete Structures, Logic, and Computability, Jones
& Bartlett Publishers (2009)

[15] M. Koppen, D.H. Wolpert, W.G. Macready, “Remarks on a recent paper
on the ’no free lunch’ theorems,” IEEE Transactions on Evolutionary
Computation, June 2001, Volume: 5 , Issue: 3, pp. 295 - 296.

[16] Richard E. Lenski, Charles Ofria, Robert T. Pennock and Christoph
Adami, “The evolutionary origin of complex features,” Nature, vol 423,
139-144 (8 May 2003).
Supplementary material is available at
http://myxo.css.msu.edu/papers/nature2003/.
An “Index of Avida Documentation,” is available at
http://dllab.caltech.edu/avida/v2.0/docs/.

[17] R.J. Marks II, Handbook of Fourier Transform and Its Applications,
Oxford University Press (2009).

[18] Cecı́lia Reis and J. A. Tenreiro Machado, “Computational Intelligence
in Circuit Synthesis,” Journal of Advanced Computational Intelligence
and Intelligent Informatics, Vol.11, No.9 pp. 1122-1127, 2007

[19] Cullen Schaffer, “Overfitting Avoidance as Bias (preliminary version),”
Proceedings of Machine Learning: IJCAI Workshop on Discovery in
Databases, (1991).

[20] Cullen Schaffer, “Deconstructing the Digit Recognition Problem,” in
Machine Learning: Proceedings of the Ninth International Conference
(ML92), D. Sleeman and P. Edwards Editors, Morgan Kaufmann, 1992

[21] Cullen Schaffer, “Sparse Data and the Effect of Overfitting Avoidance in
Decision Tree Induction,” Proceedings of the Tenth National Conference
on Artificial Intelligence (AAAI-92), 1992.

[22] Cullen Schaffer, “Overfitting Avoidance as Bias,” Machine Learning,
Volume 10 , Issue 2 (February 1993) Pages: 153 - 178

[23] Cullen Schaffer, “A conservation law for generalization performance,”
in Proc. Eleventh International Conference on Machine Learning, H.
Willian and W. Cohen. San Francisco: Morgan Kaufmann, 1994, pp.295-
265.

[24] Rajan Srinivasan, Importance Sampling, Springer (2002).
[25] K. Takita and Y. Kakazu, “Automatic agent design based on gate growth-

application to wall following problem,” Proceedings of the 37th SICE
Annual Conference. International Session Papers, 29-31 July 1998, pp.
863 - 868.

[26] K. Takita, Y. Kakazu, “Evolutionary design of autonomous agent based
on gate growth,” Proceedings 1999 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 1999. IROS ’99, Volume 3, 17-21
Oct. 1999 pp. 1555 - 1560 vol.3.

[27] David H. Wolpert, “On overfitting avoidance as bias.” Technical Report
SFI-TR-92-03-5001, Santa Fe Institute. 1992.

[28] David H. Wolpert, “On the connection between in-sample testing and
generalization error.” Complex Systems 6: pp.47-94 (1992)

[29] David H. Wolpert, “Stacked generalization.” Neural Networks 5:241-259
(1992).

[30] David H. Wolpert, William G. Macready, “No free lunch theorems
for optimization,” IEEE Trans. Evolutionary Computation 1(1): 67-82
(1997).

[31] David H. Wolpert, and W.G. Macready, “Coevolutionary Free Lunches,”
IEEE Transactions on Evolutionary Computation, December 2005, Vol-
ume 9, Issue 6, pp. 721-735.

[32] M. Yasunaga, T. Nakamura and I. Yoshihara, “Sonar spectrum recog-
nition chip designed by evolutionary algorithm,” International Joint
Conference on Neural Networks, 1999. IJCNN ’99. Volume 5, 10-16
July 1999 pp. 3182 - 3187 vol.5.

3053

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

