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AbstractÐWe propose a flexible new technique to easily calibrate a camera. It

only requires the camera to observe a planar pattern shown at a few (at least two)

different orientations. Either the camera or the planar pattern can be freely moved.

The motion need not be known. Radial lens distortion is modeled. The proposed

procedure consists of a closed-form solution, followed by a nonlinear refinement

based on the maximum likelihood criterion. Both computer simulation and real

data have been used to test the proposed technique and very good results have

been obtained. Compared with classical techniques which use expensive

equipment such as two or three orthogonal planes, the proposed technique is easy

to use and flexible. It advances 3D computer vision one more step from laboratory

environments to real world use. The corresponding software is available from the

author's Web page.

Index TermsÐCamera calibration, calibration from planes, 2D pattern, flexible

plane-based calibration, absolute conic, projective mapping, lens distortion,

closed-form solution, maximum likelihood estimation, flexible setup.

æ

1 MOTIVATIONS

CAMERA calibration is a necessary step in 3D computer vision in

order to extract metric information from 2D images. Much work

has been done, starting in the photogrammetry community (see [2],

[4] to cite a few), and more recently in computer vision ([9], [8],

[23], [7], [25], [24], [16], [6] to cite a few). We can classify those

techniques roughly into two categories: photogrammetric calibra-

tion and self-calibration.

. Three-dimensional reference object-based calibration.

Camera calibration is performed by observing a calibration

object whose geometry in 3D space is known with very

good precision. Calibration can be done very efficiently [5].

The calibration object usually consists of two or three

planes orthogonal to each other. Sometimes a plane

undergoing a precisely known translation is also used

[23]. These approaches require an expensive calibration

apparatus, and an elaborate setup.
. Self-calibration. Techniques in this category do not use

any calibration object. Just by moving a camera in a static

scene, the rigidity of the scene provides in general two

constraints [16], [14] on the cameras' internal parameters

from one camera displacement by using image information

alone. Therefore, if images are taken by the same camera

with fixed internal parameters, correspondences between

three images are sufficient to recover both the internal and

external parameters which allow us to reconstruct

3D structure up to a similarity [15], [12]. While this

approach is very flexible, it is not yet mature [1]. Because

there are many parameters to estimate, we cannot always

obtain reliable results.

Other techniques exist: vanishing points for orthogonal directions

[3], [13], and calibration from pure rotation [11], [20].

Our current research is focused on a desktop vision system
(DVS) since the potential for using DVSs is large. Cameras are
becoming inexpensive and ubiquitous. A DVS aims at the general
public who are not experts in computer vision. A typical computer
user will perform vision tasks only from time to time, so they will
not be willing to invest money for expensive equipment. Therefore,
flexibility, robustness, and low cost are important. The camera
calibration technique described in this paper was developed with
these considerations in mind.

The proposed technique only requires the camera to observe a
planar pattern shown at a few (at least two) different orientations.
The pattern can be printed on a laser printer and attached to a
ªreasonableº planar surface (e.g., a hard book cover). Either the
camera or the planar pattern can be moved by hand. The motion
need not be known. The proposed approach, which uses 2D metric
information, lies between the photogrammetric calibration, which
uses explicit 3D model, and self-calibration, which uses motion
rigidity or equivalently implicit 3D information. Both computer
simulation and real data have been used to test the proposed
technique and very good results have been obtained. Compared
with classical techniques, the proposed technique is considerably
more flexible: Anyone can make a calibration pattern by him/her-
self and the setup is very easy. Compared with self-calibration, it
gains a considerable degree of robustness. We believe the new
technique advances 3D computer vision one step from laboratory
environments to the real world.

Note that Triggs [22] recently developed a self-calibration
technique from at least five views of a planar scene. His technique
is more flexible than ours, but has difficulty to initialize. Liebowitz
and Zisserman [13] described a technique of metric rectification for
perspective images of planes using metric information, such as a
known angle, two equal though unknown angles, and a known
length ratio. They also mentioned that calibration of the internal
camera parameters is possible provided at least three such rectified
planes, although no experimental results were shown.

During the revision of this paper, we notice the publication of
an independent but similar work by Sturm and Maybank [21].They
use a simplified camera model (image axes are orthogonal to each
other) and have studied the degenerate configurations exhaus-
tively for the case of one and two planes, which are very important
in practice if only one or two views are used for camera calibration.

The paper is organized as follows: Section 2 describes the basic
constraints from observing a single plane. Section 3 describes the
calibration procedure. We start with a closed-form solution,
followed by nonlinear optimization. Radial lens distortion is also
modeled. Section 4 provides the experimental results. Both
computer simulation and real data are used to validate the
proposed technique. In the Appendix, we provides a number of
details, including the techniques for estimating the homography
between the model plane and its image.

2 BASIC EQUATIONS

We examine the constraints on the camera's intrinsic parameters
provided by observing a single plane. We start with the notation
used in this paper.

2.1 Notation

A 2D point is denoted by m � �u; v�T . A 3D point is denoted by

M � �X; Y ; Z�T . We use ex to denote the augmented vector by adding

1 as the last element: em � �u; v; 1�T andfM � �X; Y ; Z; 1�T . A camera is

modeled by the usual pinhole: The relationship between a 3D point

M and its image projection m is given by

s em � A
�
R t

�fM; with A �
� 
 u0

0 � v0

0 0 1

24 35; �1�
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where s is an arbitrary scale factor, �R; t�, called the extrinsic
parameters is the rotation and translation which relates the world
coordinate system to the camera coordinate system, and A is called
the camera intrinsic matrix, with �u0; v0� the coordinates of the
principal point, � and � the scale factors in image u and v axes, and

 the parameter describing the skew of the two image axes.

We use the abbreviation AÿT for �Aÿ1�T or �AT �ÿ1.

2.2 Homography between the Model Plane and Its Image

Without loss of generality, we assume the model plane is on Z � 0
of the world coordinate system. Let's denote the ith column of the
rotation matrix R by ri. From (1), we have

s
u
v
1

24 35 � A r1 r2 r3 t� �
X
Y
0
1

2664
3775 � A r1 r2 t� �

X
Y
1

24 35:
By abuse of notation, we still use M to denote a point on the model
plane, but M � �X;Y �T since Z is always equal to zero. In turn,fM � �X; Y ; 1�T . Therefore, a model point M and its image m is
related by a homography H:

s em � HfM with H � A r1 r2 t� �: �2�
As is clear, the 3� 3 matrix H is defined up to a scale factor.

2.3 Constraints on the Intrinsic Parameters

Given an image of the model plane, an homography can be
estimated (see the Appendix). Let's denote it by H � h1 h2 h3� �.
From (2), we have

h1 h2 h3� � � �A r1 r2 t� �;
where � is an arbitrary scalar. Using the knowledge that r1 and r2

are orthonormal, we have

hT1 AÿTAÿ1h2 � 0 �3�

hT1 AÿTAÿ1h1 � hT2 AÿTAÿ1h2: �4�
These are the two basic constraints on the intrinsic parameters,
given one homography. Because a homography has 8 degrees of
freedom and there are six extrinsic parameters (three for rotation
and three for translation), we can only obtain two constraints on
the intrinsic parameters. Note that AÿTAÿ1 actually describes the
image of the absolute conic [15]. In the next section, we will give a
geometric interpretation.

2.4 Geometric Interpretation

We are now relating (3) and (4) to the absolute conic [16], [15].
It is not difficult to verify that the model plane, under our

convention, is described in the camera coordinate system by the
following equation:

r3

rT3 t

� �T x
y
z
w

2664
3775 � 0;

where w � 0 for points at infinity and w � 1 otherwise. This plane
intersects the plane at infinity at a line and we can easily see that

r1

0

� �
and

r2

0

� �

are two particular points on that line. Any point on it is a linear
combination of these two points, i.e.,

x1 � a r1

0

� �
� b r2

0

� �
� ar1 � br2

0

� �
:

Now, let's compute the intersection of the above line with the
absolute conic. By definition, the point x1, known as the circular
point [18], satisfies: xT1x1 � 0, i.e., �ar1 � br2�T �ar1 � br2� � 0, or
a2 � b2 � 0. The solution is b � �ai, where i2 � ÿ1. That is, the two
intersection points are

x1 � a r1 � ir2

0

� �
:

The significance of this pair of complex conjugate points lies in the
fact that they are invariant to Euclidean transformations. Their
projection in the image plane is given, up to a scale factor, by

em1 � A�r1 � ir2� � h1 � ih2:

Point em1 is on the image of the absolute conic, described by
AÿTAÿ1 [15]. This gives

�h1 � ih2�TAÿTAÿ1�h1 � ih2� � 0:

Requiring that both real and imaginary parts be zero yields (3)
and (4).

3 SOLVING CAMERA CALIBRATION

This section provides the details how to effectively solve the
camera calibration problem. We start with an analytical solution,
followed by a nonlinear optimization technique based on the
maximum-likelihood criterion. Finally, we take into account lens
distortion, giving both analytical and nonlinear solutions.

3.1 Closed-Form Solution

Let

B � AÿTAÿ1 �
B11 B12 B13

B12 B22 B23

B13 B23 B33

264
375

�

1
�2 ÿ 


�2�
v0
ÿu0�
�2�

ÿ 

�2�


2

�2�2� 1
�2 ÿ 
�v0
ÿu0��

�2�2 ÿ v0

�2

v0
ÿu0�
�2� ÿ 
�v0
ÿu0��

�2�2 ÿ v0

�2

�v0
ÿu0��2
�2�2 � v2

0

�2�1

26664
37775:

�5�

Note that B is symmetric, defined by a 6D vector

b � �B11; B12; B22; B13; B23; B33�T : �6�
Let the ith column vector of H be hi � �hi1; hi2; hi3�T . Then, we

have

hTi Bhj � vTijb �7�
with

vij �
�hi1hj1; hi1hj2 � hi2hj1; hi2hj2; hi3hj1 � hi1hj3; hi3hj2 � hi2hj3; hi3hj3�T :
Therefore, the two fundamental constraints (3) and (4), from a
given homography, can be rewritten as two homogeneous
equations in b:

vT12

�v11 ÿ v22�T
� �

b � 0: �8�
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If n images of the model plane are observed, by stacking n such

equations as (8), we have

Vb � 0; �9�
where V is a 2n� 6 matrix. If n � 3, we will have in general a

unique solution b defined up to a scale factor. If n � 2, we can

impose the skewless constraint 
 � 0, i.e., �0; 1; 0; 0; 0; 0�b � 0,

which is added as an additional equation to (9). (If n � 1, we can

only solve two camera intrinsic parameters, e.g., � and �, assuming

u0 and v0 are known (e.g., at the image center) and 
 � 0, and that

is indeed what we did in [19] for head pose determination based

on the fact that eyes and mouth are reasonably coplanar. In fact,

Tsai [23] already mentions that focal length from one plane is

possible, but incorrectly says that aspect ratio is not.) The solution

to (9) is well-known as the eigenvector of VTV associated with the

smallest eigenvalue (equivalently, the right singular vector of V

associated with the smallest singular value).
Once b is estimated, we can compute all camera intrinsic

parameters as follows. The matrix B, as described in Section 3.1, is

estimated up to a scale factor, i.e., B � �AÿTA with � an arbitrary

scale. Without difficulty, we can uniquely extract the intrinsic

parameters from matrix B.

v0 � �B12B13 ÿB11B23�=�B11B22 ÿB2
12�

� � B33 ÿ �B2
13 � v0�B12B13 ÿB11B23��=B11

� �
�������������
�=B11

p
� �

��������������������������������������������
�B11=�B11B22 ÿB2

12�
q


 � ÿB12�
2�=�

u0 � 
v0=�ÿB13�
2=�:

Once A is known, the extrinsic parameters for each image is

readily computed. From (2), we have

r1 � �Aÿ1h1; r2 � �Aÿ1h2; r3 � r1 � r2; t � �Aÿ1h3

with � � 1=kAÿ1h1k � 1=kAÿ1h2k. Of course, because of noise in

data, the so-computed matrix R � �r1; r2; r3� does not, in general,

satisfy the properties of a rotation matrix. The best rotation matrix

can then be obtained through for example singular value

decomposition [10], [26].

3.2 Maximum-Likelihood Estimation

The above solution is obtained through minimizing an algebraic

distance which is not physically meaningful. We can refine it

through maximum-likelihood inference.

We are givenn images of a model plane and there arempoints on

the model plane. Assume that the image points are corrupted by

independent and identically distributed noise. The maximum-

likelihood estimate can be obtained by minimizing the following

functional:

Xn
i�1

Xm
j�1

kmij ÿ m̂�A;Ri; ti;Mj�k2; �10�

where m̂�A;Ri; ti;Mj� is the projection of point Mj in image i,

according to (2). A rotation R is parameterized by a vector of three

parameters, denoted by r, which is parallel to the rotation axis and

whose magnitude is equal to the rotation angle. R and r are related

by the Rodrigues formula [5]. Minimizing (10) is a nonlinear

minimization problem, which is solved with the Levenberg-

Marquardt Algorithm as implemented in Minpack [17]. It requires

an initial guess of A; fRi; tiji � 1::ng which can be obtained using

the technique described in the previous section.

Desktop cameras usually have visible lens distortion, especially

the radial components. We have included these while minimizing

(10). Refer to the technical report, [26], for more details.

3.3 Summary

The recommended calibration procedure is as follows:

1. Print a pattern and attach it to a planar surface.
2. Take a few images of the model plane under different

orientations by moving either the plane or the camera.
3. Detect the feature points in the images.
4. Estimate the five intrinsic parameters and all the extrinsic

parameters using the closed-form solution, as described in
Section 3.1

5. Refine all parameters, including lens distortion para-
meters, by minimizing (10).

There is a degenerate configuration in my technique when
planes are parallel to each other. Refer to the technical report, [26],
for a more detailed description.

4 EXPERIMENTAL RESULTS

The proposed algorithm has been tested on both computer

simulated data and real data. The closed-form solution involves

finding a singular value decomposition of a small 2n� 6 matrix,

where n is the number of images. The nonlinear refinement

within the Levenberg-Marquardt Algorithm takes 3 to 5 iterations

to converge. Due to space limitation, we describe in this section

one set of experiments with real data when the calibration

pattern is at different distances from the camera. The reader is

referred to [26] for more experimental results with both computer

simulated and real data, and to the following Web page: http://

research.microsoft.com/~zhang/Calib/ for some experimental

data and the software.

The example is shown in Fig. 1. The camera to be calibrated is

an off-the-shelf PULNiX CCD camera with 6 mm lens. The image

resolution is 640� 480. As can be seen in Fig. 1, the model plane

contains 9� 9 squares with nine special dots which are used to

identify automatically the correspondence between reference

points on the model plane and square corners in images. It was

printed on a A4 paper with a 600 DPI laser printer and attached to

a cardboard.

In total, 10 images of the plane were taken (six of them are shown

in Fig. 1). Five of them (called Set A) were taken at close range, while

the other five (called Set B) were taken at a larger distance. We

applied our calibration algorithm to Set A, Set B, and also to the

whole set (called Set A+B). The results are shown in Table 1. For

intuitive understanding, we show the estimated angle between the

image axes, #, instead of the skew factor 
. We can see that the angle

# is very close to 90�, as expected with almost all modern

CCD cameras. The cameras parameters were estimated consistently

for all three sets of images, except the distortion parameters with Set

B. The reason is that the calibration pattern only occupies the central

part of the image in Set B, where lens distortion is not significant

and therefore cannot be estimated reliably.

5 CONCLUSION

In this paper, we have developed a flexible new technique to easily

calibrate a camera. The technique only requires the camera to

observe a planar pattern from a few different orientations.

Although the minimum number of orientations is two if pixels

are square, we recommend four or five different orientations for

better quality. We can move either the camera or the planar
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pattern. The motion does not need to be known, but should not be

a pure translation. When the number of orientations is only two,

one should avoid positioning the planar pattern parallel to the

image plane. The pattern could be anything, as long as we know

the metric on the plane. For example, we can print a pattern with a

laser printer and attach the paper to a reasonable planar surface

such as a hard book cover. We can even use a book with known

size because the four corners are enough to estimate the plane

homographies.

Radial lens distortion is modeled. The proposed procedure

consists of a closed-form solution, followed by a nonlinear

refinement based on a maximum-likelihood criterion. Both compu-

ter simulation and real data have been used to test the proposed

technique and very good results have been obtained. Compared

with classical techniques which use expensive equipment such as

two or three orthogonal planes, the proposed technique gains

considerable flexibility.

APPENDIX

ESTIMATING HOMOGRAPHY BETWEEN THE

MODEL PLANE AND ITS IMAGE

There are many ways to estimate the homography between the

model plane and its image. Here, we present a technique based on

a maximum-likelihood criterion. Let Mi and mi be the model and

image points, respectively. Ideally, they should satisfy (2). In

practice, they don't because of noise in the extracted image points.

Let's assume that mi is corrupted by Gaussian noise with mean 0

and covariance matrix �mi
. Then, the maximum-likelihood

estimation of H is obtained by minimizing the following functional
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Fig. 1. Two sets of images taken at different distances to the calibration pattern. Each set contains five images. (a) Three images from the set taken at a close distance

are shown. (b) Three images from the set taken at a larger distance are shown.



X
i

�mi ÿ m̂i�T�ÿ1
mi
�mi ÿ m̂i�;

where

m̂i � 1
�hT3 Mi

�hT1 Mi

�hT2 Mi

24 35 with �hi; the ith row of H:

In practice, we simply assume �mi
� �2I for all i. This is

reasonable if points are extracted independently with the same

procedure. In this case, the above problem becomes a nonlinear

least-squares one, i.e., minH

P
i kmi ÿ m̂ik2. The nonlinear mini-

mization is conducted with the Levenberg-Marquardt Algorithm

as implemented in Minpack [17]. This requires an initial guess,

which can be obtained as follows:
Let x � ��hT1 ; �hT2 ;

�hT3 �T . Then, (2) can be rewritten as

fMT 0T ÿufMT

0T fMT ÿvfMT

� �
x � 0:

When we are given n points, we have n above equations, which

can be written in matrix equation as Lx � 0, where L is a 2n� 9

matrix. As x is defined up to a scale factor, the solution is well-

known to be the right singular vector of L associated with the

smallest singular value (or equivalently, the eigenvector of LTL

associated with the smallest eigenvalue). In L, some elements are

constant 1, some are in pixels, some are in world coordinates, and

some are multiplication of both. This makes L poorly conditioned

numerically. Much better results can be obtained by performing a

simple data normalization prior to running the above procedure.
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TABLE 1
Calibration Results with the Images Shown in Fig. 1


