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Abstract. This paper presents a statistical algorithm for collaborative mobile robot localization. Our approach uses
a sample-based version of Markov localization, capable of localizing mobile robots in an any-time fashion. When
teams of robots localize themselves in the same environment, probabilistic methods are employed to synchronize
each robot’s belief whenever one robot detects another. As a result, the robots localize themselves faster, maintain
higher accuracy, and high-cost sensors are amortized across multiple robot platforms. The technique has been
implemented and tested using two mobile robots equipped with cameras and laser range-finders for detecting other
robots. The results, obtained with the real robots and in series of simulation runs, illustrate drastic improvements
in localization speed and accuracy when compared to conventional single-robot localization. A further experiment
demonstrates that under certain conditions, successful localization is only possible if teams of heterogeneous robots
collaborate during localization.
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1. Introduction

Sensor-based robot localization has been recognized as
one of the fundamental problems in mobile robotics.
The localization problem is frequently divided into
two subproblems:Position tracking, which seeks to
compensate small dead reckoning errors under the as-
sumption that the initial position is known, andglobal
self-localization, which addresses the problem of local-
ization with no a priori information. The latter problem

is generally regarded as the more difficult one, and re-
cently several approaches have provided sound solu-
tions to this problem. In recent years, a flurry of publi-
cations on localization—which includes a book solely
dedicated to this problem (Borenstein et al., 1996)—
document the importance of the problem. According
to Cox (Cox and Wilfong, 1990), “Using sensory in-
formation to locate the robot in its environment is the
most fundamental problem to providing a mobile robot
with autonomous capabilities.”
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However, virtually all existing work addresses lo-
calization of asingle robot only. The problem of
cooperative multi-robot localization remains virtually
unexplored. At first glance, one could solve the prob-
lem of localizingN robots by localizing each robotin-
dependently, which is a valid approach that might yield
reasonable results in many environments. However, if
robots can detect each other, there is the opportunity
to do better. When a robot determines the location of
another robot relative to its own, both robots can refine
their internal beliefs based on the other robot’s esti-
mate, hence improve their localization accuracy. The
ability to exchange information during localization is
particularly attractive in the context of global localiza-
tion, where each sight of another robot can reduce the
uncertainty in the estimated location dramatically.

The importance of exchanging information during
localization is particularly striking for heterogeneous
robot teams. Consider, for example, a robot team
where some robots are equipped with expensive, high-
accuracy sensors (such as laser range-finders), whereas
others are only equipped with low-cost sensors such
as sonar sensors. By transferring information across
multiple robots, sensor information can be leveraged.
Thus, collaborative multi-robot localization facilitates
the amortization of high-end high-accuracy sensors
across teams of robots. Consequently, phrasing the
problem of localization as a collaborative one offers the
opportunity of improved performance from less data.

This paper proposes an efficient probabilistic ap-
proach for collaborative multi-robot localization. Our
approach is based onMarkov localization(Nourbakhsh
et al., 1995; Simmons and Koenig, 1995; Kaelbling
et al., 1996; Burgard et al., 1996), a family of prob-
abilistic approaches that have recently been applied
with great practical success to single-robot localiza-
tion (Burgard et al., 2000; Konolige, 1999; Fox et al.,
1999b; Thrun et al., 1999a). In contrast to previ-
ous research, which relied on grid-based or coarse-
grained topological representations of a robot’s state
space, our approach adopts a sampling-based represen-
tation (Dellaert et al., 1999; Fox et al., 1999a), which is
capable of approximating a wide range of belief func-
tions in real-time. To transfer information across differ-
ent robotic platforms, probabilistic “detection models”
are employed to model the robots’ abilities to recognize
each other. When one robot detects another, these de-
tection models are used to synchronize the individual
robots’ beliefs, thereby reducing the uncertainty of both
robots during localization. To accommodate the noise

and ambiguity arising in real-world domains, detec-
tion models are probabilistic, capturing the reliability
and accuracy of robot detection. The constraint prop-
agation is implemented using sampling, and density
trees (Koller and Fratkina, 1998; Moore et al., 1997;
Omohundro, 1987, 1991) are employed to integrate in-
formation from other robots into a robot’s belief.

While our approach is applicable to any sensor capa-
ble of (occasionally) detecting other robots, we present
an implementation that uses color cameras and laser
range-finders for robot detection. The parameters of
the corresponding probabilistic detection model are
learned using a maximum likelihood estimator. Exten-
sive experimental results, carried out with two robots
in an indoor environment, illustrate the appropriateness
of the approach.

In what follows, we will first describe the neces-
sary statistical mechanisms for multi-robot localiza-
tion, followed by a description of our sampling-based
and Monte Carlo localization technique in Section 3.
In Section 4 we present our vision-based method to
detect other robots. Experimental results are reported
in Section 5. Finally, related work is discussed in
Section 6, followed by a discussion of the advantages
and limitations of the current approach.

2. Multi-Robot Localization

Let us begin with a mathematical derivation of our
approach to multi-robot localization. In the remain-
der we assume that robots are given a model of the
environment (e.g., a map (Thrun, 1998b)), and that
they are given sensors that enable them to relate their
own position to this model (e.g., range finders, cam-
eras). We also assume that robots can detect each other,
and that they can perform dead-reckoning. All of these
senses are typically confounded by noise. Further be-
low, we will make the assumption that the environ-
ment is Markov (i.e., the robots’ positions are the only
measurable state), and we will also make some addi-
tional assumptions necessary for factorial representa-
tions of joint probability distributions—as explained
further below.

Throughout this paper, we adopt a probabilistic ap-
proach to localization. Probabilistic methods have been
applied with remarkable success to single-robot local-
ization (Nourbakhsh et al., 1995; Simmons and Koenig,
1995; Kaelbling et al., 1996; Burgard et al., 1996; Fox
et al., 1999b; Burgard et al., 1998; Gutmann et al.,
1999), where they have been demonstrated to solve
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problems like global localization and localization in
dense crowds.

2.1. Data

Let N be the number of robots, and letdn denote the
data gathered by then-th robot, with 1≤ n≤ N. Ob-
viously, eachdn is a sequence of three different types
of information:

1. Odometry measurements.Each robot continuously
monitors its wheel encoders (dead-reckoning) and
generates, in regular intervals, odometric measure-
ments. These measurements, which will be denoted
a, specify the relative change of position according
to the wheel encoders.

2. Environment measurements.The robots also query
their sensors (e.g., range finders, cameras) in regular
time intervals, which generates measurements de-
noted byo. The measurementsoestablish the neces-
sary reference between the robot’s local coordinate
frame and the environment’s frame of reference. In
our experiments below,o will be laser range scans
or ultrasound measurements.

3. Detections.Additionally, each robot queries its sen-
sors for the presence or absence of other robots. The
resulting measurements will be denotedr . Robot
detection might be accomplished through different
sensors than environment measurements. Below, in
our experiments, we will use a combination of vi-
sual sensors (color camera) and range finders for
robot detection.

The data of all robots is denotedd with

d = d1 ∪ d2 ∪ · · · ∪ dN . (1)

2.2. Markov Localization

Before turning to the topic of this paper—collaborative
multi-robot localization—let us first review a com-
mon approach to single-robot localization, which our
approach is built upon: Markov localization. Markov
localization uses only dead reckoning measurements
a and environment measurementso; it ignores detec-
tionsr . In the absence of detections (or similar infor-
mation that ties the position of one robot to another),
information gathered at different platforms cannot be
integrated. Hence, the best one can do is to localize
each robot individually, independently of all others.

The key idea of Markov localization is that each
robot maintains a belief over its position. The belief of
then-th robot at timet will be denotedBel(t)n (L). Here
L is a three-dimensional random variable composed of
a robot’sx-y position and its heading directionθ (we
will use the termsposition, poseand location inter-
changeably). Accordingly,Bel(t)n (L = l ) denotes the
belief of then-th robot of being at a specific location
l . Initially, at time t = 0, Bel(0)n (L) reflects the initial
knowledge of the robot. In the most general case, which
is being considered in the experiments below, the ini-
tial position of all robots is unknown, henceBel(0)n (L)
is initialized by a uniform distribution.

At time t , the beliefBel(t)n (L) is the posterior with
respect to all data collected up to timet :

Bel(t)n (L) = P
(
L(t)n

∣∣ d(t)n

)
(2)

whered(t)n denotes the data collected by then-th robot
up to time t . By assumption, the most recent sensor
measurement ind(t)n is either an environment or an
odometry measurement. Both cases are treated dif-
ferently, so let’s consider the former first:

1. Sensing the environment: Suppose the last item in
d(t)n is an environment measurement, denotedo(t)n .
Using the Markov assumption (and exploiting that
the robot position does not change when the envi-
ronment is sensed), we obtain for any locationl
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(
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)
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(
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(
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(
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n

)
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(
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)

Bel(t−1)
n (L = l ) (3)

where α is a normalizer that does not depend
on the robot positionl . Notice that the posterior
belief Bel(t)n (L = l ) of being at locationl after
incorporatingo(t)n is obtained by multiplying the
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perceptual modelP(o(t)n | L(t)n = l ) with the prior
beliefBel(t−1)

n (L = l ).
This observation suggests the followingincre-

mentalupdate equation (we omit the time indext
and the state variableL for brevity):

Beln(l )← αP(on | l )Beln(l ) (4)

The conditional probabilityP(on | l ) is called the
environment perception modelof robot n and de-
scribes the likelihood of perceivingon given that
the robot is at positionl . In Markov localization,
it is assumed to be given and constant over time.
For proximity sensors such as ultrasound sensors
or laser range-finders, the probabilityP(on | l ) can
be approximated byP(on | ol ), which is the proba-
bility of observingon conditioned on the expected
measurementol at locationl . The expected mea-
surement, a distance in this case, is easily computed
from the map using ray tracing. Figure 1 shows this
perception model for laser range-finders. Here the
x-axis is the distanceol expected given the world
model, and they-axis is the distanceon measured by
the sensor. The function is a mixture of a Gaussian
(centered around the correct distanceol ), a Geomet-
ric distribution (modeling overly short readings) and
a Dirac distribution (modeling max-range readings).
It integrates the accuracy of the sensor with the like-
lihood of receiving a “random” measurement (e.g.,
due to obstacles not modeled in the map (Fox et al.,
1999b)).

2. Odometry: Now suppose the last item ind(t)n is
an odometry measurement, denoteda(t)n . Using the

Figure 1. Perception model for laser range finders. Thex-axis
depicts the expected measurement, they-axis the measured distance,
and the vertical axis depicts the likelihood. The peak marks the most
likely measurement. The robots are also given a map of the environ-
ment, to which this model is applied.

Theorem of Total Probability and exploiting the
Markov property, we obtain

Bel(t)n (L = l )

= P
(
L(t)n = l

∣∣ d(t)n

)
=
∫

P
(
L(t)n = l

∣∣ d(t)n , L(t−1)
n = l ′

)
× P

(
L(t−1)
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∣∣ d(t)n

)
dl′

=
∫

P
(
L(t)n = l

∣∣a(t)n , L(t−1)
n = l ′

)
× P

(
L(t−1)

n = l ′
∣∣ d(t−1)

n

)
dl′

=
∫

P
(
L(t)n = l

∣∣a(t)n , L(t−1)
n = l ′

)
×Bel(t−1)

n (L = l ′) dl′ (5)

which suggests theincrementalupdate equation:

Beln(l )←
∫

P(l |an, l
′)Beln(l

′) dl′ (6)

HereP(l |an, l ′) is called themotion modelof robot
n. Figure 2 illustrates the resulting densities for
two example paths. As the figure suggests, a mo-
tion model is basically a model of robot kinematics
annotated with uncertainty.

These equations together form the basis of Markov
localization, an incremental probabilistic algorithm for
estimating robot positions. Markov localization relies
on knowledge ofP(on | l ) andP(l |an, l ′). The former
conditional typically requires a model (map) of the
environment. As noticed above, Markov localization
has been applied with great practical success to mo-
bile robot localization. However, it is only applicable
to single-robot localization, and cannot take advantage
of robot detection measurements. Thus, in its current
form it cannot exploit relative information between dif-
ferent robots’ positions in any sensible way.

2.3. Multi-Robot Markov Localization

The key idea of multi-robot localization is to integrate
measurements taken at different platforms, so that each
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Figure 2. Motion model representing the uncertainty in robot motion: The robot’s belief starts with a Dirac distribution and the lines represent
the trajectories of the robot. Both distributions are three-dimensional (in〈x, y, θ〉-space) and shown are their 2D projections into〈x, y〉-space.

robot can benefit from data gathered by robots other
than itself.

At first glance, one might be tempted to maintain a
single belief over all robots’ locations, i.e.,

L = L1× L2× · · · × L N (7)

Unfortunately, the dimensionality of this vector grows
with the number of robots. Distributions overL are,
hence, exponential in the number of robots. Moreover,
since each robot position is described by three values
(its x-y position and its heading directionθ ), L is of
dimension 3N. Thus, modeling the joint distribution
of the positions of all robots is infeasible already for
small values ofN.

Our approach maintainsfactorial representations;
i.e., each robot maintains its own belief function that
models only its own uncertainty, and occasionally, e.g.,
when a robot sees another one, information from one
belief function is transfered from one robot to another.
The factorial representation assumes that the distribu-
tion of L is the product of itsN marginal distributions:

P
(
L (t)1 , . . . , L(t)N

∣∣ d(t))
= P

(
L (t)1

∣∣ d(t)) · . . . · P(L(t)N

∣∣ d(t)) (8)

Strictly speaking, the factorial representation is only
approximate, as one can easily construct situations
where the independence assumption does not hold true.
However, the factorial representation has the advantage
that the estimation of the posteriors is conveniently car-
ried out locally on each robot. In the absence of detec-
tions, this amounts to performing Markov localization
independently for each robot. Detections are used

to provide additional constraints between the estima-
ted pairs of robots, which will lead to refined local
estimates.

To derive how to integrate detections into the robots’
beliefs, let us assume that robotn is detected by robot
m and the last item ind(t)m is a detection variable, de-
notedr (t)m . For the moment, let us assume this is the
only such detection variable ind(t), and that it provides
information about the location of then-th robot relative
to robotm (with m 6= n). Then

Bel(t)n (L = l )

= P
(
L(t)n = l

∣∣ d(t))
= P

(
L(t)n =

∣∣ d(t)n

)
P
(
L(t)n = l

∣∣ d(t)m

)
= P

(
L(t)n = l

∣∣ d(t)n

) ∫
P
(
L(t)n = l

∣∣ L(t)m = l ′, r (t)m

)
× P

(
L(t)m = l ′

∣∣ d(t−1)
m

)
dl′ (9)

which suggests theincrementalupdate equation:

Beln(l )← Beln(l )
∫

P
(
Ln= l | Lm= l ′, rm

)
×Belm(l

′) dl′ (10)

Here
∫

P(Ln= l | Lm= l ′, rm)Belm(l ′) dl′ describes
robot m’s belief about the detected robot’s position.
The reader may notice that, by symmetry, the same
detection can be used to constrain them-th robot’s
position based on the belief of then-the robot. The
derivation is omitted since it is fully symmetrical.

Table 1 summarizes the multi-robot Markov local-
ization algorithm. The time indext and the state vari-
able L is omitted whenever possible. Of course, this
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Table 1. Multi-robot Markov localization algorithm for robot numbern.

for each locationl do /* initialize the belief */
Beln(l )← P(L(0)n = l )

end for

forever do
if the robot receives new sensory inputon do

for each locationl do /* apply theperception model */

Beln(l )← αP(on | l )Beln(l )

end for
end if
if the robot receives a new odometry readingan do

for each locationl do /* apply themotion model */

Beln(l )←
∫

P(l | an, l ′)Beln(l ′) dl ′

end for
end if
if the robot is detected by them-th robotdo

for each locationl do /* apply thedetection model */

Beln(l )← Beln(l )
∫

P(Ln= l | L M = l ′, rm)Belm(l ′) dl ′

end for
end if

end forever

algorithm is only an approximation, since it makes cer-
tain independence assumptions (e.g. it excludes that a
sensor reports “I saw a robot, but I cannot say which
one”), and strictly speaking it is only correct if there is
only a singler in the entire run. Furthermore, repeated
integration of another robot’s belief according to (9) re-
sults in using the same evidence twice. Hence, robots
can get overly confident in their position. To reduce
the danger arising from the factorial distribution, our
approach uses the following two rules.

1. Our approach ignoresnegativesights, i.e., events
where a robot doesnotsee another robot.

2. It includes a counter that, once a robot has been
sighted, blocks the ability to see the same robot
again until the detecting robot has traveled a pre-
specified distance (2.5 m in our experiments). In
our current approach, this distance is based purely
on experience and in future work we will test the
applicability of formal information-theoretic mea-
sures for the errors introduced by our factorized rep-
resentation (see e.g., Boyen and Koller (1999)).

In our practical experiments described below we did
not realize any evidence that these two rules are not
sufficient. Instead, our approach to collaborative lo-
calization based on the factorial representation still
yields superior performance over robot teams with in-
dividual localization and without any robot detection
capabilities.

3. Sampling and Monte Carlo Localization

The previous section left open how the belief about the
robot position is represented. In general, the space of
all robot positions is continuous-valued and no para-
metric model is known that would accurately model
arbitrary beliefs in such robotic domains. However,
practical considerations make it impossible to model
arbitrary beliefs using digital computers.

3.1. Monte Carlo Localization

The key idea here is to approximate belief functions
using a Monte Carlo method. More specifically, our
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approach is an extension of Monte Carlo localization
(MCL), which was recently proposed in Dellaert et al.
(1999) and Fox et al. (1999a). MCL is a version of
Markov localization that relies on sample-based rep-
resentations and the sampling/importance re-sampling
algorithm for belief propagation (Rubin, 1988). MCL
represents the posterior beliefsBeln(L) by a set of
K weighted random samples, orparticles, denoted
S={si | i = 1..K }. A sample set constitutes a dis-
crete distribution and samples in MCL are of the type

si = 〈l i , pi 〉 (11)

where l i =〈xi , yi , θi 〉 denotes a robot position, and
pi ≥ 0 is a numerical weighting factor, analogous to
a discrete probability. For consistency, we assume∑K

i=1 pi = 1. In the remainder we will omit the sub-
script i whenever possible.

In analogy with the general Markov localization ap-
proach outlined in Section 2, MCL proceeds in two
phases:

1. Robot motion.When a robot moves, MCL gener-
atesK new samples that approximate the robot’s
position after the motion command. Each sample
is generated byrandomlydrawing a sample from
the previously computed sample set, with likelihood
determined by theirp-values. Letl ′ denote the po-
sition of this sample. The new sample’sl is then
generated by generating a single, random sample
from P(l | l ′,a), using the odometry measurement
a. The p-value of the new sample isK−1. Figure 3

Figure 3. Sampling-based approximation of the position belief for
a non-sensing robot. The solid line displays the trajectory, and the
samples represent the robot’s belief at different points in time.

shows the effect of this sampling technique for a
single robot, starting at an initial known position
(bottom center) and executing actions as indicated
by the solid line. As can be seen there, the sample
sets approximate distributions with increasing un-
certainty, representing the gradual loss of position
information due to slippage and drift.

2. Environment measurementsare incorporated by re-
weighting the sample set, which is analogous to
Bayes rule in Markov localization. More specifi-
cally, let〈l , p〉 be a sample. Then

p← α P(o | l ) (12)

whereo is a sensor measurement, andα is a nor-
malization constant that enforces

∑K
i=1 pi = 1. The

incorporation of sensor readings is typically per-
formed in two phases, one in whichp is multiplied
by P(o | l ), and one in which the variousp-values
are normalized. An algorithm to perform this re-
sampling process efficiently inO(K ) time is given
in Carpenter et al. (1997).

In practice, we have found it useful to add a small
number of uniformly distributed, random samples after
each estimation step (Fox et al., 1999a). Formally, these
samples can be understood as a modified motion model
that allows, with very small likelihood, arbitrary jumps
in the environment. The random samples are needed to
overcome local minima: Since MCL uses finite sample
sets, it may happen that no sample is generated close to
the correct robot position. This may be the case when
the robot loses track of its position. In such cases, MCL
would be unable to re-localize the robot. By adding a
small number of random samples, however, MCL can
effectively re-localize the robot, as documented in our
experiments described in Fox et al. (1999a) (see also
the discussion on ‘loss of diversity’ in Doucet (1998)).

Another modification to the basic approach is based
on the observation that the best sample set sizes can
vary drastically (Koller and Fratkina, 1998). During
global localization, a robot may be completely igno-
rant as to where it is; hence, it’s belief uniformly covers
its full three-dimensional state space. During position
tracking, on the other hand, the uncertainty is typically
small. MCL determines the sample set size on-the-fly:
It typically uses many samples during global localiza-
tion or if the position of the robot is lost, and only a
small number of samples is used during position track-
ing (see Fox et al. (1999a) for details).
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3.1.1. Properties of MCL. MCL is based on a family
of techniques generically known asparticle filters, or
sampling/importance re-sampling (Rubin, 1988). An
overview and discussion of the properties of these fil-
ters can be found in Doucet (1998). Particle filters
are known alternatively as the bootstrap filter (Gordon
et al., 1993), the Monte-Carlo filter (Kitagawa, 1996),
the Condensation algorithm (Isard and Blake, 1996,
1998), or the survival of the fittest algorithm (Kanazawa
et al., 1995).

A nice property of particle filters is that they can
universally approximate arbitrary probability distribu-
tions. As shown in Tanner (1993), the sample-based
distributions smoothly approximate the “correct” one
at a rate of 1/

√
K as K goes to infinity and under

conditions that are true for MCL. The sample set size
naturally trades off accuracy and computation. The true
advantage, however, lies in the way MCL places com-
putational resources. By sampling in proportion to the
likelihood, MCL focuses its computational resources
on regions with high likelihood, where things really
matter.

MCL also lends itself nicely to an any-time im-
plementation (Dean and Boddy, 1988; Zilberstein and
Russell, 1995). Any-time algorithms can generate an
answer atany time; however, the quality of the solu-
tion increases over time. The sampling step in MCL
can be terminated at any time. Thus, when a sensor
reading arrives, or an action is executed, sampling is
terminated and the resulting sample set is used for the
next operation.

3.1.2. A Global Localization Example. Figure 4(a)–
(c) illustrates MCL when applied to localization of a
single mobile robot. Shown there is a series of sam-
ple sets (projected into 2D) generated during global
localization of the mobile robot Rhino operating in an
office building. In Fig. 4(a), the robot is globally uncer-

Figure 4. Global localization: (a) Initialization, (b) ambiguity due to symmetry, and (c) achieved localization.

tain; hence the samples are spread uniformly over the
free-space. Figure 4(b) shows the sample set after ap-
proximately 1.5 meters of robot motion, at which point
MCL has disambiguated the robot’s position mainly up
to a single symmetry. Finally, after another 4 meters
of robot motion, the ambiguity is resolved, the robot
knows where it is. The majority of samples is now cen-
tered tightly around the correct position, as shown in
Fig. 4(c). All necessary computation is carried out in
real-time on a low-end PC.

3.2. Multi-Robot MCL

The extension of MCL to collaborative multi-robot lo-
calization isnotstraightforward. This is because under
our factorial representation, each robot maintains its
own, local sample set. When one robot detects another,
both sample sets are synchronized using the detection
model, according to the update equation

Beln(L = l )← Beln(L = l )

×
∫

P(Ln= l | Lm= l ′, rm)

×Belm(L = l ′) dl′ (13)

Notice that this equation requires the multiplication of
two densities. Since samples inBeln(L) andBelm(L)
are drawn randomly, it isnot straightforward to es-
tablish correspondence between individual samples in
Beln(L)and

∫
P(Ln= l | Lm= l ′, rm)Belm(L = l ′) dl′.

To remedy this problem, our approach transforms
sample sets into density functions usingdensity
trees(Koller and Fratkina, 1998; Moore et al., 1997;
Omohundro, 1987, 1991). These methods approximate
sample sets using piecewise constant density functions
represented by a tree. Each node in a density tree is
annotated with a hyper-rectangular subspace of the
three-dimensional state space of the robot. Initially, all
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Figure 5. (a) Map of the environment along with a sample set representing the robot’s belief during global localization, and (b) its approximation
using a density tree. The tree transforms the discrete sample set into a continuous distribution, which is necessary to generate new importance
factors for the individual sample points representing the belief of another robot.

samples are assigned to the root node, which covers
the entire state space. The tree is grown by recursively
splitting each node until a certain stopping condition is
fulfilled (see Thrun et al. (1999b) for details). If a node
is split, its interval is divided into two equally sized
intervals along its longest dimension.

Figure 5 shows an example sample set along with the
tree extracted from this set. The resolution of the tree
is a function of the densities of the samples: the more
samples exist in a region of space, the finer-grained
the tree representation. After the tree is grown, each
leaf’s density is given by the quotient of the sum of all
weightsp of all samples that fall into this leaf, divided
by the volume of the region covered by the leaf. The
latter amounts to maximum likelihood estimation of
(piecewise) constant density functions.

To implement the update equation, our approach ap-
proximates the density in Eq. (13) using samples, just
as described above. The resulting sample set is then
transformed into a density tree. These density values
are then multiplied into each individual sample〈l , p〉
of the detected robotn according to Eq. (14).

p←α

∫
P(l | Ln= l ′, rn) Bel(Ln= l ′) dl′ (14)

The resulting sample set is a refined density for the
n-th robot, reflecting the detection and the belief of the
m-th robot. Please note that the same update rule can
be applied in the other direction, from robotn to robot
m. Since the equations are completely symmetric, they
are omitted here.

4. Probabilistic Detection Model

To implement the multi-robot Monte-Carlo localiza-
tion technique, robots must possess the ability to sense

each other. The crucial component is the detection
modelP(Ln= l | Lm= l ′, rm)which describes the con-
ditional probability that robotn is at locationl , given
that robotm is at locationl ′ and perceives robotn with
measurementrm. From a mathematical point of view,
our approach is sufficiently general to accommodate
a wide range of sensors for robot detection, assuming
that the conditional densityP(Ln | Lm, rm) is adjusted
accordingly.

We will now describe a specific detection method
that integrates information from multiple sensor modal-
ities. This method, which integrates camera and range
information, will be employed throughout our experi-
ments (see Kruppa (1999) for more details).

4.1. Detection

To determine the relative location of other robots, our
approach combines visual information obtained from
an on-board camera, with proximity information com-
ing from a laser range-finder. Camera images are used
to detect other robots, and laser range-finder scans are
used to determine the relative position of the detected
robot and its distance. The top row in Fig. 6 shows ex-
amples of camera images recorded in a corridor. Each
image shows a robot, marked by a unique, colored
marker to facilitate its recognition. Even though the
robot is only shown with a fixed orientation in this fig-
ure, the marker can be detected regardless of the robot’s
orientation.

To find robots in a camera image, our approach first
filters the image by employing local color histograms
and decision trees tuned to the colors of the marker.
Thresholding is then employed to search for the
marker’s characteristic color transition. If found, this
implies that a robot is present in the image. The small
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Figure 6. Training data of successful detections for the robot perception model. Each image in the top row shows a robot, marked by a unique,
colored marker to facilitate recognition. The bottom row shows the corresponding laser scans and the dark line in each diagram depicts the
extracted location of the robot in polar coordinates, relative to the position of the detecting robot (the laser scans are scaled for illustration
purposes).

black rectangles, superimposed on each marker in the
images in Fig. 6, illustrate the center of the marker as
identified by this visual routine. Currently, images are
analyzed at a rate of 1 Hz, with the main delay being
caused by the camera’s parallel port interface.1 This
slow rate is sufficient for the application at hand.

Once a robot has been detected, the current laser
scan is analyzed for the relative location of the robot in
polar coordinates (distance and angle). This is done by
searching for a convex local minimum in the distances
of the scan, using the angle obtained from the camera
image as a starting point. Here, tight synchronization
of photometric and range data is very important, es-
pecially because the detecting robot might sense and
rotate simultaneously. In our framework, sensor syn-
chronization is fully controllable because all data is
tagged with timestamps. We found that the described
multi-sensor method is robust and gives accurate re-
sults even in cluttered environments. The bottom row
in Fig. 6 shows laser scans and the result of our analysis
for the example situations depicted in the top row of the
same figure. Each scan consists of 180 distance mea-
surements with approximately 5 cm accuracy, spaced
at 1 degree angular distance. The dark line in each dia-
gram depicts the extracted location of the robot in po-
lar coordinates, relative to the position of the detecting
robot. All scans are scaled for illustration purposes.

4.2. Learning the Detection Model

Next, we have to devise a probabilistic detection model
of the type P(Ln | Lm, rm). To recap,rm denotes a

detection event by them-th robot, which comprises the
identity of the detected robot (if any), and its relative lo-
cation in polar coordinates. The variableLn describes
the location of the detected robot (heren with m 6= n
refers to an arbitrary other robot), andLm ranges over
locations of them-th robot. As described above, we will
restrict our considerations to “positive” detections, i.e.,
cases where a robotm did detect a robotn. Negative
detection events (a robotm doesnotsee a robotn) are
beyond the scope of this paper and will be ignored.

The detection model is trained using data. More
specifically, during training we assume that the ex-
act location of each robot is known. Whenever a robot
takes a camera image, its location is analyzed as to
whether other robots are in its visual field. This is done
by a geometric analysis of the environment, exploit-
ing the fact that the locations of all robots are known
during training. Then, the image is analyzed, and for
each detected robot the identity and relative location is
recorded. This data is sufficient to train the detection
modelP(Ln | Lm, rm).

In our implementation, we employ a parametric mix-
ture model to representP(Ln | Lm, rn). Our approach
models false-positive and false-negative detections us-
ing a binary random variable. Table 2 shows the ratios

Table 2. Rates of false-positives and false-negatives for our
detection routine.

Robot detected No robot detected

Robot in field of view 93.3% 6.7%

No robot in field of view 3.5% 96.5%
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Figure 7. Gaussian density representing the robot perception
model. Thex-axis represents the deviation of relative angle and the
y-axis the error in the distance between the two robots.

of these errors estimated from a training set of 112 im-
ages, in half of which another robot is within the field of
view. As can be seen, our current visual routines have
a 6.7% chance of not detecting a robot in their visual
field, and only a 3.5% chance of erroneously detecting
a robot when there is none.

The Gaussian distribution shown in Fig. 7 mod-
els the error in the estimation of a robot’s location.
Here thex-axis represents the angular error, and the
y-axis the distance error. This Gaussian has been ob-
tained through maximum likelihood estimation based
on the training data. As is easy to be seen, the Gaussian
is zero-centered along both dimensions, and it assigns
low likelihood to large errors. The correlation between
both components of the error, angle and distance, are
approximately zero, suggesting that both errors might
be independent. Assuming independence between the
two errors, we found the mean error of the distance
estimation to be 48.3 cm, and the mean angular error
to be 2.2 degree.

Figure 8. Map of the environment along with a typical path taken by Robin during an experiment. Marion is operating in the lab facing towards
the opening of the hallway.

To obtain the training data, the “true” location was
not determined manually; instead, MCL was applied
for position estimation (with a known starting posi-
tion and very large sample sets). Empirical results
in Dellaert et al. (1999) suggest that MCL is suffi-
ciently accurate for tracking a robot with only a few
centimeters error. The robots’ positions, while mov-
ing at speeds like 30 cm/sec through our environment,
were synchronized and then further analyzed geomet-
rically to determine whether (and where) robots are
in the visual fields of other robots. As a result, data
collection is extremely easy as it does not require any
manual labeling; however, the error in MCL leads to a
slightly less confined detection model than one would
obtain with manually labeled data (assuming that the
accuracy of manual position estimation exceeds that of
MCL).

5. Experimental Results

In this section we present experiments conducted with
real and simulated robots. The central question driv-
ing our experiments was:To what extent can cooper-
ative multi-robot localization improve the localization
quality, when compared to conventional single-robot
localization?

In the first set of experiments, our approach was
tested using two Pioneer robots (Robin and Marian)
marked optically by a colored marker, as shown in
Fig. 6. In order to evaluate the benefits of multi-
robot localization in more complex scenarios, we addi-
tionally performed experiments in simulated environ-
ments. These experiments are described in Section 5.2.

5.1. Experiments Using Real Robots

Figure 8 shows the setup of our experiments along
with a part of the occupancy grid map (Thrun, 1998b)
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Figure 9. Detection event: (a) Sample set of Marian as it detects Robin in the corridor. (b) Sample set reflecting Marian’s belief about Robin’s
position. (c) Tree-representation of this sample set and (d) corresponding density.

Figure 10. Sample set representing Robin’s belief (a) as it passes Marian and (b) after incorporating Marian’s measurement.

used for position estimation. Marian operates in our
lab, which is the cluttered room adjacent to the corri-
dor. Because of the non-symmetric nature of the lab,
the robot knows fairly well where it is (the samples
representing Marian’s belief are plotted in Fig. 9(a)).
Figure 8 also shows the path taken by Robin, which
was in the process of global localization. Figure 10(a)
represents the typical belief of Robin when it passes the
lab in which Marian is operating. Since Robin already
moved several meters in the corridor, it developed a
belief which is centered along the main axis of the cor-
ridor. However, the robot is still highly uncertain about
its exact location within the corridor and even does not
know its global heading direction. Please note that due
to the lack of features in the corridor the robots gener-
ally have to travel a long distance until they can resolve
ambiguities in the belief about their position.

The key event, illustrating the utility of cooperation
in localization, is a detection event. More specifically,
Marian, the robot in the lab, detects Robin, as it moves
through the corridor (see Fig. 6 for the camera image
and laser range scan of a characteristic measurement
of this type). Using the detection model described in
Section 4, Marian generates a new sample set as shown
in Fig. 9(b). This sample set is converted into a den-
sity using density trees (see Fig. 9(c) and (d)). Marian
then transmits this density to Robin which integrates

it into its current belief. The effect of this integra-
tion on Robin’s belief is shown in Fig. 10(b). It shows
Robin’s belief after integrating the density representing
Marian’s detection. As this figure illustrates, this sin-
gle incident almost completely resolves the uncertainty
in Robin’s belief.

We conducted ten experiments of this kind and com-
pared the performance to conventional MCL for single
robots which ignores robot detections. To measure the
performance of localization we determined the true lo-
cations of the robot by measuring the starting position
of each run and performing position tracking off-line
using MCL. For each run, we then computed the esti-
mation error at the reference positions. The estimation
error is measured by theaverage distance of all samples
from the reference position. The results are summarized
in Fig. 11. The graph plots the estimation error as a
function of time, averaged over the ten experiments,
along with their 95% confidence intervals (bars). As
can be seen in the figure, the quality of position esti-
mation increases much faster when using multi-robot
localization. Please note that the detection event typ-
ically took place 60–100 seconds after the start of an
experiment.

Obviously, this experiment is specifically well-
suited to demonstrate the advantage of detections in
multi-robot localization, since the robots’ uncertainties
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Figure 11. Comparison between single-robot localization and localization making use of robot detections. Thex-axis represents the time and
the y-axis represents the estimation error obtained by averaging over ten experiments.

are somewhat orthogonal, making the detection highly
effective. In order to test the performance of our ap-
proach in more complex situations, we additionally per-
formed experiments in two simulation environments.

5.2. Simulation Experiments

In the following experiments we used a simulation tool
which simulates robots on the sensor level, providing
raw odometry and proximity measurements (see Schulz
et al. (1999) for details). Since the simulation includes
sensor noise, the results are directly transferable to real
robots. Robot detections were simulated by using the

Figure 12. (a) Symmetric hallway environment. (b) Localization error for eight robots performing global localization simultaneously. The
dashed line shows the error over time when performing single-robot MCL and the solid line plots the error using our multi-robot method.

positions of the robots and visibility constraints ex-
tracted from the map. Noise was added to these detec-
tions according to the errors extracted from the training
data using our real robots. It should be noted that false-
positive detections were not considered in these experi-
ments (see Section 7.2 for a discussion of false-positive
detections).

5.2.1. Homogeneous Robots.In the first simulation
experiment we use eight robots, which are all equipped
with ultrasound sensors. The task of the robots is to
perform global localization in the hallway environment
shown in Fig. 12(a). This environment is particularly
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Figure 13. Hexagonal environment with edges of length 8 meters. Distinguishing obstacles can only be detected either with (a) sonar sensors
or (b) laser range-finders. Typical sample sets representing the position uncertainty of robots equipped with (a) sonar sensors or (b) laser
range-finders.

challenging for single robot systems since a robot has
to either pass the open space on the left corridor marked
“A”, or it has to move through all other hallways marked
“B”, “C”, and “D” to uniquely determine its position.
However, the localization task remains hard even if
there are multiple robots which can detect each other
and can exchange their beliefs. Since all robots have to
perform global localizationat the same time, several
robot detections and belief transfers are necessary to
significantly reduce the distance to be traveled by each
robot.

As in the previous experiment, we compare the per-
formance of our multi-robot localization approach to
the performance of single-robot localization ignoring
robot detections. Figure 12(b) shows the localization
errors for both methods averaged over eight runs of
global localization using eight robots simultaneously
in each run. The plot shows that the exploitation of
detections in robot teams results in a highly superior
localization performance. The surprisingly high error
values for teams not performing collaborative localiza-
tion are due to the fact that even after 600 seconds, some
of the robots are still uncertain about their position.

Another measure of performance is the average time
it takes for a robot to find out where it is. We assume
that a robot has successfully localized itself, if the lo-
calization error falls below 1.5 meters. As mentioned
above, this error is given by averaging over the distance
of all samples from a reference position. Without mak-
ing use of robot detections, a robot needs 379±37 sec-
onds to uniquely determine its position. Our approach
to multi-robot localization reduces this time by 60% to
153±17 seconds.

5.2.2. Heterogeneous Robots.The goal of this exper-
iment is to demonstrate the potential benefits for het-
erogeneous teams of robots. Here, the heterogeneity is

due to different types of sensors: One group of robots
uses sonar sensors for localization and the other robots
are equipped with laser range-finders. The tests are car-
ried out in the environment shown in Fig. 13. This envi-
ronment is highly symmetric and only certain objects
allow the robots to reduce their position uncertainty.
These objects can be detected either by sonar sensors
or by laser range-finders (see Fig. 13(a) and (b)). The
position of these obstacles is chosen so that any robot
equipped with only one of the sensor types is not able
to determine uniquely where it is. Whereas robots us-
ing sonar sensors for localization cannot distinguish
between three possible robot locations (see Fig. 13(c)),
robots equipped with laser range-finders remain uncer-
tain about two possible locations (see Fig. 13(d)).

As in the previous experiment, eight robots are
placed in the environment and their task is to find out
where they are. Four of the robots are equipped with
ultraasound sensors and the other four robots use laser
range-finders. The localization error for the different
settings is plotted in Fig. 14. Not surprisingly, the error
for single-robot localization decreases in the beginning
of the experiments, but remains at a significantly high
level. The corresponding curves are depicted by the
dashed lines (sonar black, laser grey) in Fig. 14. The
results obtained when the robots are able to make use
of detections are presented as solid lines (sonar black,
laser grey). As can be seen, both teams of robots ben-
efit from the additional information provided by the
sensors of the other robots. As a result, each robot is
able to uniquely determine its position.

6. Related Work

Mobile robot localization has frequently been recog-
nized as a key problem in robotics with significant
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Figure 14. Localization error for robots equipped with sonar sensors (black lines) or laser range-finders (grey lines). The solid lines summarize
results obtained by multi-robot localization and the dashed lines are obtained when ignoring robot detections.

practical importance. A recent book by Borenstein et al.
(1996) provides an excellent overview of the state-
of-the-art in localization. Localization plays a key role
in various successful mobile robot architectures pre-
sented in Cox (1991), Fukuda et al. (1993), Hinkel
and Knieriemen (1988), Leonard and Durrant-Whyte
(1992), Leonard et al. (1992), Neven and Sch¨oner
(1996), Peters et al. (1994), Rencken (1993) and Weiß
et al. (1994) and various chapters in Kortenkamp
et al. (1998). While some localization approaches, such
as those described in Horswill (1994), Kortenkamp and
Weymouth (1994), Simmons and Koenig (1995) and
Kaelbling et al. (1996) localize the robot relative to
landmarks in a topological map, our approach local-
izes the robot in a metric space, just like those methods
proposed in Betke and Gurvits (1993), Thrun (1998a)
and Thrun et al. (1998).

Almost all existing approaches address single-robot
localization only. Moreover, the vast majority of ap-
proaches is incapable of localizing a robot globally;
instead, they are designed to track the robot’s posi-
tion by compensating small odometric errors. Thus,
they differ from the approach described here in that
they require knowledge of the robot’s initial position;
and they are not able to recover from global localizing
failures. Probably the most popular method for track-
ing a robot’s position is Kalman filtering (Gutmann
and Schlegel, 1996; Gutmann et al., 1999; Lu and
Milios, 1997; Maybeck, 1990; Schiele and Crowley,
1994; Smith et al., 1990), which represents uncer-
tainty by the first and second moments of the density.
These approaches are unable to localize robots under

global uncertainty—a problem which Engelson called
the “kidnapped robot problem” (Engelson, 1994). Re-
cently, several researchers proposedMarkov localiza-
tion, which enables robots to localize themselves un-
der global uncertainty (Burgard et al., 1996; Kaelbling
et al., 1996; Nourbakhsh et al., 1995; Simmons and
Koenig, 1995; Konolige, 1999). Global approaches
have two important advantages over local ones: First,
the initial location of the robot does not have to be spec-
ified and, second, they provide an additional level of
robustness, due to their ability to recover from localiza-
tion failures. Among the global approaches those using
metric representations of the space such as MCL and
(Burgard et al., 1996, 1998; Konolige, 1999) can deal
with a wider variety of environments than those meth-
ods relying on topological maps. For example, they
are not restricted to orthogonal environments contain-
ing pre-defined features such as corridors, intersections
and doors.

In addition, most existing approaches are restricted
in the type of features that they consider. Many
approaches reviewed in Borenstein et al. (1996) are
limited in that they require modifications of the en-
vironment. Some require artificial landmarks such as
bar-code reflectors (Everett et al., 1994), reflecting
tape, ultrasonic beacons, or visual patterns that are
easy to recognize, such as black rectangles with white
dots (Borenstein, 1987). Of course, modifying the envi-
ronment is not an option in many application domains.
Some of the more advanced approaches use more nat-
ural landmarks that do not require modifications of
the environment. For example, the approaches of
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Kortenkamp and Weymouth (1994) and Matari´c (1990)
use gateways, doors, walls, and other vertical objects
to determine the robot’s position. The Helpmate robot
uses ceiling lights to position itself (King and Weiman,
1990). Dark/bright regions and vertical edges are used
in Collet and Cartwright (1985), Wolfart et al. (1995)
and hallways, openings and doors are used by the ap-
proaches described in Kaelbling et al. (1996), Shatkey
and Kaelbling (1997) and Simmons and Koenig (1995).
Others have proposed methods for learning what fea-
ture to extract, through a training phase in which
the robot is told its location (Greiner and Isukapalli,
1994; Oore et al., 1997; Thrun, 1998a). These are just a
few representative examples of many different features
used for localization. Our approach differs from all
these approaches in that it does not extract predefined
features from the sensor values. Instead, it directly
processes raw sensor data. Such an approach has two
key advantages: First, it is more universally applicable
since fewer assumptions are made on the nature of the
environment; and second, it can utilize all sensor infor-
mation, typically yielding more accurate results. Other
approaches that process raw sensor data can be found
in Konolige (1999), Gutmann and Schlegel (1996) and
Lu and Milios (1997).

The issue of cooperation between multiple mobile
robots has gained increased interest in the past (see
Cao et al. (1997) and Arkin and Balch (1998) for
overviews). In this context most work on localiza-
tion has focused on the question of how to reduce the
odometry error using a cooperative team of robots.
Kurazume and Shigemi (1994), for example, divide
the robots into two groups. At every point in time only
one of the groups is allowed to move, while the other
group remains at its position. When a motion command
has been executed, all robots stop, perceive their rela-
tive position, and use this to reduce errors in odometry.
While this method reduces the odometry error of the
whole team of robots it is not able to perform global lo-
calization; neither can it recover from significant sensor
errors. Rekleitis and colleagues (1997) present a coop-
erative exploration method for multiple robots, which
also addresses localization. To reduce the odometry er-
ror, they use an approach closely related to the one
described in Kurazume and Shigemi (1994). Here, too,
only one robot is allowed to move at any point in time,
while the other robots observe the moving one. The sta-
tionary robots track the position of the moving robot,
thus providing more accurate position estimates than
could be obtained with pure dead-reckoning. Finally, in

Borenstein (1995), a method is presented that relies
on a compliant linkage of two mobile robots. Special
encoders on the linkage estimate the relative positions
of the robots while they are in motion. The author
demonstrates that the dead-reckoning accuracy of the
compliant linkage vehicle is substantially improved.
However, all these approaches only seek to reduce the
odometry error. None of them incorporates environ-
mental feedback into the estimation, and consequently
they are unable to localize robots relative to each other,
or relative to their environments, from scratch. Even if
the initial location of all robots are known, they ulti-
mately will get lost—but at a slower pace than a com-
parable single robot. The problem addressed in this
paper differs in that we are interested in collaborative
localization in a global frame of reference, not just
reducing odometry error. In particular, our approach
addresses cooperative global localization in a known
environment.

7. Conclusion

7.1. Summary

We have presented a statistical method for collaborative
mobile robot localization. At its core, our approach uses
probability density functions to represent the robots’
estimates as to where they are. To avoid exponential
complexity in the number of robots, a factorial repre-
sentation is advocated where each robot maintains its
own, local belief function. A fast, universal sampling-
based scheme is employed to approximate beliefs. The
probabilistic nature of our approach makes it possible
that teams of robots performglobal localization, i.e.,
they can localize themselves from scratch without
initial knowledge as to where they are.

During localization, robots can detect each other.
Here we use a combination of camera images and laser
range scans to determine another robot’s relative loca-
tion. The “reliability” of the detection routine is mod-
eled by learning a parametric detection model from
data, using the maximum likelihood estimator. During
localization, detections are used to introduce additional
probabilistic constraints, that tie one robot’s belief to
another robot’s belief function. To combine sample
sets generated at different robots (each robot’s belief
is represented by a separate sample set), our approach
transforms detections into density trees, which approx-
imate discrete sample sets by piecewise constant den-
sity functions. These trees are then used to refine the
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weighting factors (importance factors) of other robots’
beliefs, thereby reducing their uncertainty in response
to the detection. As a result, our approach makes it pos-
sible to amortize data collected at multiple platforms.
This is particularly attractive for heterogeneous robot
teams, where only a small number of robots may be
equipped with high-precision sensors.

Experimental results, carried out in real and sim-
ulated environments, demonstrate that our approach
can reduce the uncertainty in localization signifi-
cantly, when compared to conventional single-robot
localization. In one of the experiments we showed
that under certain conditions, successful localization is
only possible if teams of heterogeneous robots collab-
orate during localization. This experiment addition-
ally demonstrates that it is not necessary to equip each
robot with a sensor suit needed for global localiza-
tion. In contrast, one can significantly decrease costs
by spreading the different kinds of sensors among mul-
tiple platforms, thereby generating a team of heteroge-
neous robots. Thus, when teams of robots are placed in
a known environment with unknown starting locations,
our approach can yield significantly better localization
results then conventional, single-robot localization—
at lower sensor costs, approximate equal computation
costs, and relatively small communication overhead.

7.2. Limitations and Discussion

The current approach possesses several limitations that
warrant future research.

Not seeing each other: In our current system, only
“positive” detections are processed. Not seeing an-
other robot is also informative, even though not
as informative as positive detections. Incorporating
such negative detections is generally possible in the
context of our statistical framework (using the in-
verse weighing scheme). However, such an exten-
sion would drastically increase the computational
overhead, and it is unclear as to whether the effects
on the localization accuracy justify the additional
computation and communication.

Identification of robots: Another limitation of the cur-
rent approach arises from the fact that it must be
able to identify individual robots—hence they must
be marked appropriately. Of course, simple means
such as bar-codes can provide the necessary, unique
labels. However, because of the inherent uncertainty
of their sensors, mobile robots must be able to deal

with situations in which they can detect but not iden-
tify other robots. The factorial representation, how-
ever, cannot deal with measurements such as “either
robot A or robot B is straight in front of me.” In the
worst case, this would require to consider all possible
combinations of robots and thus would scaleexpo-
nentiallyin the number of robots which is equivalent
to computing distributions over the joint space of all
robots.

Active localization: The collaboration described here
is purely passive. The robots combine informa-
tion collected locally, but they do not change their
course of action so as to aid localization. In Burgard
et al. (1997) and Fox et al. (1998a), we proposed
an algorithm for active localization based on
information-theoretic principles, where a single
robot actively explores its environment so as to best
localize itself. A desirable objective for future re-
search is the application of the same principle to
coordinated multi-robot localization.

False-positive detections: As discussed in Section 4,
our approach to robot detection has a false-positive
rate of 3.5%. This rate describes the chance of erro-
neously detecting a robot when there is none. While
a rate of 3.5% seems to be reasonably low, it turns
out to cause major problems if the robots see each
other very rarely, which might happen in large en-
vironments. In this case, the ratio between true-
positive and false-positive detections can fall be-
low one, which means that more than 50% of all
detections are false-positive. Our sample-based im-
plementation of multi-robot localization is not ro-
bust to such high failure-rates and we did not model
false-positive detections in our experiments. One
way to handle such failures is to filter them out.
First experiments based on the filter techniques in-
troduced in Fox et al. (1998b, 1999b) have shown
very promising results and will be pursued in future
work.

Delayed integration: Finally, the robots update their
position instantly whenever they perceive another
robot. In situations in which both robots are highly
uncertain at the time of the detection it might be more
appropriate to delay the update. For example, if one
of the robots afterwards becomes more certain by
gathering further information about the environment
or by being detected by another, certain robot, then
the synchronization result can be much better if it is
done retrospectively. This, however, requires that the
robots keep track of their actions and measurements
after detecting other robots.
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Despite these open research areas, our approach does
provide a sound statistical basis for information ex-
change during collaborative localization, and empirical
results illustrate its appropriateness in practice. These
results suggest that robots acting as a team are superior
to robots acting individually.
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Note

1. With a state-of-the-art memory-mapped frame grabber the same
analysis would be feasible at frame rate.
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