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ABSTRACT

This paper proposes a method for creating unique
identifiers, called fingerprint sequences, for visually
distinct locations by recovering statistically significant
features in panoramic color images.  Fingerprint
sequences are expressive enough for mobile robot
localization, as demonstrated using a minimum energy
sequence-matching algorithm that is described.
Empirical results in two different places demonstrate the
reliability of the system for global localization on a
Nomad Scout mobile robot.

1. INTRODUCTION

Vision-based localization has recently witnessed a
newfound popularity.  The CCD Camera is a popular
choice for mobile robot sensing because it is not
inherently dependent on environmental geometry like
ranging devices [13]. Therefore, it is hoped that a
transition to indoor and outdoor navigation will be more
straightforward with vision despite that each of them has
their proper challenges.

Simple ranging devices require integration over time and
high-level reasoning to accomplish localization.  In
contrast, vision has the potential to provide enough
information to uniquely identify the robot’s position.

Recent vision-based navigation methods have overcome
the challenges of vision to produce mobile robots that can
track their position using only a CCD camera. Some of the
successful work is currently limited to indoor navigation
because of its dependence on ceiling features [4, 15],
room geometry, or artificial landmark placement [16].
Other means for visual localization are applicable both
indoors and outdoors, however they are designed to
collect image statistics while foregoing recognition of
specific scene features, or landmarks [3, 6].

This research aims to create a visual localization system
based on recognition of sets of visual features.  Our goal is
to implement a system with a minimal number of implicit
assumptions regarding the environment, such that the
system may be directly applicable both outdoors and
indoors.

2. THE FINGERPRINT SEQUENCE

As the fingerprints of a person are unique, so each

location has its own unique visual characteristics (save in
pathological circumstances). The thesis of this localization
system is that a unique virtual fingerprint of the current
location can be created and that the sequence generation
methods can be made insensitive to small changes in robot
position. If locations are denoted by unique fingerprints in
this manner, then the actual location of a mobile robot
may be recovered by constructing a fingerprint using its
current view and comparing this test fingerprint to its
database of known fingerprints.

2.1 Fingerprint sequence encoding

We propose to create a fingerprint by assuming that a set
of feature extractors can identify significant features in the
image.  Furthermore, we use a 360 degrees panoramic
image because the orientation as well as the position of the
robot may not be known a priori.

We define a fingerprint as a circular list of features,
where the ordering of the set matches the relative ordering
of the features in the panoramic image. In order to encode
efficiently this circular list, we denote the fingerprint
sequence using a list of characters, where each character
represents the instance of a specific feature type.

Although any number of feature detectors may be used
in an implementation of our system, we have used only
two in our implementation thus far: a vertical edge
detector and a color patch detector. We use the letter ‘v’
to characterize a vertical edge and the letters A,B,C,...,P to
represent hue bins as detected by the color patch detector
(See Fig. 6,7 and 13).

2.2 Extraction of edges and color features

Edge detection

Edge features are of particular value in artificial
environments such as indoor office buildings.  For these
reasons, they have been popular throughout prior work in
vision-based localization [1]. Like other researchers, we
have chosen to concentrate on vertical edges because of
the instability and rarity of horizontal edges due to
projection effects.

Because we use a color CCD camera, the channel used
to compute the gradient must be chosen carefully.
Knowing that the blue channel of such a camera has a
remarkably higher noise level than the other channels, we



use only the sum of the red and green in order to increase
the signal/noise ratio.

Histogram based edge detection

From the gradient image several methods are used to
extract edges. One of them consists of the application of a
threshold function on the gradient values followed by the
application of a non-maxima suppression algorithm [10].
The most difficult step then remains, which is to group the
resulting edges fragments together in order to obtain true
vertical edges. This problem is further exacerbating when
luminosity changes along the segment.

To group the resulting edge fragments together, first, we
construct a histogram by adding the red-green gradient
intensity of every pixel in the same column. To avoid the
apparition of parasite peaks due to the noise, we apply a
window filter {1,2,3,2,1} on the raw histogram. Its
triangle shape permits to keep the peakiness of the spikes.

threshold mean

Figure 1: Filtered gradient histogram ( See Fig 3. )
(mean and threshold)

One can see on the Fig. 1 that the mean value is actually
the level of the noise and provides a bad threshold value.
One can compute a more noise insensitive threshold by
computing the value t = mean + (max – mean) / c, where c
is chosen depending on the number of edges desired.  This
method is unfortunately very sensitive to occlusion and
distance.  Indeed, a large peak will provide a big value
and the threshold will be high. In such a case, the majority
of edges will not be considered.

To solve this problem we use a more statistical approach
to choosing the edge threshold. The standard deviation of
the values of the histogram is computed and added to the
mean in order to fix the base threshold. All edges below
the threshold are ignored.

Figure 2: Histogram after group and filter algorithms

Figure 3: Extracted edges (13)

Color patches detection

Color patches can be used for localization as well
especially in human environments where one finds often
saturated colors. The combination of both edges and
patches greatly increases the information for the location.
A part of the information is coded in the nature of the
features (edge or different colors) and another part in the
sequence (order of features).

In order to get more intuitive and natural color
representation, we convert RGB images extracted from the
camera into the HSI color space (Hue, Saturation and
Intensity).

Figure 4: Original image

Because color information is weak for low level of
saturation, only high-saturated pixels are considered for
the extraction of patches.

Fuzzy voting scheme

The colors in the scene are not known in advance and
can cover the entire color space. In order to reduce the
quantity of different color patches and memory space
similar colors are grouped together considering their hue.

To limit discontinuities and instabilities for pixels near
the borders of the intervals, fuzzy sets have been
introduced as depicted in Fig. 5.
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Figure 5: Fuzzy voting scheme

The column histogram for each base color is generated as
follows. Each pixel in the image (those that remain after
saturation thresholding) will add a value in one or two
histograms depending on the hue. For example, a pixel
with hue 0 will add 100 in the corresponding column of
the red histogram. A pixel with hue 10 will add a bigger
value in the red histogram than in the yellow one (see
Fig.5).

The same method as described for edge detection is
applied but some parameters change. A different window
filter, {1,2,2,2,1} is used for color histograms because we
want to smooth thin peaks in this case.



The base threshold is also built by adding sigma and the
mean of the histogram.

As we can see in Fig. 6 more patches than expected have
been extracted from image in Fig. 4. In order to avoid
inversion between patches, which can change considerably
the resulting string, a color fusion step has been
introduced. Intermediate colors are used for the new patch
and its horizontal coordinate is the mean of the
coordinates of the parent’s patches1.

 GIKCAO       GJBO

Figure 6: String before and after color fusion

3. FINGERPRINT SEQUENCE MATCHING FOR
LOCALIZATION

To introduce the problem of string matching, let us
consider the example below. The first string has been
extracted from the current location of the robot and the
next two strings are strings from the database.

Place x: vvBEvvCvvvMvOBvvvvv

Place 1: vvBEvMvCvvvMvMOBvvvv

Place 2: LvLvvvBvvOLvBEvOvvv

Figure 7: Strings example

As one can see the new string does not match exactly
either of the others because the robot is not exactly located
on a map point and/or some change in the environment
occurred. Now what sequence match scoring method
should we use to determine that the match is Place1 in this
case and not Place2 with high confidence?

Great many string-matching algorithms can be found in
the literature. Exact string matching algorithms [8] are not
applicable in this case. They are designed to indicate if
text occurrences are found within a text and are optimized
to be very fast.

More elaborate string matching [7,9] algorithms allow a
level of mismatch, such as k-mismatch matching
algorithms, and string matching with k differences. The
first allows matches where up to k characters in the pattern
do not match the text, and the second requires that the
pattern have an edit-distance from the text of k or less.

Another approach consists in considering strings as
digital signals and computing the correlation. A measure
of similarity will be in this case the height of the
maximum peak of the correlation function. But this
method works well only if initial strings have a similar
length and fail in case of occlusion and addition. The same

                                                          
1 The colors are fused if the difference between the pixel

coordinates is less than 10 pixels

problem appears when one computes the SSD (Sum of
Square Difference) between two strings.

One of the main problems of the above methods is that
they do not consider the nature of features and specific
mismatches. We wish to consider the likelihood of
specific types of mismatch errors. For instance confusing a
red patch with a blue path is more egregious than
confusing the red patch with a yellow patch. Furthermore
the standard algorithms are quite sensitive to insertion and
deletion errors which cause the string lengths to vary
significantly.

3.1 Minimum energy algorithm

The approach we have adopted for sequence matching is
inspired by the minimum energy algorithm used in stereo-
vision for finding pixels in two images that correspond to
the same point of a scene [11]. As in the minimum energy
case, the problem can be seen as an optimization problem,
where the goal is to find the path that spends the minimum
energy to go from the beginning to the end of the first
sequence considering the values of the second one. The
similarity between two sequences is given by the resulting
minimum energy of traversal. Value 0 is used to describe a
perfect match (e.g. self-similarity).

We describe our sequence matching algorithm using an
example consisting of two particular sequences:
“EvHBvKvGA” (length n = 9) and “EBCAvKKv” (length
m = 8).

Initialization

First the initial n x m matrix must be built. The characters
of the first string represent the rows and those of the
second string the columns. Because the algorithm is not
symmetric, the longest string will always represent the
rows. To initialize this matrix only two parameters are
needed. The first parameter is a number that represents the
maximum mismatch value and the second is used to fix
the minimum mismatch value between two different
colors. In this particular example Max_init = 20 and
Min_col = 5.

Init E B C A v K K v
E 0 11 8 14 20 20 20 20
v 20 20 20 20 0 20 20 0
H 11 20 17 17 20 11 11 20
B 11 0 5 5 20 11 11 20
v 20 20 20 20 0 20 20 0
K 20 11 14 8 20 0 0 20
v 20 20 20 20 0 20 20 0
G 8 17 14 20 20 14 14 20
A 14 5 8 0 20 8 8 20

Figure 8: Init matrix

If the corresponding features are of wholly different
types (e.g. a color and an edge) then the corresponding
matrix element is initialized to Max_init.  If both features
are vertical edges or represent exactly the same color the
value 0 is used to describe a perfect match. If the
comparison is between two colors, then the error is
calculated according to the hue distance between the two



colors, adjusted to inhabit the range from Min_col to
Max_init.

Although a type-mismatch can be generally assigned a
score of Max_Init, any newly introduced feature type must
not only include the appropriate feature detector but also a
mismatch table, identifying the score for various feature
value comparisons within that feature type.  This is an
important aspect of the present work.  We have noted that
differences in illumination cause color, for instance, to
change one bin at times, but rarely will a color change two
or more bins.  Therefore, some proportionality of the
scoring function based on a distance measure between
colors is critical to the success of our method.

Cost E B C A v K K v
E 0 11 8 14 20 20 20 20
v 44 20 31 28 14 40 40 20
H 79 64 37 48 48 25 45 60
B 114 79 66 42 68 59 36 65
v 158 123 99 86 42 82 79 36
K 202 158 137 107 86 42 62 80
v 246 202 178 151 107 86 62 62
G 278 243 216 195 151 121 100 82
A 316 272 248 216 195 153 129 120

Figure 9: Cost matrix (3D)

  

Neig E B C A v K K v
E - - - - - - - -
v 1 1 2 3 4 5 6 7
H 1 2 2 3 4 5 5 7
B 1 1 3 3 4 5 6 7
v 1 2 2 4 4 4 6 7
K 1 2 3 3 5 5 5 8
v 1 2 2 4 4 6 6 7
G 1 2 3 4 5 5 7 7
A 1 2 3 3 5 6 6 7

Figure 10: Cost matrix (3D) and Neig matrix

Only two parameters are needed to compute the Cost
matrix: the slope penalty (Slope_pen = 10) and the
occlusion penalty (Occ_pen = 24). The first line of the
Cost matrix is just a copy of the first line of the Init
matrix. Let us consider the cell Cost(2,3)2 to explain the
approach adopted to initialize the other elements.

•  Cost(1,1): The slope between cell(1,1) and cell(2,3) is
computed by subtracting the respective column
indexes and the following sum is evaluated.

     S1 = Cost(1,1) + Init(2,3) + slope(2) * Slope_pen= 40
 
•  Cost(1,2): In this case the slope between cell(1,2) and

cell(2,3) is optimal. Indeed, if the two strings were
identical the best path will be the diagonal of the
matrix and the result of the match must be 0. That
means that no penalty is added.

      S2 = Cost(1,2) + Init(2,3) = 31
 

                                                          
2 Cost(i,j) is the value at the ith line and jth column of the Cost

matrix. Same for Init(i,j) and Neig(i,j)

•  Cost(1,3): The slope is 0 that means that v is occluded
by E. This is a vertical occlusion and the following
equation is used.

     S3 = Cost(1,3) + Init(2,3) + Occ_pen = 52
 
•  Cost (2,2): This time the relative position of cell(2,2)

and cell(2,3) represent an horizontal occlusion. The
following equation is used.

    S4 = Cost(2,2) + Init(2,3) + Occ_pen = 64

Finally the minimum value S2 is assigned to Cost(2,3)
and the coordinates of the cell (1,2) are stored in
Neig(2,3) =  2 (See Fig 10). In case of horizontal
occlusion we put a negative sign for the neighbor
coordinates.

The best path

The minimum value of the last line of the Cost matrix.
This value corresponds inversely to the similarity between
the two input sequences. In this particular example the
score that results is 381. In order to normalize the result
this value is then divided by the worst value that can be
obtained with two strings of similar length (in this case,
result of the match between a string composed of m edges
and one with n colors).

4. IMPLEMENTATION

The camera used to acquire the images is an inexpensive
CCD color camera with a 640 x 480
resolution3. The interface to the
computer is via the USB.  Image
manipulation is performed with a
Microsoft Visual C++ 6.0 application
running under Windows’98. The camera
is fixed via a 110-CM mast to a Nomad
Scout mobile robot research platform4.
To build the panoramic view of the
scene the differential-drive Scout is
rotated about its center while a series of
12 images are grabbed from the CCD
camera every 30 degrees.

Figure 11: System

Building the panoramic image

Various methods exist to align corresponding pixels in
two adjacent pictures. One method consists of computing
the SSD between adjacent images and the best alignment
is given by the minimum of the function [14].

This method produces panoramas that are of high quality
for human consumption; however, such exact alignment is
unnecessary for our purposes of color patch and edge
extraction. Instead, we simply attach images end to end,
taking into account the resulting “seam” by suppressing
detection of edges at these seams. To avoid the additional

                                                          
3 Logitech QuickCam Pro. Look at www.logitech.com
4 More information available at www.robots.com/nscout.htm



computational burden of unwarping images, only the
central 70% percent of the images is used during
construction of the image.

The point of view of the panoramic is very important
and the height of the camera must be chosen carefully. If
the camera is too low every item of furniture such as
chairs and tables can occupy the view in front of the robot.
Since these low objects are apt to move, the resulting
image will be highly dynamic.  In our implementation we
have placed the camera at almost the same height as the
eyes of an human so that large-scale features of interest
(e.g. door posts, windows, corners) are easily visible while
low-level clutter is avoided.

5 EXPERIMENTAL RESULTS

In order to test the system, two maps corresponding to
two different environments have been constructed (See
Fig. 12). The left map, called White Hall, corresponds to
the entrance hall on the first floor of the Smith Hall
building. The map on the right, called Ground Floor,
covers a path that ends in the conference room on the
ground floor in the same building. For the White Hall 15
locations evenly spaced by 90 cm have been chosen
arbitrarily in the map in order to represent the map points.
21 map points have been stored with the same method for
the Ground Floor. We use crosses to represent those
points in the next figures.

1m

   

Figure 12: Maps of White Hall and Ground Floor

Fig. 13 shows panoramas and strings associated to map
points Pc and Pw3 (See Fig. 14). It is interesting to note
that same objects in the scene generate same string
fragments even if locations are quite far one from each

other. For example, the same sequence “LvBE” has been
extracted for the trashcan (blue) and the door (red, green)
for both panoramas.

We intend to test global localization by choosing
random positions around the map points and compare the
corresponding strings with all the stored map points. For
the White Hall 18 locations have been chosen to test the
system: they are called test points and are represented by
circles in the maps. For the Ground Floor 22 points have
been tested.

In order to determine a percentage of good results the
two following criteria have been chosen.

1. A test point is considered as topologically correct if
the best match among the map points is a point
adjacent to the test point. Example: Pe1~ must give
Pe1 or Pe2.

 
2. A test point is considered as geometrically correct if

the best match among the map points is the closest
map point. Example: Pe1~ must provide Pe1 and
Pe1~~ must provide Pe2.

For the White Hall 17 test points have been classified as
topologically correct that represents 94% of good results.
In another hand 82% of locations have been classified as
geometrically correct (14 points). 20 test points are
topologically correct for the Ground Floor (91%) and 14
have been classified geometrically correct (70%).
In order to get more significant statistics the two
experiment sets have been fused. The new database
consists as 40 test points and 36 map points. 90% of the
test points have been classified as topologically corrects
and 75% as geometrically corrects. The test points, which
were wrong for the first test sets, remain wrong when
databases are fused. Unfortunately, the fusion of the two
sets has generated a new false point (Pw3~).
These results make us think about some considerations.

The wrong test points are mainly due to two different
effects.

First, major occlusions and/or additions can occur in the
string. These defaults are generally due to a pathological
combination of dynamic changes in the environment e.g.
illumination change, reflections, new objects or persons in
the scene.

Figure 13: Panoramas and string examples

   VBvvvOvvvLvBEvvvvvvBvL (Pc)

   KvLvvvJvvvvvvBvvvLvBEvOvN (Pw3)
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Figure 14: Maps of White Hall and Ground Floor

Second, some locations are locally so unique that they
are different of all test points even if they are
geographically close. Those pathological cases happen
mostly in close areas and for points close to object that
can hide a big portion of the environment. Indeed, the
displacement/(changes in the string) ratio can be very
small in these cases. This explains the relative bad results
for the second criteria compared to the first.

This problem makes us think about the necessity to
choose carefully the map points. The natural rule is to put
more map points when objects are close and fewer points
are necessary for open areas. This can be done
automatically while the robot is exploring the scene.

6. CONCLUSIONS

The structure of circular chains and the string matching
algorithm allows us to insert other kinds of features.
Using different features extracted from several kinds of
sensors provides several advantages. One can improve
the edge detection by fusing information from the camera
and a laser range finder for instance. Or, infrared images
and laser range finder can be used in dark scenes.
Furthermore probabilities related to features can be
easily introduced in the string matching algorithm.

For the moment the largest computational burden is
construction of the panoramic image.  Optical solutions
can alleviate this problem, and so one should consider
using a panoramic vision system, such as an Omnicam, to
capture a panorama instantly.
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