

The *RobotCub* Cognitive Architecture: Foundations, Insights, and Challenges

D. Vernon, G. Metta, and G. Sandini LIRA-Lab, DIST University of Genoa Italy

Robotic Open-Architecture for Cognition, Understanding, and Behaviours

Giulio Sandini DIST, University of Genova

Kerstin Dautenhahn **University of Hertfordshire**

Paolo Dario Scuola Superiore Sant'Anna, Pisa

Darwin Caldwell University of Salford

Rolf Pfeiffer University of Zurich

Jose Santos Victor Instituto Superior Tecnico, Lisbon

Claes von Hofsten University of Uppsala

Auke Billard Ecole Polytechnique Federale de Lausanne

> Francesco Becchi TeleRobot S.r.l.

FRR

telerobotics

RobotCub.org

Luciano Fadiga **University of Ferrara**

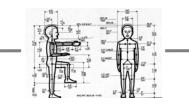
Rodney Brooks MIT Gordon Cheng ATR

Yasuo Kuniyoshi University of Tokyo Juergen Konczak University of Minnesota

Hideki Kozima NICT (CRL)

Two Complementary Goals

Freely-available humanoid platform: iCub Study cognitive development in embodied systems

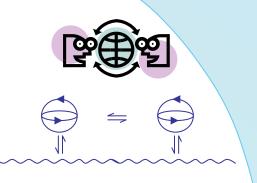


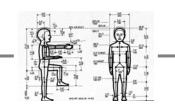
GOAL 53 degree of freedom cognitive humanoid robot

PRACTICAL VALIDATION

Hand-eye coordination Grasp and manipulate lightweight objects Crawl on all fours and sit up

TARGET DOMAIN Open research platform: humanoid robot size & shape of a 2 year old child (FDL & GPL)

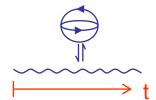

FOCUS Co-development of cognitive skills through exploration and manipulation



CORE IDEA

Cognition emerges through exploratory learning and co-development through embodied physical interaction

CRITICAL ISSUES Phylogenic configuration vs Ontogenic development: The Cognitive Architecture

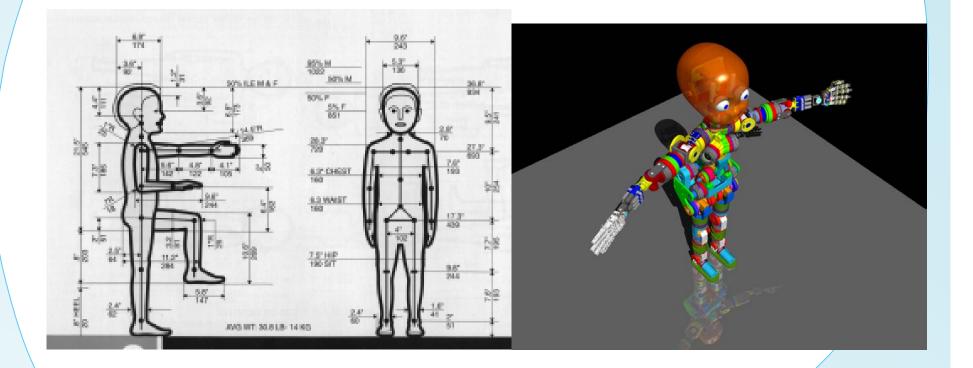


CORE IDEA

Initially deals with immediate events

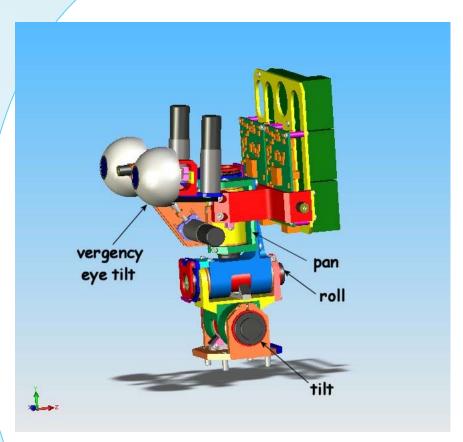
Increasingly acquires a predictive capability

CRITICAL ISSUES Exploration Manipulation Imitation Gestural Communication


Anticipation / Planning / Deliberation //Prediction

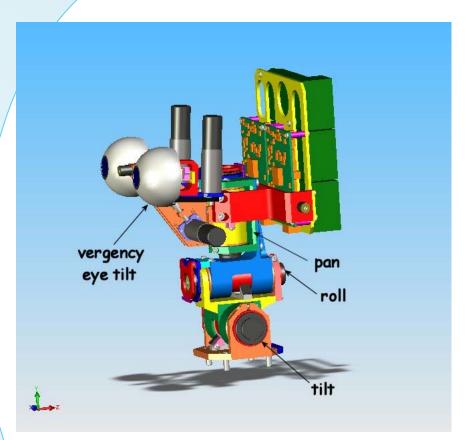
iCub Open Cognitive Humanoid Robot

- The iCub will be a full humanoid robot sized as a two and half year-old child
- The total height is estimated to be around 90cm
- It will have 53 degrees of freedom (dof), including articulated hands to be used for manipulation and gesturing
- The robot will be able to crawl and sit and autonomously transition from crawling to sitting and vice-versa.

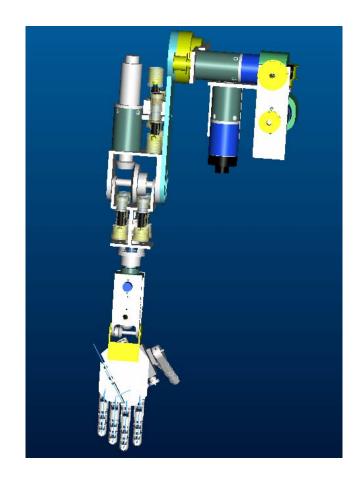

I from "I-Robot"

Cub from "man-cub" (Kipling's 'Jungle Book')

Trademark registration procedure has been started for the name iCub
 Internet Domain Names have been registered

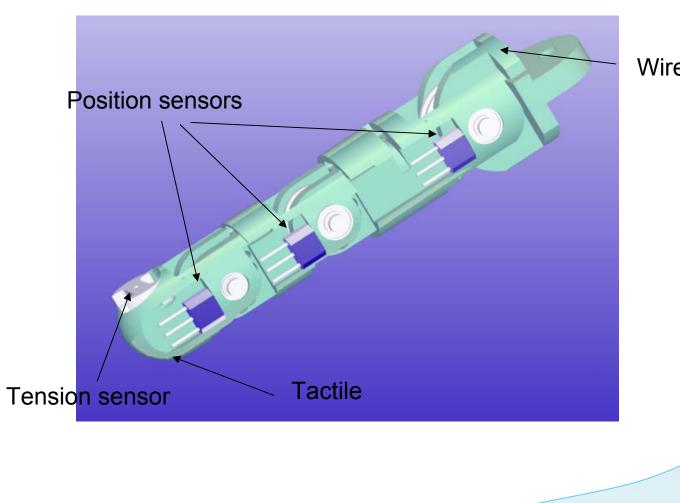


3 DOF serial neck modular design indipendent vergency (2dofs) eye tilt overload protection on neck absolute sensors on neck integrated sensors and electronics

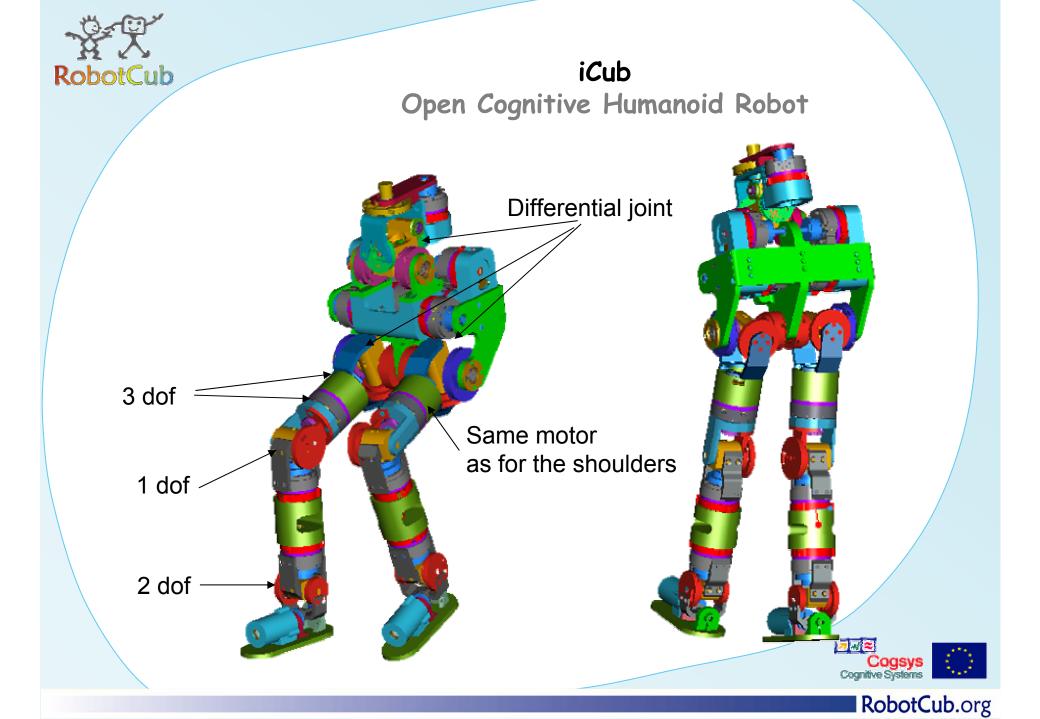


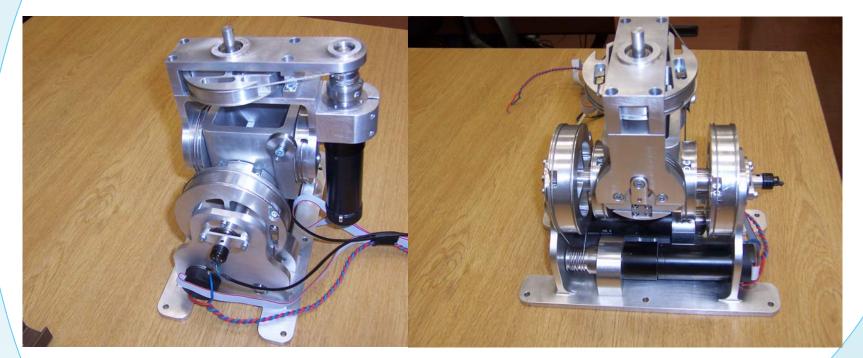
3 DOF serial neck modular design indipendent vergency (2dofs) eye tilt overload protection on neck absolute sensors on neck integrated sensors and electronics

3 DOF shoulder timing belt driven
1 DOF elbow conical gear driven
3 DOF wrist(mixed transmission)
hand actuator relocation along the arm

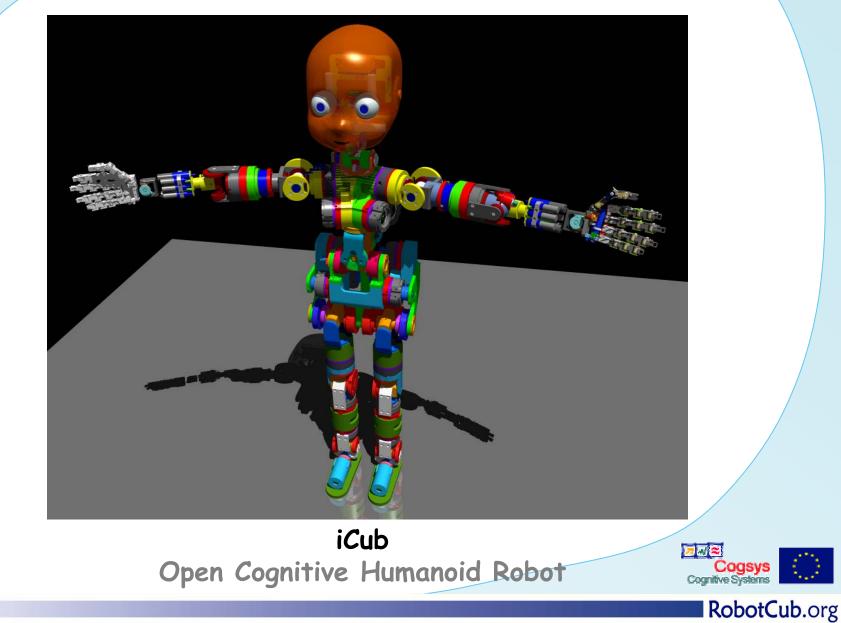


iCub Open Cognitive Humanoid Robot 9 controlled DOF on hand finger underactuation (21 DOF in total) absolute position sensor on finger joint tension sensor on finger tendons tactile sensor (still under implementation)

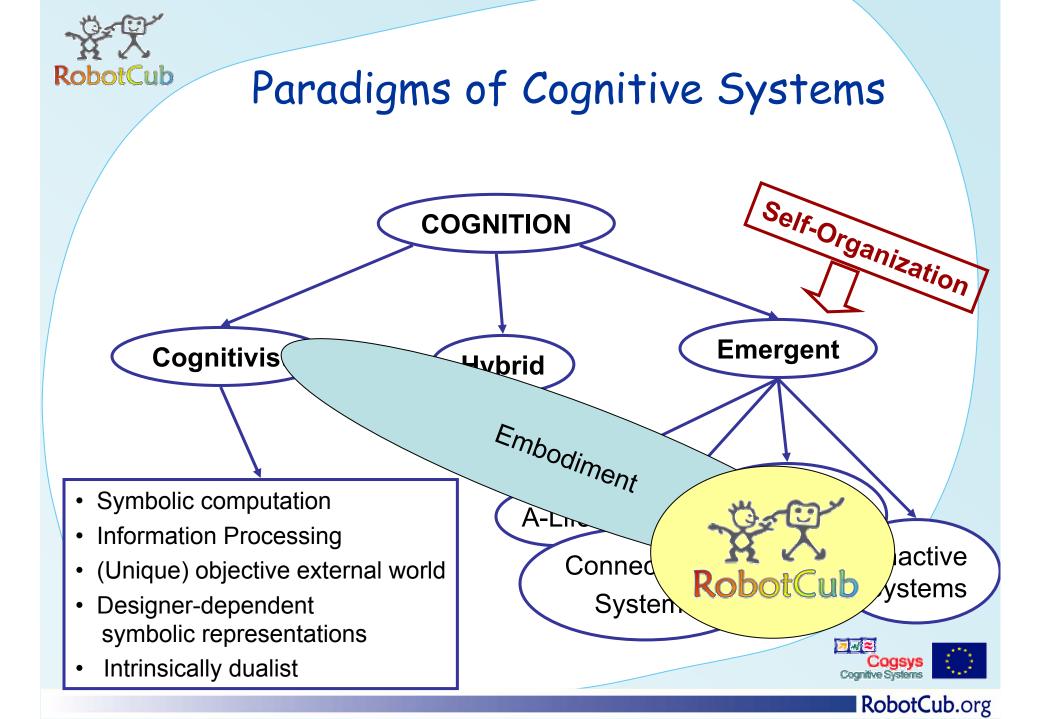


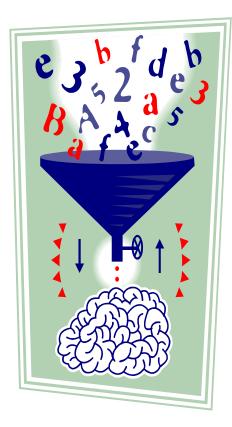


Wires internal

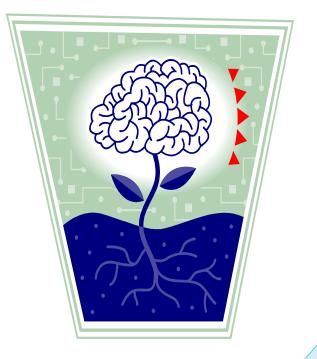


Waist prototype




What is Cognition?

Freely-available humanoid platform: iCub Study cognitive development in embodied systems



OR

The RobotCub Approach

Guiding Philosophy

- Cognition cannot be hand-coded (can't short-circuit ontogeny)
- N<u>ecessarily</u> the product of a process of embodied development
- Initially dealing with immediate events $\longmapsto t$
- Increasingly acquiring a predictive capability

Cognition and perception are functionally-dependent on the richness of the action interface

The RobotCub Approach

Emergent embodied cognitive systems:

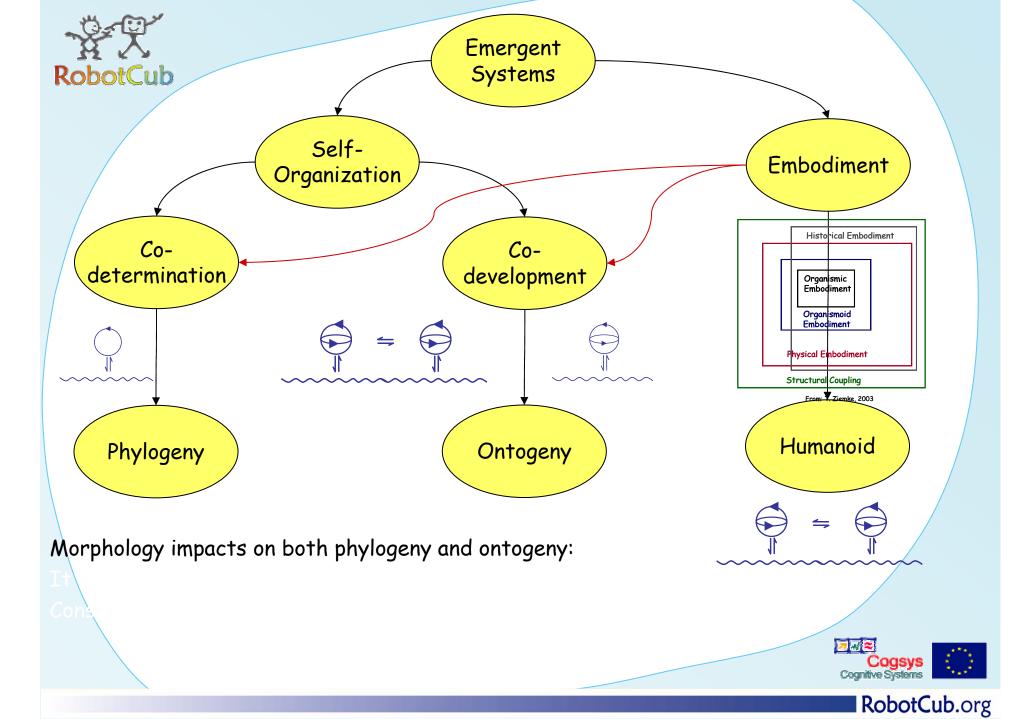
- Given a rich set of innate action and perception capabilities
- Develop over time an increasing range of cognitive abilities
- Recruiting ever more complex actions
- Achieving an <u>increasing</u> degree of <u>prospection</u> (and, hence, adaptability and robustness)

The RobotCub Approach

Cognitive development involves several phases

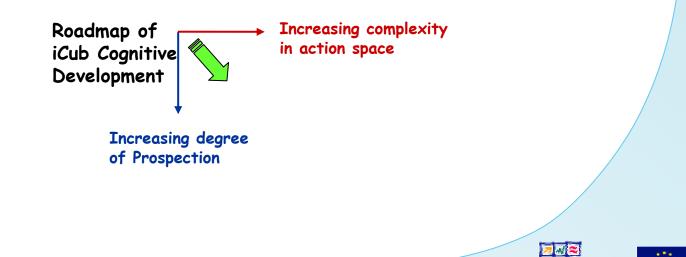
- 1. Coordination of eye-gaze, head attitude, hand placement when reaching
- 2. Dexterous manipulation of the environment: learn the affordances in the context of one's own developing capabilities
- 3. Ideally, communicate through gestures, simple expressions of its understanding, achieved through
 - rich manipulation-based exploration & social contact
 - imitation
 - multi-agent social interaction

More complex and revealing exploratory use of action



Scientific Framework

(Why development in humanoid form is important for cognition)



Ontogenic Development: Gradual acquisition of a prospective capability

- 1. Body Movement / Locomotion
- 2. Eye-Head-Hand Coordination
- 3. Bi-manual co-operation
- 4. Affordances
- 5. Imitation
- 6. Gestural Communication

Roadmap of iCub Cognitive Development The Space of Ontogeny: Action & Prospection

Recruited Actions

Increasing complexity in action space

			Locomotion	Eye-head-hand Coordination	Bimanual Cooperation	Interaction and Affordance	Interaction and Imitation	Interaction and Communication
Ontogenic Development		Learning to component and lower body to reach regets						
		Learning to the state of the st						
		Learn ack visually						
	representing the shape of objects	static & Discover affordance	1	R		L		
	Recognizing manipulation abilities of others and relating those to one's own manipulation abilities	Learning to interpret and the gestures of others	*					
		Learning motor skills & affordances by imitating manipulation tasks						
		Learning what to imitate & when to imitate others' gestures			4			
	Learning regulating interaction dynamics	Approach, avoidance, turn-taking, and social spaces						
		Learning to use gesture as a means of communication						
	based on interaction	Learning about meaningful events in the lifetime of the robot						
		Sharing memory (events) during interaction						

Increasing degree of Prospection

The Phylogeny and Ontogeny of Natural Cognitive Systems

(Identify the iCub Phylogeny and Ontogeny)

Actions organize cognitive behaviour

Actions are:

- Motivated
- Guided by prospection ... predictive control
- Neonatal movements are action-based
- Actions vs. reflexes

Development of Posture and Locomotion

- M3 First sign of being able to control gravity (prone)
- M6-8 Sitting (control of sway of head and trunk) Transfer from two-handed to one-handed reaching
- M12 Infants who stand are very sensitive to peripheral visual information; sensitivity decreases with experience

Development of Looking

- MO Vestibular gaze stabilization
- MO Saccadic eye movement, develops rapidly to M6
- MO Very limited smooth pursuit ability
- MO Attentional processes: Gaze directed towards attractive objects (novelty)
- M1.5 Rapid improvement of smooth pursuit
- M3-4 Infants achieve adult level of smooth pursuit

Development of Reaching and Manipulation

- MO Visual control of arm; no control of fingers for grasping Arm & finger motion coupled; hand is open when extending arm
- M2 Coupling of global arm & finger motions broken; hand is fisted when extending arm
- M2-3 Open hand when reaching but only when visually-guided; hand closing when close to object
- M4-5 Reaching and grasping
- M5 Hand not adjusted to size of object when reaching
- M9 Onset of adjustment of hand size when reaching
- M9-10 Differentiated finger grasping (e.g. pincer grasp)
- M13 Grasping starts when reaching

Development of Social Abilities

M3-6 Can detect approximately-correct gaze direction

M10-12 Can follow gaze

Development of Cognition in Nature Neonatal Cognitive Systems

Observations and Insights

Perception is action-dependent Perception is prospective Perception is highly integrated among sensory modalities Perception is task specific Perceptual abilities are developed (both phylogenic and ontogenic) Perception of humans is critical (face, emotion, gaze ..) Perception of affordances is learned Different modes of perception: local/focal perception (first) vs. global/ambient perception (later) Perception requires unsupervised on-line learning

Neuroscience of Cognition in Nature

(Identify the iCub Phylogeny and Ontogeny)

Neuroscience of Cognition in Nature

Co-dependence of action and perception

- Conventional thinking
 - Ventral stream: object recognition
 - Dorsal stream: spatial location
 - Posterior parietal cortex: unique site of space perception
- Recent results
 - No general purpose space map
 - Space perception: joint activity of several fronto-parietal circuits
 - Space encoded in different ways in different circuits based on different motor/effector needs and different sensory input
 - Motor system is also involved in semantic understanding of percepts
 - Same issues also apply to the issue of "object" perception

Neuroscience of Cognition in Nature

Co-dependence of action and perception (Selective Attention)

- Dependence on oculo-motor programming
 - Eye is close to limit of rotation
 - Can't saccade any further in one direction

Visual attention is attenuated in that direction

 Ability to detect an object is enhanced when appearance coincides with grasp configuration of a subject preparing to grasp

Subject's actions condition its perceptions

Take-home Message:

No single multi-purpose centre in the brain which knows everything and directs attention;

Instead, to direct attention we use potential actions (activate representations of action)

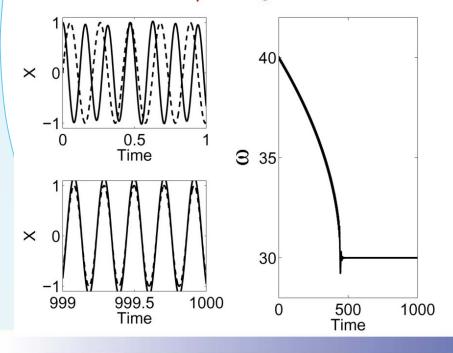
Work-in-Progress Models

Recruited Actions

Increasing complexity in action space

			Locomotion	Eye-head-hand Coordination	Bimanual Cooperation	Interaction and Affordance	Interaction and Imitation	Interaction and Communication
		Learning to control upper and lower body to reach for targets	\checkmark	\checkmark	\checkmark		\checkmark	
	Discovering the manipulation abilities of its	Learning to reach static targets	\checkmark	\checkmark	\checkmark		\checkmark	
	own body	Learning to reach moving targets	\checkmark	\checkmark	\checkmark	\checkmark		
		Learning to balance	\checkmark	\checkmark				
Outeenie	representing the shape of	Learning to recognize & track visually static & moving targets		\checkmark		\checkmark		
Ontogenic Development		Discovering and representing object affordances				\checkmark		
	Recognizing manipulation	Learning to interpret and predict the gestures of others	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
		Learning motor skills & affordances by imitating manipulation tasks					\checkmark	
	manipulation abilities	Learning what to imitate & when to imitate others' gestures					\checkmark	
	Learning regulating interaction dynamics	Approach, avoidance, turn-taking, and social spaces		\checkmark		\checkmark	\checkmark	\checkmark
		Learning to use gesture as a means of communication					\checkmark	\checkmark
	Developing personality via autobiographic memory	Learning about meaningful events in the lifetime of the robot						\checkmark
		Sharing memory (events) during interaction						\checkmark

Increasing degree of Prospection



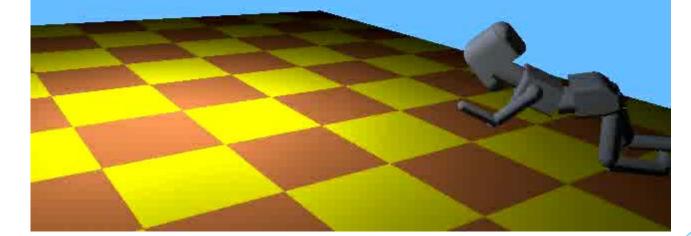
École Polytechnique Fédérale de Lausanne

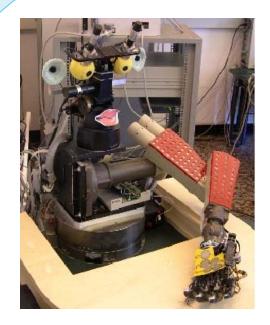
Adaptive Hopf Oscillator

 $\dot{x} = \gamma(\mu - (x^2 + y^2))x - \omega y + \epsilon F(t)$ $\dot{y} = \gamma(\mu - (x^2 + y^2))y + \omega x$ $\dot{\omega} = -\epsilon F(t) \frac{y}{\sqrt{x^2 + y^2}}$

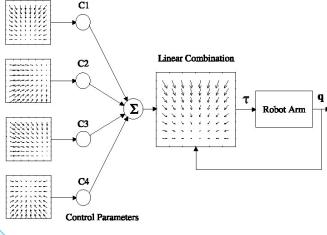
Self-Adaptive (Programmable) CPG

- Easy learning of any periodic signal
- Stability against perturbations
- Easy modulation of the pattern
- Synchronization properties (with other CPGs, with the environment or with the body dynamics)


Construct CPG using ADAPTIVE coupled oscillators


École Polytechnique Fédérale de Lausanne

left_leg_1 left_leg_2	-11.976502 -0.257259
left_leg_3	-2,342569
left_knee	-5.311891
left_ankle	0.582903
left_arm_1	1,976409
left_arm_2	9.576001
left_arm_3	-2,167050
left_elbow	0,806799
torso_1	-28,983096
torso_2	12,328943
torso_3	2,588339



Basis Fields

University of Genoa

Visually-guided Reaching and Grasping

Assume fixation point -> object

Map eye-head proprioceptive data to arm control parameters (trained by fixating on hand)

Control parameters modulate linear combination of basis torque fields (i.e. torque to be applied to group of actuators to achieve a particular equilibrium point)

Eye-hand motor commands:

- Direct gaze at fixation point
- Control arm motors
- Motor-motor control

Colour segmentation & Log-polar sensor

École Polytechnique Fédérale de Lausanne (EPFLa)

Reaching Movement Imitation

Predicting human motion is key to human-robot interaction

Reaching Movement Imitation

Micha Hersch & Aude Billard

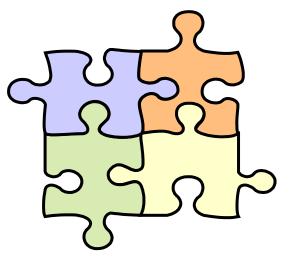
Swiss Federal Institute of Technology Lausanne

http://humanoids.epfl.ch

Supported by the European Commission (ROBOT-CUB Project)

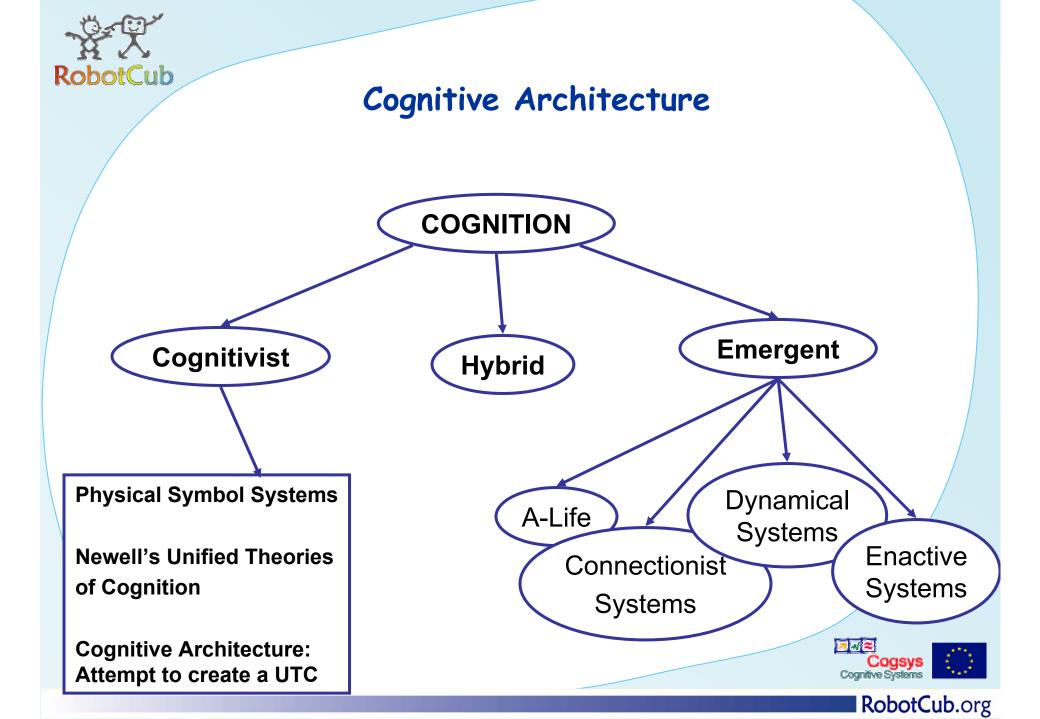
& the Swiss National Science Foundation

Recruited Actions

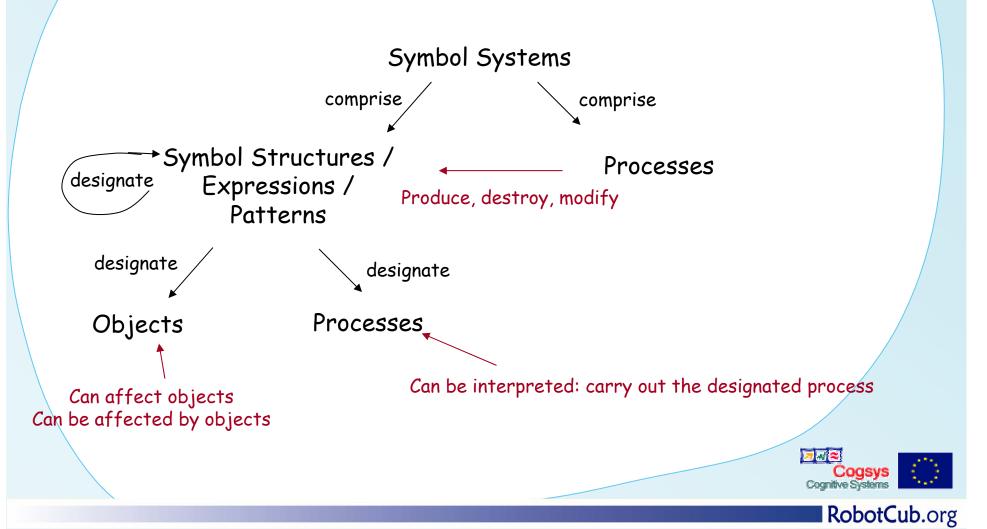

Increasing complexity in action space

			Locomotion	Eye-head-hand Coordination	Bimanual Cooperation	Interaction and Affordance	Interaction and Imitation	Interaction and Communication
		Learning to control upper and lower body to reach for targets	\checkmark	\checkmark	\checkmark		\checkmark	
	Discovering the manipulation abilities of its	Learning to reach static targets	\checkmark	\checkmark	\checkmark		\checkmark	
	own body	Learning to reach moving targets	\checkmark	\checkmark	\checkmark	\checkmark		
		Learning to balance	\checkmark	\checkmark				
Outeenie	representing the shape of	Learning to recognize & track visually static & moving targets		\checkmark		\checkmark		
Ontogenic Development		Discovering and representing object affordances				\checkmark		
	Recognizing manipulation	Learning to interpret and predict the gestures of others	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
		Learning motor skills & affordances by imitating manipulation tasks					\checkmark	
	manipulation abilities	Learning what to imitate & when to imitate others' gestures					\checkmark	
	Learning regulating interaction dynamics	Approach, avoidance, turn-taking, and social spaces		\checkmark		\checkmark	\checkmark	\checkmark
		Learning to use gesture as a means of communication					\checkmark	\checkmark
	Developing personality via autobiographic memory	Learning about meaningful events in the lifetime of the robot						\checkmark
		Sharing memory (events) during interaction						\checkmark

Increasing degree of Prospection



What is a Cognitive Architecture?



Physical Symbol Systems [Newell and Simon 1975]

UTC (i.e. theories covering a broad range of cognitive issues)

- Attention
- Memory

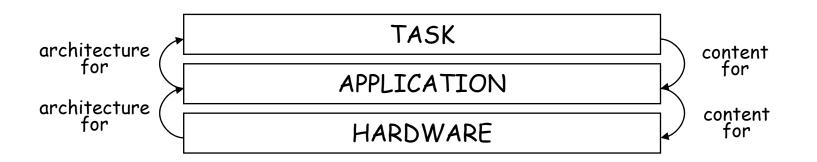
•••

- Problem solving
- Decision making learning
- from several aspects
 - Psychology
 - Neuroscience
 - computer science
 - ...

[Byrne 03]

An embodiment of a scientific hypothesis about those aspects of human cognition that are

relatively constant over time and


relatively independent of task

[Ritter & Young 01]

- Theory of the fixed set of mechanisms and structures
- Needs content to get behaviour

BEHAVIOR = ARCHITECTURE X CONTENT

Factor out what's common across cognitive behaviours across the phenomena explained by micro-theories

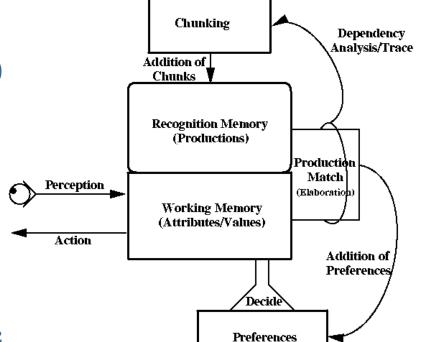
Lehman et al 97, also Anderson & Labiere 98, Newell 90

Computational Infrastructure

- Constant across different domains
- Constant across different knowledge bases

Commitment to formalisms for

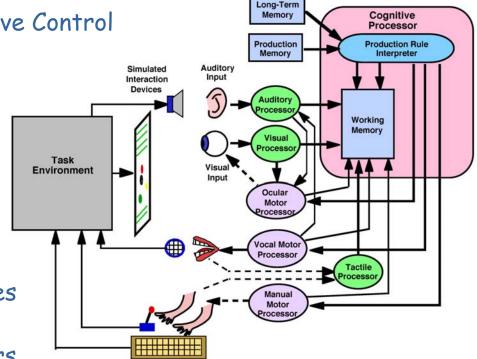
- Short-term & long-term memories that store the agent's beliefs, goals, and knowledge
- Representation & organization of structures embedded in memory
- Functional processes that operate on these structures
 - Performance / utilization
 - Learning
- Programming language to construct systems embodying the architectures assumptions


[Langley 05, Langley 06]

Soar [Newell 96]

- (sitemaker.umich.edu/soar)
- Newell's candidate UTC
- 1983 2005 ... (v 8.5)
- Production system
- Cyclic operation
 - Production firing (all)
 - Decision (cf preference
- Fine-grained knowledge rep

(Based on Figure 3.1, pg 20, The Soar's User Manual, Version 6)

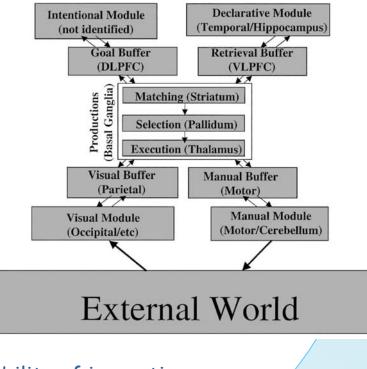

- Universal sub-goaling (dealing with impasse)
- General-purpose learning (encapsulates resolution of impasse)

EPIC [Kieras & Meyer 97]

- Executive Process Interactive Control
- Link high-fidelity models of perception and motor mechanisms with a production system
 - Only the timing!
- Knowledge in production rules
- Perceptual-motor parameters
- All processors run in parallel

RobotCub.org

No learning



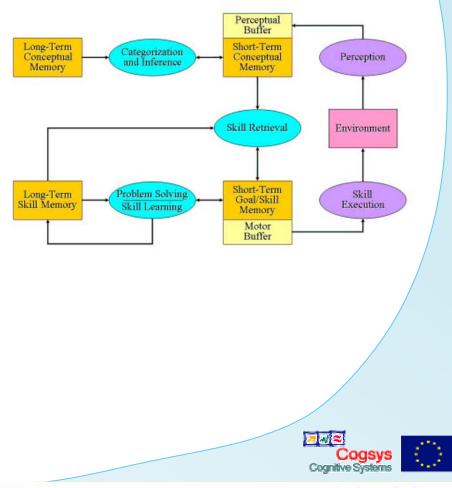
•

Cognitive Architectures

ACT-R 5.0 [Anderson et al. 04]

- Adaptive Character of Thought [96]->
- Adaptive Control of Thought-Rational [04]
- Production system
- Execute on production per cycle
 - Arbitration
- Declarative memory
 - Symbols (cf. Soar)
 - Activation values
 - Probability of reaching goal
 - Time cost of firing
 - Combined to find best trade-off
- Activation based on Bayesian analysis of probability of invocation
- Learning ('Rational Analysis')
 - Includes sub-symbolic:
 P(Goal), C(fire), Activation level, context association

"There is reason to suppose that the nature of cognition is strongly determined by its perceptual and motor processes, as the proponents of embodied and situated cognition have argued"


[Anderson 04]

ICARUS [Langley 05, Langley 06]

- Cognition is grounded in perception and action
- Concepts and skills are distinct cognitive structures
- Skill and concept hierarchies are acquired cumulatively
- Long-term memory is organized hierarchically
- LT & ST structures have a strong correspondence
- Symbolic cognitive structures are modulated with numeric functions

BUT ...

"Cognitive architectures do not easily support certain paradigms of perception and control that are mainstream in robotics [such as] adaptive dynamics and active perception"

[Benjamin et al. 04]

Robots are distributed systems; multiple sensory, reasoning, and motor control processes

run in parallel loosely-coupled separate limited representation of the world and task

Not realistic to constantly synchronize them with a central knowledge base

[Horswill 01]

ADAPT [Benjamin et al. 04]

- Adaptive Dynamics & Active Perception for Thought
- Production-based with working memory (cf. Soar)
- Declarative memory for sensory-motor schemas (cf. ACT-R)
- Processors operate in parallel (cf. EPIC)
 - Place low-level sensory data in working memory
- 2 Types of GOALS:
 - 1. Task goals (find blue block)
 - 2. Architecture goals (start schema to scan scene)
- 2 Types of ACTIONS:
 - 1. Task action (pick up blue block)
 - 2. Architecture goals (start grasp schema)

1 goal and 1 action represented procedurally (productions)

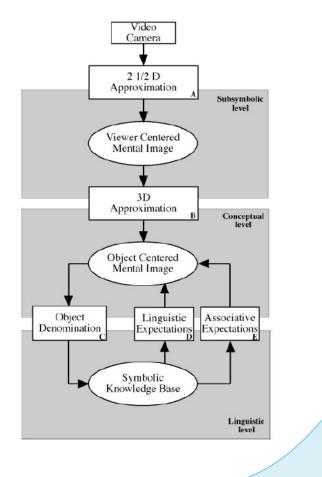
(schemas)

Many goals & many actions

Cerebus [Horswill 06]

- Scale behaviour-based robots to higher-level cognitive tasks WITHOUT a traditional planning system
 - 1. Behaviour-based sensory-motor system
 - 2. Marker-passing semantic network
 - 3. Parser
 - 4. Inference network
- Implements reflective knowledge: knowledge of its own structure and capabilities

Other (weaker) cognitive architectures

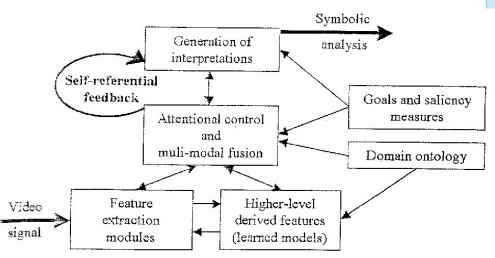

- Vision [Chella et al. 97]
- Vision [Buxton et al. 02]
- Vision [Town & Sinclair 03]
- Vision [Nagel 04]
- Robotic Hand Posture Learning [Infantino et al 05]
- Action-based perception [Granlund 05]

Some Cognitivist Systems

- Cognitive Vision System (Chella Frixione Gaglio 97)
 - 3D representations based on superquadrics models
 - Symbolic knowledge using first order predicate logic

Cognitive Vision System (Buxton Howell Sage 02)

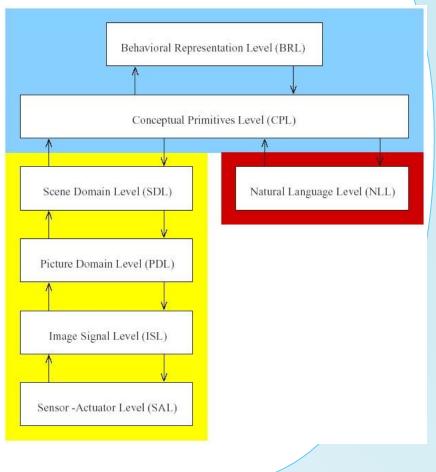
- Gesture recognition
- Uses probabilistic (statistical) models
- Dynamic Decision Networks (extension of Bayesian Belief Networks)
- Time Delay Radial Basis Function Networks (TDRBFN)
- Hidden Markov Models (HMM)
- Uses learning to create the gesture models
- Still requires system designer to identify constraints and dependencies



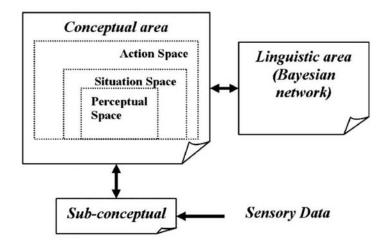
Some Cognitivist Systems

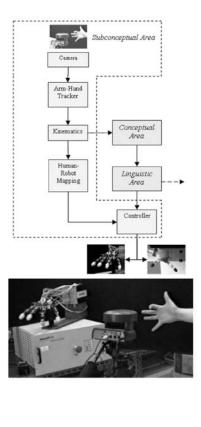
Cognitive Vision System

- Combines low-level processing
 - Motion estimation
 - Edge tracking
 - Region classification
 - Face detection
 - Shape models
 - Perceptual grouping
- And high-level processing
 - Language-based ontology
 - Adaptive Bayesian Networks
- Self-referential
 - Maintains internal representation of its gov and hypotheses
- Visual inference: process sentence structures in the ontological language
- Requires the designer to identify the 'right structural assumptions' and prior probability distributions

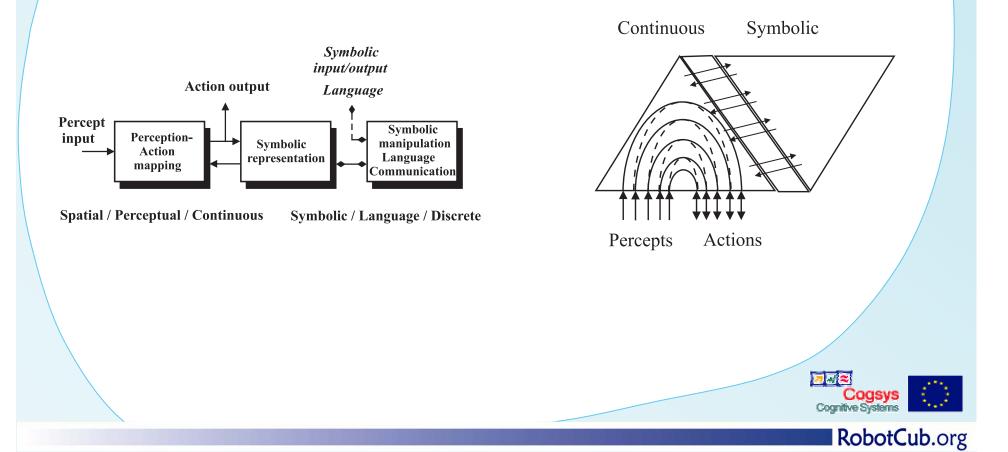


Cognitive Vision System (Nagel 2004)


- Model based system for interpreting videos of traffic
- Signal representations to symbolic representations
 - Optical flow
 - Edge detection
 - 3D model fitting
 - Vehicle trajectories (Kalmann filtering)
 - Vehicle manoeuvers
 - Vehicle behaviours (situation graph trees)
 - Interpretation via logic programming (based on SGT)



Robotic Hand Posture Learning [Infantino et al. 06]

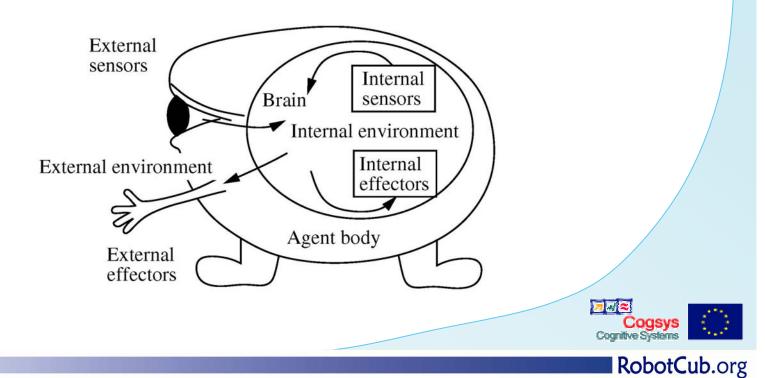


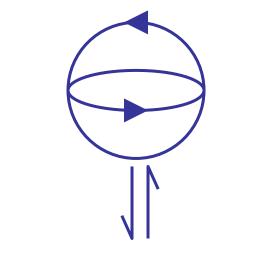
Action-based Perception [Granlund 05]

Still Problems!!!

Architectures not focussed on development in the sense of the gradual acquisition of cognitive skills over an extended period

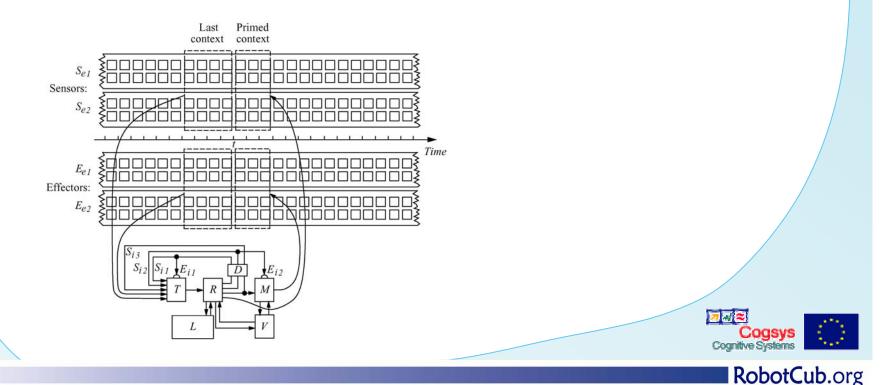
[Weng 02, Weng & Zhang 02, Weng 04a, Weng 04b]


(but also consider Anderson 04 /ACT-R 5.0)


AMD Autonomous Mental Development [Weng et al. 01, Weng 02, Weng & Zhang 02, Weng 04a, Weng 04b]

Self-aware self-effecting (SASE) agent

Enactive Cognition

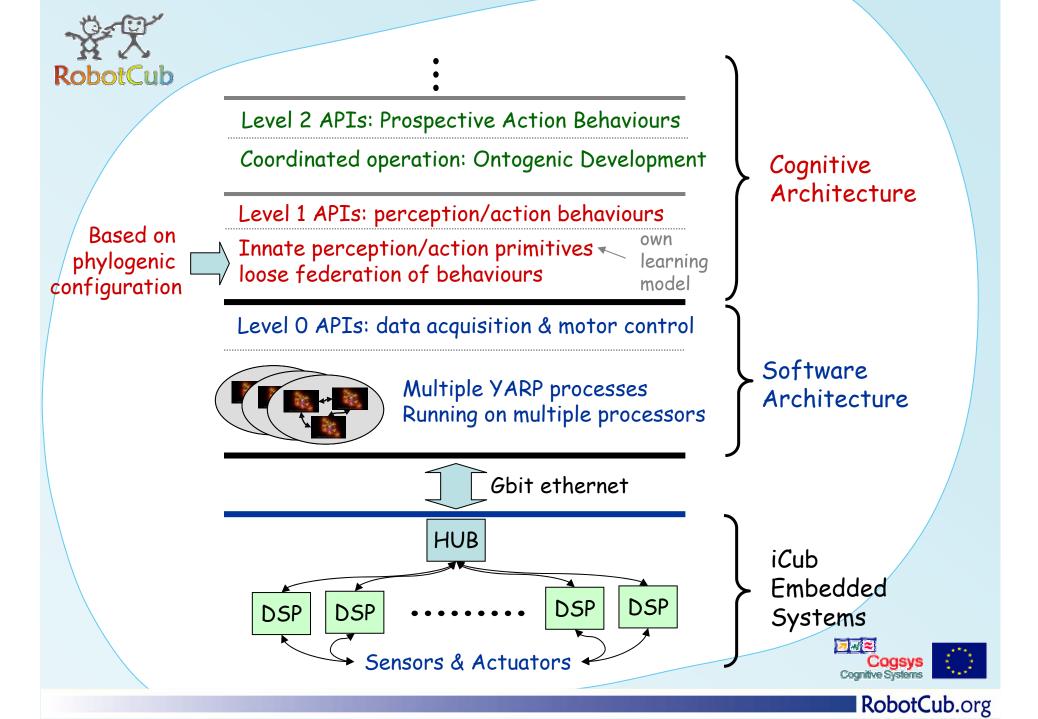

Cognitive system: operationally-closed system with a nervous system; Nervous system perturbed by both environment and system (of receptors & NS) Level 2 Autopoiesis implies the facility to self-modify [Maturana & Varela 87] Recursive self-maintenance [Bickhard 00]

Theory of Developmental Architecture [Weng 04b]

- Progression of 6 types of architecture (based on Markov Decision Process MDP)
- Type 4: Observation-driven SASE MDP
- Type 5: Developmental observation-driven SASE MDP: DOSASE MDP

iCub Cognitive Architecture

Grounded in neuroscience and psychology Rooted in action-dependent perception Focussed on scaffolding prospective capabilities Designed to facilitate development


iCub Cognitive Architecture

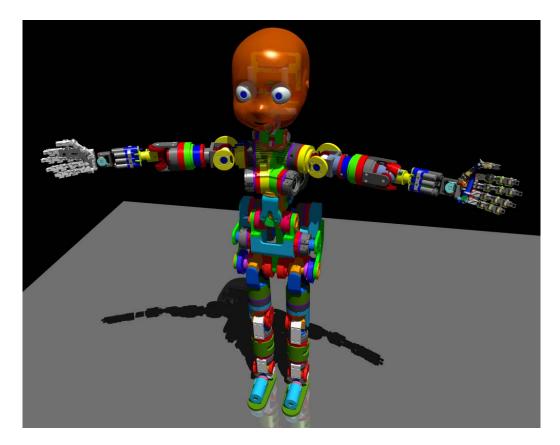
Freely-accessible AND open to change by others

 \Rightarrow degrees of commitment to a theory in the cognitive architecture

Robotic Open-Architecture for Cognition, Understanding, and Behaviours

RobotCub

_	MO	Visual acuity is only 3-2% of adult level
	MO	Vestibular gaze stabilization
	MO	Saccadic eye movement, develops rapidly to M6
	MO	Very limited smooth pursuit ability
	MO	Attentional processes: gaze directed towards attractive objects (novelty)
	MO	Visual control of arm; no control of fingers for grasping
		Arm & finger motion coupled; hand is open when extending arm
	M1	Ability to process colour
	M1.5	Rapid improvement of smooth pursuit
	M2	Ability to process motion information
	M3	Ability to perceive binocular depth
	M3	First sign of being able to control gravity (prone)
	M3-4	Infants achieve adult level of smooth pursuit
	M3-6	Can detect approximately-correct gaze direction
	M5	Visual acuity reaches adult level
	M6-8	Sitting (control of sway of head and trunk)
		Transfer from two-handed to one-handed reaching
	M12	Sensitivity to peripheral visual information
	M2	Coupling of global arm & finger motions broken;
		hand is fisted when extending arm
	M2-3	Open hand when reaching but only when visually-guided;
		hand closing when close to object
	M4-5	Reaching and grasping
	M5	Hand not adjusted to size of object when reaching
	M9	Onset of adjustment of hand size when reaching;
	M9-10	hand closes when in vicinity of object Differentiated finance engening (a.e. pincer engen)
	M9-10 M10-12	Differentiated finger grasping (e.g. pincer grasp) Can follow gaze
	M10-12 M13	Grasping starts when reaching
	14/10	(i.e. one integrated reach-grasp act)


iCub Cognitive Architecture

Coordinated operation: Ontogenic Development:

What mechanisms / structures / dynamics?

- 1. Coupling mechanism between P/A primitives (AAM?)
- 2. Metric of order/regularity in total confederation of P/A primitives
- 3. Development mechanism to adjust coupling
- 4. Metric of consistency of expectations with experiences

For further information see www.robotcub.org or www.icub.org

