Virtual Reality Technology and Programming

TNM053:

Lecture 5: Tracking and I/O devices

Tracking devices

- Referred to 'head-tracking' many times
 - Needed to get good stereo effect with parallax
 - Essential for HMD's as well.
- And for Augmented reality
- Devices to locate a point in 3D
 - Immediately sample rate (latency)Continuously refresh rate
- Also want to Orientate:
 - In 3D space
 - In other degrees of freedom

6 Degrees of freedom

 $(X,Y,Z,\theta,\phi,\omega)$

Important features

- Accuracy
- Latency
 - Immediacy of the data
- Update Rate
 - Frequent samples
- Range
 - Affects the suitability for uses

Types

- Mechanical
- Ultrasonic
- Inertial Navigation Systems
- Electromagnetic
- 'Vision'-based
- GPS?

Mechanical devices

- Consists of an armature
- Electro-mechanical devices measure angles
 - Optical devices
 - Electrical potentiometers
- Compute position (and orientation) using known lengths and angles
- Not very good for head tracking

Ultrasonic trackers

- Lots of types
- Use mobile ultrasound emitters
 - Can be battery powered
- Multiple Pick-ups:
 - Minimum of 3
 - More helps to avoid occlusion

Ultrasonic trackers: Summary

- Relatively cheap
- Light
- Quite accurate in 3 dof
- Often not so good in 5 (or 6) dof
 - Need wide separation of emitters
 - Reduced sample rate

Inertial Navigation

- Measures acceleration
- Measures rate of rotation
- Requires initialization
 - Typically based on assumption
 - Possibly fixed point
- Drifts over time
 - Small errors, if not random, accumulate

Inertial tracking: InterSense InertiaCube2

Box contains:

- 3 orthogonal gyros
- 3 linear accelerometers
- Support hardware does the integration
- Also magnetic sensors
 - avoid error build-up

Inertial tracking

- Fairly fast results (latency)
- Fast sampling (180Hz to 90Hz)
- No interference
- No occlusion
- Not accurate enough
 - Accumulates error
 - 0.1° per second error
 - Similar error in distance movement
- Hence hybrid devices

Hybrid tracking

- Ultrasound/Inertial
 - Ultrasound provides updates and error correction
 - Doesn't rely entirely on either
- May rely on magnetic fields as well
 - Passive sensors pick up earth field
- E.g. InterSense devices in lab

Hybrid tracking: InterSense IS600 mk2

Hybrid tracking: InterSense IS900IT

Hybrid head trackers

- Latency
- Sample rate ~180Hz
 - Divided by number of 'stations'
 - Station = three emitter set
- Accuracy:
 - $-\pm4$ mm, \pm 0.5° (RMS error)
- Coverage ~25 square metres

Electromagnetic

- Use a source and small detectors
- Multiple detectors per system
 - Typically 4-16
- Signal produced in three planes
- Detected in three planes
- Typically medium range (<10 metres)
- Suffers from interference

Polhemus trackers

- Latency ~4mS
- Sample rate: ~120Hz
 - Each receiver unit functions independently
 - Same sample rate regardless of number of detectors (if the hardware supports it)
 - usually use 2-4
- Accurate!
 - $-\pm0.07$ mm, ±0.15 ° (RMS error)
- No Accumulation of errors

Laser tracking

- Fixed laser sources
- Mobile detectors receive signal
- Compute position at three points
 - Like ultrasound, fast processing required
- Compute 6DOF from three points

Laser Tracking: Ascension laserBIRD

- Two source 'scanner'
- Three point sensor
 - Fitted to headset
- Uses stereo 'vision'
 - Gives 3D position of sensors

Laser tracking: Ascension laserBIRD

- 6 DOF
- 240 Hz sampling rate
- Quite accurate:
 - $-\pm 1$ mm, $\pm 1^{\circ}$ (RMS error)
- No interference
- Suffers from occlusion

Laser tracking: Ascension laserBIRD

Optical tracking

- New in the last couple of years.
- 'Vision' systems used to track moving objects automatically
- Like motion-capture for film industry
- Works in the infra-red

Image based

- Uses limited face-recognition to track head
 - Actually tracks eyes
- Determines position of head
- Adjusts display accordingly
- Not common
 - Primarily used in display technology
 - E.g. i2i D4D display

i2i - D4D display: Taking the image

Head Tracking: Summary

- Mechanical not used much
- Ultrasonic
- Inertial
 - hybrid
- No occlusion
- Electromagnetic
- Optical Getting popular
- Laser not common yet
- Vision very specialized

What to use and why:

- Electromagnetic
 - Most accurate
 - Expensive
 - Can't use everywhere
 - Interference issues Maybe with iron?
 - Hospitals
- Hybrid inertial/acoustic
 - Quite accurate
 - cheaper

Common Problems with tracking hardware

- Tracking
 - Linearity
 - Latency
 - Noisy signals
 - Frequently need filtering
- Cables!
 - Becoming less of a problem through wireless technologies

Virtual Reality Technology and Programming

TNM053:

Lecture 5.5: I/O devices

I/O Devices

- Important aspects:
 - Degrees of Freedom (DOF)
 - Precision
 - Latency
 - Long Term usage effects
- Mouse 2 to 6 DOF
- Wand 5 DOF
- Joysticks 6 DOF
- Glove Hand 'gestures'
- Suit Body 'gestures'

Tracking

- All the same methods apply
 - Attach sensor(s) to object
 - it's an interactor
- Mechanical tracking is more common

Mechanical tracking

- Consists of an armature
- Electro-mechanical devices measure angles
 - Optical devices
 - Electrical potentiometers
- Compute position (and orientation) using known lengths and angles
- Commonly used in adapting tools

Optical detectors

Optical detectors

- System always knows position
- Can be extremely accurate
- Little 'wear and tear'
- System has to be initialized
 - Bring to a fixed point and start system
 - If it loses position it's useless
- Requires expensive parts

Potentiometers

- Similar but with different properties
- No Initialization required
 - Voltage gives immediate position
- Can be much cheaper to build
- Parts more prone to wear out
- Can't easily rotate through zero
 - Problem with the shoulder?

Mechanical devices

- Relatively cheap
- Can be extremely accurate
- Gives better quality signal
 - Little or no noise
 - Avoids need for filtering

Stefan's 'Monkey'

- Home-built 3D position device
 - Designed with motion capture in mind
 - Represents a humanoid arm
- Three stage armature (with 'shoulder')
- Four potentiometers
 - Three in the 'shoulder'
 - One in the 'elbow'

Stefan's 'monkey' (2)

Stefan's 'monkey' (3)

Stefan's 'monkey' (4)

- Presented at SIGGRAPH 2002
 - "Motion Capture Done Dirt Cheap"
- Total cost ~\$300
 - Provides for up to 16 potentiometers
 - Add \$10 for each extra potentiometer
- http://www.itn.liu.se/~stegu/monkey/
 - Parts list
 - Circuit diagrams

Mouse interaction

- Extension of the 2D mouse
 - Tries to provide 6DOF
- Some attempts to use for interaction
 - Selection of objects
 - Selection of menu options etc.
- Doesn't really work
- Principally useful for navigation

3D Mouse

■ LogiCAD Magellan SpaceMouse

More useful mouse: Polhemus 3Ball

■ Provides 3(-6)DOF in a usable package

■ Actually nothing like a mouse at all

3D Mouse = 'Wand'

- Provides 5DOF (maybe 6)
- Typically used as a pointing device
- Provides buttons for selection
- The 3D equivalent of the mouse

Wand:

Wand: InterSense devices

Wand = Joystick

- 6DOF makes it a joystick
 - Tracking systems used can provide 6
- Allows complex navigation
- Allows wand-like selection

Joystick devices

- Polhemus device
- Made from game joystick
 - Quite literally!

irtual Presence 'SpaceStick'

Gloves

- Hand position tracking
- Also track finger positions
 - Allows for 'gestures'
 - Allows for picking up objects

Gloves: Hand tracking

IS900 MiniTrax Hand tracker

Gloves: Finger tracking

Optical fibres measure bend of the finger

Gloves

- Of limited availability due to cost
- Tracking devices already available
 - Not the source of the cost
- Optical fibres and sensors
 - Very expensive technology
 - Not much demand
 - Very expensive devices

Gloves: Done cheap

- MATTEL (NES) PowerGlove
- Produced in 1989-1991
- Cost \$99 originally
- Now cost ~\$40 (on ebay)

Gloves for the user

- Can use as a wand or joystick
- Can use 'hand gestures' flex fingers
 - To select objects
 - To call up menus
- Can interact with virtual objects in the scene
 - Can't feel them of course

Suits

- Extension of the data glove
- Use trackers and flexion detectors
 - Monitor whole body position
- Mostly used for motion capture
 - Can be used interactively
 - Can use 'body gestures' to interact

Suits - Mechanical: Metamotion Gypsy

Gypsy Jr – Upper body Gypsy 3 – Whole body

Suits — e/m tracking: Ascension MotionStar

Real Time e/m tracking

Optical tracking: Full Body

Summary

- A dazzling array of toys to play with
- Any tool you want can be made virtual
 - Adding tracking can be quite cheap...
 - ...as long as you already have it
 - Adding optical or e/m sensors is easy
 - Building kit is not hard or expensive
- Working out how to interact is hard