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(ABSTRACT) 

 

Students at Virginia Tech have been developing autonomous vehicles for the past 

five years.  The purpose of these vehicles has been primarily for entry in the annual 

international Intelligent Ground Vehicle Competition (IGVC), however further 

applications for autonomous vehicles range from UneXploded Ordinance (UXO) 

detection and removal to planetary exploration.  Recently, Virginia Tech developed a 

successful autonomous vehicle named Navigator.  Navigator was developed primarily for 

entry in the IGVC, but also intended for use as a research platform.  For navigation, 

Navigator uses a local obstacle avoidance method known as the Vector Field Histogram 

(VFH).  However, in order to form a complete navigation scheme, the local obstacle 

avoidance algorithm must be coupled with a global map. 

  This work presents a simple algorithm for developing a quasi-free space global 

map.  The algorithm is based on the premise that the robot will be given multiple 

attempts at a particular goal.  During early attempts, Navigator explores using solely local 

obstacle avoidance.  While exploring, Navigator records where it has been and uses this 

information on subsequent attempts.  Further, this thesis outlines the look-ahead method 

by which the global map is implemented.  Finally, both simulated and experimental 

results are presented. 

The aforementioned global map building algorithm uses a common method of 

localization known as odometry.  Odometry, also referred to as dead reckoning, is subject  



 

iv 

to inaccuracy caused by systematic and non-systematic errors.  In many cases, the most 

dominant source of inaccuracy is systematic errors.  Systematic errors are inherent to the 

vehicle; therefore, the dead reckoning inaccuracy grows unbounded.  Fortunately, it is 

possible to largely eliminate systematic errors by calibrating the parameters such that the 

differences between the nominal dimensions and the actual dimensions are minimized. 

This work presents a method for calibration of mobile robot parameters using 

optimization.  A cost function is developed based on the well-known UMBmark 

(University of Michigan Benchmark) test pattern.  This method is presented as a simple 

time efficient calibration tool for use during startup procedures of a differentially driven 

mobile robot.  Results show that this tool consistently gives greater than 50% 

improvement in overall dead reckoning accuracy on an outdoor mobile robot.   
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Chapter 1 

 

 

Introduction 

 
Over the past century, particularly the later decades, much work has been done in 

the field of robotics.  Much of the initial literature on this topic is science fiction and 

depicts robots as human-like, or anthropomorphic, having intelligence and form, and 

interacting with humans as peers.  Unfortunately, the capabilities shown by these fictional 

robots are anything but realistic [Conner, 2000a].  In 1968, Isaac Asimovs’ book, “Robot 

I,” developed the three laws of robotics and introduced the world to the concept of ethics 

and robotics [Asimov, 2000].  The three laws are as follows:  

 

1. A robot may not harm a human being or, through inaction, allow a human 

being to come to harm.  

2.  A robot must obey the orders given it by human beings, except where such 

orders would conflict with the First Law.  

3. A robot must protect its own existence, as long as such protection does not 

conflict with the First or Second Law.  

 

Although Asimov is often credited for coining the term “Robot,” Karel Capek 

actually used the term in 1917 to mean “worker [Fernandez, 2000].”  This leads to the 

question, “What does the term robot actually mean?”   

Many widely accepted definitions of the word “robot” are found in the literature.  

David Conner reviews several of these and the interested reader is referred to his work.  

Conner goes on to establish his own definition.  Conners’ definition, generally accepted 

by the author of this thesis, of the word robot is:  a machine that uses its intelligence to 

interact autonomously with its changing environment [Conner, 2000a].  This leads to the 

question of autonomy.  What does it mean to be autonomous?  Merriam Webster defines 

autonomy as:  existing or capable of existing independently [Merriam-Webster, 2000].  In 

the case of a robot, this is generally taken to mean independent of humans.  However, this 
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poses a contradiction to Asimovs’ second law of robotics.  Further, in extreme cases, this 

could lead to breaking Asimovs’ first law.  An example of this is presented in the popular 

new science fiction movie The Matrix.  In this film, the robots, originally developed by 

humans, evolve and begin farming humans in order to use them as their source of power.  

This is an example of the robots protecting their own existence at the expense of normal 

human existence.  This is an extreme case of Asimovs’ third law leading to the violation 

of his first and second laws, and thus the third as well.   

As previously mentioned, the fictional representation of a robot is a long way 

from reality, and therefore so is the above example.  However, this author believes that it 

is necessary to consider the future repercussions of work being done in the present.  For 

this reason the author would like to extend Conner’s definition.  Hereinafter the term 

robot will be taken to mean:  A machine that uses its intelligence to interact 

autonomously with its changing environment, such that it obeys Asimovs’ three laws of 

robotics.  That said, it should be noted that a robot can take on many different forms and 

a can be designed to interact in many different environments.  This thesis addresses a 

robot in the form of a vehicle navigating in the environment of the Intelligent Ground 

Vehicle Competition (IGVC) obstacle course.  In particular, an algorithm is developed 

that allows an autonomous vehicle to build a global map of the environment and use it, in 

conjunction with a local map, to navigate through the IGVC obstacle course.  This course 

is described in detail in later sections. 

 

1.1  Definitions of Local and Global Maps 

 

In order for a vehicle to operate autonomously, it must have an adequate 

representation of the environment in which it is operating.  Hereinafter, this is referred to 

as the vehicles’ map.  The word map is both a noun and a verb.  One definition of the 

word map used as a noun is:  a representation, usually on a flat surface, of the whole or a 

part of an area [Merriam-Webster, 2000].  Note the distinction between representation of 

either whole or part of an area.  This work refers to a map of the part of an area near the 

autonomous vehicle as the vehicles’ local map.  The map of the whole area in which the 

autonomous vehicle is operating is referred to as the vehicles’ global map.  Typically, the 
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local map has a reference frame that is vehicle coincident and the global map has an 

external reference frame.  This concept is illustrated in Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

The word map, used as a verb, is defined as:  to make a survey of for, or as if for, 

the purpose of making a map [Merriam-Webster, 2000].  To better understand this 

definition, the definition of the word survey is reviewed.  Survey is defined as follows:  to 

determine and delineate the form, extent, and position of (as a tract of land) by taking 

linear and angular measurements and by applying the principles of geometry and 

trigonometry [Merriam-Webster, 2000].  So to map an area is to examine it, record data, 

and reduce that data into a form that is understandable.  The question remains, 

“Understandable to who?”  In this work, “who” is Navigator, the autonomous vehicle 

developed at Virginia Tech in the academic year 1999/2000.  This thesis focuses on 

autonomously exploring, recording position data, and using that data to better understand 

the global environment on the next exploratory run. 

 

 

 

 

 

 

Figure 1.1  Global and expanded local map of the vehicle’s environment.   
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Trap 

Obstacle 
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1.2 Thesis Motivation 

 

The primary motivation for this work is to represent Virginia Tech competitively 

at the 10th annual IGVC.  This competition requires graduate and undergraduate students 

to design and construct intelligent vehicles such that they can navigate an obstacle course 

autonomously.  White lines bound the course on a grass surface and the layout varies 

from year to year.  The obstacles include traffic cones and barrels, simulated asphalt, a 

hill, and a sand trap.  A picture of the 2000 IGVC obstacle course, shown in Figure 1.2, 

illustrates a sample of all of these obstacles.  IGVC’s objective in this event is for the 

student projects to be multidisciplinary, theory-based, hands-on, team implemented, 

outcome assessed, and based on product realization [IGVC, 2000].  Motivation for 

autonomous vehicles in general includes but is not limited to planetary exploration, 

unexploded ordnance (UXO) detection and removal, convoys, surveillance, security 

patrol, radioactive waste handling, and motor vehicle safety. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Motivation for this thesis stems from the need for a global map when navigating 

the course at competition.  Many mobile robot systems combine a global path-planning 

module with a local avoidance module to perform 

Figure 1.2  Course used in the 2000 IGVC competition (Orlando, FL). 
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Figure 1.3  Problematic situation for 
         local avoidance  
         [Ulrich, 2000].  . 

navigation [Ulrich, 2000].  A global path-planning module gives look-ahead information 

that can help the vehicle avoid potential trap situations, Figure 1.3.  In Figure 1.3, the 

local path avoidance module uses the only information within the radius of the dashed 

circle.  Based solely on this information, paths A and B are equal candidates for traversal, 

however a global planning module would override choice A and allow the vehicle to 

choose the correct path B.  At point p the vehicle would choose path C.  Further, a global 

path-planning module will allow the vehicle to know whether it is going the correct 

direction on the IGVC obstacle course.  A local obstacle avoidance module alone will 

keep the vehicle on the course and moving, 

but it has no way of deciphering whether or 

not it is going in the correct direction. 

Global planning modules use some 

sort of global map.  Typically, this map is 

initialized using prior knowledge of the 

environment in which the mobile robot is 

interacting.  The rules of the IGVC state that 

the autonomous vehicles are to have no prior 

knowledge of the course [IGVC, 2000].  

This is due to the fact there exists no prior 

knowledge of the environment in many of 

the applications for autonomous vehicles 

(planetary exploration, etc.).  In addition, if 

the course is pre-programmed, is the vehicle 

considered intelligent?   

However, multiple attempts are 

encouraged at the competition and if the vehicle learns the course on its own, through 

trial and error, it is considered intelligent.  This work develops and tests a control 

algorithm that allows the vehicle to acquire data about the course during each run and use 

that information during each subsequent run.  As the vehicle “learns” the course, it will 

develop smoother runs that are more efficient and allow it to generally explore further 
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with each attempt.  The number of attempts before completely mapping a course is 

expected to vary depending on the course difficulty. 

 

1.3  Previous Work 

 

Graduate and Undergraduate students have been developing autonomous vehicles 

at Virginia Tech for the past five years.  Although autonomous vehicles have many 

applications, these students have primarily focused on developing vehicles for entry in 

the annual IGVC.  A table, detailing these vehicle’s and their successes, is found in 

Conner’s thesis [Conner, 2000a].  However, Virginia Tech’s most recent entries are not 

included and so the vehicles of the 1999/2000 academic year are shown here.   

 

 

Vehicle Name Chassis Computation Design Awards Dynamic Results 

Artemis 3-wheeled 
differentially 
driven 

Pentium Laptop 
Bisection Method 
Laser Range 
Finder 
Camera 

5th Place 1st Place Obstacle 
1st Place Debris 
1st Place Follow the 
Leader 

Navigator 3-wheeled 
differentially 
driven 

Duel Pentium III 
Industrial PLC 
VFH 
Laser Range 
Finder 
Dual Cameras  

1st Place 5th Place Obstacle 
3rd Place Debris 
2nd Place Follow the 
Leader 

 

As shown in Table 1.1, Artemis swept all three of the dynamic events.  Artemis 

was originally developed in 1998 and entered the competition under the name Nevel.  In 

1999, Nevel was redesigned and renamed Artemis.  Then in 2000 effort was put into the 

software and navigation algorithm.  The key to its success is its simple and well-tested 

mechanical, electrical, and software design. This has been Virginia Tech’s most 

successful entry.   

Each year during its five-year tenure entering vehicles in the IGVC, Virginia Tech 

has won first place in the design competition.  In 2000 the award went to Navigator.  

Navigator implements a modular design in the mechanical, assembly, computing 

Table 1.1  Virginia Tech entries in the 2000 Intelligent Ground Vehicle Competition.  
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hardware, and also in the navigation software.  From a design perspective, this offers 

advantages in that it can be easily maintained and upgraded.  Figure 1.4 shows some of 

the Autonomous Vehicle Team (AVT) members posing with Navigator and Artemis at 

the 2000 IGVC in Orlando, Fl.  Note, the banner displays the original competition name 

“International Unmanned Ground Robotics Competition” instead of the new competition 

name “Intelligent Ground Vehicle Competition.”  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Both Artemis and Navigator traverse the course using navigation modules that are 

based on local map information.  Artemis uses a simplified Voronoi method in which it 

locates the brightest pixel on each side of the camera image and chooses a navigation 

point that is the bisector of these two pixels.  This navigation scheme assumes that the 

white course boundary lines will be the brightest pixels.  If an obstacle falls in the path of 

the navigation point, the Laser Range Finder (LRF) detects it and the obstacle is avoided 

using subsumption.  Voronoi diagrams and subsumption control architectures will be 

explained in more depth in chapter two.  Navigator uses a local obstacle avoidance 

Figure 1.4  Some team members posing with Navigator (left) and 
         Artemis (right) at the 2000 IGVC. 
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module known as the Vector Field Histogram (VFH).  Line position data is obtained, 

using duel cameras, and converted to polar coordinates.  Further, obstacle position data is 

captured in polar coordinates directly using the (LRF).  These data sets are fused and 

presented in a VFH, which is a convenient method of representing the obstacles and lines 

in front of the vehicle.  Velocity and heading commands are then issued based on the 

VFH.  This navigation module sends the vehicle in the direction of low obstacle density.  

The VHF local obstacle avoidance method is discussed at length in chapters three and 

four.   

Since both vehicles navigate based on local sensor data, they have no global 

representation of their environment.  The main disadvantage of this is that these vehicles 

have no preference as to which way they are traversing the course.  In other words, the 

navigation modules can be working perfectly while the vehicles are going the wrong 

direction.  Another disadvantage is that the vehicles have to move slowly, first sensing a 

necessary turn then executing it.  If the vehicles had a global map, they could look ahead 

and initiate turns early thus giving a smoother motion profile and higher velocity through 

out the turn.   

 

1.4  Objective 

 

This thesis starts with the proven base mechanical platform vehicle, Navigator, 

and addresses higher-level artificial intelligence issues.  Specifically, a global path-

planning module is added to the existing local obstacle avoidance module known as the 

VFH.  However, an extra level of complexity exists since the vehicle has no prior 

knowledge of the global environment.  In other words, the global path-planning module 

cannot use an initialized global map.  Hence, Navigator must first explore, and acquire 

data in order to map the environment.  The quality of this map will increase with each 

successive exploratory run.  As the global map quality increases, the global path 

planners’ navigation commands are given a higher weighting relative to the VFH 

navigation commands.  In effect, during early exploratory runs navigation decisions are 

made almost solely by the VFH and as the map quality increases the navigation decisions 

shift to being based almost solely on the global path planning module.  An analogy to this 
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is a person who moves to a new town with a new job and a new house.  At first, the 

person will inspect every turn, and probably make a few mistakes, on the path from 

his/her new home to his/her new job, but after going to and from work every day for a 

few weeks the person will surely know the route and put relatively little thought into each 

individual turn. 

 

1.5  Thesis Outline 

 

This thesis presents the development and implementation of the aforementioned 

objective.  Chapter two begins by defining artificial intelligence (AI) coupled with a brief 

discussion of AI verse natural intelligence.  It then goes on to survey many AI areas and 

give their relevance to navigation.  Chapter two then proceeds to discuss navigation 

control architectures including behavioral-based, sense-model-act, and hybrid systems.  

Chapter two finishes with a discussion of machine world representation methods, i.e. map 

techniques.  Chapter three lays out the electrical and mechanical design of the platform 

vehicle, Navigator.  This includes the changes made during 2000/2001 academic year.  

This chapter ends with the development of the vehicle kinematic equations.  Chapter four 

describes the global map building technique and the architecture of the global path-

planning module.  This chapter gives some results of simulating this method under 

perfect conditions and then goes on to simulate the effects of systematic dead reckoning 

errors.  Chapter five begins by quantifying Navigator’s dead reckoning error using a 

procedure known as the UMBmark test.  Next, a calibration tool is developed for use in 

optimizing the vehicle parameters such that the systematic dead reckoning errors are 

minimized.  Last, chapter five gives the results showing increased dead reckoning 

accuracy using this calibration tool.  Finally, chapter six presents actual implementation 

results on a real course.  A comparison is made between the theoretical and actual results, 

and then chapter six finishes with conclusions and future recommendations. 
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Chapter 2 

 

 

Literature Review 

 
Can computers think?  “Exactly what the computer provides is the ability not to 

be rigid and unthinking but, rather, to behave conditionally.  That is what it means to 

apply knowledge to action: It means to let the action taken reflect knowledge of the 

situation, to be sometimes this way, sometimes that, as appropriate [AAAI, 2000].”  If 

intelligence is simply complex conditional behaviors, then it follows that the complexity 

of the behaviors computers exhibit should increase at the same rate as computing power 

and memory increases.  Today a hand held computer has as much computing power as a 

computer that once filled an entire room.  Yet, advances in artificial intelligence (AI) 

research have shown relatively little progress.  In fact, Raj Reddy was forced to defend 

AI research in his 1988 American Association of Artificial Intelligence (AAAI) 

Presidential Address, because after twenty-five years of sustained support, Defense 

Advanced Research Projects Agency (DARPA) program managers were asking the tough 

questions [Reddy, 1988]: 

 

-What are the major accomplishments in the field? 

-How can we tell whether you are succeeding or failing? 

-What breakthroughs might be possible over the next decade? 

-How much money will it take? 

-What impact will it have? 

-How can you effect technology transfer of promising results to industry?  

 

Reddy makes a good case for AI in his address, but this example gives reveals 

that advances in AI have not been as evident nor as rapid as advances in computing 

resources.   

Computers simply do what humans instruct or program them to do.  As 

technology improves, computers can perform more of these instructions at a faster rate.  
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In effect the computers are doing their job well, so perhaps rather than asking the 

question, “Do computers think?” we should ask the question, “Are humans intelligent 

enough to understand intelligence?”  In his book published in 1985, Jackson states that 

understanding intelligence remains an unsolved challenge to our intelligence [Jackson, 

1985].  Today, despite much effort, the question of intelligence is still unanswered.  

Massachusetts Institute of Technology has an AI lab whose efforts are focused directly 

on this goal. Their aims are two-fold: to understand human intelligence at all levels, 

including reasoning, perception, language, development, learning, and social levels, and 

to build useful artifacts based on intelligence [MIT AI, 2000].  However, regardless of 

whether or not machines can ever be truly intelligent, AI research has shown that even 

limited forms of machine intelligence have great utility [Jackson, 1985].  In particular, AI 

research has had a positive impact in the area of autonomous vehicle navigation. 

 

2.1 Artificial Intelligence 

 

Definition - Merriam-Webster gives two definitions of artificial intelligence [Merriam-

Webster, 2000]:  

 

1)  The capability of a machine to imitate intelligent human behavior. 

2) A branch of computer science dealing with the simulation of intelligent 

behavior in computers.   

 

This leaves room for individual interpretation and ambiguous answers for what 

exactly AI really is.  This leads to much debate on what constitutes an intelligent 

machine.  For instance, is a computer that is programmed to distinguish between a circle 

and a square intelligent?  The answer is maybe.  It depends on how it does it.  If it could 

use the same algorithm it uses to detect the circle and square to detect a triangle, then yes, 

it is considered AI.  However, if it is choosing based on matching a preprogrammed 

circle and square, and would be stumped by any other shape, then it is not considered AI.  

So one test of a true AI solution is to ask, “Is it scaleable to larger problems and is it 

adaptive to variations of the problem [Schank, 1991]?”   This still does not concretely 
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address the issue of what really constitutes AI.  Shank gives four prevailing viewpoints of 

what AI means: 

 

1) AI means magic bullets. 

2) AI means inference engines. 

3) AI means the “gee whiz” view. 

4) AI means having a machine learn. 

 

The magic bullet view asserts that intelligence is difficult to put into a machine 

because it is knowledge dependant.  Since the knowledge-acquisition process is complex, 

one way to address it is to let the machine be computationally efficient such that it can 

connect things without having to explicitly represent anything [Schank, 1991].   This is 

the basis for connectionism.  Consider Figure 2.1 for a simple example of a machine that 

could be considered intelligent based on connectionism.  This vehicle is equipped with 

two heat sensing devices that positively excite the actuators at a rate proportional to the 

amount of heat to which they are exposed.  It is easily seen that the vehicle can be 

designed to be either attracted to or repelled from the heat source based on the 

connections between the sensors and the actuators.  From the perspective of the casual 

observer, this machine is intelligent and seems to either “fear” the heat or exhibit 

“aggression” toward the heat. Obviously, the complexity of the behaviors is increased 

with an increase in connections between senses and actions.  This method of AI has been 

used extensively in the field of robotics. 

 

 

 

 

 

 

 

 

 



  2001 Philip R. Kedrowski 13 

Figure 2.1  Intelligent vehicle behaviors through  
         connectionism  a) fear  b)  aggression 
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The inference engine is a key element in the success of expert systems.  Expert 

systems are a development in which the AI scientists would study experts in a field then 

put this expert knowledge into the computer in a form that it could follow.  Once 

initialized with a base of knowledge in a particular area, these expert systems can make 

some interesting and useful decisions [Schank, 1991].  Some examples of the broad uses 

for expert systems include [Reddy, 1988]: 

 

• Kodak has used an Injection Molding Advisor to diagnose faults and suggest 

repairs for plastic injection molding mechanisms. 

• American Express uses a Credit Authorization System to authorize and screen 

credit requests. 

• Federal Express uses an Inventory Control Expert to decide whether or not to 

store spares.  

 

Some critics would argue that although these expert systems are impressive and 

useful, they are not AI.  They take the standpoint that the real AI in these systems lies in 

the ability of the AI scientist to find out what the experts know and to represent the 

information in some reasonable way.  The counter argument to this is that the AI exists in 
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the computers’ ability to infer the next set of knowledge from the previous set.  In other 

words, the AI is in the inference engine of the expert system, not in developing the 

knowledge base of the expert system [Schank, 1991]. 

The gee whiz view maintains that for a particular task, if no machine ever did it 

before, it must be AI.  An example of this is chess playing programs, these were 

considered AI years ago, but today most would say that they are not.  They were AI as 

long as it was unclear how they worked, but once this became clear, it looked a lot more 

like software engineering than AI.  This gee whiz phenomena stems from peoples 

eagerness to confuse getting a machine to do something intelligent with getting it to be a 

model of human intelligence.   

The fourth view that Shank discusses is the one he personally espouses.  It is the 

view that AI entails learning.  This is to say that the machines’ intelligence should get 

better over time.  He maintains that no system that is static, that fails to change as a result 

of its experiences, looks smart.   The problem with this, he states, is that according to the 

definition, no one has actually implemented AI [Shank, 1991].   

Depending on your perspective, the assertion that no AI has actually been 

accomplished is either disheartening or exciting.  It is disheartening if one believes that 

much work has proven fruitless, but it is exciting when considering the proverbial “brass 

ring” is still out there waiting to be grasped.  However, less stringent viewpoints exist 

concerning the issue of AI.  Raj Reddy gives a short list, provided by Alan Newell, of 

intelligent system characteristics.  It states an intelligent system must [Reddy, 1988]: 

 

• operate in real time; 

• exploit vast amounts of knowledge; 

• tolerate error-full, unexpected and possibly unknown input; 

• use symbols and abstractions; 

• communicate using natural language; 

• learn from the environment; and 

• exhibit adaptive goal oriented behavior. 
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The degree to which an intelligent machine exhibits the above characteristics still 

lends itself to much ambiguity and individual interpretation, depending on the machines 

application.  Regardless of whether or not AI has been or ever will be truly accomplished, 

many useful advances have been achieved in its pursuit.  This may be an area in which 

success lies in the journey and not the destination.   

 

Artificial Versus Natural Intelligence – A classic experiment to determine whether 

a machine exhibits intelligence is the Turing Test.  This is a test in which there is a 

machine in one room and a human in another, they are given communication through a 

screen and keyboard to a person in a third room.  If this third party is unable to 

distinguish between the human and the machine, then the machine is intelligent.  This test 

has not yet been seriously attempted, since no machine has displayed enough intelligence 

to perform well [Jackson, 1985].  However, this underlying fascination with replicating 

human intelligence on a machine leads to some discussion comparing the two. 

When comparing human and machine intelligence, one must first inspect the 

hardware implemented in each.  First let us inspect the modern Personal  Computer (PC), 

Figure 2.2.  The PC has two main modes of memory storage.  Long term memory is 

stored on the hard drive and the short-term memory is in the Random Access Memory 

(RAM).  Note, the PC also implements a third type of memory called Read Only Memory 

(ROM).  ROM, located permanently on the motherboard, contains boot up information 

and initializes contact between the hard drive and the RAM.  When working on a 

computer, all things seen and done immediately are stored in the RAM.  In order to store 

information permanently, it must be transferred to the hard drive.  If the computer looses 

power before the information is transferred to the hard drive, the information will be lost.  

Further, if the RAM is full, information must be stored temporarily on the hard drive in 

order to make room for new information.  The processor serves as the “middle man” 

between the RAM and the hard drive.  The higher the processor speed, the faster 

information can be processed and transferred between the hard drive and the RAM.  

Some specialized or industrial computers use two or more processors in parallel.  As 

shown in chapter three, the Navigator vehicle implements two processors.  Real time 

calculation speed is limited by the processor speed and amount of RAM.  Permanent 
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memory storage is limited by the size of the hard drive.  The PC processes information in 

the form of 5-volt electrical pulses, a group of eight of these binary pulses is referred to 

as a byte.  Today, for around $2,000 one can purchase a PC with a 1,000MHz processor, 

128megabytes of RAM, and 40gigabytes of hard drive space [Gateway, 2000]. 

 

 

 

 

 

 

 

For comparison, it has been discovered experimentally that a human has three 

types of memory.  The first one that will be discussed is Sensory Information Storage 

(SIS).  SIS occurs in tenths of a second, it is the after image one sees when rapidly 

closing his or her eyes.  The second type of memory is Short Term Memory (STM).  This 

is somewhat analogous to the RAM in a PC.  STM lasts for about 30 seconds and the 

information stored there is rapidly replaced when a subject is presented with new 

information.  Finally, Long Term Memory (LTM) can last up to the duration of a humans 

life.  Observations have been made leading to the idea that STM traces are transient 

electric events that eventually consolidate into LTM through chemical and biological 

changes in the brain [Jackson, 1985].   

 
HARD 
DRIVE 

 
PROCESSOR 

 
RAM 

Figure 2.2  Simplified block diagram of main computing components 
         used in a modern PC. 
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Figure 2.3  Typical string of neurons  
         [Jubak, 1992]. 

The nerve cell or neuron is the 

fundamental building block of the 

brain, Figure 2.3. The human brain 

contains approximately 12 billion 

neurons.  Figure 2.3 shows how the 

neurons connect to one another.  The 

dendrites serve as the input signal 

carriers and the axonal branches serve 

as the output signal carriers.  Each 

neuron has between 5,600 and 60,000 

dendritic-axonal connections.  These 

connections are made through what is 

known as the synapse, by process of 

synapses.  Electrical impulses 

transmitted at the synapses add or 

subtract from the magnitude of the 

voltage.  When the magnitude reaches 

approximately 10 millivolts, an 

impulse is fired down the neuron’s 

axon.  This is somewhat different from 

the binary “on-off” method by which 

the computer transmits information.  

Note, the myelin sheath is a layer of fat surrounding the longer axons, Figure 2.3.  It 

serves to increase conduction in the axon and insulate it from neighboring electrical 

activity [Jackson, 1985]. 

The power of the brain, it seems, lies not in vast amounts of memory storage, but 

in its’ ability to process information through trillions of parallel connections.  Assuming 

an average number (27,200) of dendritic-axonal connections per neuron pair, there is 

approximately 160 trillion connections in the average human brain.  Knowing that the 

brain operates at around 200 Hz (note, this is small compared to a 1,000MHz processor 

of a PC) and approximately 1% of the dendritic-axonal connections are active at any 
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given time, the brain can perform on the order of 300 trillion operations per second 

[Reddy, 1988]. 

Although some analogies can be drawn between the functions of the computer 

and the brain, much still needs to be learned about the operations of the brain.  One 

distinction to be noted is that the power of the brain is not its processor speed but its 

parallel processing abilities.  Thus, fundamentally the computer and brain don’t operate 

similarly and therefore have differing strengths and weaknesses.  For example, the 

average human brain can function faster than 1,000 supercomputers when processing 

vision and language, yet a 4 bit microprocessor can outperform the average brain in 

multiplication.  This suggests that artificial intelligence, if ever achieved, will have 

different attributes than natural intelligence [Reddy, 1988]. 

The next debate that arises when comparing artificial and natural intelligence is 

concerning philosophical issues involving conscious thought, the conscience, and the 

soul.  Is it possible for a machine to decipher right from wrong?  Will intelligent 

machines try to better their own lives?  Can they experience emotions such as love, hate, 

fear, anger, forgiveness, and compassion?  This debate leads to discussions concerning 

the existence of god and the soul.  This thesis will not delve too deeply into the subject.  

However, it should be noted that this author, in all of his research, has never seen any 

indication that machines will ever be capable of achieving conscious thought, a 

conscience, or a soul.  They are, in fact, machines and we as the designers of these 

machines are not gods.  Conners’ work presents an eloquently written section concerning 

philosophical foundations on this subject [Conner, 2000a].   

 

2.2 AI Sub-fields and Their Relevance to Navigation 

 

Many different approaches have been used in the pursuit of artificial intelligence.  

Although the general goal of all of these approaches is to unlock the secret of human 

intelligence, the differing techniques tend to be best suited for differing applications.  

This thesis is concerned with the problem of navigating an autonomous vehicle, so this 

section will focus on the areas of AI research that have proven useful, to varying degrees, 

for this application.  These sub-fields include problem solving, pattern perception, 
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parallel processing/multi-agent systems, and fuzzy logic.  In no way does this survey 

make the claim that navigation research is limited to these areas of AI.  Further, no claims 

are made that these areas have been exhausted when it comes to navigation. 

 

Problem Solving - When describing problem solving techniques, one must start by 

explaining the situation space.  The situation space, also referred to as the state space, of 

a problem consists of the initial state, all other possible states, a set of possible actions to 

get through those states, and the final goal state [Jackson, 1985].  A simplified example 

of this is the state space of a two-coin problem, as illustrated in Figure 2.4. These include 

the initial state and goal state where both coins are heads and tails respectively, the 

operators A (first coin is flipped) and B (second coin is flipped) and finally the other two 

possible states in which one coin is heads and the other is tails.     

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 gives an example of a finite state space problem.  Many everyday 

problems, however, have an infinite state space.  In the above example both solution 

paths have two steps, but larger problems have many solution paths, each varying in the 

number of steps required to obtain a solution.  The goal in problem solving then becomes 

choosing the shortest, or optimal, path to the solution.  This leads to the need for 

implementing search methods. 

Start 
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Figure 2.4  State space of two coin problem. 
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An example that is more relevant to navigation is the traveling salesman problem.  

In this problem, a salesman needs to visit a number of cities and return home, but he 

wants to do it in the shortest distance.  Figure 2.5a shows a map of five cities and the 

distance between each.  Figure 2.5b shows the corresponding search tree for the traveling 

salesman who starts at city A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Note in Figure 2.5b, all of the path options are tried until the shortest, or lowest 

cost, path is discovered.  This then becomes the solution to the problem and the salesman 

will visit the cities in that order.  Search trees can be constructed by two methods 

breadth-first searching and depth-first searching.  In order to understand these methods, 

node expansion must first be described.  Considering each city a node, node expansion 

involves looking at all possible paths from that node.  In the example above, node A has 

an expansion of four paths.  For generality, these paths are refered to as arcs and each arc 

has a cost associated with it.  In this case the cost is the distance traveled.  Breadth-first 

searching is to check every arc cost before expanding the next set of nodes.  Deapth-first, 

A) B) 

Figure 2.5  A)  Map, B)  Search tree for traveling salesman [Nilsson,  
         1980]. 



  2001 Philip R. Kedrowski 21 

on the other hand, exhausts a particular path, or sequence of arcs, before moving to the 

next possible path.  Both methods terminate as soon as a solution is discovered [Nilsson, 

1980]. 

Solution searching by this method can get computationally combersome for more 

complex problems.  For this reason, heuristics are generally applied to help reduce the 

search.  Heuristics are task-dependant information that can vary with varying problems.  

An example of a heuristic rule for the traveling salesman problem is to allow the start city 

to be visited twice and all other cities visited only once.  A popular heuristic search 

method is the A* algorithm [Nilsson, 1980].   

The A* and variations of the A* method have been widely implemented in global 

path planning for autonomous vehicle navigation.  The A* search algorithm has proven 

useful for navigation in many mobile robot applications, however it poses two 

disadvanteges for the International Ground Vehicle Competition (IGVC).  It requires 

global map initialization and is computationally intensive. Variations of the A* algorithm 

have been developed that focus the search, lowering the computational burden, and allow 

for a low-resolution global map.  In these cases, the global map is updated by the local 

obstical avoidance module when the vehicle encounters obstacles.  While this is an 

improvement, these techniques all require, as a minimun,  the goal to be initialized using 

prior knowledge of the environment [Brumitt, 1992; Singh, 2000; Yahja, 1998; Stentz, 

1994, 1995, Stentz and Hebert, 1995; Ulrich, 2000]. 

 

Pattern Perception – Perception is a crucial element in successful robotic systems.  

Many different sensors exist for acquiring data about the environment.   Examples of 

these are cameras, tactile sensors, proximity sensors, range finders, and microphones.  

Once environmental data is obtained, it is necessary to derive useful information from it.  

In systems that utilize multiple sensors, it is necessary to reduce the data from each into a 

compatible format.  This process is known as sensor fusion [Conner, 2000a].  Pattern 

perception is the ability of a machine to obtain and recognize patterns in this data.  

Typically, the initial data or “environmental description” is very complex.  Contrary to 

intuition, complex descriptions are of little utility in allowing a machine to understand its 

environment.  It is more useful to identify a property (form, design, or regularity) of the 
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complex description.  If the complex description exhibits such a property, it is known as a 

pattern.  Patterns can be perceived in either physical or abstract things, thus it is common 

to hear of “visual patterns,” “audio patterns,” “symbol patterns,” “spatial patterns,” and 

“reasoning patterns [Jackson, 1985].” 

Although much AI work has been done in audio, symbol, and reasoning pattern 

recognition, these are less valuable for vehicle navigation than recognizing visual and 

spatial patterns.  The field of pattern perception is extremely broad, hence the problem 

will be broken into smaller problems that are more basic.  Jackson gives four areas of 

concern that are general to all areas of perception [Jackson, 1985]: 

 

Classification - Given an object and a set of pattern rules, determine which 

pattern rules are satisfied by the object. 

 

Matching -  Given a pattern rule and a collection of objects, find those 

objects which satisfy the pattern rule. 

 

Description or Articulation - Given and object, find a description for it in terms of 

pattern rules that are satisfied by the parts of the object, or 

by the object itself. 

 

Learning -  Given a collection of objects, some of which do and some 

of which do not belong to a given pattern, determine a 

pattern rule for those that do belong to the given pattern.  

 

A pattern rule is a criterion specifying a certain property of the object that is to be 

perceived.  An example of a visual pattern rule is to say that all aluminum soda cans have 

at least two parallel straight edges.  Thus any pattern that does not have at least two 

parallel straight edges is not an aluminum can.   Note, this does not mean that every 

pattern that does have at least two parallel edges is an aluminum can, it could be a door or 

a computer screen.  This simple example gives light to the heuristic complexity of 
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developing pattern rules.  In many cases, the most elegant solution requires the fewest 

pattern rules. 

The AI field of pattern perception is extremely vast and the applications are 

seemingly limitless.  For this reason, a complete survey is not attempted here.  However, 

it is relevant to consider a couple of examples specific to navigation.  The first is an 

extremely complex work developed at MIT that used only a vision system to navigate in 

an indoor office environment.  This system used four cameras and implemented forward 

and rotational motion vision rules to locate doors and rooms for the purpose of 

topological map building.  This system was robust enough to develop these maps without 

the use of odometry or trajectory integration [Sarachik, 1989].   

A second example of perception is the method by which the Virginia Tech 

autonomous vehicles Artemis and Navigator detect three-dimensional spatial objects for 

use in navigation.   These vehicles use a laser range finder to acquire position data of 

obstacles.  The laser range finder provides this data in polar coordinates.  The laser range 

finder has a range of 20 meters.  If no obstacles are present, the data is continuous at 20 

meters for every angle.  The presence of an obstacle will yield a discontinuity in the 

range data.  Thus, detecting the start and finish of an obstacle involves two pattern rules.  

One, if the derivative value at any angle exceeds a negative threshold, then that is the 

leading edge of an object.  Two, if the derivative value at any angle exceeds a positive 

threshold, then that is the trailing edge of an object.  This elegant set of pattern rules, 

based on the derivative of the position data, allows easy distinction between individual 

objects [Conner, 2000a].  This robust method of perception helped Artemis win first 

place in the follow-the-leader event at the 1999 and 2000 IGVC’s and Navigator to take 

second place in that event in 2000.    

 

Parallel Processing and Multi-Agent Systems – The concept of parallelism deals 

with coexistence in time.  Parallel actions take on many different abstractions.  For 

instance, acting in parallel could involve a single agent doing more than one thing at a 

time or multiple identical agents doing the same or different things at the same time.  A 

survey of parallelism in computing is presented below.  It deals with issues related to 
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robot navigation, starting with simple parallel processing systems and building up to 

complicated multi-agent systems. 

Although some actions actually require accomplishment of more than one task at 

a time, the fundamental goal of parallel processing is to increase the response time of 

actions taken by computers.  First, it is relevant to introduce the concept of parallel 

processing in a single processor.  Processors have traditionally been perceived to have 

two fundamental cycles of operation, the “I” cycle and the “E” cycle.  The I cycle is 

when an instruction is acquired and stabilized in the processor and the E cycle is when 

the particular function is actually performed.  It was discovered that the I cycle is only 

truly busy approximately one fourth of the time.  This is a nontrivial fraction of time so 

computer scientists developed methods to utilize the I cycle during this idle time.  Thus 

parallel processing was implemented in a single processor in order to speed up the 

machine without increasing its raw power [Lorin, 1972]. 

The next level of abstraction is actually implementing two or more processors on 

one machine.  This increases the input and output I/O rate of senses and action.  For 

example, Navigator implements two 450MHz processors in parallel.  This allows it to 

capture, process, and make navigation decisions based on two charge coupled device 

(CCD) camera images at the same time [Conner, 2000a].  Previously, one camera image 

would have been processed first and then the other, or the images would be processed at 

the same rate, by toggling between the two.  Note, the second method gives the illusion 

of parallel processing but requires the same, or more, time than the first.  While 

increasing the number of parallel processors does increase the speed of the machine, there 

is a point of diminishing return, Figure 2.6.   
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A third level of parallel processing is the implementation of multiple computer 

systems in parallel.  A multi-computer system is a connection of two or more computer 

systems, each of which was designed primarily to operate as a stand alone system, but 

have been interfaced so as to allow some coordination of activities [Lorin, 1972].  The 

power of these systems is evident in the mass amounts of information that can be 

processed and transferred from place to place using the internet.  The primary limiting 

factor of these systems is the transfer rate of the connecting lines between computers.  

This has lead to a revolutionary change in infrastructure converting from traditional 

telephone lines to fiber optic cables.  Fiber optic cables allow information to be 

transferred at the speed of light.  Although many advances are being made with hard line 

computer connections, much work is also being done with wireless communication. 

Wireless communication allows parallelism to evolve into multi-agent 

autonomous robotic systems.  Further, the power of parallelism allows the computing 

power of each robot to decrease with an increase in the number of total robots.  In effect, 

many dumb robots may be able to accomplish the same tasks as few smart robots.  

Research in these multi-agent robot systems covers topics ranging from biomimicry to 

autonomous UXO detection [Fleischer, 1999; Gage, 1995].  Although conceptually vast 

Figure 2.6  Three studies showing the increased computing speed in 
         relation to increasing the number of processors used [Culler, 1999]. 
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numbers of simple robots will yield positive results, few actual working systems are in 

existence.  These systems are generally plagued with constant mechanical maintenance 

issues, and problems with synchronizing the communication signals [Gage, 1993].  

However, smaller numbers of autonomous agents operating in parallel shows 

promising future results.  Virginia Tech will be implementing a wireless ethernet hub in 

order to allow communication between Navigator and their newest autonomous vehicle 

(currently in development).  This communication, coupled with the work done in this 

thesis, will allow the robots to help each other build a global map of their environment.  

Further, this ethernet connection will allow off-board programming and real time 

observation of the vehicles during competition.  Via the internet, it will be possible to 

view the course through the vehicle sensors from anywhere in the world. 

 

Fuzzy Logic – Fuzzy logic based systems exhibit tolerance for imprecision and 

uncertainty in order to achieve tractability and robustness in control [Jamshidi, 1993].  

Fuzzy logic is built on the premise that things are usually not simply true or false, many 

things fall in the middle, being partially true or partially false.  A simple real world 

example of this is water in a shower faucet.  It could be very cold, cold, warm, hot, or 

very hot each of these having a different temperature range.  The process of converting 

crisp knowledge (as would be obtained from a heat sensor in this case) into linguistic 

fuzzy knowledge is called fuzzification.  During fuzzification, groups of mathematical 

formulations that represent the knowledge, called membership functions, are developed.  

These groups of membership functions are called fuzzy sets, the fuzzy set for the shower 

faucet example is shown in Figure 2.7. 
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These sets are then used as the basis for a set of “IF-THEN” rules in an inference 

engine.  These rules are the result of human operators knowledge.  An example of these 

rules is as follows: 

 

IF the temperature is very hot, 

 THEN close the hot water valve a lot. 

 

Notice, the output of the inference engine is also fuzzy, thus it must be 

deffuzzified.  Deffuzzification is the process of converting the fuzzy command “close the 

hot water valve a lot” to a crisp useful command, for example, the armature voltage of 

the actuator controlling the hot water valve.  Typically, a fuzzy control system is 

implemented as shown in Figure 2.8.  However, an alternative way of implementing 

fuzzy control is to use a standard crisp logic controller such as a PID controller, and then 

add fuzzy IF-THEN rules to tune the gains Kp, Ki, and Kd [Jamshidi, 1993].  
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Figure 2.7  Example fuzzy set for determining temperature in a shower 
         faucet. 
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Navigation of an autonomous vehicle in an unstructured environment involves 

ambiguities and imprecision.  These range from issues dealing with perception to issues 

dealing with navigation commands, i.e. when the camera picks up an image it could be a 

line, a partial line, or not a line at all depending on the intensity of the pixels.  Further, if 

it is a line, is could be either in the path, partially in the path, or out of the path of the 

vehicle.  These are just two, of many, examples where a fuzzy controller might be a 

useful solution for issues dealing with autonomous vehicle navigation.  Recent research 

has been done using a fuzzy controller to supplement dead reckoning on a small tracked 

vehicle that is navigating in a forested environment.  When errors in dead reckoning 

occur (due to wheel slippage, etc.), the fuzzy controller uses feedback through ultrasonic 

range finding sensors to determine just how far away from the desired path the vehicle 

has strayed.  It then outputs vehicle heading correction commands.  Computer 

simulations of this system show promising results [Carlson, 2000]. 
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Figure 2.8  Block diagram for a typical fuzzy control system. 
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2.3 Navigation Control Architectures 

 

“There has long been a dichotomy in styles used in designing and implementing 

robots whose task is to navigate about in the real world [Brooks, 1997].” The first of 

these styles was implemented in 1950/51 when Walter developed simple robots that used 

reflex actions and simple associative learning.  This method saw little use for many years 

until Brooks reintroduced it in the form of the subsumption control architecture [Brooks, 

1985].  This style is commonly known as behavioral-based robotics.  The second style is 

more traditional to AI.  It consists of taking perceptual inputs (from various types of 

sensors), building a world model, proving theorems about what must be true in that 

model, assessing the robots goals, and producing long term plans to achieve those goals.  

For this method Brooks coins the name good old fashioned artificial intelligence 

(GOFAI) [Brooks, 1997].  In recent years, a third style, hybrid architectures, has emerged 

from this dichotomy.  Hybrid methods, which are much less defined than the others, 

strive to take the best most effective qualities from each and combine them in order to 

make successful robotic systems.   

 

Behavioral-Based Control Architectures – Motivation for behavioral-based 

robotics stems from the notion that building a world model from sensor inputs in order to 

accomplish tasks is unnecessary.  Instead, the robot only needs to process aspects of the 

world that are relevant to its task [Brooks, 1990].  Imagine an autonomous vehicle 

maneuvering through a maze for example.  In order to achieve success, it need not build a 

complete map of the maze; it could simply follow one wall to the end.  Using 

subsumption, this complex task could be achieved by a simple robot with one tactile 

sensor.  The behaviors are developed in levels, in this case starting at the base with the 

simple behavior of moving, then (once contact with a wall is achieved) maintaining 

contact with the wall while moving, possibly a third level would be added to allow back 

tracking if contact is disrupted, Figure 2.9.  It is noted that each of these behaviors is 

simple when taken individually, but taken as a whole, the vehicle exhibits a complex 

behavior, seemingly making intelligent decisions about how to interact with its 
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environment and find its way out of the maze.  Further, these behaviors are modular, 

having very little cross communication, allowing them to be added and removed as 

needed.   

 

 

 

 

 

 

 

 

 

 

 

 

 

This method is known as subsumption because each higher-level behavior, or 

competence, includes the lower levels as a subset.  Further, higher levels subsume the 

lower levels by suppressing their output.  Each new level adds to the overall competence 

of the robot.  As a designer, this is advantageous because each level can be completely 

debugged and tested before moving on to the next level [Brooks, 1985].  Another 

characteristic of subsumption architectures is that a short connection between perception 

and action is maintained.  Further, designers using the subsumption architecture should 

minimize interaction between layers [Brooks, 1997]. 

A chief characteristic found in systems using this type of control architecture is 

emergent behaviors.  These behaviors are never explicitly designed into the robot, they 

simply “emerge” from complex interactions between the multitude of behaviors, which 

are designed into the robot, and the environment in which the robot exists.  However, the 

designer is usually aware of the emergent behavior, or specifically designs to induce an 

emergent behavior.  For example, successful negotiation of the maze is an emergent 

behavior of the system mentioned above.  However, emergent behaviors can be 

Actuators 

Back Tracking 

Maintaining Contact 

Moving or Wandering 

Sensors 

Figure 2.9  Simple subsumption control architecture for a robot traversing 
         a maze [adapted from Brooks, 1985]. 



  2001 Philip R. Kedrowski 31 

unpredictable and sometimes detrimental to the process of accomplishing a particular 

goal.  These emergent behaviors are often credited with giving the robot its’ 

“intelligence.” 

Since it requires no internal model of the environment, the behavioral-based 

approach to robotics offers the advantage of extremely quick processing [Haynie, 1998].  

Thus, it is ideally suited to allow the real time computing that is necessary in mobile 

robotics.  Virginia Tech has used this method for navigation of autonomous ground 

vehicles in the past [Johnson, 1996].  Although many successes have been achieved with 

this type of control architecture, two main problems stand out [Brooks, 1990]: 

 

• It is not known how well it will scale.  There exists nothing like a Turing 

equivalence theorem that states, at least in principle, whether these schemes 

can be used to accomplish anything that may be desired of them. 

• There is no analytic tools for understanding in advance what sort of conflicts 

and other unexpected interactions might arise from the ways behaviors are 

combined using these methodologies.  

 

These seem to be the main hurdles in allowing behavioral-based systems to 

evolve from performing tasks equal to those of simple insects to performing the tasks of 

more complex beings.   

 

GOFAI Control Architectures – Good old fashioned artificial intelligence, as Brooks 

calls it, shows potential for accomplishing more complex tasks.  Researchers in the 

Robotics Institute at Carnegie Mellon University used it to successfully navigate a 

vehicle across the country [Brumitt, 1992].  At the Stanford Research Institute AI Center, 

a robot named Shakey was developed that could move physical objects around a room 

using traditional AI techniques [Nilsson, 1984].  The Autonomous Vehicle team at 

Virginia Tech used AI, without planning, in the Navigator to negotiate the obstacle 

course at the 2000 IGVC [Conner, 2000a].  Although all of these examples vary in their 

individual sensing and modeling methodology, they are similarly GOFAI control 

architectures because they use the sense-model-plan-act framework.  Figure 2.10 shows a 
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linear decomposition of the functional modules used in this type of mobile robot control 

system. 
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Both behavioral based and GOFAI robotic systems typically use many different 

types of sensors, i.e. tactile sensors, cameras, range finders, etc.  However, behavioral 

based robots directly link each sensor to an action while GOFAI robots fuse the varying 

sensor data in order to develop some sort of world model.  This world model is then used 

in reasoning (to varying degrees) and planning an action.  Finally, the action is executed.  

Systems that implement the GOFAI control architecture are plagued with two main 

problems: 

 

• They are very sensitive to sensor noise and uncertainty in sensor 

measurements. 

• They are computationally cumbersome and require large expensive computers 

in order to execute tasks in real time. 

 

As sensors and computers increase in quality, these problems are becoming less 

of an issue.   

Sensors Actuators 

Figure 2.10  Linear decomposition of functional modules in a mobile robot  
           control system [adapted from Brooks, 1985].  Note, examples in  
           parenthesis are not exclusive, they are intended to give the reader 

a feel for the methods of executing each module. 
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Hybrid Control Architectures - As robotic technology progresses, there seems to be 

more and more of a “middle ground” in this dichotomy of thought concerning control 

architectures.  It is becoming evident that, in many cases, these two methods compliment 

each other.  For example, the behavioral-based approach offers the advantages of easy 

implementation and fast response.  This is perfect for a trap avoidance or trap escape 

module in an autonomous vehicle.  Conversely, GOFAI offers the advantage of 

understanding goals and recognizing task accomplishment.  In this case, the subsumption 

control architecture could be developed in which each level (behavior) is a bit more 

complex (intelligent) than those of the traditional subsumption control architectures.  

Figure 2.11 shows a possible intelligent subsumption architecture that researchers, 

including this author, at Virginia Tech are considering for implementation in an 

autonomous vehicle.  In this configuration, the base behavior includes the world model 

and overall goal representation that are characteristic of GOFAI systems.   However, this 

behavior can be subsumed by the next, more pertinent, behavior of local obstacle 

avoidance.  Notice, this second behavior includes a local world model but not overall 

goal representation.  The third behavior shown subsumes both of the first two, but is only 

active in the worst-case scenario, in which, the vehicle is trapped and must find a way to 

escape.   

 

 

 

 

 

 

 

 

 

 

 

 

Actuators 

Trap Detection and Escape 

Local Map Building and Obstacle 
Avoidance 

Global Map Building and Goal 
Recognition 

Sensors 

Figure 2.11  Intelligent subsumption control architecture for an autonomous  
           vehicle [adapted from Brooks, 1985]. 
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Brooks, the main proponent of purely behavioral-based robotics, made a shift 

towards a hybrid architecture in an attempt to build a cognitive humanoid robot.  This 

robot, named Cog, shown in Figure 2.12 uses a set of neural networks to correlate 

particular sounds and their locations 

with their visual location.  These 

networks started as a simple model of 

the cerebellum and, after eight hours 

of training, were able to compensate 

for the visual slip induced in the eyes 

by neck motion [Brooks, 1997]. 

Researchers at the University 

of Madrid in Spain used a hybrid 

approach that combined a local 

reactive navigation module with a  

topological map builder module that 

allowed overall goal recognition 

[Maravall, 2000].  This is an example 

of a hybrid control architecture that is 

similar to the one mentioned above, Figure 2.11.  It was implemented on a mobile robot 

called the Nomad-200 and proved successful in office-like environments [Maravall, 

2000]. 

 

2.4 World Representation 

  

As mentioned in chapter one, there is a distinction between local and global maps.  

Assuming the distinction is fully understood by the reader, this section will discuss 

common abstractions of maps and map building techniques for both local and global 

maps.  Typically, local maps are developed by the autonomous vehicle through sensing 

and perception of objects and landmarks then structuring that information in a manner 

that is understandable to the vehicle.  Global maps, however are usually initialized using 

prior knowledge of the world in which the vehicle is interacting [Brumitt, 1992; Singh, 

Figure 2.12  Cog, the humanoid robot  
developed at MIT [MIT AI, 
2000]. 
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2000; Yahja, 1998; Stentz, 1994, 1995, Stentz and Hebert, 1995; Ulrich, 2000].  In 

chapter four, this thesis directly addresses the issue of global map building without prior 

knowledge of the environment.  Global map initialization can be very low resolution, in 

extreme cases only giving the goal location.  In these situations, the global map can be 

updated and improved using local map information.  In order to do this successfully, the 

vehicle must be able to localize itself accurately in the global map.  The most widely used 

method of localization is odometry also known as dead reckoning.  This section will 

discuss the method of dead reckoning and a its shortcomings.  Global sensors such as 

Global Positioning Systems (GPS) can be used for localization, however these are low 

resolution (±10 meters global accuracy) and can provide poor results.  In recent years, 

probabilistic methods for localization have been implemented.  These methods use 

maximum-likelihood estimations of landmark and vehicle locations based on sensor 

readings [Thrun, 1997; 1998].   

Localization is important in systems that exploit local and global maps and much 

valuable work is being done in this area.  However, as mentioned above, this section will 

focus on the dead reckoning method of localization and then go on to discuss map types 

and techniques for map building.  Specifically it will survey free space maps, object-

oriented maps, and composite maps. 

 

Dead Reckoning – Dead reckoning, also referred to as odometry, is the most common 

method of determining a mobile robots’ location with respect to an external frame.  

Given the geometric and kinematic constraints, as well as, knowing the motor rotations 

(typically provided via encoder counts) it is easy to calculate the vehicles expected or 

present position.  Dead reckoning is widely used in both path planning and path 

recording.   

Although there has been much success in mobile robotics using dead reckoning, 

dead reckoning accuracy is subject to systematic and non-systematic errors.  Systematic 

errors are internal to the vehicle while non-systematic errors are external.  Table 2.1 

shows the most common systematic and non-systematic errors for a typical differential-

drive mobile robot [Borenstein and Feng, 1995].  Non-systematic errors are random and 

do not accumulate as the vehicle progresses.  Conversely, systematic errors such as 
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uneven wheel diameters will grow unbounded as the vehicle moves.  In extreme cases, 

these errors can accumulate such that the vehicle’s internal position estimate is totally 

wrong after traveling as little as 10m [Borenstein and Feng, 1995].  However, systematic 

errors are predictable and can be largely eliminated by properly calibrating the vehicle 

parameters such as wheel diameter and wheelbase measurements.  The kinematics and 

calibration method for the vehicle used in this thesis are discussed at length in chapters 

three and four. 

 

 

Free Space Maps – Free space maps give a representation of the area not occupied by 

objects.  As the autonomous vehicle moves about an area, it senses and records the 

regions that are not occupied.  These then become safe regions and the robot strives to 

stay within them.  A common approach to free space mapping is the Generalized Voronoi 

Graphing (GVG) method.  The GVG is the locus of points which are equidistant from 

object boundaries [McKerrow, 1991].  Recent research has shown a reduced GVG to be 

useful in indoor robot navigation [Nagatani and Choset, 1999].  This is illustrated in 

Figure 2.13.  It shows the conventional GVG, reduced GVG, and finally the free space 

representation that would be internal to the vehicle for an indoor hallway environment. 

Systematic Errors Non-systematic Errors 

Unequal wheel diameters Travel over uneven surfaces 

Average of both wheel diameters Travel over unexpected  

 differs from nominal diameter objects on suface 

Misalignment of wheels Wheel slippage due to: 

Uncertainty about the effective  slippery floors 

wheelbase (due to footprint of  over-acceleration 

 tire-ground interface) fast turning (skidding) 

Limited encoder resolution external forces (contact with humans, etc.) 

Limited encoder sampling rate internal forces (castor wheels, etc.) 

  non-point wheel contact with terrain surface 

    Table 2.1  Dead reckoning errors for a typical differential drive mobile robot. 
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Figure 2.13c shows a free space representation of a safe path, however free space 

maps can also be developed by breaking a large region into many smaller regions.  Each 

of these is then determined to be either occupied or unoccupied.  The autonomous vehicle 

then plans the shortest path through the unoccupied regions to the goal.  Haynie describes 

this method in more detail [Haynie, 1998].  

 

Object-Oriented Maps – Object-oriented maps give a representation of the areas in a 

region that are occupied.  Converse to free space maps, object-oriented  maps are 

developed by sensing and recording the locations of objects.  Here the vehicle strives to 

avoid the regions containing these objects.  These are usually detailed maps giving the 

coordinates, either Cartesian or polar, of the vertices of the objects.  The vertices of an 

object are its’ outermost protrusions, i. e. the corners of a square table.  The benefit of 

object-oriented maps is that they can produce a small data set for a given environment.  

However, a disadvantage is they are highly dependant on accurate sensor data 

[McKerrow, 1991; Haynie, 1998]. 

 

A) B) C) 

Figure 2.13  A)  Conventional GVG, B) Reduced GVG, and C)  Internal   
  free space representation of reduced GVG [adapted from 

Nagatani and Choset, 1999]. 
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Composite Maps – In many applications, a robot or autonomous vehicle must be 

aware of both the free and occupied space in a region.  This is so it can move around 

avoiding objects yet still be able to approach and interact with objects.  Examples of this 

are autonomous docking operations and the robot Shakey who detected and moved 

objects around in a room [McKerrow, 1991; Nilsson, 1984].  Composite Maps are 

generally developed in the form of occupancy grids.  Occupancy grids are formed by 

breaking an area into a finite number of smaller square regions.  The size of these regions 

corresponds to the resolution of the map.  When little is known about the environment, 

occupancy grids have a low resolution. 

These smaller square regions are then characterized as being occupied, 

unoccupied, or unknown based on sensor readings.  A problem with low-resolution 

occupancy grids is that a region may only contain a small object or a small part of an 

object, yet the entire area is marked as occupied.  The two main methods for increasing 

occupancy grid resolution are quadtree and evidence grids.   Quadtree recursively divides 

space into equal area quadrants as sensor data accumulates.  This recursive process 

terminates when either the minimum quadrant size is reached or the quadrants are 

homogeneous [McKerrow, 1991].  The evidence grid method breaks the region into many 

small regions initially, then builds confidence in the occupancy of each region based on 

readings from multiple sensors (sensors can be of the same type or of different types), 

multiple readings from a single sensor, or a combination of multiple sensors and multiple 

readings.  Many sensor fusion techniques use the evidence grid method.  Evidence grids 

also prove useful in eliminating or drastically reducing sensor noise [Martin and 

Moravec, 1996]. 
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Chapter 3 

 

 

Platform Vehicle 

 
 The navigation algorithms shown and developed in this work are designed for 

implementation on any autonomous vehicle platform.  However, variations will exist 

depending on the differing geometry and kinematic constraints associated with the 

vehicle used.  Further, the sensors and computing power available on various platforms 

will affect the method of implementation as well as the performance of the navigation 

algorithms.  The vehicle chosen for implementation and testing of the global map 

building algorithm presented in this thesis is Navigator, shown in Figure 3.1.  Navigator 

was developed at Virginia Tech during the 1999/2000 academic year.  Navigator 

competed in the year 2000 International Ground Vehicle Competition (IGVC) and 

performed remarkably well, see Table 1.1.  Navigator is an excellent candidate for 

implementation and testing of the global map building algorithm for many reasons.  First, 

it is a real working autonomous vehicle.  So many navigation algorithms are developed 

and tested only in simulations.  It is the opinion of this researcher that a navigation 

algorithm should be tested on actual hardware in a real environment, in addition to 

simulations, in order to truly prove its’ usefulness.  Navigator is well tested and has 

proven to be a dependable mechanical design.  Second, the sensors and computing power 

in place on Navigator are well suited for the self-building global map algorithm that this 

thesis presents.  Third, navigator already has a local obstacle avoidance module in place.  

As mentioned in chapter one, a complete navigation scheme requires both a local obstacle 

avoidance module and a global map.  The local obstacle avoidance module in place on 

Navigator is the Vector Field Histogram (VFH).  The VFH is described in chapter four.  

This chapter outlines the mechanical hardware and electrical hardware design of 

Navigator.  It then goes on to briefly discuss the various modifications made during the 

2000/01 academic year.  Finally, the kinematic equations used in modeling the vehicle’s 

trajectory (dead reckoning) are developed.  The author believes that an overview of the 

platform vehicle’s design is relevant to the navigation algorithms developed in this thesis.  
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Figure 3.1  Navigator, the platform vehicle. 

However, since the vehicle design is not the focus of this work, this discussion will be 

brief.  If a more rigorous description of Navigator’s mechanical and electrical design is 

desired, the reader is referred to the work accomplished over the 1999-2000 academic 

year [Conner et al, 2000a, b, c, d]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Navigator Hardware Design 

 

Mechanical – As seen in Figure 3.1, Navigator implements a differentially steered three 

wheeled configuration.  This simple mechanical design is inherently stable and allows for 

zero radius turns [Kedrowski, 2000].  All of the components were designed to be modular 

and allow for easy assembly and disassembly.  Further, this modular design facilitates 

redesign and replacement of the mechanical components as they wear or prove to be 

ineffective during testing.   

 The main components, shown in Figure 3.2, that comprise this modular design are 

the chassis, drive wheels, caster wheel, lower bay, user consol, battery modules, and 

drive motors.  The planar chassis is a welded steel tubing structure.  All of the sub-

assemblies require four or fewer bolts to assemble on the chassis.  The lower bay houses 

the drive motors, amplifiers, and batteries.  It serves to protect them from the elements, as 
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Figure 3.2  Main Navigator components prior to assembly [Conner, 2000b]. 

Chassis 

Console Lower Bay 

Battery 

Caster 

Drive  
Motor 

Drive 
Wheels 

well as, provide an elegant looking lower exterior.  The fiberglass composite cover shell, 

shown in Figure 3.1, provides a water resistant, elegant looking upper exterior.  All of the 

mechanical and electrical components are protected from all sides.  Finally, the console 

serves as an attractive interface that gives the operator control over the navigation 

software.  It also has two key-type switches, one for the main system power and one for 

the computer and monitor power.  The console contains various status and feedback 

indicators such as voltage gages and LED’s that show the control mode (autonomous or 

teleoperated) under which the vehicle is operating [Conner, 2000b]. 

 

 

 

 

 

 

 

 

 

 

 

 

 The drive train consists of the two drive wheels, which are attached to ¾ inch 

drive shafts via custom-made hubs.  Power is transferred to the drive shafts from the 

motors through a 33:1, 90-degree, gearhead.  This gearhead is directly coupled to the 

motor housing.  The motors are 24 volt, 15 amp, brush-type DC servomotors that are 

manufactured by Bodine electronics.  Shaft encoders are included on these motors.  They 

provide position and velocity data from each wheel for use in closed-loop control and 

dead reckoning.  An important feature on each motor is the fail-safe brake.  These fail-

safe brakes are held in the disengaged position by electromagnets when the vehicle is in 

operation.  Upon the occurrence of an emergency stop or loss of power, the 

electromagnets lose power thus engaging the brakes and bringing Navigator to a rapid 

stop [Conner, 2000b]. 
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Electrical – Similar to the mechanical design, the sensing and computing equipment   

that make up the electrical design on Navigator were chosen and combined as modular 

components.  These components consist of two color Charge Coupled Device (CCD) 

board cameras and frame grabbers, a Sick LMS-200 Laser Measurement System, a 

Personal Computer (PC) consisting of duel 450 MHz Pentium III processors and 524 MB 

of RAM, an Ethernet hub, and a GE Fanuc Series 90-30 Programmable Logic Controller 

(PLC) [Conner, 2000a].  The physical architecture of these components is shown in 

Figure 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.3 illustrates all of the components and how they are physically 

connected; however, the function of each component is still unclear.  Figure 3.4 is a 

functional block diagram that shows the various control loops.  It also indicates the 

hardware components responsible for each task. 

Figure 3.3  Sensing and computing hardware architecture in place on Navigator  
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(quadrature 

encoder) 

Plant 
(motor b/vehicle 

dynamics) 

P I D 
(PLC) 

setset νφ ,
•

 actualactual νφ ,
•

 
  

seta ,

•
θ  

actuala ,

•
θ  actualb,

•
θ  

setb.

•
θ  

Figure 3.4  Navigator functional block diagram.  Note, the parenthesis indicate which hardware component is actually performing each  
         desired task. 
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Modifications - Although the initial prototype of Navigator established itself as a 

dependable and successful platform vehicle, testing revealed mechanical and electrical 

alterations that could further enhance its performance.   

 When developing the initial prototype of Navigator, the target vehicle weight was 

220 lbs (100 kg) and the nominal drive wheel diameter was 26 inches (0.6604 m) 

[Conner, 2000a].  These specified parameters were used to size the 0.45 hp Bodine 

motors, previously mentioned.  However, upon Navigators completion it weighed nearly 

twice the target value, 380 lbs (172 kg).  This deviation didn’t render Navigator 

immobile, however it decreased Navigator’s desired dynamic performance.  For example, 

initial calculations predicted that Navigator would be able to maintain top competition 

speed (5 mph) up a 15% slope, but the finished prototype could barely ascend this slope 

at all [Conner, 2000a].  In fact, this inability to consistently climb the slope was the cause 

of failure during one of the attempts at the competition.  In addition, the increased vehicle 

mass caused Navigator to have difficulty performing zero radius turns. 

 In the early stages of redesigning Navigator, two major design goals were 

established.  The first was to increase the drive force and the second was to reduce the 

overall vehicle mass.  It was deemed that if these design criteria were met, Navigator’s 

dynamic performance would improve.  However, these criteria are not completely 

decoupled and there were some resulting tradeoffs between the two. 

 To achieve a higher drive force, the first (and most obvious) option was to install 

larger drive motors.  However, larger drive motors are heavier and thus contradict the 

second design criterion.  Further, new motors have differing geometries and thus would 

require substantial redesign of the motor mounting brackets, lower bay, and drive wheel 

coupling.  The next option for increasing the drive force was to decrease the diameter of 

the drive wheels.  This idea was favorable because it both increased the drive force and 

decreased the overall vehicle weight. 

 It was decided to replace the 26 inch diameter drive wheels with 20 inch (0.508 

m) diameter drive wheels.  This gives a 30% percent increase in drive force.  For a better 

illustration of this concept, a free body diagram and the corresponding static equations 

are given in Figure 3.5. 
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 Given a maximum drive torque, provided by the motors, the increased drive force 

is easily calculated by looking at the ratio between the wheel radii.  Equation 3.1 gives 

this ratio for the aforementioned wheel diameters. 
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One disadvantage of reducing the drive wheel diameter is lowered ground 

clearance.  In order to maintain the necessary ground clearance, the motor mounts had to 

be lowered three inches.  This meant a substantial redesign of the frame.  At first, this 

idea was discouraged.  However, it was determined that a large amount of weight could 

be trimmed if the existing steal frame was replaced with an aluminum frame.  Therefore, 

it was decided to replace the drive wheels and redesign the frame using aluminum. 

In order to quickly manufacture and assemble the new frame, Bosch aluminum 

framing material was used.  The pre-manufactured connectors and T-slotted aluminum 

tubing allowed the frame to be constructed with no welds.  Figure 3.6 shows the new 

aluminum frame just before it was installed on Navigator.  This frame saved an estimated 

19 lbs (8.62 kg). 

 

Tmax 

l 

Fmax 
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Figure 3.5  Free body diagram and equations that relate motor torque to drive force. 

Where, 
 Tmax = maximum motor torque, 
 Fmax = maximum drive force, 
      l =  drive wheel radius. 
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 Further, an estimated 2 lbs (0.91 kg) was saved by machining the motor mounting 

plates out of 3/8” aluminum sheet instead of the existing 1/2” aluminum sheet.  Figures 

3.7 a and b show the smaller mounting plate and mounting bracket respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In addition to the new drive wheels, an industrially manufactured caster wheel 

Figure 3.6  Navigator just before installing new aluminum frame. 

A) 

B) 

New  
Mounting 
Plate 

Old 
Mounting 
Plate 

Figure 3.7  A)  Motor mounting plates.  B)  New motor mounting bracket. 
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was chosen to replace the existing custom castor wheel.  This caster uses thrust bearings 

that allow it to rotate more easily when loaded vertically.  The new caster wheel and the 

old caster wheel are shown in Figure 3.8. 

 

 

 

 

 

 

 

 

 

 

 

  

Although the bulk of Navigators modifications where mechanical, one electrical 

modification allowed for a further reduction in weight.  This was the addition of wireless 

Ethernet, developed by Cisco systems.   Using wireless Ethernet allows an off-board 

interface to Navigator’s computer via a portable laptop computer.  Therefore, it was 

possible to remove the on-board monitor and accompanying power supply.  This further 

reduced the overall weight by an estimated 25 lbs (11.3 kg).   Additional weight 

reduction was achieved by 

efficiently rerouting the wiring 

busses and eliminating excess wire, 

as well as, eliminating as much 

excess hardware as possible.  The 

result was a total overall weight 

reduction of 54 lbs (24.5 kg), 

approximately 15%.  The 

completely redesigned Navigator 

is shown in Figure 3.9. 

Thrust 
Bearing 
Revolute 

Bushing 
Revolute 
 

Figure 3.8  New caster wheel and old caster wheel, respectively. 

Figure 3.9  Completed redesign of Navigator. 
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3.2 Navigator Kinematics 

 

In order to convert vehicle velocity and heading commands into individual wheel 

speed commands, it is necessary to solve the vehicle kinematics.  This section develops 

the kinematic equations that describe Navigator’s motion on the ground plane.  It should 

be noted, however, that these equations are general to all differentially driven vehicles.  

Currently, all of the vehicles that are being developed by the Autonomous Vehicle Team 

(AVT) at Virginia Tech implement a differentially driven mechanical architecture, thus 

each vehicle uses these equations. 

Figure 3.10 shows the wheel elevation and Figure 3.11 is the plan view of the 

platform vehicle, Navigator.  Many of the dimensions could be assumed symmetrical 

(e.g. a=b, ra=rb, etc), however it is desirable to develop the kinematic equations in the 

most general form possible.  This allows for calibration of the individual vehicle 

parameters, which helps eliminate many systematic dead reckoning errors.  
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S 
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Dimensions 
 
θ  = wheel rotation (m) 
r = wheel radius (m) 
S = arc length (m) 

 

Figure 3.10  Elevation side view of wheel. 
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 While in motion through an arbitrary curve, Navigator rotates about an 

instantaneous center, O.  Analyzing about the instantaneous center O allows Navigator’s 

motion to be described as purely rotational, Figure 3.12.   

                    

r1

r2

β

ρ

vv

s a

s b

a b

φ

O

c t

9 0 -β

9 0 -β

 

 

Dimensions 
 

a  = left wheel to center line distance (m) 
b  = right wheel to center line distance(m)  
ra = left wheel loaded radius (m) 
rb = right wheel loaded radius (m) 
rc = caster wheel loaded radius (m) 
c = axle to caster pivot distance (m) 
d = caster pivot to axle distance (m) 
e = axle to center of gravity (m) 
ψ = caster angle to center line (radians)  

   (positive as shown) 
cg = center of gravity 
ct  = turning center 
 

Figure 3.11  Plan view of Navigator [Conner, 2000c]. 

Dimensions/Coordinates 
 
Vv  =  vehicle velocity (m/s) 
φ  =  vehicle heading (rad) 
ρ =  instantaneous turning   

    radius (m) 
β =  instantaneous turning  

    angle equal to φ (rad) 
r1 =  instantaneous turning   
           radius of wheel a (m) 
r2 =  instantaneous turning   
           radius of wheel b (m) 
Sa =  wheel a arc length (m) 
Sb =  wheel b arc length (m) 

Figure 3.12  Rotational motion of differentially driven vehicle about the  
instantaneous center [Conner, 2000c]. 
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 By inspecting Figure 3.12, it can be seen that the instantaneous turning angle β is 

equal to the vehicle heading angle φ.  Using this equality, the wheel arc lengths Sa and Sb 

are related to the vehicle heading angle via Equations 3.1 a and b. 

 

φ1rSa =   (a)   φ2rSb =   (b)    (3.2) 

 

The individual wheel rotations are related to the arc length by their respective radii, 

through Equations 3.2 a and b.   

 

aaa rS θ=   (a)   bbb rS θ=   (b)    (3.3) 

 

Applying a no slip constraint and combining Equations 3.1 and 3.2 yields the relations 

between individual wheel rotation and vehicle heading, Equations 3.3 a and b. 

 

aarr θφ =1   (a)   bbrr θφ =2   (b)    (3.4) 

 

Now it is possible to eliminate an unknown by representing the instantaneous turning 

radii r1 and r2 of the respective wheels in terms of the instantaneous turning radius ρ of 

the vehicle and the two known wheel base values a and b. 

 

( ) aara θφρ =−   (a)  ( ) bbrb θφρ =+   (b)   (3.5) 

 

From here, the instantaneous turning radius ρ is easily eliminated through substitution.  

This allows for the vehicle heading φ to be shown in terms of the vehicle parameters and 

the individual wheel rotations. 

 

ab

rr aabb

+
−

=
θθ

φ      (3.6) 

 



  2001 Philip R. Kedrowski  51 

Finally, the angular velocity of the vehicle is determined by taking the time derivative of 

Equation 3.5. 

 

ab

�r�r aabb

+
−

=
••

•
φ      (3.7) 

 

Next, the vehicle velocity Vv is determined by taking the weighted average of the 

individual tangential wheel velocities. 

 

ba

�br�ar
V bbaa

v +
+

=
••

     (3.8) 

 

 These commands are passed between the PC and the PLC as shown in Figure 3.4.  

It is convenient to give the vehicle commands in terms of velocity and angular velocity as 

in Equations 3.6 and 3.7 for two reasons.  First, this format lends itself well to the local 

obstacle avoidance module (VFH).  Second, the individual wheel speeds are easily 

determined by taking the numerical derivative of their respective position data (provided 

from the motor encoders) using Euler’s method. 

 

( ) ( ) ( )
T

kk
k baba

ba
,,

,

1 θθ
θ

−+
=

•

     (3.9) 

where, 

   k = integer step, 

   T = sampling period (sec). 

 

 As previously mentioned, assumptions of vehicle symmetry could be made that 

would further simplify Equations 3.6 and 3.7.  Since constructing a perfectly symmetric 

vehicle is impossible, it is better to leave the kinematic equations in a general form so 

that the vehicle parameters can be calibrated to match those of the actual vehicle. 
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Chapter 4 

 

 

Global Map Developing, Implementation, and Simulation 

 

Chapters one through three of this thesis have periodically noted that a complete 

navigation scheme includes both a local obstacle avoidance module and a global map.  

Chapter three outlined the base mechanical platform, Navigator, and mentioned the local 

Vector Field Histogram (VFH) obstacle avoidance module, that is in place on Navigator.  

This chapter gives a brief outline of the VFH and then goes on to explain the self-

building global mapping algorithm.  Finally, simulations of the complete navigation 

scheme are shown on various courses and their results are discussed. 

 

4.1 Vector Field Histogram 

 

The VFH is a method for real time local obstacle avoidance on mobile robots that 

was originally developed at the University of Michigan [Borenstein and Koren, 1991].  A 

later development called the VFH+ offered the improvements of smoother robot 

trajectories and greater reliability [Ulrich and Borenstein, 1998].  The latest version 

involved coupling the VFH+ with an initialized global map.  It then used the well-known 

A* search algorithm to find the optimal path through the global map.  This is called the 

VFH* [Ulrich and Borenstein, 2000]. 

The VFH was chosen for implementation on Navigator because it is a well-proven 

method for local obstacle avoidance and it is well suited for the sensors used on 

Navigator.  Conceptually, the VFH used on Navigator is most similar to the VFH+ 

mentioned above, however the details involved in implementation vary.  This section 

describes the VFH in general.  Details of the exact implementation  (i.e. sensor fusion, 

passability, polar obstacle density calculations, etc.) on Navigator can be found in the 

documentation of the work done over the 1999-2000 academic year [Conner et al, 

2000a,b,d].   
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The VFH represents the obstacles in front of the vehicle in polar coordinates.  

Obstacles are impassible areas, which may be a physical object or a course boundary line.  

Figure 4.1 is an example of a mobile robot encountering a typical set of obstacles on the 

course at the Intelligent Ground Vehicle Competition (IGVC).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The cameras and laser range finder determine the magnitude ρ and direction θ of 

the two and three-dimensional obstacles such as lines and barrels.  The number of vectors 

in the vector field corresponds to the resolution of the sensors.  The resolution of the Sick 

LMS-200 laser rangefinder is 0.5 degrees and the resolution of the cameras varies 

depending on thresholding and decrementing done during image processing.  Conner’s 

work describes these concepts in greater detail [Conner et al, 2000a,b,d]. 

 Next, the Polar Obstacle Density (POD) is calculated for developing the bar graph 

known as the VFH.  The POD calculation is designed to suite individual applications, and 

the designer can take into account factors such as vehicle dynamics and desired response 

time. The POD is typically an inverse function of the vector’s magnitude ρ.  Thus, the 

higher the POD value the closer the vehicle is to an obstacle.  These POD values are then 

+90o 
-90o 

0o 

Barrel Line 

ρn 

θn 

Figure 4.1  Vector representation of obstacles in front of mobile robot.   
         Note, ρn and θn are the magnitude and direction of each  
         vector, respectively. 
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plotted at each angle in a bar graph, giving a diagram such as the one shown in Figure 

4.2.  This is the Vector Field Histogram. 

 

 

 

 

 

 

 

 

 

 

 

 

 The VFH can be thought of as a series of peaks and valleys.  The vehicle 

navigates by choosing a valley and driving through it.  The valley opening must be wide 

enough for the vehicle to physically pass through it.  The actual opening size is related to 

the angle of the valley opening and the magnitude of the peaks.  In this case, the angle 

opening of a valley can be small if the peaks adjacent are also small.  In effect, if the 

obstacles are farther away, then the angle between them, as viewed from the vehicle, can 

be smaller.  Through this methodology, many candidate valleys can be eliminated 

because they are too small for the vehicle to pass through.  However, assuming the course 

is passable, it does not eliminate all possible valleys.  Therefore, it is desireable to have a 

global map such that it can favor the valley that most efficiently directs the vehicle 

toward the goal. 

 

4.2 Global Map Developing 

 

In most autonomous vehicle navigation schemes, the global map is initialized 

using prior knowledge of the environment in which the vehicle is used.  In indoor 

environments, this knowledge can come from the building construction plans.  In outdoor 

+90o -90o 0o 

P 
O 
D 

Figure 4.2  Sample Vector Field Histogram (VFH).  Note, this VFH 
         corresponds to the vector field shown in Figure 4.1. 
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environments, it can be provided by surveying the territory or taking aerial photographs.  

Various situations (such as heavy foliage) can prevent getting accurate global map 

information.  In order to instigate creative solutions for these cases, the IGVC does not 

allow prior knowledge of the obstacle course.  Thus, global map initialization is not 

permitted.  However, in the spirit of encouraging success and keeping the competition 

interesting to spectators, the IGVC rules allow the vehicles to make multiple attempts at 

completing the course.  This spurred the idea of using information acquired during initial 

attempts to help in navigation of later attempts.  A concept for doing this is described 

below. 

A free space map is built by recording where the vehicle has been during early 

exploratory runs.  This method of dead reckoning is achieved by using the vehicle 

velocity Vv and vehicle angular velocity 
•
φ , provided via wheel encoder feedback (as 

shown in chapter 3), to determine the vehicle position through numerical integration.  

The method for doing this is as follows.  Figure 4.3 shows the vehicle represented as a 

point in a Cartesian reference frame. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The arrays Xg and Yg used for plotting the global path are easily obtained by 

numerically integrating over time as shown in equations 4.1 and 4.2. 

 

Y 

X 

•
φ  

Vv 

dx 

dy 

Dead Reckoning (Xg, Yg) 

Figure 4.3  Global map building in Cartesian coordinates, using dead reckoning.  

Vehicle 
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and, 
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  where, 

   Xg = array of global x positions (m), 

   Yg = array of global y positions (m), 

   dt = time step (sec), 

   n = number of samples. 

 

 Because the vehicle has been able to physically occupy each of these coordinates, 

the arrays Xg, Yg represent free space (passable areas) in the global map.  This is 

seemingly useless information during the current vehicle run, but it becomes valuable on 

subsequent runs, since it represents free space outside the range of the sensors.  Hence, 

the method of map development is iterative, on the first run the vehicle navigates solely 

using the VFH, but on the second run it uses the global free space information that was 

acquired on the first run.  When the vehicle surpasses the range of the global map data 

acquired on the first run, it is navigating solely on the VFH once again. Further, with 

each successive run, the global map is updated with the new free space information.  

Thus, in theory the global map improves in both range and quality with each run.  Note, 

this map does not represent all of the free space, thus hereinafter it will be referred to as a 

partial or quasi-free space map. 

 

4.3 Global Map Look-Ahead 

 

Once a global map data set is acquired, it is important to use it in an efficient 

manner.  This section details the method by which the global map data is exploited on 

Navigator.  It then goes on to discuss how it is integrated with the VFH, such that the two 
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navigation modules can work together forming a complete navigation scheme.  

Implementation of the global map is done using a global look-ahead algorithm.  This 

global look-ahead algorithm is most easily understood by first viewing an illustration of 

the vehicle in relation to the global map data.   

Figure 4.4 shows the vehicle on the verge of starting its second attempt at the 

obstacle course.  It has already developed a rough global map of the course using dead 

reckoned data from the first run.  Notice how the vehicle path oscillated through the 

course on the first run.  This oscillatory behavior is characteristic of the VFH obstacle 

avoidance module.  At each abrupt change in direction, the vehicle decelerates nearly to a 

complete stop, turns, then accelerates again after completing the turn.  Thus, the vehicle 

not only oscillates in trajectory but it also oscillates in velocity when navigating solely 

using the VFH.  Figure 4.4 also shows an expanded view of the area directly in front of 

the vehicle.  This is to illustrate the look-ahead algorithm.  The VFH sees no obstacles 

thus it would give a zero vehicle angular velocity command ( 0=
•
φ , exactly like the first 

run), however looking ahead at the previous data shows free space to the left of the 

vehicle.  Armed with this knowledge, the vehicle can initiate the turn earlier and thus 

have a smoother motion profile and maintain a more constant velocity throughout the 

turn. 

 

 

 

X 

Y 

φla 

Dla 

(xc, yc) 

Sensor 
Range 

E-stop 

Global 
Path 

Figure 4.4  Illustration of the global look-ahead algorithm.  Note, dimensions are  
         not exactly to scale. 

(xp, yp) 
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 In Figure 4.4 (xp, yp) is a coordinate, obtained during the previous run, that the 

vehicle is looking ahead at during the current run.  The coordinate (xc, yc) is the current 

position of the vehicle.  Further, φla is the look-ahead angle and Dla is the distance that the 

vehicle is looking ahead.  The magnitude Dla is a tunable set point that is adjusted 

depending on the course and vehicle used.  A flow chart showing how the look-ahead 

algorithm is implemented is shown in Figure 4.5. 
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Figure 4.5  Flow chart for the global look-ahead algorithm. 



  2001 Philip R. Kedrowski    59 

 In Figure 4.5, n is a counter that points to the current sample and k is a counter 

that points to data in the previous global path array Xg, Yg.  Another way to interpret this 

is that the kth data point occurred previously in time but is located ahead of the vehicle.  

As shown in Figure 4.5, when running, the current vehicle position (xc, yc) is periodically 

sampled and immediately stored in the global map.  Next, it is determined whether look-

ahead data exists.  If not, the algorithm immediately outputs no look-ahead angle.  This is 

the case if the global map doesn’t exist or the vehicle has surpassed the global map data.  

Here, the vehicle will navigate solely from the VFH.  If look-ahead data does exist, the 

next steps are to calculate the difference between the look-ahead position and the current 

position and determine its vector magnitude Dcalc.  At this point, the calculated look-

ahead distance Dcalc is compared to the set point look-ahead distance Dla.  If they are 

equal within a set tolerance ±e, then the look-ahead angle φla is calculated and output 

directly.  Otherwise, the look-ahead counter k is either incremented or decremented and 

the process is repeated until the calculated look-ahead distance Dcalc equals the set point 

look-ahead Dla distance within the tolerance e. 

 The look-ahead algorithm is executed once per time step, it can also be thought of 

as a distance traveled.  The higher the sampling rate, the more continuous the global map 

will be. However, in this application it is not necessary to have an extremely high 

resolution.  A resolution varying between 1 cm and 10 cm (depending on vehicle speed) 

is adequate.  Each time the look-ahead algorithm is executed, the look-ahead angle (if it 

exists) is sent to the VFH.  The VFH is then biased to favor this heading and the vehicle 

will travel directly toward the look-ahead point.  However, if the vehicle encounters an 

obstacle, the VFH overrides the look-ahead command and the obstacle is avoided.  In this 

case, the look-ahead command is not completely ignored because the chosen valley in the 

VFH will be the one closest to the look-ahead angle φla.  This concept is illustrated in 

Figure 4.6.  All of the code for the global look-ahead algorithm is presented in Appendix 

A of this thesis. 
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Given multiple attempts at the course, the global path should increase in both 

length (more progress along the course before failure) and quality.  This is because 

during each new run, the global map is updated with the newest data.  As mentioned 

before, when navigating solely using the VFH, the vehicle will oscillate in both trajectory 

and velocity throughout the course.  It is not expected that all of these oscillations will 

dampen completely during the second attempt at running the course.  Rather, it is 

expected that after multiple attempts, the vehicle will settle on a steady state path through 

the course.  Figure 4.7 illustrates this concept.  

Figure 4.6  Situation in which the VFH will override the global look-ahead  
         algorithm.  
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4.4 Navigation Simulations 

 

 In order to better understand the feasibility, performance advantages, and 

performance disadvantages of the self-building global mapping algorithm, it was decided 

to develop a computer simulator of the mobile robot system.  The navigation simulator is 

written in the C++ programming language.  C++ is the language that was used to write 

the “Navigation Manager” software that is in place on Navigator.  The Navigation 

Third 
Attempt 

First 
Attempt 

Second 
Attempt 

Fourth 
Attempt 

Figure 4.7  Theoretical vehicle trajectory with global map building over multiple  
         attempts. 
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Manager is a Graphical User Interface (GUI) that gives the user access to the controls on 

Navigator [Conner, 2000a].  Figure 4.8 is what the user sees when operating the 

Navigation Manager on Navigator.  The C++ language was chosen because it is object 

oriented and offers the advantage of modular programming.  This means that additional 

software components, such as the look-ahead algorithm, can be written separately and 

then interfaced with the existing code with relatively little trouble.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Writing the code for the look-ahead simulator in C++ gives two distinct 

advantages.  First, it allows the simulations to be as much like the real vehicle as 

possible.  This is because the look-ahead algorithm is fused with the code for the VHF 

and interface that is already in use on Navigator.  Second, converting the code from 

simulation to actual implementation is easier if they are both written in the same 

programming language.  The C++ code for the look-ahead algorithm can be found in 

appendix A. 

 Some modifications were made to the existing code in order to use it for 

simulations.  Instead of capturing bitmap images from the CCD board cameras, bitmaps 

are input directly from a picture that is drawn in Microsoft Paint.  This allows the 

Figure 4.8  Navigation Manager, the user interface to the controls on Navigator. 
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designer to draw courses with various shapes and obstacle locations and then use it to test 

the vehicle navigation algorithms.  A Region Of Interest (ROI) is then taken from this 

large course image.  This data is processed exactly like the image data from the cameras 

on the real vehicle and input into the VFH.  The ROI is equivalent in scale with the area 

seen by the real sensors (cameras and LRF) on Navigator.  Using this ROI as the “sensor” 

input allows the VFH to behave based solely on local map information as it does on the 

actual vehicle.  In this manner, lines and objects (such as barrels) are simulated by 

drawing them as white pixels in the course image. 

 This simulator is used as a tool to test the effects of changing environments and 

parameters.  These consist of the look-ahead distance, polar obstacle density calculations, 

global map resolution, various course shapes, various course dimensions, trap situations, 

and dead reckoning errors.  It should be noted that the simulator does not consider the 

dynamic effects of the vehicle, nor does it not take into account errors in sensor readings.  

It is designed as a tool used to test, understand, and calibrate the coupled VFH/global 

look-ahead navigation scheme.   

 The next sequence of illustrations is from actual navigation simulations on 

different courses.  These simulations do not cover every possible scenario that the vehicle 

may encounter, but it should give the reader some understanding of what the designer 

must consider when using the simulator.  All of the following simulations were done 

using a 3 cm/pixel resolution on the course bitmap that was input into the simulator.  This 

converts to a course width that varies from 10 to 15 ft (approx 3 to 5 m), thus it is 

approximately the same dimensions as the IGVC obstacle course.  The barrels are also 

approximately to scale.  The vehicle is represented as a point, but the kinematics are 

based on the actual vehicle dimensions.  Further, the ROI that is used as the sensor input 

is to scale with that of the actual sensor range on Navigator. 

 The look-ahead distance Dla is set 2.5 meters with a tolerance e of 0.2 meters, in 

all of the following simulations.  Larger look-ahead distances have been tried and they 

yield a faster settling time (fewer runs) to the steady-state path.  However, increasing the 

look-ahead distance also increases the likelihood that an object will come between the 

vehicle and the look-ahead point, shown in Figure 4.6.  These occurrences disrupt the 

motion profile of the vehicle and result in slower traversal of the course.   
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Figure 4.10  Simulation on course that is more like the IGVC course. 
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Figure 4.9  Simulation test course with one trap. 
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 Figure 4.9 is a simulation on a basic course with one trap.  Notice how the vehicle 

settles on a steady-state path in only four runs.  Looking ahead at the previous run allows 

the vehicle to initiate the turns earlier and thus maintain a smoother motion profile 

throughout the turn. Figure 4.10 is a simulation on a course that is more like those at the 

IGVC.  Notice, it takes five runs before coming to a steady-state path. 

 Next, Figure 4.11 gives an example of the vehicle getting caught in a trap on the 

first two runs and using that data to avoid the trap on later runs.  On the first attempt, the 

vehicle falls directly into the trap when exploring using only the VFH.  During the second 

attempt, the vehicle uses the look-ahead data acquired during the first run and initiates the 

turn sooner.  Unfortunately, it doesn’t turn soon enough and falls into the trap again.  On 

the third attempt, looking ahead at the global map developed on the second attempt helps 

the vehicle to initiate the turn even sooner and finally it avoids being caught in the trap.  

Notice, once the vehicle is able to explore past the trap, it is uses the global map to 

completely avoid the trap on all subsequent runs. 

 

 

 

 

 

 

 

 

 

 

 As previously mentioned, the global map is built using the method of dead 

reckoning.  Dead reckoning is imperfect because it has two types of errors associated 

First 
Trap 

Second 
Trap 

Figure 4.11  Vehicle using global map to avoid traps. 
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with it; systematic and non-systematic.  Sources of these errors are given in Table 2.1.  

Systematic errors are predominant. On a differentially driven vehicle such as Navigator, 

the most dominant of the systematic errors are those associated with wheel radius and 

wheelbase dimensions.  Errors of this sort are caused by inaccurate measurements of 

wheelbase and wheel diameter and low tire air pressure.  These errors lead to faulty 

vehicle localization.  For example, if the kinematic model (developed in section 3.2), 

internal to the vehicle, has these parameters set to a certain value and the actual vehicle 

parameters are a different value, then the model will incorrectly predict the location of 

the vehicle.  

 The simulator allows the user to input systematic errors and visualize the 

imperfect dead reckoned global path.  Figure 4.12 shows the vehicle path on its first run 

along with the inexact dead reckoned path.  This imperfection is due to a 0.5% (3.3mm) 

decrease in the right wheel diameter in the simulation.  This magnitude of error could 

easily occur due to a decrease in the air pressure of the right tire.  Notice how the dead 

reckoning error gets larger as the vehicle traverses further along the course.  However, in 

this case, turning counteracts this growth a small amount. 

 Figure 4.12  Vehicle path and dead reckoned path with error due to 0.5% decrease 
           in right wheel diameter. 

Real Vehicle Path 
 
Dead Reckoned Path 
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 Figure 4.13 is given to show what happens when the vehicle takes a second run 

using the imperfect global path as the look-ahead data.  This figure illustrates that even 

with a flawed global map, the vehicle is able to establish a better trajectory through the 

course on the second run than it did on the first run.  Further, the quality of the global 

path improves on the second run. 

 

 

 Finally, an illustration of the inaccuracy caused by an error in wheelbase 

measurement is shown in Figure 4.14.  In this simulation, the error is caused by a 3% 

(1.14 cm) smaller left wheelbase.  Errors in wheelbase dimensions are typically caused 

by imprecise measuring techniques.  However, this error can also be caused by wheel 

cant that is not accounted for in the model.  1.14 cm is considered large for this type of 

error, because accuracy up to a couple of millimeters is easily achieved using a common 

tap measure.  By comparing Figure 4.14 to Figure 4.12, it is seen that the dead reckoning 

inaccuracy caused by an inaccurate wheelbase dimension is much less dramatic than that 

caused by an inaccurate wheel radius. 

Figure 4.13  Second run using imperfect global map that was developed on the  
           first run. 

Real Vehicle Path 
 
Dead Reckoned Path 

Global Path 
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 This is just a sample of the infinite number of scenarios and courses that can be 

tested with the simulator.  These are given in order familiarize the reader with some of 

the main areas of concern that were tested in order to determine the feasibility of the 

global look-ahead algorithm.  As shown, the main problem associated with the global 

look-ahead algorithm is the errors associated with dead reckoning.  Figure 4.13 shows 

that an imperfect global map is still useful.  It is desirable, however, to eliminate as many 

dead reckoning errors as possible.  The next chapter presents a tool that was to minimize 

systematic dead reckoning errors. 

Figure 4.14  Vehicle path and dead reckoned path with error due to 3% decrease  
           in the left wheelbase. 
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Chapter 5 

 

 

Optimized Calibration of Vehicle Parameters 

 

 As described in section 4.2, the global map building technique developed in this 

thesis uses odometry, also referred to as dead reckoning.  Dead reckoning accuracy is 

subject to both systematic and non-systematic errors.  Table 2.1 outlined the main sources 

for both types of error.  In section 4.4, systematic errors were introduced into the 

simulation to illustrate their effects on the global map look-ahead algorithm.  It was 

determined that these dead reckoning errors do not render the algorithm useless.  

Nevertheless, it is desirable to minimize them order to maximize the effectiveness of the 

global look-ahead algorithm. 

 This chapter begins by determining the nature and magnitude of the dead 

reckoning errors associated with Navigator using a standard test known as the UMBmark 

(University of Michigan Benchmark).  Next, a tool is developed for optimizing the 

calibration of the vehicle kinematic parameters (wheelbases and radii) in order to 

minimize systematic dead reckoning errors.  This calibration uses Hooke and Jeeve’s 

optimization technique to search for the minimum error values.  It will be shown that a 

substantial improvement in dead reckoning accuracy is achieved by utilizing this tool to 

optimize the vehicle calibration. 

 

5.1 UMBmark Test 

 

Checking the dead reckoning performance on specified test patterns helps uncover 

whether an error is systematic or non-systematic.  This is done by determining the 

difference between where the vehicle actually is and where it “thinks” it is after running a 

chosen pattern.  This difference is referred to as the dead reckoning error.  By nature, 

systematic dead reckoning errors are repeatable.  Because of this, if the dead reckoning 

error is consistent in magnitude and direction over multiple tests, then it is likely due to a 
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systematic inaccuracy.  However, determining which systematic parameter is in error is 

less obvious.  The UMBmark test is designed to uncover certain systematic errors that are 

likely to compensate for each other and thus remain undetected in less rigorous tests 

[Borenstein and Feng, 1995].   

The two most prevalent systematic errors are inaccurate wheel diameters and 

uncertainty about the wheelbase measurements.  The wheelbase measurement is defined 

as the distance between 

the ground contact 

points of the two drive 

wheels.  For this work, 

it is broken into the left 

and right wheelbase 

measurements.  These 

are the distance 

between the respective 

wheel/ground contact 

points and the vehicle 

centerline.  These are 

measurements a and b 

described in section 3.2 

of this thesis.  

Borenstein gives a 

visual example of how 

these two errors could 

compensate for one 

another and thus remain undetected.  This visualization is shown in Figure 5.1.  However, 

in this case, the dead reckoning error would compound if the vehicle were run in the 

opposite direction.  For this reason, Borenstein and Feng developed a simple bi-

directional square path test procedure for uncovering sources of systematic errors.  They 

refer to it as the UMBmark test. 

Figure 5.1  Dominant systematic dead reckoning  
         errors cancel each other out when test  
         is run in only one direction  
         [Borenstein and Feng, 1995]. 

Curved instead of straight path 
(due to unequal wheel diameters). 
In this example, it causes a 3o 
orientation error. 

93o-turn instead of 90o-turn  
(due to uncertainty about the 
effective wheelbase) 

93o 
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The UMBmark test procedure consists of running the vehicle through a specified 

square pattern in both the clockwise and counterclockwise direction and measuring the 

dead reckoning error at the end of each run.  This test was performed on Navigator to 

better undersand the magnitude and type of dead reckoning error that it possesses.   Since 

Navigator is designed to perform in an outdoor environment, a large test grid was painted 

in a grass field on the Virginia Tech campus.  Figure 5.2 is an aerial view of this test grid.  

Further, Navigator was physically pushed through the course in order to eliminate non 

systematic wheel slippage that can occur when the vehicle accelerates and decelerates 

under its own power. 

 

 

 The UMBmark test was performed on both 3-yard and 6-yard square test patterns.  

Figure 5.3 shows the results from the 6-yard UMBmark test.  The continuous line shows 

the path that Navigator “thought” it took based on dead reckoning.  The actual path that 

Navigator took is shown as a dotted line.  This test was performed using measured 

Figure 5.2  Aerial view of grid used for UMBmark dead reckoning test. 

3yrd 

3yrd 
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vehicle parameters in order to get an idea of what sort of calibration is needed.  In this 

test, the error vector (also referred to here as the dead reckoning error) is the vector from 

where the vehicle is actually located (the origin) to where the vehicle “thinks” it is 

located (based on dead reckoning) after completion of the test. 

 

 

 

 For this UMBmark test, five runs were performed in both the clockwise and 

counterclockwise direction.  Notice the predictability of the dead reckoned runs; this is 

characteristic of systematic errors.  Further, notice that the dead reckoned path curves to 

the right when the vehicle is actually going straight.  This is an indication that the left 

wheel is slightly smaller in radius than the measured value.  If this is the case, when the 

vehicle is going straight, the left wheel will have to rotate more times than the right wheel 

to keep up.  Thus, if the wheel radius parameters are set equal in the kinematic model, 

integrating to find position will show that the vehicle is actually moving through an arc as 

shown.  Thus, in this case, the vehicle will better predict where it is if the left wheel 

radius is set to a lower value.    

 This suggests an iterative trial-and-error calibration technique.  In this procedure, 

one would change the vehicle parameters, check the UMBmark results and repeat until 

the best results are achieved.  This process could be tedious and take a long time.  

Further, it is not guaranteed to give the optimal vehicle parameters.  Borenstein and Feng 

A) 

Figure 5.3  Six-yard square UMBmark test with no calibration.   
         A)  Counterclockwise direction.  B)  Clockwise direction. 

B) 

Start 

Actual 
Path 

Dead 
Reckoning 
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give another calibration technique that they developed along with the UMBmark test 

[Borenstein and Feng, 1996].  This elegant method analytically derives correction factors 

from experimental results.  Using these correction factors for calibration Borenstein and 

Feng made remarkable dead reckoning improvements on several indoor mobile robots 

[Borenstein and Feng, 1996].  However, prior to calibration, these robots all had dead 

reckoning errors on the order of 3 to 4 cm on a 4m (4.37 yrd) UMBmark test pattern.  

This allowed Borenstein and Feng to use a small angle assumption in the analytical 

derivation of the correction factors [Borenstein and Feng, 1996].  Conversely, Navigator 

is an outdoor mobile robot with dead reckoning errors, prior to calibration, on the order 

of 60 to 70 cm when run in a 3 yard (2.74 m) UMBmark test pattern.  Since the dead 

reckoning errors on Navigator are approximately 1.5 or 2 orders of magnitude greater, the 

small angle assumption is no longer valid.  As a result, this analytic calibration method 

produced erroneous parametric values when used for calibration of Navigator in an 

outdoor environment.  This thesis develops a third technique for parameter calibration 

that implements the Hooke and Jeeve’s optimization method in order to minimize the 

total dead reckoning error. 

 

5.2 Optimization Technique and Procedure 

 

Optimization is the act of obtaining the best result under a given set of 

circumstances [Rao, 1979].  The subject of optimization has existed for many years and 

numerous techniques, both analytical and numerical, have been developed.  The ultimate 

goal of all these techniques is to either minimize the effort required or maximize the 

desired benefit.  Two excellent introductory texts covering optimization techniques are 

those written by Rao [1979] and Vanderplaats [1984]. Optimization has been used 

extensively here at Virginia Tech in the area of kinematic/robotic design and calibration 

[Soper, 1995; Calkins, 1994]. 

This section starts by introducing the Hooke and Jeeve’s method for solving 

unconstrained minimization problems.  Next, it describes the method by which the 

objective function is developed.  The objective function is the function that is minimized 

in the Hooke and Jeeve’s optimization algorithm.  Finally, the startup procedure is shown 
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such that this can be used as a tool for parametric calibration of a differentially driven 

vehicle.  This tool is developed such that any person operating the vehicle can calibrate 

the vehicle using the optimal parameters on any particular day with minimal effort. 

 

Hooke and Jeeve’s Optimization – First, it should be understood that any 

optimization method for solving an unconstrained minimization problem could be used 

for vehicle parametric calibration.  A short list of various other methods is as follows 

[Vanderplaats, 1984]: 

 

1) Powell’s method. 

2) Steepest descent. 

3) Fletcher-Reeves conjugate direction method. 

4) Davidson-Fletcher-Powell variable metric method. 

5) Broydon-Fletcher-Goldfarb-Shanno variable metric method. 

6) Newtons Method. 

 

It is possible that using one of these other methods will yield a faster convergence than 

the Hooke and Jeeve’s method in the application of vehicle parametric calibration that is 

presented here.  The reasons for choosing the Hooke and Jeeve’s method are twofold.  

First, it is a robust pattern search technique that the author is familiar with and 

comfortable coding.  Second, it is not necessary that the optimization algorithm give the 

absolute fastest convergence as long as it gives the correct results in a relatively timely 

fashion. 

   An unconstrained minimization problem is one where a value of the design 

vector, Equation 5.1, is sought such that it minimizes a designed objective function f(X). 

This is an unconstrained minimization problem, because the solution parametric vector X 

need not satisfy any constraint [Rao, 1979].  However, in many design scenarios 

constraints can and are applied.  An example of this is to apply the constraint that the 

parameters (link lengths) must allow closure when using the Hooke and Jeeve’s method 

in the synthesis of a planar four-bar mechanism. 

 



  2001 Philip R. Kedrowski 75 

 






























•
•
•

=

nx

x

x

X

2

1

     (5.1) 

  where, 

   x1, x2,…xn = the individual design parameters, 

                 n = the total number of design parameters. 

 

 The Hooke and Jeeve’s pattern search method iterates on a sequence of two types 

of moves.  These are the exploratory move and the pattern move.  During the exploratory 

move, each design parameter is changed individually and the effects on the objective 

function are monitored.  The magnitude of these changes is referred to as the step size.  If 

a change yields a good result (lower objective function), the step size is increased and 

stored in the step size array ∆X.  Conversely, if the change yields a poor result (higher 

objective function), the step size is decreased and stored in the step size array.  The 

pattern move shifts the entire parametric array X to the next position that yields the 

lowest objective function.  This process is repeated until the magnitude of the step size 

array is less than an initialized minimum step size array magnitude |∆X|min, thus 

indicating a local minimum value for the objective function.  To better visualize this 

sequence, a flowchart is given in Figure 5.4.  In this chart, the superscripts denote an 

entire parametric array, while the subscripts denote individual parameters in the 

parametric arrays. 
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Figure 5.4  Flow chart for the Hooke and Jeeve’s optimization method [adapted  
         from Reinholtz, 1983]. 
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Objective Function – As previously mentioned, the objective function is the 

mathematical function that is to be minimized.  It is, either directly or indirectly, a 

function of the design parameters.  For calibration of a differentially driven vehicle, these 

parameters consist of the left and right wheelbase and the two wheel radius values.  In 

this case, the goal is to minimize the total dead reckoning error by adjusting (calibrating) 

these parameters.  The total dead reckoning error is the sum of the error vector 

magnitudes Ecgcw and Ecgccw for the clockwise and counterclockwise test patterns 

respectively.  When data from multiple tests exists, the error vectors are defined from the 

actual location of the vehicle to the center of gravity (CG) of the cluster of points where 

the vehicle “thinks” (based on dead reckoning) it is.  The CG and resulting vector 

magnitude are found using equations 5.2 a, b, and 5.3. 

 

    ( )
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
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 ∑ −=

=

n
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n
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x  (a)        ( )





 ∑ −=

=

n

0i
iactualdeadcg yy

n

1
y  (b)  (5.2) 

where, 

 xactual, yactual = actual vehicle position, 

    xdead, ydead = dead reckoned vehicle position, 

                  n = number of attempts. 

 

and, 

 

    2
cg

2
cgcg yxE +=      (5.3) 

 

Figures 5.5 a and b illustrate the CG position and Ecg for a complete UMBmark 

test run on a three-yard and six-yard square respectively.  As previously mentioned, the 

vehicle was physically pushed when performing the UMBmark tests.  This allows the 

vehicle to move through nearly perfect square patterns, as well as, eliminates many non-

systematic errors. For all of the UMB mark tests, the ending vehicle position (xactual, 

yactual) was at the origin.  For both tests, Navigator was pushed in the clockwise and 

counterclockwise test patterns a total of five times a piece.  Notice, the dead reckoning 
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error is greater when run in the six-yard pattern than when run in the three-yard pattern.  

This is characteristic of a systematic error that grows as a function of distance traveled. 

 

 

 

 In order to develop the objective function, it was necessary to simulate the 

vehicle’s final position based on the design parameters (wheel bases and radii) and the 

size of the square test pattern.  To achieve this, an algorithm was developed that 

numerically integrates the kinematic Equation 3.6 and 3.7 in order to simulate the vehicle 

position.  This integration is done using nearly the same procedure that was presented in 

section 4.2, except now the wheel velocities are specified in the code instead of being fed 

back from the encoders, and the equations are integrated over a specified range instead of 

the entire time the vehicle is running.  This range corresponds to the size of the square 

pattern being tested, i.e. three-yard, six-yard, or other. 

 At this point, an additional level of complexity exists.  If the nominal (i.e. those 

that produced incorrect results in the actual vehicle UMBmark test) parametric values are 
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Figure 5.5  UMBmark test results from A)  three-yard square, B) six-yard square. 
          Both tests were done on the same day as the test shown in Figure 5.3. 
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used, then the simulation yields a perfect square pattern resulting in the vehicle’s final 

position being at the origin.  In this case, the error, as presented in Figure 5.5, would be 

driven to zero without any parametric adjustment.   However, it is known from the 

UMBmark test that these are not the correct parametric values. At this point, two other 

options exist.  The first would be to design the objective function such that optimization 

would adjust the parameters until the final simulated position is as close as possible to the 

CG position.  This method is flawed because it yields parametric values that will result in 

a compounded dead reckoning error when they are used on the vehicle.  The second, and 

chosen, method is to design the objective function such that optimization adjusts the 

parameters until the final simulated position is as close as possible to the negative of the 

CG position.  In this manner, optimization will output parameters that have been 

calibrated to compensate for the systematic dead reckoning inaccuracies. 

 The resulting objective function is shown in Equation 5.4.  In this equation, (xsim, 

ysim) is the final position of the vehicle when simulated on the UMBmark test pattern.  

These are functions of the design parameters, because the simulation is done using the 

equations for vehicle velocity and vehicle angular velocity (Equations 3.6 and 3.7).  

Therefore, the objective function is indirectly a function of the vehicle parameters. 

 

( ) ( ){ } ( ) ( ){ }
ccwsimcgsimcgcwsimcgsimcg yyxxyyxx)X( 2222f −−+−−+−−+−−= (5.4) 

 where, 

  xsim, ysim = the final simulated vehicle position. 

 

 Figure 5.6 is an example of a typical optimization run on a three-yard UMBmark 

test pattern.  This particular example uses the CG set points, clockwise and counter 

clockwise, obtained from Figure 5.5a.  Notice how it converges on a point in quadrant 

four in the clockwise simulation and a point in quadrant one in the counter clockwise 

simulation.  This is opposite the CGcw,ccw points, which are in quadrants two and three, in 

Figure 5.5a, respectively. 
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 As shown in the figure text, the parameters that are most drastically changed by 

the optimization routine are the wheel radii.  With these new values, the left wheel radius 

is 65 mm smaller than the right wheel radius.  These parametric values are logical, 

because looking at the vehicle path in Figure 5.3 indicates that the left wheel is likely 

smaller in radius.   

 At this point, the tool for optimized parametric calibration has been developed.  

Next, it is necessary to establish an easy procedure, that can be followed by any operator, 

to calibrate a differentially driven robot. 

 

Calibration Procedure – There are two goals for developing the aforementioned 

optimized parametric calibration tool.  First, to eliminate as many dead reckoning errors 
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Figure 5.6  Objective function vehicle simulations both clockwise and  
         counter clockwise.  This uses set point data from Figure 5.5a. 
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as possible in order to maximize the benefits of the global look-ahead algorithm.  Second 

to allow for a timely and efficient calibration procedure.   

 Before explaining the procedure, it is interesting to note the relative preciseness of 

the data points in Figures 5.5 a and b.  This phenomenon was consistent in all of the 

UMBmark tests that were performed.  Because of this consistency in the data, not much 

accuracy is lost if only one data point is used, instead of five, to determine the position of 

CG.  However, taking only one data point for the clockwise and counterclockwise 

directions speeds up the calibration procedure by nearly a factor of five.  This is because 

the bulk of the time is spent pushing the vehicle through the UMBmark test when 

performing the optimized calibration procedure.  The optimized calibration procedure is 

as follows: 

 

1) Measure out and mark two perfect squares with sides of size three-yards or 

larger.  These squares should be configured such that they share one side.  

One corner on this shared side is to be established as the origin. 

2) Position the vehicle at the origin such that it is facing in the direction of the 

shared side.  Zero the dead reckoned position in the vehicle software. 

3) Push the vehicle in the clockwise direction, around the square on the right, 

and finish at the origin.  Be careful to follow the square as closely as possible.  

Note, the vehicle reference is the point where the centerline and the wheel axis 

cross. 

4) Record the final position (xcg, ycg) where the vehicle “thinks” it is, based on 

dead reckoning. 

5) Reposition the vehicle at the origin in its initial position and re-zero the dead 

reckoned position in the vehicle software. 

6) Push the vehicle in the counterclockwise direction, around the square on the 

right, and finish at the origin.  Again, be careful to follow the square as closely 

as possible. 

7) Record the position (xcg, ycg) where the vehicle “thinks” it is, based on dead 

reckoning. 
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8) Open Matlab and run the parametric optimization program.  It will ask you to 

input the coordinates (xcg, ycg) and square dimension for both the clockwise 

and counterclockwise test patterns and then it will output the optimized 

parametric values (note, all units are cm).  This takes one or two minutes.  If 

not installed on the vehicle, this code is in Appendix B of this thesis. 

9) Input these parameters in place of the nominal parameters in the software on 

the vehicle. 

 

At this point, the optimized calibration procedure is finished and the user can 

continue with running the vehicle in its normal autonomous mode.  This process takes 

approximately 25 minutes, however most of this time is consumed in step one.  If the 

square test patterns are previously established, as would be the case if running the vehicle 

in the same location for multiple days, then this process is reduced to steps two through 

nine.  In this case, the calibration procedure takes 10 to 15 minutes.   

 

5.3 Calibration Results 

 

Parametric optimization was implemented on Navigator following the 

aforementioned procedure.  In 

order to get an idea of how much 

this optimization reduces the total 

dead reckoning errors, it was 

tested using both a 3-yard and 6-

yard square patterns during the 

calibration procedure.  The testing 

procedure consisted of 

implementing the calibration 

procedure and then performing the 

UMBmark test again.  At this 

point the total error for both the 

non-calibrated and calibrated 
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tests was compared.  Figure 5.7 gives the results for a 3-yard square test pattern. 

Figure 5.8 gives 

the results for a 6-yard 

square test pattern Both of 

these tests were performed 

on the same day.  Table 

5.1 quantifies the results 

shown in Figures 5.7 and 

5.8.  Remember that the 

total dead reckoning error 

is the sum of the error 

vectors for both the 

clockwise and 

counterclockwise runs.  

Interestingly, calibrating 

the vehicle on the smaller 

(3-yard) test pattern gave 

slightly better results on this particular day.  Further, it should be noted that these results 

are expected to vary from day to day.  The purpose of these sample tests is to demonstrate 

the typical reduction in error that is achieved using the optimized calibration procedure. 

 

Test No Calibration (cm) Calibrated (cm) % Reduction in Error 

Figure 5.7 134.1 48.0 64.3 

Figure 5.8 579.0 235.1 60.6 

 

 It is interesting to see what improvements in dead reckoning can be gained on a 

six-yard test pattern when the calibration was done using a three-yard test pattern. It was 

also desired to see what improvements in dead reckoning can be gained on a three-yard 

test pattern when the calibration was done using a six-yard test pattern. Figures 5.9 and 

5.10 give the results of these respective tests.  These test were performed on a different 

day than those shown above.  
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 These results are quantified in Table 5.2.  Again, the results show that calibrating 

on a three-yard test pattern yields a higher reduction in error than calibrating on a six-

yard test pattern.  Many possible reasons for this could exist.  One contributing factor to 

this is that, over a longer running distance, the vehicle is subject to more errors that are 

non-systematic.  Discontinuous terrain could be a large contributing factor of these non-

systematic errors. These tests do not prove that calibrating on a smaller test pattern is 

better.  What they do show, however, is that calibrating on a smaller test pattern gives 

reasonable results compared to calibrating on a larger test pattern.  This knowledge is 

useful, because it means that the calibration procedure can be made less labor intensive 

and time consuming by calibrating on a smaller test pattern, yet the benefits of the 

optimized parametric calibration tool are not sacrificed. 

 

Test No 

Calibration 

(cm) 

Calibrated 

on 3yrd 

pattern 

(cm) 

Calibrated 

on 6yrd 

pattern 

(cm) 

% Error 

Reduction 

When 

Calibrated on 

3yrd pattern 

(cm)  

% Error 

Reduction 

When 

Calibrated on 

6yrd pattern 

(cm) 

Figure 5.9 134.9 78.8 103.8 41.6 23.1 

Figure 5.10 610.6 172.6 209.4 71.7 65.7 

 

 The next sequence of figures show Navigator’s actual path when performing the 

UMBmark tests discussed above.  Figures 5.11, 5.12, and 5.13 are the test runs that were 

inspected in Figure 5.9.  Figures 5.14, 5.15, and 5.16 are the test runs that were inspected 

in Figure 5.10.  These are presented in order to give the reader a feel for the dead 

reckoning performance of the actual vehicle, Navigator, in action.  When viewing these 

tests, remember that Navigator actually traveled in a near perfect square as illustrated in 

Figure 5.3. 

 

 

Table 5.2  Total dead reckoning errors. 
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Figure 5.11  Three-yard test with no calibration. 

Figure 5.13  Three-yard test, calibrated at six-yards. 

Figure 5.12  Three-yard test, calibrated at three-yards. 
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Figure 5.14  Six-yard test with no calibration. 

Figure 5.16  Six-yard test, calibrated at six-yards. 

Figure 5.15  Six-yard test, calibrated at three-yards. 
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 Notice that the dead reckoning was less accurate when running in the 

clockwise direction than when running in the counter clockwise direction.  This 

could be due to the irregular terrain on which the testing took place.  Three 

possible contributing factors, which were noticed, are as follows.  First, there was 

a gradual slope ascending from right to left.  Second, the terrain on the clockwise 

run was slightly bumpier than the terrain on the counterclockwise run.  Third, the 

grass was thicker and less trampled on the counterclockwise run than on the 

clockwise run.  The details of how and why this affected the dead reckoning in 

this particular way are not explored here.  Regardless, optimized calibration 

significantly decreased the errors due to dead reckoning in both the 

counterclockwise and clockwise direction.  The raw data for all of the calibration 

testing that was performed is presented in Appendix C. 
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Chapter 6 

 

 

Implementation Results 

 
 This chapter presents the results of implementing the self-building global map and 

look-ahead algorithm that was developed in the preceding chapters of this thesis.  In 

order to insure the minimum amount of dead reckoning error and thus maximize the 

usefulness of the global map building algorithm, Navigator was calibrated using the 

method presented in chapter five.  Results show that using the self-building map 

algorithm, Navigator can successfully develop a quasi-free space global map of the 

course.  Further, the quality of the maps improves with multiple runs.  The first section of 

this chapter discusses these results at greater length. 

 This chapter also presents conclusions and recommendations for future research.  

It is the opinion of this author that some of the topics open for future research in this area 

are complex and new enough to be Ph.D. dissertation material.  Some areas in which this 

research is directly applicable are also discussed. 

 

6.1 Practice Course Results 

 

An outdoor oval course was chosen for testing of the global map building and 

look-ahead algorithm.  This course, shown in Figure 6.1, has outer dimensions of 

approximately 10 X 18 meters.  The actual course width is 3 meters (10 feet) on average.  

This is consistent with the course width at the IGVC.  An oval course was chosen 

because it is difficult, yet symmetric.  Using a symmetric course facilitates extracting 

distinguishing features from the data.  The 3-yard square patterns at the bottom of Figure 

6.1 were used for calibration, by following the procedure in Chapter 5, before the test 

runs that follow. 
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 Initially, the algorithm was tested on the course with no obstacles.  The ambient 

conditions on the first day of testing were particularly good.  There was consistent cloud 

cover but no rain.  This allowed the errors associated with image processing to be lower 

than normal.  Given bright sunlight, many light spots in the grass show up as obstacles, 

thus Navigator oscillates more frequently in attempt to avoid these imaginary obstacles.  

Further, bright sunlight can completely wash out an image in some cases.  When this 

occurs, Navigator is incapable of sensing and avoiding lines.   

The first test, shown schematically in Figure 6.2 was performed in the 

counterclockwise direction using a look-ahead distance (Dla) of 2.5 meters.  Notice the 

complete course is successfully mapped on the first run.  On subsequent runs, Navigator 

initiates the turns sooner and thus finds a shorter path around the course.  However, 

notice that the later runs oscillate more than the initial runs.  This is possibly due to a 

relatively short look-ahead distance.  If looking further ahead, the look-ahead angle will 

change less dramatically and help the vehicle to initiate turns more smoothly.  Note, that 

Figure 6.1  Outdoor test course for Navigator.  Note, 3-yard  
         calibration test pattern. 
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the map is not an exact match to the real course.  An exact match would result in both the 

start and finish being at the origin.   This inexactness is due to dead reckoning errors.  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Next, the same test was run with a 3.5 meter look-ahead in an attempt to smooth 

the oscillations. 
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Figure 6.2  Counterclockwise test with a 2.5 meter look-ahead. 
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Figure 6.2  Counterclockwise test with a 3.5 meter look-ahead. 
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 By looking at Figure 6.2, it can be seen that using a larger look-ahead distance 

does tend to smooth the oscillations in the global path.  However, many other factors 

contribute to these oscillations.  Some of these are the aforementioned bright spots in the 

grass.  Another contributor to the oscillatory motion is the fact that the sensors are subject 

to different inputs when Navigator takes a different path.   

 Figure 6.3, is a test on the same course in the counterclockwise direction.  In this 

and all subsequent tests, a 3.5 meter look-ahead distance is used.  Again, notice that with 

each run, the vehicle begins to travel along the inner radius of the turns, thus reducing the 

distance traveled.  This trend is similar to that shown in the look-ahead simulations that 

were discussed in chapter four. 

 

 

 

 Notice that the global map is more accurate when Navigator is run in the 

clockwise direction.  This could be due to non-systematic errors caused by uneven terrain 

in the later portion of the course.  During the counterclockwise tests, this uneven terrain 
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Figure 6.3  Clockwise test with a 3.5 meter look-ahead.  Note, dotted line  
          represents portion expanded for Figure 6.4.  
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was in the early portion of the course.  This could have possibly been the cause of the 

greater overall dead reckoning errors during the counterclockwise tests. 

 One key concept is that the look-ahead angle is determined by looking from one 

dead reckoned vehicle location to a previous dead reckoned vehicle location.  Therefore, 

the look-ahead angle is still useful when implemented on the vehicle in its actual 

location.  This concept is illustrated, by expanding a section of Figure 6.3, in Figure 6.4.  

This is an illustration of the vehicle attempting run #3 and looking at global map data 

from run #2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Next, the global mapping and look-ahead algorithm was tested on the course with 

the addition of a trap caused by traffic barrels.  The traffic barrels were placed at a 

position partially into the second turn in the course.  This position was chosen for testing, 

because it gives a high likelihood that the vehicle will be trapped when using only the 

Vector Field Histogram (no look-ahead) for navigation.  Figure 6.5 is a photo sequence of 

Navigator on its first attempt at the course.  Notice that it gets caught in the trap. 

φla 

φla 

Vv 

Vv 

Course  
Boundary 

Dla 

Dla Actual 
Position 

Dead 
Reckoned 
Position 

Figure 6.4  Demonstration that the look-ahead angle is useful even though the  
         dead reckoned position differs from the actual postion due to  
         dead reckoning errors.  Note, this does not represent actual data 
         it is exaggerated for illustration purposes. 
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This test was performed in order to determine if the global map and look-ahead 

algorithm aids in avoiding the trap.  Figure 6.6 shows the data obtained during the first 

five attempts at this course.  On both of the first attempts, Navigator falls into the trap.  

On the third attempt, Navigator avoids the barrels but is forced to turn too sharply and 

defaults by going over the inner course boundary line.  During both the fourth and fifth 

attempts, Navigator uses its global map to easily traverse past the trap.  However, 

Navigator was not able to complete the course due to sensor failure.  The sun was bright 

on this day and the failures in runs five and six were caused by camera washout, as 

previously discussed. 

 

1 

3 

2 

4 

Figure 6.5  Photo sequence of Navigator on first attempt at the course with a trap. 
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Finally, on the sixth attempt, Navigator was able to successfully negotiate the 

entire course.  Figure 6.7 illustrates attempt six as well as two more successful attempts. 
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Figure 6.6  Clockwise test with a 3.5 meter look-ahead on course with a trap. 
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Figure 6.7  Three more runs in the clockwise direction with a 3.5 meter look-ahead  

         on course with a trap. 
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 By looking at Figure 6.7, it is seen that, using the global look-ahead algorithm, 

Navigator always traverses further on the course than it did on the preceding attempt.  

Also, notice that once Navigator successfully mapped free space past the trap, it was able 

to avoid the trap on all subsequent attempts.  Notice that on Run #8 Navigator completed 

one lap and continued on a second lap until it was caught in the trap.  On the second lap, 

Navigator was exploring again using solely the Vector Field Histogram for navigation. 

 

6.2 Conclusions and Recommendations 

 

Autonomous development of a global map that completely describes an area 

remains an exceedingly difficult task with many problems yet to be solved.  However, the 

quasi-free space global mapping technique presented in this thesis is shown to be a useful 

aid in completing a course that is similar to the obstacle course at the Intelligent Ground 

Vehicle Competition (IGVC).  The global look-ahead algorithm developed in this thesis 

has shown to be a simple and effective method by which to use the global map in 

conjunction with the local obstacle avoidance module (VFH).  Further, the optimized 

parametric calibration tool, presented in this thesis, significantly reduces vehicle dead 

reckoning errors.  Although much success has been achieved with the three main topics 

presented in this work, each can be improved with more effort.  Some ideas for 

improvement are as follows. 

 First, some suggestions for improving the optimized parametric calibration tool.  

More testing could be done in order to determine the optimum size of the square test 

pattern.  This may involve a tradeoff between time and energy put into calibrating (a 

larger square would require more effort) and calibration benefits (a larger square might 

offer more precise calibration).  Further, a module could be added to the objective 

function that accounts for non-systematic errors.  This could be done by statistically 

averaging the magnitude of non-systematic dead reckoning errors when doing a 90o zero 

radius turn or traveling straight over a certain distance (square size).  This would involve 

extensive testing on many different terrain surfaces in order to acquire a substantial data 

set.  These average errors would then be modularly input into the objective function as 

mentioned before.  This would result in parameter dimensions that would not match the 
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actual parameter dimensions, but are calibrated such that the overall dead reckoning error 

is minimized. 

 Second, further testing could help to improve the look-ahead algorithm.  It is 

known that the optimum look-ahead distance Dla varies depending upon the terrain and 

type of course.  Further testing will help pinpoint exactly what is the best look-ahead 

distance for every particular scenario that the vehicle might encounter.  This information 

could then be used to write a self-tuning look-ahead algorithm.  This would involve the 

vehicle choosing the best look-ahead distance in real time for each situation that it 

encounters as it traverses the course.  This could be implemented as an inference engine 

in much the same way as the expert systems that are discussed in chapter two. 

 Third, suggestions for improving the self-building global map algorithm are as 

follows.  As mentioned, the global mapping presented in this thesis is a quasi, or partial, 

representation of the free space.  Further research could involve autonomous 

development of a composite free space and object-oriented map.  This could be done 

using an evidence grid technique.  A separate file would be developed containing an 

array with enough cells to represent the entire area that is desired to be mapped.  Each of 

these cells would initially contain some specified median value.  As the vehicle traversed 

the terrain discovering free space, the values in the cells in the array corresponding to the 

free space location would be decremented.  Further, as the vehicle detects objects, the 

values in the cells in the array that correspond to the object locations would be 

incremented.  Thus, the values in each cell would be incremented or decremented 

depending upon the object density.  An illustration of how this array might appear is 

given in Figure 6.8.  This example is given such that it corresponds to the course in 

Figure 6.5.  The specified median value for this example is 10.  The number of cells in 

the array corresponds to the resolution of the map.  It is theorized that the map quality 

will improve with multiple attempts. 

 Using this map, the vehicle could navigate by taking the lowest cost path from the 

start to the goal.  In developing a map of this type, there are many underlying 

complexities and problems that need to be addressed, two of which are localization and 

sensor accuracy.  For this reason, the author believes that this work is beyond the scope 

of a masters thesis and recommends it as dissertation level research. 
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Figure 6.8  Example composite map array using evidence grid technique.  Note, this  

         example corresponds to the course in Figure 6.5. 
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 In conclusion, there are many direct applications, other than the IGVC, for which 

parametric optimization, global mapping, and global look-ahead implementation can be 

used.  Presently, much research is taking place in the area of navigation using a Global 

Positioning System (GPS).  GPS allows the vehicle to accurately (± 10 meters) determine 

its position anywhere in the world.  This is used to aid navigation of passenger vehicle as 

well as heavy farm machinery.  However, the GPS signal is lost when the vehicle passes 

between large buildings (as in an urban setting) or when traveling through a tight canyon 

(as in a mountain setting).  Further, the GPS signal is also lost when the vehicle travels 

through a tunnel or under an overpass.  The work presented in this thesis could be used to 

supplement the GPS signal and allow the vehicle to continue navigation when the signal 

is lost.   

 Further, dead reckoning is often used in indoor applications such as autonomous 

surveillance, floor cleaning, and part delivery/transport.  In many situations such as these, 

the vehicles navigate using dead reckoning between markers that are embedded in the 

floor.  The optimized parametric calibration technique presented in chapter five of this 

thesis could be used to increase the positioning accuracy of these vehicles between 

waypoints. 

 Finally, given further research, a global map as presented in Figure 6.8 could be 

used to survey and map geologic features in uninhabitable environments.  Some 

examples of these uninhabitable environments are radioactive test fields and facilities, 

landmine (UXO) fields, and extra-terrestrial planets/moons. 
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Appendix A 
 

C++ code for look-ahead algorithm 
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LookAhead.cpp 
 
/////////////////////////////////////////////////////////// 
//  Look_Ahead_Algorithm.cpp : Algorithm that looks ahead  
//  at data from previous run and gives a heading and speed  
//  command that is then combined with the heading and  
//  speed command given by the local obstacle avoidance  
//  module (VFH). 
//   
//  Author:  Philip Kedrowski (pkedrows@vt.edu) 
//  Origin:  1/9/01 
//   
//  Revision History 
//  Date  Rev By        Comments 
//  01/09/01 0 Philip Kedrowski    Original Develop 
//  01/13/01   1    PRK/DCConner        Import into NavSim 
/////////////////////////////////////////////////////////// 
 
#include "stdafx.h" 
#include <iostream.h> 
#include <iomanip.h> 
#include <math.h> 
#include <stdlib.h> 
#include <time.h> 
#include <stdio.h> 
#include <memory.h>  
 
#include "LookAhead.h" 
#include "PLCcomm.h" 
 
CLookAhead::CLookAhead() 
{ 
        m_iSize = 2000;  // initializes size of global map  

// array 
        m_fXp = new float[m_iSize];  // alots memory for  

  // global map, subject  
  // to change 

        m_fYp = new float[m_iSize];  // alots memory for  
  // global map, subject  
  // to change 

 
 // initializes global map arrays to 0.0 
        memset(m_fXp,0,m_iSize*sizeof(float));   
        memset(m_fYp,0,m_iSize*sizeof(float)); 
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m_fMinMovement = 0.25f;  // minimum vehicle  

   // movement (meters)  
   // before updating global  
   // path 
 

        m_iLastMapNdx = 0;       // this is to keep track  
   // of where the global map 
   // ends 

 
        m_fMagSet = 2.5f;        // setpoint look ahead  

   // distance of the vehicle 
 

        m_fError  = 0.2f;        // error tolerance of look  
   // ahead distance 
 

        m_iLookAheadNdx = 1;     // location in array of  
   // data being looked to 
 

        m_iCurrentPsnNdx = -1;   // location in array of  
                                 // current position data 
 
        m_bPostWarnings = TRUE;  // post some warnings 
 
        m_bSaveGlobalMap = TRUE; // save the global map at  

   // the end of the run? 
 
        m_pLogFile = fopen("LookAhead.log","wt"); 
 
        initialize_map();        // load the latest map 
 
} 
 
CLookAhead::~CLookAhead()       // destructor for class 
CLookAhead 
{ 
 
    update_global_path(); 
    if (m_fXp) 
        delete[] m_fXp; 
 
    if (m_fYp) 
        delete[] m_fYp; 
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    if (m_pLogFile != NULL) 
        fclose(m_pLogFile); 
 
} 
 
 
// algorithm that looks ahead at previous data and give a  
// heading recommendation also updates previous data array  
// with current data. NOTE:  This is relative to Y-axis,  
// adjust bias relative to the vehicle in the navigation  
// thread. 
       
float CLookAhead::look_ahead(float Xc, float Yc, float 
fHeading) 
{ 
   float Xd, Yd, Phi_look_ahead; 
             
    CPoint pixLocation; 
    CSingleLock slock(&m_mtxLookAhead); // protect against  

// multithread 
                                        // data corruption 
 
    // overiding old data with new (better) data if vehicle  
    // moves the minimum distance specified above 
    float dX = m_fXp[m_iCurrentPsnNdx] - Xc;        
    float dY = m_fYp[m_iCurrentPsnNdx] - Yc; 
    float Mag = (float)sqrt(dX*dX + dY*dY); 
     
    // default look ahead angle of zero if no look ahead  
    // data is available 
    Phi_look_ahead = 0.0; 
 
    if (Mag > m_fMinMovement) 
    { 
        m_iCurrentPsnNdx++; 
        if (m_iCurrentPsnNdx < m_iSize) // don't go off end  

// of array 
        { 
            m_fXp[m_iCurrentPsnNdx] = Xc;        
            m_fYp[m_iCurrentPsnNdx] = Yc; 
        } 
        else
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        } 
            TRACE(" Position index greater than array  

size\n"); 
            m_iLookAheadNdx = 0;    // Flag invalid for  

 // save routine 
            m_iCurrentPsnNdx--;     // Keep valid range 
 
            if (m_pLogFile != NULL) 
            { 
                fprintf(m_pLogFile," Position index greater  

than array size:\n"); 
                fprintf(m_pLogFile,"    (x,y) ndx = (%f,%f)  

%d\n", Xc,Yc,m_iCurrentPsnNdx); 
                fflush(m_pLogFile); 
            } 
            return Phi_look_ahead;  // can't do anything  

    else 
        } 
    }; 
 
    if (m_iCurrentPsnNdx > m_iLastMapNdx) 
    { 
     // extending global map data index if exploring  

// further 
 

     // No need to process look ahead because there is no  
// valid data 

        m_iLastMapNdx = m_iCurrentPsnNdx; 
        TRACE0(" past valid lookahead data\n"); 
    } 
    else 
    { 
     
            
///////////////////////////////////////////////////////////         
// Calculate the difference between current and look ahead  
// positions then compare magnitude to set point magnitude  
// and adjust counter until they are within tolerance. 
/////////////////////////////////////////////////////////// 
     
if(m_iLookAheadNdx <= m_iLastMapNdx && m_iLookAheadNdx >=0) 
    { 
       float MagCalc; 
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       int a=-99, b; 

do  
         {  

// difference between current look ahead x data 
Xd = m_fXp[m_iLookAheadNdx]-Xc;  
//difference between current look ahead y data   

          Yd = m_fYp[m_iLookAheadNdx]-Yc;      
 
          //calculating magnitude of look ahead vector 

MagCalc = (float)sqrt(Xd * Xd + Yd * Yd);   
                  
     // now index through global path array in order to  

// adjust magnitude of look ahead vector (comparing it  
// to the magnitude setpoint) 

          
           if (MagCalc > (m_fMagSet + m_fError)) 
                { 
                    b = m_iLookAheadNdx - 1; 
                } 
                else if (MagCalc < (m_fMagSet – m_fError)) 
                   { 
                   // assume we need to always look further 
                   // down the previous list 
                        b = m_iLookAheadNdx + 1; 
                    } 
                    else 
                        break;  // must be in a valid  

  // look ahead range 
 
                    if (a == b) // if toggling between two  
                        break;  // look ahead points, break 
 
                    a=m_iLookAheadNdx; 
                    m_iLookAheadNdx=b; 
 
                }  
while ( m_iLookAheadNdx > m_iCurrentPsnNdx &&  

m_iLookAheadNdx <= m_iLastMapNdx); 
 
// now calculate global look-ahead angle that will be used  
// to bias the local avoidance module (VFH) command towards 
// the look-ahead direction.  If there is no data to look  
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 // ahead to then default is to send no Phi and not bias VFH 
         
 

if ( m_iLookAheadNdx > m_iCurrentPsnNdx &&  
                     m_iLookAheadNdx <= m_iLastMapNdx) 
          { 
               if (Xd == 0.0 && Yd==0.0) 
                   Phi_look_ahead = 0.0f; 
               else 
                   Phi_look_ahead = (float)atan2(- 

  Xd,Yd)/DEG2RAD; 
          
       // adjust bias relative to vehicle since the atan2  

  // function returns bias relative to the Y-axis 
        

Phi_look_ahead -= fHeading; 
 
               if (Phi_look_ahead > 180.0) 
                   Phi_look_ahead -= 360.0; 
               else if (Phi_look_ahead < -180.0) 
                   Phi_look_ahead += 360.0; 
                } 
            } 
    } 
 
    if (m_pLogFile != NULL) 
    { 
      fprintf(m_pLogFile," Current Position (%f,%f) %d\n", 
              Xc,Yc,m_iCurrentPsnNdx); 
      fprintf(m_pLogFile,"  Look Ahead bias %f (%d) at Posn  
             (%f,%f) (heading %f)\n", Phi_look_ahead,  
              m_iLookAheadNdx, m_fXp[m_iLookAheadNdx], 
              m_fYp[m_iLookAheadNdx], fHeading);        
//printing Phi and its index to screen for debugging 
purposes 
 
        fflush(m_pLogFile); 
    } 
 
return Phi_look_ahead;  // returns look-ahead angle to VFH 
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} 
// initialize global path array from global_path file 
// Note: elements are initially set to zero with the memset  
// command in constructor 
 
int CLookAhead::initialize_map() 
{ 
    FILE * fin; 
    char   line[255]; 
    float  fX,fY; 
     
    int iLine = 0; 
 
    CPoint pixLocation; 
    CSingleLock slock(&m_mtxLookAhead); // Protect against  

// multithread 
                                        // data corruption 
// opening global path data file (must be in same directory  
// that program is run from) 
       fin = fopen(GLOBAL_PATH_MAP_FILE,"rt");      
 
       //error message if global_path file does not exist 
       if (fin == NULL) 
       { 
           CString str; 
           str.Format("The global path file (%s)\n does not  

   exist!\n", GLOBAL_PATH_MAP_FILE); 
 
           TRACE0(str); 
           if (m_bPostWarnings) 
               AfxMessageBox(str); 
       } 
       else 
       {//read in global_path data 
           while( fgets( line, 255, fin ) != NULL) 
           { 
               int cnt; 
               if ((cnt = sscanf(line,"%f %f\n",&fX,&fY))  

== 2) 
               { 
                   m_fXp[iLine] = fX; 
                   m_fYp[iLine] = fY;   
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                   m_iLastMapNdx = iLine; 
                   iLine = iLine + 1; 
               } 
               else 
               { 
                   CString str; 
                   str.Format("Global Map File Error:\n      

invalid number of items on  
line %d\n",iLine); 

                   TRACE(str); 
                   TRACE( "%s", line); 
                   AfxMessageBox(str); // Error 
                   fcloseall(); 
                   return -1; 
               } 
 
  
           }  
           fclose(fin); 
       } 
 
    return iLine; 
} 
 
 
// write new data to global_path file, this destroys the  
// previous data file first  
 
void CLookAhead::update_global_path() 
{ 
 
    if (!m_bSaveGlobalMap) 
        return; 
 
    CPoint pixLocation; 
    CSingleLock slock(&m_mtxLookAhead); // Protect against  

// multithread 
// data corruption 

 FILE*fout; 
 fout = fopen(GLOBAL_PATH_MAP_FILE, "wt"); 
 
 if (fout == NULL) 
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    { 
        AfxMessageBox("Error could not create the file  

   global_path.\n"); 
        return; 
    } 
 
 for (int i = 0; i <= m_iCurrentPsnNdx; i++) 
     fprintf(fout,"%f %f\n", m_fXp[i], m_fYp[i]); 
 
 
    if ((m_iCurrentPsnNdx+1) >= m_iSize) 
        AfxMessageBox(" Map array was not big enough - data  

    truncated!\n"); 
 
    // See if there is valid data from previous run ahead 
    // in the array, and save if there is 
    if (m_iLookAheadNdx > m_iCurrentPsnNdx) 
    { 
        for (i = m_iLookAheadNdx; i <= m_iLastMapNdx; i++) 
            fprintf(fout,"%f %f\n", m_fXp[i], m_fYp[i]); 
    } 
 fclose(fout); 
} 
// function to plot out the look ahead data 
void CLookAhead::PlotLookAhead(CDC * pDC,double dScale,  

CPoint origin) 
{ 
    CPoint pixLocation; 
    CSingleLock slock(&m_mtxLookAhead); // Protect against  

// multithread 
                                        // data corruption 
 
    for (int i=0;i<= m_iLastMapNdx; i++) 
    { 
 
         pixLocation.x = origin.x + 
(int)floor(m_fXp[i]/dScale + 0.5); 
 
// minus because Y increases in pixel number as you go down 
   pixLocation.y = origin.y - (int)floor(m_fYp[i]/dScale +  

0.5); 
 
         // Join old location 

LookAhead.cpp 
 
         pDC->MoveTo(pixLocation.x,pixLocation.y); 
 
         // Draw the line 
         pDC->LineTo(pixLocation.x+1,pixLocation.y+1); 
     } 
} 
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void CLookAhead::ZeroReset() 
{ 
 
    m_iLookAheadNdx  = 1;    
    m_iCurrentPsnNdx = -1;  
 

} 
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/////////////////////////////////////////////////////////// 
//  LookAhead.h  Header file to declare the CLookAhead  
//  class.  It constructs the class member functions. 
// 
//  Authors:  Philip Kedrowski and David Conner 
// 
//  Revision History 
//  Origin:  1/13/01 
// 
/////////////////////////////////////////////////////////// 
 
 
#define GLOBAL_PATH_MAP_FILE "global_path.map" 
 
//function declarations 
 
//Look ahead navigation class 
class CLookAhead 
{ 
    private: 
 
        int m_iSize;  // allots memory for global map,  

  // subject to change 
 
        float  *m_fXp;   // points to memory for global  

// map, subject to change 
        float  *m_fYp;   // points to memory for global  

// map, subject to change 
        float   m_fMagSet;  // set point look ahead dist 
        float   m_fError;   // error tolerance for look  

   // ahead distance 
        float   m_fMinMovement;  // Minimum vehicle  

   // movement before 
   // updating global path 

 
        int     m_iLastMapNdx;     // this keeps track of  

// where the global map  
// data ends 

        int     m_iLookAheadNdx;   // location in array of  
// data that is  
// currently being  
// looked at 
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        int     m_iCurrentPsnNdx;  // location in array of  

// current location data 
        BOOL    m_bPostWarnings; 
        BOOL    m_bSaveGlobalMap; 
        FILE  * m_pLogFile; 
 
        CCriticalSection m_mtxLookAhead; // protect against  

 // multithread  
 
 
    public: 
 
        CLookAhead();           // Constructor 
        ~CLookAhead();          // Destructor 
        int     initialize_map();           
        float   look_ahead(float, float,float); 
        void    update_global_path(); 
        void    PlotLookAhead(CDC * pDC,double  

dScale,CPoint origin); 
        void    ZeroReset(); 
}; 
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Appendix B 
 

Matlab code for optimized vehicle parametric calibration 
 



  2001 Philip R. Kedrowski  119 

HookeDeadOpt.m 
 
% Philip Kedrowski 
% 
% Hook and Jeeve’s optimization code for calibration of  
% vehicle parameters in order to minimize systematic 
% dead reckoning errors for a differentially driven  
% vehicle. 
% 
% Revised 3/15/01 
 
clear all; 
close all; 
clc; 
 
% inital parameters and setpoint dead reckoning coordinates  
% to pass into cost function  
 
param = [33.02 38.1 33.02 38.1];  % left wheel radius, left  
                % wheelbase, right wheel  
                % radius, right wheelbase 

 
[coords] = input('Please input the dead reckoned vehicle 
coorinates  and size of one side of the UMBmark square in 
centimeters (use brackets) [Xcgcw Ycgcw Xcgccw Ycgccw Size]:  
'); 
 
q=4;  % number of design parameters 
 
%set step size(these are the starting change in parameters) 
 
StepSize = [0.1 0.1 0.1 0.1]; 
 
OStepSize = StepSize; 
 
% Compute current cost function 
% and check parameters 
 
CurrentCost = DeadCost(param, coords); 
 
% Maybe not the best programming practice, but this gives  
% us starting values for comparison  
 
OldCost = 1000000; 
CostDifference = 0.1; 
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StepCheck = [0.01 0.01 0.01 0.01]; 
iteration=0; 
 
 
% Start Optimization Loop using while loops 
% The comparison below is clever.  It uses the OR command  
% to check to see if the cost is still improving and, at  
% the same time, checks to see of the if all of the steps  
% sizes are below their preset minimum 
 
while abs(OldCost-
CurrentCost)>CostDifference|sum(StepCheck<StepSize)>0     
    
newparam = param; 
    
OldCost = CurrentCost; 
 
% Exploratory Search, the steps have a magnitude (stepsize)  
% and a + or % - sense determined by the Direction vector.   
% During the exploratory loop below, the direction may also  
% be set to zero to indicate that neither a plus or a minus  
% step in that direction lowered the cost. 
 
Direction = [1 1 1 1]; 
 
% step in each direction and check for improvements (set  
% Direction(j)=0 is both directions fail) 
 
for j=1:q 
 newparam(j) = param(j)+StepSize(j)*Direction(j); 
 NewCost = DeadCost(newparam, coords); 
   if NewCost > CurrentCost 
    Direction(j) = -Direction(j); 
    newparam(j) = param(j)+StepSize(j)*Direction(j); 
    NewCost = DeadCost(newparam, coords); 
    if NewCost > CurrentCost 
      Direction(j) = 0; 
      StepSize(j) = StepSize(j)/2; 
     end 
  end 
end  
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% End of the Exploratory Search 
move = StepSize; 
 
% Start the Pattern Move 
newparam = param + StepSize.*Direction; 
newcost = DeadCost(newparam, coords); 
 
while newcost < CurrentCost 
   param = param + move.*Direction; 
   CurrentCost = newcost; 
   move = move*1.25; 
   newparam = param + move.*Direction; 
   param; 
   newcost = DeadCost(newparam, coords); 
   
end 
 
iteration=iteration+1 
end 
 
param 
newcost 
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% Philip R. Kedrowski 
% 
% This is a function that integrates the vehicle position  
% based on commanded values for vehicle angular velocity  
% and velocity and the kinematic equations for a  
% differentially driven vehicle.  It then uses the final  
% position after integrating through the UMBmark test  
% pattern to develop an objective function value that is  
% passed back to the Hooke and Jeeve's optimization  
% (HookeDeadOpt.m). 
% 
% Revised 3/15/01 
 
function[OF] = DeadCost(param, coords) 
 
[L] = [param(1) param(2) param(3) param(4)];   % note, L =  
% [Leftwheelradius Leftwheelbase Rightwheelradius  
% Rightwheelbase] 
 
[C] = -[coords(1) coords(2) coords(3) coords(4)]; % note,  
% C = [Xcgcw, Ycgcw, Xcgccw, Ycgccw], Negative to adjust  
% vehicle correctly 
 
% initialize variables 
X = 0; 
Ang = 0; 
DPhi = 0; 
dx = 0; 
dy = 0; 
Xp(1) = 0; 
Yp(1) = 0; 
k = 1; 
n = 1; 
sample = 15;   % sample every 15 time steps for plotting  
       % (Plotting is for debugging and  
       % visualization purposes, don't plot every  
       % time) 
 
dt = 0.02;         % time step (sec) 
Theta_a_dot = 1.515;   % wheel a setpoint(rad/sec)  
Theta_b_dot = 1.515;   % wheel b setpoint(rad/sec) 
Theta_adot =  0.15;     % wheel a setpoint for right  
            % turn (rad/sec) 
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Theta_bdot = -0.15;     % wheel b setpoint for right  
            % turn (rad/sec) 
Command_distance = coords(5); % dimension of square for  
            % UMBmark (centimeters) 
Command_angle = pi/2;    % ninety degree turn 
 
%%%%%%%%%%SIMULATE CLOCKWISE DIRECTION%%%%%%%%%%%%%%%%%%%% 
 
% Now integrate course using given parameters 
 
while X < Command_distance,     
  
V = (L(1)*L(2)*Theta_a_dot + 
L(3)*L(4)*Theta_b_dot)/(L(2)+L(4));% kinematic equation  
               % for vehicle velocity 
Phi_dot = (L(3)*Theta_b_dot - L(1)*Theta_a_dot)/(L(2)+L(4));% kinema
             % vehicle angular velocity 
    
 DPhi = DPhi + Phi_dot*dt;  % calculate heading 
    
dx = dx - V*sin(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
dy = dy + V*cos(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
 
X = X + V*dt;     % distance traveled 
 
k=k+1;       % sampling position data for plotting 
   if k/sample == fix(k/sample) 
      Xp(n)=dx; 
      Yp(n)=dy; 
      n=n+1; 
   end 
end 
 
while abs(Ang) < Command_angle,  % ninety degree zero  
              % radius turn  
    
V = (L(1)*L(2)*Theta_adot + 
L(3)*L(4)*Theta_bdot)/(L(2)+L(4)); % kinematic equation for  
              % vehicle velocity 



  2001 Philip R. Kedrowski  124 

 
DeadCost.m 

Phi_dot = (L(3)*Theta_bdot – 
L(1)*Theta_adot)/(L(2)+L(4)); % kinematic equation for  
            % vehicle angular velocity 
    
DPhi = DPhi + Phi_dot*dt; % calculate heading 
    
dx = dx - V*sin(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
dy = dy + V*cos(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
    
Ang = Ang + Phi_dot*dt;  % angle turned 
    
k=k+1;       % sampling position data for plotting 
   if k/sample == fix(k/sample)  
      Xp(n)=dx; 
      Yp(n)=dy; 
      n=n+1; 
   end 
 
end 
 
 
% Reset variables 
X = 0; 
 
while X < Command_distance,     
    
V = (L(1)*L(2)*Theta_adot + 
L(3)*L(4)*Theta_bdot)/(L(2)+L(4)); % kinematic equation for  
              % vehicle velocity 
Phi_dot = (L(3)*Theta_bdot –  
L(1)*Theta_adot)/(L(2)+L(4)); % kinematic equation for  
            % vehicle angular velocity 
 
    
DPhi = DPhi + Phi_dot*dt; % calculate heading 
    
dx = dx - V*sin(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
dy = dy + V*cos(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
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X = X + V*dt;     % distance traveled 
k=k+1;       % sampling position data for plotting 
   if k/sample == fix(k/sample) 
      Xp(n)=dx; 
      Yp(n)=dy; 
      n=n+1; 
   end 
 
end 
 
% Reset variables 
Ang = 0; 
 
while abs(Ang) < Command_angle,  % ninety degree zero  
              % radius turn 
    
V = (L(1)*L(2)*Theta_adot + 
L(3)*L(4)*Theta_bdot)/(L(2)+L(4)); % kinematic equation for  
              % vehicle velocity 
Phi_dot = (L(3)*Theta_bdot –  
L(1)*Theta_adot)/(L(2)+L(4)); % kinematic equation for  
            % vehicle angular velocity    
 
DPhi = DPhi + Phi_dot*dt; % calculate heading 
    
dx = dx - V*sin(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
dy = dy + V*cos(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
    
Ang = Ang + Phi_dot*dt;  % angle turned 
    
k=k+1;       % sampling position data for plotting 
   if k/sample == fix(k/sample) 
      Xp(n)=dx; 
      Yp(n)=dy; 
      n=n+1; 
   end 
end 
 
% Reset variables 
X = 0; 
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   while X < Command_distance,    
V = (L(1)*L(2)*Theta_adot + 
L(3)*L(4)*Theta_bdot)/(L(2)+L(4)); % kinematic equation for  
              % vehicle velocity 
Phi_dot = (L(3)*Theta_bdot –  
L(1)*Theta_adot)/(L(2)+L(4)); % kinematic equation for  
            % vehicle angular velocity    
 
DPhi = DPhi + Phi_dot*dt; % calculate heading 
   
dx = dx - V*sin(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
dy = dy + V*cos(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
 
X = X + V*dt;     % distance traveled 
  
k=k+1;       % sampling position data for plotting 
   if k/sample == fix(k/sample) 
      Xp(n)=dx; 
      Yp(n)=dy; 
      n=n+1; 
   end 
end 
 
% Reset variables 
Ang = 0; 
 
while abs(Ang) < Command_angle,  % ninety degree zero  
              % radius turn 
 
V = (L(1)*L(2)*Theta_adot + 
L(3)*L(4)*Theta_bdot)/(L(2)+L(4)); % kinematic equation for  
              % vehicle velocity 
Phi_dot = (L(3)*Theta_bdot –  
L(1)*Theta_adot)/(L(2)+L(4)); % kinematic equation for  
            % vehicle angular velocity          
 
DPhi = DPhi + Phi_dot*dt; % calculate heading 
            
dx = dx - V*sin(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
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dy = dy + V*cos(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
Ang = Ang + Phi_dot*dt;  % angle turned 
     
k=k+1;       % sampling position data for plotting 
      if k/sample == fix(k/sample) 
      Xp(n)=dx; 
      Yp(n)=dy; 
      n=n+1; 
   end 
 
end 
 
% Reset variables 
X = 0; 
 
while X < Command_distance,     
    
V = (L(1)*L(2)*Theta_adot + 
L(3)*L(4)*Theta_bdot)/(L(2)+L(4)); % kinematic equation for  
              % vehicle velocity 
Phi_dot = (L(3)*Theta_bdot –  
L(1)*Theta_adot)/(L(2)+L(4)); % kinematic equation for  
            % vehicle angular velocity    
 
DPhi = DPhi + Phi_dot*dt; % calculate heading 
   
dx = dx - V*sin(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
dy = dy + V*cos(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
 
X = X + V*dt;     % distance traveled 
 
k=k+1;       % sampling position data for plotting 
   if k/sample == fix(k/sample)  
      Xp(n)=dx; 
      Yp(n)=dy; 
      n=n+1; 
   end 
end 
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% Reset variables 
Ang = 0; 
while abs(Ang) < Command_angle,  % ninety degree zero  
              % radius turn 
    
V = (L(1)*L(2)*Theta_adot + 
L(3)*L(4)*Theta_bdot)/(L(2)+L(4)); % kinematic equation for  
              % vehicle velocity 
Phi_dot = (L(3)*Theta_bdot –  
L(1)*Theta_adot)/(L(2)+L(4)); % kinematic equation for  
            % vehicle angular velocity    
 
DPhi = DPhi + Phi_dot*dt; % calculate heading 
    
dx = dx - V*sin(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
dy = dy + V*cos(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
    
Ang = Ang + Phi_dot*dt;  % angle turned 
 
k=k+1;       % sampling position data for plotting 
   if k/sample == fix(k/sample) 
      Xp(n)=dx; 
      Yp(n)=dy; 
      n=n+1; 
   end 
end 
 
 
figure(1);     % plot vehicle position for  
          % clockwise direction 
plot(Xp,Yp) 
 
% compute objective functions for clockwise direction 
OFXcgcw = (C(1) - dx); 
OFYcgcw = (C(2) - dy); 
 
%%%%%%%%%%HERE SIMULATE COUNTER CLOCKWISE DIRECTION%%%%%%%% 
 
% initialize variables 
X = 0; 
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DeadCost.m 

 
Ang = 0; 
DPhi = 0; 
dx = 0; 
dy = 0; 
Xp2(1) = 0; 
Yp2(1) = 0;  
k = 1; 
n = 1; 
Theta_adot = -0.15;  % wheel a setpoint for left turn  
         % (rad/sec) 
Theta_bdot =  0.15;  % wheel b setpoint for left turn  
         % (rad/sec) 
 
% Now integrate course using given parameters 
 
while X < Command_distance,     
  
V = (L(1)*L(2)*Theta_a_dot + 
L(3)*L(4)*Theta_b_dot)/(L(2)+L(4));% kinematic equation  
               % for vehicle velocity 
Phi_dot = (L(3)*Theta_b_dot - L(1)*Theta_a_dot)/(L(2)+L(4));% kinema
             % vehicle angular velocity 
    
 DPhi = DPhi + Phi_dot*dt;  % calculate heading 
    
dx = dx - V*sin(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
dy = dy + V*cos(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
 
X = X + V*dt;     % distance traveled 
 
k=k+1;       % sampling position data for plotting 
   if k/sample == fix(k/sample) 
      Xp2(n)=dx; 
      Yp2(n)=dy; 
      n=n+1; 
   end 
end 
 
while abs(Ang) < Command_angle,  % ninety degree zero  
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DeadCost.m 

 
              % radius turn  
    
V = (L(1)*L(2)*Theta_adot + 
L(3)*L(4)*Theta_bdot)/(L(2)+L(4)); % kinematic equation for 
              % vehicle velocity 
Phi_dot = (L(3)*Theta_bdot –  
L(1)*Theta_adot)/(L(2)+L(4)); % kinematic equation for  
            % vehicle angular velocity 
    
DPhi = DPhi + Phi_dot*dt; % calculate heading 
    
dx = dx - V*sin(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
dy = dy + V*cos(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
    
Ang = Ang + Phi_dot*dt;  % angle turned 
    
k=k+1;       % sampling position data for plotting 
   if k/sample == fix(k/sample)  
      Xp2(n)=dx; 
      Yp2(n)=dy; 
      n=n+1; 
   end 
 
end 
 
 
% Reset variables 
X = 0; 
 
while X < Command_distance,     
    
V = (L(1)*L(2)*Theta_adot + 
L(3)*L(4)*Theta_bdot)/(L(2)+L(4)); % kinematic equation for  
              % vehicle velocity 
Phi_dot = (L(3)*Theta_bdot –  
L(1)*Theta_adot)/(L(2)+L(4)); % kinematic equation for  
            % vehicle angular velocity 
 
    
DPhi = DPhi + Phi_dot*dt; % calculate heading 
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DeadCost.m 

    
    
dx = dx - V*sin(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
dy = dy + V*cos(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
X = X + V*dt;     % distance traveled 
      
k=k+1;       % sampling position data for plotting 
   if k/sample == fix(k/sample) 
      Xp2(n)=dx; 
      Yp2(n)=dy; 
      n=n+1; 
   end 
 
end 
 
% Reset variables 
Ang = 0; 
 
while abs(Ang) < Command_angle,  % ninety degree zero  
              % radius turn 
    
V = (L(1)*L(2)*Theta_adot + 
L(3)*L(4)*Theta_bdot)/(L(2)+L(4)); % kinematic equation for  
              % vehicle velocity 
Phi_dot = (L(3)*Theta_bdot –  
L(1)*Theta_adot)/(L(2)+L(4)); % kinematic equation for  
            % vehicle angular velocity    
 
DPhi = DPhi + Phi_dot*dt; % calculate heading 
    
dx = dx - V*sin(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
dy = dy + V*cos(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
    
Ang = Ang + Phi_dot*dt;  % angle turned 
    
k=k+1;       % sampling position data for plotting 
   if k/sample == fix(k/sample) 
      Xp2(n)=dx; 
      Yp2(n)=dy; 
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DeadCost.m 

 
      n=n+1; 
   end 
end 
 
% Reset variables 
X = 0; 
 
while X < Command_distance,     
    
    
V = (L(1)*L(2)*Theta_adot + 
L(3)*L(4)*Theta_bdot)/(L(2)+L(4)); % kinematic equation for  
              % vehicle velocity 
Phi_dot = (L(3)*Theta_bdot –  
L(1)*Theta_adot)/(L(2)+L(4)); % kinematic equation for  
            % vehicle angular velocity    
 
DPhi = DPhi + Phi_dot*dt; % calculate heading 
   
dx = dx - V*sin(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
dy = dy + V*cos(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
 
X = X + V*dt;     % distance traveled 
  
k=k+1;       % sampling position data for plotting 
   if k/sample == fix(k/sample) 
      Xp2(n)=dx; 
      Yp2(n)=dy; 
      n=n+1; 
   end 
end 
 
% Reset variables 
Ang = 0; 
 
while abs(Ang) < Command_angle,  % ninety degree zero  
              % radius turn 
 
V = (L(1)*L(2)*Theta_adot + 
L(3)*L(4)*Theta_bdot)/(L(2)+L(4)); % kinematic equation for  
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DeadCost.m 

 
              % vehicle velocity 
Phi_dot = (L(3)*Theta_bdot –  
L(1)*Theta_adot)/(L(2)+L(4)); % kinematic equation for  
            % vehicle angular velocity          
 
DPhi = DPhi + Phi_dot*dt; % calculate heading 
            
dx = dx - V*sin(DPhi)*dt;% dead reckoned coords by  
 
           % numerical integration 
dy = dy + V*cos(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
     
Ang = Ang + Phi_dot*dt;  % angle turned 
     
k=k+1;       % sampling position data for plotting 
      if k/sample == fix(k/sample) 
      Xp2(n)=dx; 
      Yp2(n)=dy; 
      n=n+1; 
   end 
 
end 
 
% Reset variables 
X = 0; 
 
while X < Command_distance,     
    
V = (L(1)*L(2)*Theta_adot + 
L(3)*L(4)*Theta_bdot)/(L(2)+L(4)); % kinematic equation for  
              % vehicle velocity 
Phi_dot = (L(3)*Theta_bdot –  
L(1)*Theta_adot)/(L(2)+L(4)); % kinematic equation for  
            % vehicle angular velocity    
 
DPhi = DPhi + Phi_dot*dt; % calculate heading 
   
dx = dx - V*sin(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
dy = dy + V*cos(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
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DeadCost.m 

 
 
X = X + V*dt;     % distance traveled 
 
k=k+1;       % sampling position data for plotting 
   if k/sample == fix(k/sample)  
      Xp2(n)=dx; 
      Yp2(n)=dy; 
      n=n+1; 
   end 
end 
 
% Reset variables 
Ang = 0; 
 
while abs(Ang) < Command_angle,  % ninety degree zero  
              % radius turn 
    
V = (L(1)*L(2)*Theta_adot + 
L(3)*L(4)*Theta_bdot)/(L(2)+L(4)); % kinematic equation for  
              % vehicle velocity 
Phi_dot = (L(3)*Theta_bdot –  
L(1)*Theta_adot)/(L(2)+L(4)); % kinematic equation for  
            % vehicle angular velocity    
 
DPhi = DPhi + Phi_dot*dt; % calculate heading 
    
dx = dx - V*sin(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
dy = dy + V*cos(DPhi)*dt;% dead reckoned coords by  
           % numerical integration 
    
Ang = Ang + Phi_dot*dt;  % angle turned 
 
k=k+1;       % sampling position data for plotting 
   if k/sample == fix(k/sample) 
      Xp2(n)=dx; 
      Yp2(n)=dy; 
      n=n+1; 
   end 
end 
 
hold on; 
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DeadCost.m 
 
plot(Xp2,Yp2) 
xlabel('X (cm)'); 
ylabel('Y (cm)'); 
axis([-350 350 -50 480]); 
 
%Compute objective functions for counterclockwise direction 
OFXcgccw = (C(3) - dx); 
OFYcgccw = (C(4) - dy); 
 
%compute total objective function 

OF = ((OFXcgcw)^2 + (OFYcgcw)^2)^0.5 + ((OFXcgccw)^2 + 
(OFYcgccw)^2)^0.5
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Appendix C 
 

UMBmark Test Data 



  2001 Philip R. Kedrowski  137 

Philip R. Kedrowski          

Implementation of Optimization for Increased Dead Reckoning Accuracy    

2/19/2001           

           

Initial parameters    Parameters optimized using three yard square    

Wheel Base A = 38.1 cm    Wheel Base A = 38.58 cm     

Wheel Base B = 38.1 cm    Wheel Base B = 38.53 cm     

Wheel Radius A = 33.02 cm    Wheel Radius A = 32.72 cm     

Wheel Radius B = 33.02 cm    Wheel Radius B = 33.37 cm     

           

           

Three yard square           

Xcgcw Ycgcw Error_cw % Error Reduction  Xcgccw Ycgccw Error_ccw % Error Reduction  

-44.2 93.5 103.4   -22.5 -20.9 30.7   

Xcgcw_opt Ycgcw_opt  61.6   Xcgccw_opt Ycgccw_opt  73.3  

-27.8 28.4 39.7   6.8 4.6 8.2   

    Total Error  % Total Error Reduction    

    No Calibration = 134.1 64.3     

    With Calibration = 48.0      

           

Parameters optimized using six yard square         

 Wheel Base A = 41.0 cm         

 Wheel Base B = 41.04 cm         

 Wheel Radius A = 35.24 cm         

 Wheel Radius B = 35.88 cm         

           

Six yard square           

Xcgcw Ycgcw Error_cw % Error Reduction  Xcgccw Ycgccw Error_cw % Error Reduction  

-104.1 325.6 341.8   -231.4 -107.4 255.1   

Xcgcw_opt Ycgcw_opt  38.8   Xcgccw_opt Ycgccw_opt  89.8  

-105.7 180.5 209.2   -20.6 -15.8 26.0   

    Total Error  % Total Error Reduction    

    No Calibration = 596.9 60.6     

    With Calibration = 235.1      
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2/20/2001           

Here testing whether it is better to optimize using a six yard square or whether it doesn't matter.     

           

Parameters optimized using three yard square        

 Wheel Base A =38.86 cm         

 Wheel Base B =38.29 cm Average Percent Reduction of Dead Reckoning Errors When Calibrated on 3yrd =  

 Wheel Radius A =32.99 cm         

 Wheel Radius B =33.67 cm         

           

Three yard square           

Xcgcw YcgcwError_cw % Error Reduction  Xcgccw Ycgccw Error_cw 
% Error 
Reduction  

-46.3 91.6 102.6    -27.1 -17.5 32.3   

Xcgcw_opt Ycgcw_opt 45.7   Xcgccw_opt Ycgccw_opt  28.5  

-31.5 46 55.8     19.5 12.3 23.1  

    Total Error  % Total Error Reduction    

    No Calibration = 134.9 41.6     

    With Calibration = 78.8      

           

           

Six yard square           

Xcgcw YcgcwError_cw % Error Reduction  Xcgccw Ycgccw Error_cw 
% Error 
Reduction  

-95.3 347.3 360.1    -224.6 -110.8 250.4   

Xcgcw_opt Ycgcw_opt 55.3   Xcgccw_opt Ycgccw_opt  95.3  

 -85.5 136.2 160.8    -2.1 -11.6 11.8  

     Total Error % Total Error Reduction  

     No Calibration = 610.6 71.7    

     With Calibration = 172.6     
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Parameters optimized using six yard square        

 Wheel Base A = 41.05 cm         

 Wheel Base B = 41.01 cm Average Percent Reduction of Dead Reckoning Errors When Calibrated on 6yrd =  

 Wheel Radius A = 35.25 cm         

 Wheel Radius B = 35.90 cm         

           

Three yard square           

Xcgcw YcgcwError_cw % Error Reduction  Xcgccw Ycgccw Error_cw 
% Error 
Reduction  

-46.3 91.6 102.6    -27.1 -17.5 32.3   

Xcgcw_opt Ycgcw_opt 27.2  Xcgccw_opt Ycgccw_opt  9.9  

-39.8 63.2 74.7    17.4 23.3 29.1   

    Total Error  % Total Error Reduction    

    No Calibration = 134.9 23.1     

    With Calibration = 103.8      

           

           

Six yard square           

Xcgcw YcgcwError_cw % Error Reduction  Xcgccw Ycgccw Error_cw 
% Error 
Reduction  

-95.3 347.3 360.1    -224.6 -110.8 250.4   

Xcgcw_opt Ycgcw_opt 50.3  Xcgccw_opt Ycgccw_opt  87.8  

-94 152.2 178.9    -15.8 -26.1 30.5   

     Total Error % Total Error Reduction  

     No Calibration = 610.6 65.7    

     With Calibration = 209.4     
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