
published in: Proc. 6th Intl.Conf. on Neural Inf. Proc. ICONIP’99, Perth, Nov. 1999, pp. 645–649a 1

EyeBot: A Family of Autonomous
Mobile Robots

Thomas Bräunl
Department of Electrical and Electronic Engineering
Centre of Intelligent Information Processing Systems (CIIPS)

The University of Western Australia, Perth
http://www.ee.uwa.edu.au/~braunl

Abstract

We designed a new and versatile family of small
autonomous mobile robots. All these robots share a
common controller and operating system, both devel-
oped from scratch. The robots are powerful enough to
perform simple image processing tasks on-board and
in real-time. This enables us to perform a number of
research projects for individual mobile robots and for
groups of robots on these systems.

1 Introduction

While small, inexpensive mobile robots are an
enormous motivation in teaching beginner level
lab courses, we found most of them insufficient
for serious research work. Due to shortcomings
in mechanics and electronics, establishing higher
level goals in autonomous vehicle guidance is
virtually impossible with too simple robots.
Therefore, we decided to develop a new system
from scratch.

Our goal was the development of an extendable
base platform (EyeBot Controller) for a mobile
robot system. The system was developed around
the key requirements of image processing. It
therefore features a digital camera and an LCD
graphics display. It should also provide a suffi-
cient number of I/O ports for the connection of
various sensors and actuators or any future
extensions.

While most robot vision systems are either teth-
ered or remote-controlled [1], on-board real-time
vision is feasible for large and expensive mobile
platforms. However, it seemed very difficult to
implement real-time vision on a small and inex-
pensive system. EyeBot is a controller for mobile
robot systems that accomplishes this goal. It is an
8.6 cm × 8.6 cm board built around the Motorola
M68332 microcontroller with a number of input/
output ports, connected to a digital camera and a
graphics LCD display. EyeBot has been success-
fully used in the construction of several wheel-

driven vehicles, a 6-legged walking machine,
and a biped walker. It is currently considered for
the project of a flying robot.

Although the controller runs at moderate speed
(35 MHz), it is fast enough to compute basic
image operations on a low resolution image in
real time. E.g. image acquisition, Sobel edge
detection and display on the LCD for a 80 × 60
grayscale image can be performed at a rate of
about 10 frames per second.

EyeBot’s graphics LCD is essential for interac-
tion between the robot and the programmer. He
needs to see the robot’s view in order to set cam-
era parameters or orientation. Although the cam-
era provides gray scale images at 6bit and color
images at 24bit at a higher resolution, the display
can only show low resolution black/white
images. This is sufficient as a feedback to the
programmer when running the robot, but not for
program development, which is done on a work-
station using the tool Improv, which we devel-
oped as a separate project [2].

The robots displayed in Figure 1 are called Soc-
cerBots for their application in the RoboCup
robot soccer competition (see section 4). How-
ever, contrary to most other robot soccer teams,
these robots are completely autonomous and can
execute a variety of other tasks as well. Each
robot is equipped with two shaft encoders, three
infrared range sensors, and a digital color cam-
era. We use differential steering for driving plus
two additional servo actuators for tilting the
camera and kicking the ball. A wireless transmis-
sion allows the robots to exchange information
to other robots or a PC.

Fig 1. SoccerBot mobile robots

published in: Proc. 6th Intl.Conf. on Neural Inf. Proc. ICONIP’99, Perth, Nov. 1999, pp. 645–649a 2

2 EyeBot

The EyeBot Controller is a based on a Motorola
M68332 microcontroller [3] with interfaces for
our EyeCam digital CMOS camera and a 64×128
black/white graphics LCDisplay. We are operat-
ing on images of size 60×80, which we found
have sufficient resolution for typical navigation
tasks of small mobile robot systems. The control-
ler is powerful enough to perform real-time on-
board image processing, depending on the com-
plexity of the operation.

The controller hardware was developed at Univ.
Stuttgart and The Univ. of Western Australia,
while Univ. Kaiserslautern (Germany) and Roch-
ester Institute of Technology (USA) contributed
to the system software.

A version of the gnu C-compiler and library has
been adapted for EyeBot, so program develop-
ment can be made in a high level language, using
assembly routines for time-critical passages. In
addition, a multi-threading scheduler has been
developed, which is essential for robotics appli-
cations. The microcontroller’s timing processor
unit (TPU) is being used for servo control with
pulse width modulation (PWM), for sound syn-
thesis and sound playback, as well as the control
of infrared distance sensors.

On top of the operating system, we developed
the integrated tool Rock&Roll (robot construc-
tion kit and robot locomotion link) [4]. This sys-
tem allows a "click-and-connect" construction of
robot control structures. In this data flow model,
sensors are sources and actuators are sinks, both
representing system-defined module boxes.
User-defined control boxes can be added,

together with interconnection links between all
modules, representing data flow.

3 Operating System

The operating system RoBIOS (robot basic input
output system) has been written in C plus m68k
assembly language, using the gnu C compiler
and assembler tools [5]. RoBIOS comprises a
small real time system with multi-threading,
libraries for various I/O functions, and a number
of demonstration applications.

The C low level text input and output routines
have been adapted for EyeBot. This enables us to
use the standard "clib" I/O library together with
the EyeBot system for user application programs.
E.g., a user can call getchar(), in order to read
a key input and use printf(..), in order to
write text on the screen.

Special care has been taken to keep the RoBIOS
operating system flexible among several differ-
ent hardware configurations, because the same
system is to be used for wheeled robots and for
legged robots. Therefore, a hardware description
table has been included into the system design.

The EyeBot operating system RoBIOS relies on
the hardware description table HDT, in order to
find out which hardware components are cur-
rently connected to the system. These hardware
components can be sensors or actuators (motors
or servos), whose control routines are already
available in the general RoBIOS system. HDT

Fig 2. EyeBot Controller

Fig 3. Rock and Roll Visual Prog. Tool

published in: Proc. 6th Intl.Conf. on Neural Inf. Proc. ICONIP’99, Perth, Nov. 1999, pp. 645–649a 3

allows easy detection, initialization, and use of
hardware components.

Entries in the HDT table define the current hard-
ware configuration of the system. RoBIOS con-
tains access routines to find and use the device
drivers corresponding to the table entries. The
HDT contains a list of all entries, together with
their semantics. E.g. in the following, the first
element line specifies an object of group MOTOR,
called MOTOR_RIGHT, and a pointer to the motor
data structure.

HDT_entry_type HDT[] =
{

MOTOR,MOTOR_RIGHT,(void *)&motor0,
MOTOR,MOTOR_LEFT,(void *)&motor1,
PSD,PSD_FRONT,(void *)&psd1,
INFO,INFO,(void *)&roboinfo,
END_OF_HDT,UNKNOWN_SEMANTICS,(void
*)0

};

Any program which needs to access a sensor or
actuator object defined in the HDT, can now do
so by defining a handle. Each group entry has to
provide the handle data type and an initialization
function.

4 Application: Robot Soccer

RoboCup is a five-a-side soccer tournament for
mobile robots [6]. Different leagues exist for dif-
ferent size robots. Our robots qualify for the
small-size league, but unlike most of the other
teams, we do not make use of global sensors,
especially we are not using a global overhead
camera. Instead, we are interested in developing
locally intelligent, autonomous mobile agents,
which can be programmed for a number of tasks
and are not restricted to a single specific applica-
tion like the soccer game.

The special challenges of robot soccer are:

• real-time
the ball has to be tracked quick enough and
reached before the opponent

• cooperation
five robots have to cooperate on the task of
soccer with a common plan

• opponent
each team has an opponent team with com-
peting aims

• fault-tolerance
each team has to operate if it loses a player,

each player has to operate if it loses part of
its functionality (e.g. a sensor) or has faulty
or incomplete data

The main problem for each robot is to identify
the ball (orange golf ball) and the opponents goal
(color coded in yellow or blue). If possible,
locating walls, team mates and opponent players
is an advantage. For solving this problem, we use
a digital camera on-board each robot together
with on-board infrared distance measurement
sensors. From the robot’s color image, the ball
position is determined and then translated via a
table in x,y-coordinates. Since we are using local
vision with local (on-board) image processing
only, there is of course a limit in processing
speed. Currently we achieve about 4 frames per
second in 24bit color, 60×80 pixels resolution.

Figure 4 shows the decision process involved
once a robot has recognized a ball. It becomes
clear that for a robot knowing its exact orienta-
tion is crucial (otherwise it might score an own
goal), while knowing its exact position can be
somewhat relaxed. Since we do not have global
vision, a robot can easily lose its orientation
when being pushed by an opponent. To over-
come this problem, we currently incorporate a
local compass system into each robot.

Assuming robot position/orientation and ball
position are known, we can now calculate the
robot’s desired trajectory. For this purpose we
use Hermite splines with two control points: the
robot’s position as start point and the ball’s posi-
tion as end point. The initial orientation is given
by the robot, while the final orientation is
selected to intersect the opponent’s goal, so when
the robot will finally hit the ball at the end of its
trajectory, the ball will roll towards the goal.

Fig 4. Ball approach strategy

Would robot kick ball towards
its own goal?

Yes No

Could robot push ball into
opponent’s goal?

Yes No

Is robot in its
own half?

Yes No

drive around
the ball

drive directly
to the ball

drive directly
to the ball

turn and drive
circular path
to the ball

published in: Proc. 6th Intl.Conf. on Neural Inf. Proc. ICONIP’99, Perth, Nov. 1999, pp. 645–649a 4

Hermite splines are simple to calculate and have
the desired property to pass all control points/ori-
entations exactly. The Hermite blending func-
tions with parameter u are defined as
follows:

The current robot position is then defined by:

A PI controller is used to calculate the linear and
rotational speed of the robot at every point of its
way to the ball trying to get it as close to the
spline as possible. The control function is called
a hundred times per second.

As shown in Figure 5, this strategy has first been
designed and tested on the EyeBot simulator
EyeSim, before running on the actual robot. Our
approach is described in more detail in [7].

5 Application: Map Generation

Accuracy and speed are the two major criteria
for map generation. Although the quad-tree rep-
resentation seems to fit both criteria, it was
unsuitable for our setup with limited accuracy
sensors. Instead, we used the approach of visibil-
ity graphs [8] with configuration space represen-

tation. Since the typical environments we are
using have only few obstacles and lots of free
space, the configuration space representation
allows more efficient obstacle mapping then the
free space representation.

The task planning structure for the robot per-
forming the mapping task is specified by the fol-
lowing structogram.

The robot starts in one point of its environment,
then subsequently drives to each obstacle or wall
in its near vicinity and enters it into the map. A
grid structure is used for the map’s data represen-
tation, in order to reduce memory space and
smooth the generated map. After an obstacle is
encountered, the robot tries to surround it as
close as possible, using a variation of the Dist-
Bug algorithm [9].

Results of the mapping process are shown in Fig-
ure 7. On top the given environment is shown, on
the bottom the generated map. Analysis of the
results shows that the position error is within
20% of the robot’s size. This is a very good result
considering the robot’s low-precision infrared
sensors. The algorithm does not make any
assumptions about straight walls or right angle
corners. If our environment was restricted to
these two assumptions, even more accurate maps
could be generated.

6 Application: Omni-Directional
Driving

Another mobile robot design using the same
EyeBot controller is Omni, an omni-directional
(holonomous) mobile robot.

Omni has four driven wheels, built after the
Mecanum principle. Each wheel’s driving sur-

Fig 5. EyeSim screen display

H0…H3

H0 2u
3

3u
2

– 1+=

H1 2–()u
3

3u
2

+=

H2 u
3

3u
2

– u+=

H3 u
3

u
2

–=

P u() pkH0 u() pk 1+ H1 u() DpkH2 u() DPk 1+ H3 u()++ +=

Fig 6. Map generation strategy

Scan local environment, locate any objects

New obstacle ?

Drive towards obstacle

Explore and define obstacle

While there are unexplored cells in map

Navigate towards unexplored area

yes no

published in: Proc. 6th Intl.Conf. on Neural Inf. Proc. ICONIP’99, Perth, Nov. 1999, pp. 645–649a 5

face is covered by free rollers, set at an angle of
45 degrees. Applying different speeds to the four
individual wheels will then allow the robot to
drive forward/backward, slide to the left/right or
turn on the spot.

7 Application: Walking Machines

We have constructed a number of legged robots
over the years. These were mostly six-legged
robots (see Figure 10). Six-legged robots have
the advantage that they hardly ever fall over, so
balance can almost completely be ignored as

long as the walking patterns stay within a certain
range. It turned out that a single EyeBot control-
ler had sufficient computing power to drive six-
legged robots with 12 degrees of freedom (two
per leg).

We constructed two biped walking robots as a
challenge. In order to keep cost low, we used ser-
vos instead of higher quality DC motors. Each
android walker has four infrared proximity sen-
sors in its feet (as feedback for surface contact)
and two acceleration sensors in its upper body
(as feedback for balancing and body attitude).

Balancing is the fundamental problem that had to
be solved first by a feedback loop with active
control. After that we examined different walk-
ing strategies.

8 EyeBot Robot Family

Recent robot developments based on the EyeBot
controller are the two-wheeled SoccerBot vehi-
cles, a six-legged walking machine Crab, two-
legged android robots Johnny Walker and Jack
Daniels, and the omni-directional four-wheel-
driven Omni. Constructions of underwater and
flying robot are currently being considered.

All these robots use the same EyeBot controller
with the same RoBIOS operating system. The
only difference is in the hardware description
table, where robot specific settings and drivers
are listed, e.g. different mechanics, motors, and
sensors.

Fig 7. Mapping results

Fig 8. Omni-directional vehicle

Fig 9. Bipedal walking machine

published in: Proc. 6th Intl.Conf. on Neural Inf. Proc. ICONIP’99, Perth, Nov. 1999, pp. 645–649a 6

All robots use a digital camera and three infrared
distance measurement sensors to the front, left
and right. Motor-driven robots (SoccerBot: 2
motors, Omni: 4 motors) have encapsulated
encoders associated with each motor, while
servo-driven robots (Crab: 12 servos, Johnny+
Jack: 9 servos), unfortunately do not have these
feedback sensors.

Summary and Future Research

We have discussed the EyeBot mobile robot fam-
ily. The EyeBot controller is a hardware/software
platform for mobile robots of any kind, allowing
real-time vision control. Current research con-
centrates on an integrated multi-robot console
allowing wireless control and monitoring of a
group of robots. Future research will be on intel-
ligent behaviour-based systems and intelligent
group behaviour of mobile robots.

More information about these projects is avail-
able on the Internet:

www.ee.uwa.edu.au/~braunl/eyebot/

Acknowledgments

The author wants to acknowledge the work of his
colleagues and students who participated in
robotics projects. These are especially Ivan Neu-
bronner and Klaus Sautter for electronics design,
Richard Meager and Jörg Henne for robot
mechanics, Klaus Schmitt and Thomas Lampart
for operating system software and programming
tools, Birgit Graf for the soccer application pro-
gram and Nicholas Tay for the map generation
application program.

References

1. H. Bayer, Th. Bräunl, A. Rausch, M. Sommerau,
P. Levi, Autonomous Vehicle Control by Remote
Computer Systems, Proceedings of the 4th Inter-
national Conference on Intelligent Autonomous
Systems, IAS–4, Karlsruhe, March 1995, pp.
158–165 (8)

2. Th. Bräunl, S. Feyrer, W. Rapf, M. Reinhardt,
Parallele Bildverarbeitung, Addison-Wesley,
1995

3. Th. Harman, The Motorola MC68332 Microcon-
troller, Prentice Hall, 1991

4. P. Levi, M. Muscholl, Th. Bräunl, Cooperative
Mobile Robots Stuttgart: Architecture and Tasks,
Proceedings of the 4th International Conference
on Intelligent Autonomous Systems, IAS–4,
Karlsruhe, March 1995, pp. 310–317 (8)

5. The GNU Project, GNU Documentation, online,
Delorie Software, www.delorie.com/gnu/docs/

6. M. Asada (Ed.), RoboCup-98: Robot Soccer
World Cup II, Proc. of the second RoboCup Work-
shop, Paris, July 1998

7. T. Bräunl, B. Graf, Robot Soccer with Local Vi-
sion, 5th Pacific Rim International Conference on
Artificial Intelligence, Nov. 1998, Singapore, pp.
14–23 (10)

8. P. Sheu, Q. Xue (Ed), Intelligent Robotic Planning
Systems, World Scientific Publishing, Singapore,
pp. 111-127, 231-243

9. I. Kamon, E. Rivlin, Sensory-Based Motion Plan-
ning with Global Proofs, IEEE transactions on
Robotics and Automation, vol. 13, no. 6, Dec.
1997, pp. 814-822 (9)

Fig 10. EyeBot family

