Region Segmentation

Idea

• Edge detection
 - Found boundaries between regions (edges)
 - Didn't return the actual region

• Segmentation
 - Partition image into regions
 - Find regions based on similar pixel intensities, textures, etc.
 - Very hard
Region vs. Edges

Different Regions

Basic Formulation

- Let R represent the entire image region. We want to partition R into n subregions, R_1, R_2, \ldots, R_n, such that:
 - (a) $\bigcup_{i=1}^{n} R_i = R$
 - (b) R_i is a connected region for $i=1, 2, \ldots, n$
 - (c) $R_i \cap R_j = \emptyset$ for all i and $j, i \neq j$
 - (d) $P(R_i) = \text{TRUE}$ for $i=1, 2, \ldots, n$
 - (e) $P(R_i \cup R_j) = \text{FALSE}$ for $i \neq j$

where $P(R_i)$ is a logic predicate over the points in set R_i and \emptyset is the empty set.
Basic Formulation

- (a) segmentation must be complete
 - all pixels must belong to a region
- (b) pixels in a region must be connected
- (c) Regions must be disjoint
- (d) states that pixels in a region must all share the same property
 - The logic predicate P(Ri) over a region must return TRUE for each point in that region
- (e) indicates that regions are different in the sense of the predicate P.

Region Segmentation Problem

- Very difficult task
 - Application specific
 - May need magic numbers
 - May need user to select starting points

- All-purpose generic algorithm
 - Rarely gives the desired results
Common Approach

• Pixel Aggregation
 - Start with some seed points
 - From these seeds
 • grow region by appending neighbor pixels
 • choose pixels that have similar property;
 \[P(R_i) = \text{TRUE} \]

\(P(R_i) \) can be thought of as a similarity measurement

Similarity Measure

• 1st. Compare Candidates to Seed Pixel

 - Algorithm
 • \(I_s = f(x,y) \) -- \(f(x,y) \) is the seed
 • do while
 - examine N8 neighbors in region
 - if \(|f(N8) - I_s| < T\)
 » add pixel to region
 • repeat until no more pixels can be added
Example

• matlab example

Similarity Criteria

• 2nd Use \textit{Neighborhood of R}
 - Not just seed pixel, but similarity to region pixels (border pixels)
 - Algorithm
 • do while
 - if \(|f(N8) - f(x,y)| < T\)
 » add pixel to region
 • repeat until no more pixels can be added
Similarity Criteria

• 2nd Use Neighborhood of R

 This allows the region to grow given gradual intensity change.

 The rate of change allowed is controlled by a threshold, T.

Comparing to Region Statistics

• 3rd. Compare candidate pixels to some information specific to the entire region

 • For example, the mean intensity of all the pixels currently in R \textsubscript{i}

 - seed dominates at first

 - mean is allowed to drift

 • this is often referred to as:

 - centroid region growing
Multiple Seeds

• User gives multiple seeds
 - This gives us a starting mean value
 - AND, a variance

• Use this mean and variance combination to determine a predicate $P(R_i)$
 - Use of mean and variance often try to find regions with a certain “texture”

Use of Counterexamples

• User can give two sets of inputs
 - Region Seeds
 • Pick pixels like this region (region you want to segment)
 • Ie, multiple seeds
 - Counterexamples
 • Seeds of pixels not in the region

• Used combined predicates to choose candidate pixels
Region Growing

- Add Heuristics when to stop growing
 - Gradient Magnitude
 - \(|f(x,y) - f(n8)| < T \land f(n8) < Tm\)
 - Edge Boundary
 - Run a canny detector
 - If a point is on a boundary, it can't be added to the region
 - Application specific

Region Growing Algorithms

- Similarity measure is the key to success
 - We have seen some examples
 - Use original seed
 - Boundary Neighbors
 - Region Statistics
 - Multiple Seeds
 - Counterexamples
 - You can use any heuristic that gives you a reasonable \(P(R_i)\) for the given application
 - Results must satisfy the basic formulation given on slide 4.
Previous Example

• User must specify seed points

• Different seed points will give different results

• We want a more automated approach

Region Splitting

• Split the image into regions

• If the entire region doesn’t satisfy the predicate P(R_i)
 - split it into smaller regions
 - repeat

• Use the quad-tree data structure
Quad Tree

- Data Structure
 - Each root has 4 children
 - Encodes a 2D spatial relationship

Quad-tree Example

Input Image

QT decomposition

Matlab example
Problem with Splitting Alone

• Neighboring regions could have the same property

• We would like to merge these regions into a single region
 - Introduce a merge step into the algorithm
 - This a split and merge approach

Split and Merge Segmentation

• Split image into regions

• After each split, try to merge regions with similar $P(R) = \text{True}$

• If region can't be merged, and all pixels in this region $P(R_i) \neq \text{TRUE}$
 - subdivide region further

• Repeat
Split and Merge Example

Figure 7.38 Example of split-and-merge algorithm. (From Fu, Gonzalez, and Lee [1987].)

Split and Merge

• Tries to eliminate the need for seeds
 - Sort of an all purpose algorithms

• Still requires a predicate $P(R_i)$
 - This can require a magic number
 - $P(R_i)$ needs to be fairly generic

• The key to this algorithm is how to merge the regions
Watersheds Algorithm

- Also called "Catch basin algorithm"

Profile of a 1D scan line

Threshold

Object 1

Object 2
Algorithm

- Assume a dark object on a light background (gray levels = [0-255])
- Start with Threshold = 0
 - All pixels that are 0 form a new watershed (or basin)
 - Connected pixels are combined
- Increment Threshold
 - For all new pixels that are equal to this threshold
 - if they are neighbors to existing watersheds; combine with that watershed
 - Otherwise they form new watersheds
 - If two watersheds meet, they cannot be merged!

Watersheds of the Gradient

- Take the gradient magnitude of an image
- Start basins at local minimums
 - (seed watersheds)
- Apply the watersheds algorithm
Example

Watersheds Algorithm

- Watersheds often results in an *over segmented* image
 - Apply some merge heuristic
 - Generally, the merge algorithm is the "key" to the approach
 - And is very application specific
Segmentation from Motion

- Consider Temporal Images
 - $f(x,y,t)$
 - t is successive frames
 - often t is time (video frames)
- We can use the temporal frames to try to segment out moving objects

Temporal Differencing

- For each temporal frame
 - $Idiff(x,y) = I(x,y,t-1) - I(x,y,t)$
 - for each pixel
 - if $|Idiff(x,y)| > T$
 - change occurred

- Above is a backwards difference
- You could also compute a forward difference
Temporal Differencing Example

I(x,y,t-1) I(x,y,t)

$|I_{t-1} - I_t| \times 5$
(scaled to emphasize change)

Accumulative Difference

• Threshold based on the number of times a pixel changes
 - Use an accumulation buffer
 - display the buffer
 • This tries to reduce the errors from noise
 • Avoid difficult global threshold
Accumulative Difference

\[
\text{accBuf}(x,y)++ \quad \text{if} \ (|I_{t-1} - I_t| > 5)
\]
Performed over 49 Frames

Alternative

- Compute difference from a reference frame \(R \)
- Reference frame is known in advance
- Or, reference frame is computed
 - For example
 - Take the median of each pixel over 100 frames
 - Statistically this provides a reasonable reference frame
 - Assuming a stationary camera
Summary

- Region-based Segmentation
 - Region Growing
 - User supplies seed (or seeds)
 - Similarity Criteria is the key
 - Split and Merge Approach
 - Quad-tree data structure
 - Watershed algorithm
 - Segmentation using Motion

Active Research Areas

- Application specific segmentation
 - Especially in the medical community