Region Segmentation

Similarity Criteria

• 2nd Use Neighborhood of R

Check for similarity using border pixels

This allows the region to grow given gradual intensity change.

The rate of *change* allowed is controlled by a threshold, T.

Previous Example

- User must specify seed points
- Different seed points will give different results
- We want a more automated approach

Algorithm

- Assume a dark object on a light background (gray levels = [0-255])
- Start with Threshold = 0
 - All pixels that are 0 form a new watershed (or basin)
 - Connected pixels are combined

Increment Threshold

- For all new pixels that are equal to this threshold
 - if they are neighbors to existing watersheds; combine with that watershed
 - Otherwise they form new watersheds
 - If two watersheds meet, they cannot be merged!

Summary

- Region-based Segmentation
 - Region Growing
 - User supplies seed (or seeds)
 - Similarity Criteria is the key
 - Split and Merge Approach
 - Quad-tree data structure
 - Watershed algorithm
 - Segmentation using Motion

