Schrodinger's Cat Robot

Mechanical and Software Improvements

Final Report
Intelligent Robotics ECE 578
Portland State University, Fall 2010

Christopher Forsstrom

Introduction

The Schrodinger's Cat robot is an ongoing project spanning several terms at Portland State University.
Incremental changes have been made to the robot each term towards the eventual goal of creating an
autonomous robotic agent capable of navigating its indoor environment and interacting with people there as well
as other robots in the Robot Theater.

This report describes changes, improvements, and repairs made to the robot during the Fall, 2010, term to
improve its operating battery life, allow it to better detect collisions and avoid trouble, improve its movement
control for better navigation, and make it easier for future developers to program and experiment with.

Hybrid Differential Drive System

According to Heisenberg's Uncertainty Principle, it is possible to measure an object's position or its momentum,
but not both. The Schrédinger's Cat robot was no exception, mostly due to its inefficient and inaccurate drive
system.

The four wheel differential drive system from the 2010 winter term
was a significant improvement over the two wheel plus casters drive
system from the 2009 fall term. However, it was still a less than
optimal solution since it required the wheels to be dragged sideways
over the floor surface whenever the robot turned. This sideways
slippage caused a significant unnecessary drain on the robot's power,
and also introduced inaccuracies in the robot's motion. Not all floor
surfaces offer the same friction resistance to the wheels sideways
motion, and so the same target motion would result in significantly
different turning rates and turning angles depending on the floor
surface. A 90° turn on the carpet in the in the hall became a 100° turn
on the smooth Robotics Lab floor and a 105° turn on the smooth
concrete floor of the Fourth Avenue Building lobby. Imbalances in the
robot's weight distribution also meant that different wheels have
different rates of sideways slippage, causing the actual center of
rotation to differ from the robot's center, resulting in some sideways
drifting as the robot turns. This makes accurate estimations of the
robot's motion and position based on dead reckoning almost
impossible

Figure 1: A supposedly 90° turn
in the Robotics Lab using the old
drive system. Note the actual
turn of 100° and the considerable

The obvious solution to these problems was replacing the four drift toward the top of the image.
conventional 100mm TETRIX wheels (Pittsco Part #W39055) at the

corners with OmniWheels. Rollers along the circumference of an

OmniWheel allow them to slide freely sideways, but still provide traction their rolling direction. This means
OmniWheels avoid the energy and accuracy losses caused by dragging conventional wheels sideways as the
robot turns.

In addition to the four new OmniWheels, two of the original conventional wheels were moved to the center axis
of the robot, resulting in a six wheel conventional and OmniWheel hybrid differential drive. The two
conventional wheels prevent the entire robot from slipping sideways on the OmniWheel rollers, and also allow
the robot to roll over obstacles that the drive chain would otherwise hang on. Since these wheels are positioned
on the center turning axis of the robot, there is no sideways component to their motion and so they are not a

detriment to the robot's turning accuracy or power consumption. However, including these center wheels also
required 16 tooth idler sprockets (Pittsco Part #W39165) to be installed between the front and middle wheels.
The idler sprockets alter the drive chain path so that no straight length of the drive chains connect more than two
sprockets. Without the idler sprockets, a loose drive chain could sag underneath the center wheel sprocket,
causing the center wheel to lose power.

OmniWheel Difficulties

Unfortunately, replacing the conventional wheels in the chain driven differential drive with OmniWheels was
not a simple swap. The 80mm diameter OmniWheels (Pittsco Part# W31132) listed on the Pittsco website are
much smaller than the 100mm conventional TETRIX Wheels used on the Schrodinger's Cat robot. A significant
amount of time was spent designing and building a rather complex suspension and multi-segment chain drive
system with multiple idler sprockets to allow the smaller OmniWheels to work with the larger 100mm
conventional wheels (the current idler sprockets are the last remnants of that abandoned effort). Replacing the
center two 100mm conventional wheels with the smaller 7S mm TETRIX wheels (Pittsco Part #W39025) was
considered but rejected because they are also not the same size as the 80mm OmniWheels, even though the
Pittsco website describes both as having a three inch diameter. Using 75mm wheels would also require
replacing all the wheel sprockets for smaller sprockets at great expense.

It was fortunate the new components were ordered by
telephone and not through the Pittsco website because the
sales representative mentioned that Pittsco also sells
100mm TETRIX OmniWheels (Pittsco Part #W36466)
which were not listed on their website (and still aren't at the
time of writing this report). Unlike the nominally 75Smm
OmniWheels, which are actually 80mm in diameter, the
100mm TETRIX OmniWheels actually are 100mm in
diameter, which is the same diameter as the 100mm
conventional TETRIX Wheels. The 100mm OmniWheels
are apparently a special order item at Pittsco and were back-
ordered until the latter half of November or later. Even
though it meant abandoning and wasting all the effort
building the mounting system for differently sized wheels,
it was decided to risk the possibility the 100mm OmniWheels might not arrive before the end of the term
because using wheels of the same size significantly simplifies the drive design and allowed the re-use of more
of the existing components such as the 32 tooth sprockets (Pittsco Part# W39171) already in use.

Figure 2:The Hybrid OmniWheel Drive

Those sprockets themselves led to the second problem with replacing the conventional wheels with
OmniWheels in the chain drive system.

TETRIX OmniWheels are intended to be used in drive systems where they are placed at the corners of a robot
at 45°. Any robot using such a configuration can move omni-directionally along three axis of motion, right-
left, forward-backward, and clockwise-widdershins. That freedom of movement comes at a price. The standard
OmniWheel configuration is overly complex as it requires four independently controlled motors, one for each
OmniWheel. It is also dreadfully inefficient, as each wheel loses half its movement to rolling sideways when
the robot travels in a straight line.

The hybrid system used in the Schrodinger's Cat robot keeps most of the freedom of the standard OmniWheel
design, reducing the axes of motion by one, but uses a much simpler and more efficient two motor differential
drive. When traveling distances, all the power sent to the OmniWheels is directed along their rotation, losing
none to the rollers. However, TETRIX Omniwheels were only created to be directly driven with one motor each
as in their standard omni-directional configuration. They apparently were never intended to be connected to a
gear train or sprocket as in the hybrid design used on the Schrodinger's Cat robot, and so components to make
that connection are not for sale and don't exist.

There is no OmniWheel equivalent to the TETRIX gear hub spacers (Pittsco Part #W39090) used to connect a
conventional TETRIX wheel to a gear or sprocket. Since the conventional gear hub spacer is designed to
account for the thin disk of a conventional wheel, it is far too thick to be used with an OmniWheel either
between the OmniWheel and the sprocket or between the two halves that make up a single OmniWheel. Trying
to make that connection would position the OmniWheel too far from the sprockets and robot frame, would
spread the halves of the OmniWheel too far apart, and would require unnecessarily long #6-32 mounting screws
which are unavailable at any local hardware store.

In order to use the TETRIX OmniWheels with TETRIX sprockets, eight custom wheel spacers had to be
manufactured. Four were made to separate the OmniWheels from the sprockets so the chain has room to move,
and four were made to separate the two halves of each OmniWheel so the OmniWheel rollers have room to
move. Please see the appendices for detailed instructions of how these custom spacers were manufactured.

Turning Accuracy Tests

Once installed, the hybrid OmniWheel drive system
functioned much better than expected. The new design
required recalibration of the motion control software as the
robot is now significantly more maneuverable. What was a
90° turn with the old four wheel configuration became a
135° turn with the new hybrid OmniWheel design. That
135° turn is the same 135° turn regardless of the floor
surface, whether the floor of the Robotics Lab or the hall
carpet or the concrete lobby or the sidewalk out in front of
the Fourth Avenue Building. After recalibration of the
motion control software to account for the new design,
there was no detectable difference in turning angle from
one floor surface to another. The rotational center drift
appears to have been eliminated as well. A full 180°
clockwise rotation followed by a full 180° widdershins
rotation resulted in a translation of only 7mm on the carpet
in the hall, and that may have been caused by inaccuracies
in the motor encoders.

Figure 3: An uncalibrated supposedly 90°
turn on the new hybrid OmniWheel drive
system in the hall. Note the actual turn is
135° but there is almost no translation. The
laptop power button colored red and green
is almost over the exact center of rotation.

Battery Torture Tests

The new hybrid OmniWheel drive system resulted in an even greater increase in turning efficiency. While the
old four wheel differential drive was still installed on the robot, a battery life torture test was conducted wherein
the robot was fully charged to 13.68 volts and then repeatedly and continuously turned a programmed 90°

clockwise followed by 90° widdershins while monitoring the main battery voltage until the battery discharged
sufficiently to cause the robot to stop moving. The test was conducted on the carpet in the open area in front of
the elevators by the Robotics Lab to maximize the battery drain. The robot completed 274 cycles for a total of
approximately 49320° of actual rotation in 1117 seconds (18 minutes 37 seconds) before the main battery could
no longer power the robot.

After the new hybrid OmniWheel OmniWheel — Conventional
differential drive system was installed the Voltage Voltage
test was repeated using the same software 14

and location, though with a slightly lower)

initial battery charge of 13.60 volts. During L‘n

the new test it became readily apparent that 1 i

the new drive system turned significantly n

faster and farther than the old configuration, 12 e

with full 135° turns instead of the previous
90°. As time passed, and continued to pass, y 1

it became apparent that the robot's longevity

had increased significantly. This time the

robot completed 1304 cycles for a total of 10

352080° of actual rotation in 3595 seconds 0 500 1000 1500 2000 2500 3000 3500 4000
(59 minutes 55 seconds). That's more than Time in seconds

300% the previous battery life time and an

almost unbelievable 700% increase in

rotations for a slightly smaller initial battery charge.

Voltage
-

Upon reflection, the 700% improvement in rotations may not be all that surprising. The four corner wheels are
positioned almost in a square, which means their sideways slippage is almost the same as their rolling distance
during turning. So therefore half their motion during turning is wasted. Since it takes more energy to drag a
conventional wheel sideways than to roll it, the majority of energy consumed while turning is used to drag the
wheels instead of turning the robot. And that energy loss needs to be multiplied by four; once for each
conventional wheel.

No comparison was made between the efficiencies of the old and new configurations when traveling in a
straight line. Given the almost identical nature of the two configurations for straight line travel, no significant
change in performance during these motions is expected. It is possible that the slightly increased weight from
adding the OmniWheels might reduce the longevity of the robot when rolling in a straight line, but the clear
benefits to the robot while turning outweigh any such performance reduction. At this point of robot
development, under normal maneuvers in the hallways of the Fourth Avenue Building, the battery in the laptop
is now the limiting factor to the Schrodinger's Cat robot's operating longevity, not the main battery.

Robot Whiskers

It is hoped that eventually the Schrodinger's Cat robot will be able to navigate its environment solely on the
input from its cameras. Until that time, it needs an additional method of sensing its surroundings and avoiding
potentially catastrophic navigation errors.

Touch Sensors

During the 2010 winter term two Lego Mindstorms Touch
Sensors (Lego Part #9843) were attached to the front of the
upper frame of the robot and connected to swinging
TETRIX members with cable ties. While these sensors
allowed for some impact detection when the robot collided
with maze wall, they also had some significant limitations.
Their high mounting points meant they were not capable of
detecting impacts with objects shorter than the robot's
upper platform. Their connection to the TETRIX frame
members is flimsy at best and continually required repair
and adjustments as impacts knocked the touch sensors
loose. They are limited to no more than one contact point
per touch sensor, and no more than one touch sensor per
port on the NXT Intelligent Brick without using an
expensive and undocumented sensor multiplexer that may
not be compatible with the libnxt++ software on the laptop. The Schrodinger's Cat robot needs to monitor
impacts and floor contact at at least eight locations: the four corners of the upper platform and at each of the
four corner OmniWheels. Given the limited number of input ports on the NXT, and the fact that the robot
already uses one input port to communicate with the HiTechnic motor controller, it limited the robot to no more
than three touch sensors, which is five less than the number needed. At a price of $17.99 each (at the time of
writing), not including the necessary connection cables, from shop.lego.com, they are also far more expensive
than their limited utility warrants. Even if the NXT had the extra ports to connect to them, the six additional
touch sensors plus cables would have cost $117.93 plus shipping and handling. Those funds were needed more
for the TETRIX OmniWheels.

Figure 4: Lego NXT touch sensors. Note the
nonstandard off center locking tab.

Sensor Analysis

It was decided to reverse engineer the Lego Mindstorms touch CON
sensors to see if they could be recreated with a circuit using
multiple switches wired in parallel so that one of the new touch
sensors can detect impacts at multiple locations. An initial
attempt to disassemble one of the touch sensors met with abject

J1-2
J2-2
432

KT 12
failure as there appears to be no means to open the case of a touch Jaz
sensor short of cutting, cracking, or otherwise damaging it. Figure 5:The multi touch switch
There may be a simple method or tool for opening these sensors, sensor circuit.

but it is unknown what that method might be. Being unwilling to

cause damage to a working touch sensor just to open its case, the

focus of the reverse engineering attempt moved to treating the touch sensor as a “black box” and analyze the
electrical response of the pins on the Lego communication port as the touch sensor is activated. This was
accomplished by removing the retention latch from a standard six wire RJ-12 three line telephone cable,
plugging it into a Lego touch sensor, and checking the resistance between each pin of the touch sensor in its
activated and unactivated state.

After testing all the pins it appears the Lego touch sensor uses a very simple circuit indeed. The bumper on the
front of the sensor activates a spring loaded normally-open switch than connects Pin 1 (the analog-to-digital line

according to www.wikipedia.org/wiki/L.ego Mindstorms NXT) and Pin 2 (ground), through a 2.2k resistor.
Pin 2 and Pin 3 appear to be shorted directly to each other, which is not surprising as they are both supposed to
be ground signals. The rest of the pins, Pin 4 (+4.3 volt supply), Pin 5 (I2C clock), and Pin 6 (I12C data), appear
to be electrically isolated and unused in the touch sensor. It is possible they connect to some simple integrated
circuit that allows the NXT controller to identify the touch sensor via I2C when it is plugged in, which would
explain the high price for the touch sensor despite being little more than a switch and a resistor. If so, such a
potential feature appears to be unused by any of the example software for the NXT, all of which manually
configure any port connected to a touch sensor.

Circuit Design

It was a simple matter to design a duplicate circuit to the Lego Mindstorms touch sensor that uses multiple
switches connected in parallel to allow a single sensor circuit to detect impacts at multiple locations. The circuit
connects four switches in parallel with four two-pin Molex KK-2021 series connectors through a single 2.2k
resistor to a standard six conductor RJ12 jack available from Norvac Electronics (Amphenol Part
#RJE051660310).

Non-standard NXT Jacks

It needs to be mentioned at this point that the Lego NXT system does not use
the standard RJ12 connectors, but rather a unique variant with the locking tab
moved to the Pin 1 side of the jack. Other than that, they are identical to a
standard RJ12. They are similar to the RJ12-DEC connector standard, except
the RJ12-DEC jack standard has its locking tab on the pin six side of the jack.
Apparently the Lego NXT system is the sole user of this non-standard RJ12
jack, and so NXT compatible jacks and plugs are not available from any
common electronics component vendors. To resolve this incompatibility, a NXT Figure 6:The multiple
connector cable pack (Lego Part #8527) was purchased from shop.lego.com. touch switch board.

Three of the 35cm cables had one of their non-standard NXT jacks removed and

replaced with a standard RJ12 jacks. These three RJ12-NXT to standard RJ12

adapter cables allow custom components with standard RJ12 jacks to function with the non-standard NXT RJ12
ports.

Once the components were selected, the new touch sensors
were designed using CadSoft's EAGLE schematic editor
and printed circuit board layout software suite. A new part
for the Amphenol RJ12 jack had to be created for EAGLE.
At the same time a number of hole drill patterns compatible
with the TETRIX building system were created to allow the
creation of printed circuit boards that can be mounted
directly onto TETRIX frame channels. The custom
EAGLE library containing these components is included on
the disc with the software for this term so that future
robotics class projects and the Portland State University
Robotics and Automation Society can also create circuit

Figure 7:The new multiple touch sensor boards compatible with the NXT and TETRIX systems.
boards, etched, populated, and mounted.

Four printed circuit boards for the new impact sensors were etched from single sided 1 oz. copper clad Y16 inch
thick FR-4 fiberglass board using the “toner transfer” method described at www.instructables.com/id/Cheap-
and-Easy-Toner-Transfer-for-PCB-Making/ and other places on the internet. The toner transfer method was
found to be very accurate and effective and significantly faster and cheaper than the more conventional photo-
resist circuit board etching method used in previous terms. The boards were populated and three of them were
mounted onto the pillars of the robot frame using #6-32 machine screws and nylon spacers in the the existing
holes as they were designed to do. When connected to the NXT intelligent brick they functioned identically to
the Lego touch sensor except they register a touch whenever one of four switches each are actuated.

Impact Switches

The switches chosen for the new impact sensors are long arm miniature snap action switches (Cherry Part
#D42LR1XL). They were selected for their inexpensive price and common availability, but mostly for their
long actuator arms which provide a great deal of adjustment flexibility and mounting options. The actuation
distance, and thereby the sensitivity of these switches can be readily adjusted by simply bending their actuator
arms slightly. One switch is placed at each corner of the frame's upper platform. The two switches at the front
are connected using 0.187 inch spade connectors attached to their normally-open and common terminals to a
single impact sensor board to detect front collisions. The two switches at the back are likewise connected to a
second impact sensor board to detect collisions at the rear.

In addition to the four impact detections switches, four more switches were mounted underneath the bottom of
the robot to detect whenever the robot might unintentionally and catastrophically roll over a sudden drop like the
edge of a table or the top of a flight of stairs. To maintain contact between the actuator arms of these belly
switches and the floor surface, four “whiskers” were constructed from % inch by !/16 inch brass bar stock. The
ends of the whiskers were curled into approximately 30mm diameter circles to allow them to glide over the floor
surface. Small brass clips were cut from thin % inch by /e4 inch brass stock and silver soldered to the whiskers
to attach them to the belly switch actuator arms. The curls in the whiskers are positioned to contact the floor
surface approximately 30mm in front of the wheels so that the robot has time to detect a drop and stop the
motors before the wheels roll over it. Because the whiskers apply pressure to the belly switches while they are
in contact with the floor surface, all four belly switches are connected to the third impact sensor board through
their normally-closed terminal.

Switch Mounts

The miniature snap action switches have holes in their housing to mount them using #4-40 machine screws.
These holes do not line up with the hole pattern in the TETRIX frame channels. Drilling more holes to match
in the TETRIX frame was rejected as being unnecessarily destructive and also useless as the rear switches need
to be mounted beyond the TETRIX frame to clear the polycarbonate upper platform.

To attach the switches, two different mounting brackets were designed. One is used to mount the floor sensing
switches under the frame and the other to mount the impact switches at the corners of the upper platform. The
brackets were cut from 1/2 inch by % inch aluminum bar stock. They were drilled and tapped for #6-32
machine screws to connect them to the TETRIX frame and drilled and tapped for #4-40 machine screws to
attach the switches. Care had to be taken in the location of the belly switch mounting holes to ensure the
switches and mounts clear all the potential obstructions at the bottom of the robot frame such as axles and
motor mounting screws. The upper platform impact brackets have several extra #6-32 holes to allow the
positioning to be adjusted so the same bracket design can be used to mount a switch flush with the front of the

0310031003 1

¢ $ _ Notes:
L ﬁ 1. All dimensions are in inches but most have integer metric equivalents.
= $ A — 2. Parts are milled out of 1/&4 inch thick aluminum.
@ . R P~ 3. Larger holes are drill thru #346 and tap #6-32
== Q} = &. Smaller holes are drill thru #43 and tap #4-40
ot | A4 4
~ 1
b A
[
o
L]
e e :
h G &
L &
_ |-t
S p
S| Z 2
= A,
~ f
| .11
0518
15748 1.2598 0.6299 09448 0.6299

Figure 8:Dimensional drawing of the impact and floor sensing switch mounts.

upper platform or extended beyond the frame at the rear to place the rear impact switches flush with the rear of
the polycarbonate upper platform.

Once installed, the switch mounting brackets hold the switches in place quite firmly and are a clear
improvement over the flimsy linkages used to connect the NXT touch sensors. They were quite tricky to mount
in the completed robot frame though, and in the future it would be preferable to mount the switches early on in
the frame construction process when wheels and axles and polycarbonate platforms are not yet present to
impede the allen wrench used to tighten the mounting screws.

Schrodinger's Cat's Box

Even firmly attached impact sensing switches are not useful if the impact doesn't happen on their actuators.
While the new impact sensor board makes it theoretically possible to literally surround the robot frame with
impact switches, such a solution rapidly becomes impractical and expensive. A method of transmitting an
impact anywhere on the robot to one of the four impact detection switches was needed. With this in mind, it
was decided to surround the robot frame with a loosely suspended box so that any impact anywhere against it
would cause it to move relative to the robot and activate one of the impact switches.

An extensive search was made of local shipping and receiving shops for a durable cardboard box suitably sized
for surrounding the robot. No such box was found so a custom box was constructed from CoroPlast corrugated
polypropylene sheets purchased from Home Depot and assembled using cyanoacrylate adhesive formulated for
difficult to join plastics (Loctite Part # 681925). The final box is a rectangular ring 19 inches wide by 22 inches
long and 9 inches tall, with reinforcing strips glued to the inside. Unfortunately, the width of the laptop
computer and the USB cables plugged into its sides require the box to be much wider than the robot frame. If a

9

smaller computer is ever installed on the robot, a new, much narrower box could be used which would be much
easier to navigate through narrow passages like doorways.

The box is freely suspended from the four corners of the upper platform with #6-32 threaded rods bent into
hooks 9 inches long that engage into small notches cut into its lower rim. Threaded rod was used so that the
height of the box can be adjusted by turning the nuts at the top of the rods. The box can hang low to conceal the
robot frame while on smooth floors during Robot Theater, but be adjusted higher for exploring in rough terrain.
After initial installation of the box, it became apparent that it was suspended a little too loosely and could be
knocked off of the hooks with a sufficiently abrupt impact. Taping the bottom of the hooks to the inner walls of
the box solved that problem, but a better attachment method could also be devised.

In operation the box has proven very effective at transmitting even the slightest impact anywhere on its surface
to one or more of the impact detection sensors. However, this is not the only purpose for it. There is a
significant aesthetic appeal to placing a box around the robot as well since the Schrodinger's Cat thought
experiment is all about placing a cat, along with a few other less pleasant items, inside just such a box. With a
sufficiently cat like replacement for the current ESRA-2, the Schrédinger's Cat robot could eventually end up
appearing very much like a real cat in a box.

Self recharging

In addition to increasing the Schrodinger's Cat robot's battery longevity, one of the goals this term was to
modify the robot so that it can be self recharging. It was hoped that a system could be made to recharge both the
main motor battery as well as the laptop battery. Unfortunately it was determined that the Dell laptop used to
control the robot is very finicky about where it gets its energy from. The laptop computer's recharging power
supply delivers 19.5 volts DC, but when an adjustable power supply was set to deliver 19.5 volts DC and
plugged into the laptop, the laptop failed to recognize it and continued to run off its still discharging internal
battery. It is unknown why the laptop refuses to accept power from anything but its official supply, but it is
suspected this was intended by the manufacturer to ensure that any replacement power supplies have to be
purchased from them. This recharging limitation could be overcome by mounting the laptop's power supply into
the robot, but that would mean the robot would need to be supplied with 120 volt AC wall current. Leaving
exposed recharging plates connected to 120 volts AC around the robotics lab (or anywhere for that matter)
would be extremely dangerous and irresponsible, so it was
decided to limit the current recharging design to only
recharging the motor battery. Eventually it is hoped that a
different computer will be installed that is capable of being
powered from a wider variety of sources so that it can be
connected to the recharging system developed for the motor
battery.

Charging Whiskers

To allow the Schrodinger's Cat robot to recharge its motor
battery two of the floor sensing whiskers had 0.187 inch
spade terminals silver soldered to them. The whiskers are

Iaiineg

AR 54
then connected to a bridge rectifier to ensure that the Figure 9:The charging whiskers on the
recharging system receives the correct voltage polarity charging plates. Note the power rectifier
regardless of how the robot is oriented over the recharging board mounted to the frame.

10

plates. The rectifier is part of a small printed circuit board that was made to mount to the TETRIX frame
channels just like the impact sensor boards. The power is then regulated down to a maximum of 14 volts and
delivered directly to the battery. Since the motor battery is the simple sealed lead acid type similar to those
installed in automobiles, a more complicated recharging system like those used for more sophisticated lithium-
ion or nickel-metal-hydride batteries is unnecessary. The charging voltage just needs to be kept below 14.5 volts
to avoid electrolysis in the battery cells and avoid damaging the HiTechnic motor controller it is directly
connected to.

Charging Plates

The other half of the self charging system are recharging
stations made of two brass plates, 4 inches by 10 inches,
with spade terminals soldered onto them to connect them to
any DC or AC power supply capable of supplying
approximately 15 peak volts at 1 ampere. The charging
plates have velcro hook fasteners on their undersides to
firmly place them on carpeted floors while still allowing
easy removal for cleaning etc. It was decided to keep the
recharging stations as simple and inexpensive to
manufacture as possible so that many of them can be built
and placed at various locations around a building the robot
is set to explore. In this way the robot can recharge itself
from the nearest of several recharging stations instead of
continually having to return to a single station. The
Schrodinger's Cat robot monitors the motor battery charge by checking the battery voltage through the
HiTechnic motor controller. When the battery charge drops below 12 volts, it can recharge it by driving over the
charging plates so that one of its front floor sensing whiskers comes into contact with each plate. The robot
knows when it is correctly positioned over the plates when it starts detecting the charging voltage of 14 volts at
the battery. After sufficient time has passed the robot drives off the charging plates and rechecks the motor
battery voltage to see if additional charging is needed.

Figure 10:The chargin station.

The new self charging systems works well enough at keeping the motor battery recharged. However, the new
efficient hybrid OmniWheel drive system means the motor battery is no longer the limiting factor in the robot's
operational time. The laptop battery now determines when the robot needs human attention to recharge, and so
a computer that is also capable of being recharged from the charging station is necessary if the robot is ever
going to be freed from depending on human intervention to keep itself running. A more sophisticated charging
system that can monitor the current entering or leaving the battery would also be an improvement as it would
give a more accurate estimation of the remaining battery life and also allow the robot to monitor the battery
charge while recharging without having to roll off the recharging plates.

ESRA-2 Repairs

The Expressive System for Robotic Animation, version 2, or ESRA was in really bad shape at the start of the
term. A number of broken wires in its power supply made it mostly immobile, and many of the mechanical
linkages were damaged, some irreparably. After connecting the power back to the ESRA, its behavior was
found to be erratic and inconsistent.

11

It was decided that a complete re-build was necessary to get the ESRA
working adequately again for the speech generation part of the project.
Originally the ESRA was mounted to a wood doll chair with an
armature that allowed it to turn and tilt, at least in theory. This
armature was poorly designed and assembled, and supported itself
solely on the weak plastic servo splines, one of which which had nearly
been polished smooth by the ERSA body being yanked about by
movement and its own weight. The chair itself was falling apart, and
also lifted the ESRA so that it looked much more like a robot cat
sitting above a box instead of a robotic cat peeking out of a box. Since
face and mouth movement is much more important to speech
simulation than tilting and turning it was decided to abandon the chair
and armature and re-use its components to repair the face and body of

the ESRA.

As it was disassembled, an number of damaged and mis-installed

components were discovered in the ESRA body. The miniSSC2 board ~ Figure 11:The ESRA-2 in bad
controlling the mouth, arm, and eyelid servos had been screwed need of repair.

directly to the back plate of the ESRA without ant standoff spacers.

Unfortunately, this was done right over one of the ESRA's machine

screws, creating a short between signal lines on the bottom of that miniSSC2 board. This is believed to have
caused the intermittent communication failures between the laptop computer and that miniSSC2. After
detaching the miniSSC2 and cleaning up its bottom traces, it continued to exhibit communication failures,
though not quite so many as when the board was still shorted, so it appears some permanent damage is present
on that miniSSC2 board. Fortunately the twist and tilt servos on the abandoned chair had their own miniSSC2
controller which was undamaged, so that controller was connected to control the ESRA face servos, this time

with adequate stand-off spacers.

P99 PPIDY,
29793955

A

YO aan0008s B

Figure 12:The damaged miniSSC2. This is
why standoffs need to be used.

Once the face servos were moving consistently, it became
obvious that the lower mouth servo was responding much
more slowly and inaccurately than the rest of the servos.
Closer inspection revealed that whoever first assembled the
ESRA failed to install enough spacing washers between the
front and back plates of the ESRA body. This caused the
two plates to put too much pressure on the mouth servo
armatures, forcing them to have to turn against unnecessary
resistance. This extra load apparently took its toll on the
lower mouth servo, and some damage appears to have been
done to its internal motor or position sensor or both. The
upper mouth servo was spared this damage, but only
because the excess pressure between the plates at some
point broke one of the upper #4-40 nylon screws holding
the plates together, relieving pressure on that servo. The

ESRA body was completely disassembled, and the lower mouth servo was replaced with the servo from the
chair armature that had formerly been used to tilt the ESRA body. Then the body was completely re-assembled
using new, adequately sized spacers and new #4-40 machine screws. The mouth armatures were also lightly
lubricated with a dry Teflon powder to allow them to move even more freely.

12

When the ESRA body was reassembled, the battery pack was not replaced inside the back plate. Instead the
space for the battery pack was used to hold the bundled servo cables, thereby cleaning up the back of the ESRA
and hopefully helping to avoid further damage to the servo cables from accidental tangles. A new four cell AA
battery pack (Radio Shack Part #270-383) and 9 volt battery clip (Radio Shack Part #270-324) were connected
to the miniSSC2 board through a longer cable and a four position keyed power connector (Radio Shack Part
#274-224). Moving the batteries off the ESRA body made it much easier to power since it's no longer necessary
to partially disassemble the ESRA to change its batteries. It can also now be powered directly from the power
supply board on the robot or from external batteries if it needs to be removed from the robot. The ESRA's
weight is also significantly reduced, which will make it easier to design a new tuning and tilting armature in the
future.

Easy ESRA

The ESRA is controlled through the miniSSC2 board connected to an RS-232 serial port on a computer.
Unfortunately, not everyone is capable of understanding or programming RS-232 serial communications, even
within Linux. In order to allow people to concentrate on robot motion an easy to use Application Programming
Interface (or API), called Easy ESRA, was written for the ESRA to take care of all the apparently difficult
fiddly bits of serial communications with the miniSSC2 controller. Under the Easy ESRA API, communication
with the ESRA is initialized with ESRA_init (). Servos are positioned with ESRA_set_upper_1lip(),
ESRA_set_right_shoulder (), and so on. Communications are terminated with ESRA_close (). The Easy
ESRA code automatically reverses servo positions for inverted servos so that higher values always mean the arm
or lip is at a higher position. It also takes care to set limits to the servo positions so that the servos cannot be
positioned beyond their range of clear motion. If an error happens, such as attempting to communicate to the
ESRA on a serial port that doesn't exist or that the user does not have privileges to access, the Easy ESRA code
returns a number of error messages so that the user can diagnose the problem instead of just wondering why it
isn't working. It is hoped that the Easy ESRA code continues to be used in future robotics projects as it greatly
simplifies the task of controlling an ESRA, or any other device using a miniSSC2, for people with only minimal
programming skills.

NXT controller

The Schrodinger's Cat robot drives its motors with a HiTechnic motor controller connected to a Lego NXT
Intelligent Brick over an I2C connection. The NXT also connects to the impact sensors. The NXT is itself
controlled by the laptop computer over a USB connection via the libnxt++ software library. This makes the
NXT crucial to the correct operation of the robot. Unfortunately, the NXT used in the Schrodinger's Cat robot
has proven itself to be very unreliable.

At the beginning of this term, it was assumed that the motor control systems and software from last term were
still available and functional. This assumption proved to be false. When the OmniWheels finally arrived and it
was time to test the old drive system before replacing it, what was thought to be the functional motor control
program from last term was used to try to test the motors, only to see the robot fail to move at all.

Inspection of the source code in the folder with the motor control program revealed that it was not, in fact, the
final, functional software at all, but some early version of the software that had been heavily re-written, probably
unsuccessfully, to make the robot play a game of “chicken” (collision avoidance) with another robot. Or at least
that's what it appeared to be supposed to do. So a new program was written to use the almost completely
undocumented motor control library to turn the robot left and then right just to confirm the robot was capable of

13

movement. This also failed to cause the robot to move, so the libnxt++ library was completely re-installed and
rebuilt on the laptop. Again, the robot failed to move. A HiTechnic motor controller was borrowed temporarily
from the Niels Bohr robot and connected, only to have the robot again fail to move. Since the NXT was also not
responding to queries about the state of the touch sensors, the problem was determined to lie somewhere in
either the laptop software or the NXT. All this time the NXT was recognizing its USB connection to the
computer and vice versa and accepting commands, but simply not responding to them. There were no error
messages or warnings as to why the NXT Intelligent Brick was unresponsive, it simply sat in the robot and
behaved like one of the clay bricks it was named for.

Eventually Alan Cheng graciously lent the NXT from his project for testing. It was plugged into the robot and
the robot moved, responding to the laptop as it should. This proved that the problem lay in the NXT Intelligent
Brick and not in the laptop software. Before purchasing a replacement NXT for $144.99, an attempt was made
to copy the firmware from Alan's NXT onto the Schrodinger's Cat NXT. This was done using the fwflash utility
included in the library software from libnxt.googlecode.com. After copying the firmware, the Schrodinger's Cat
NXT also began to respond to commands from the laptop again as it was supposed to do. This means the
problem was probably caused by corrupted firmware within the NXT Intelligent Brick. It is unknown how or
why the firmware was corrupted, it was just fortunate that the part of the firmware that allows uploading new
firmware was not itself corrupted. A local copy of Alan's firmware was kept in case the NXT needs to be re-
flashed again.

Once the robot was rolling again, tests on the battery life with the old four wheel differential drive could be
performed before replacing that drive system. While these tests were ongoing, it soon became apparent that the
NXT Intelligent Brick may not have been completely fixed or may have other problems or may simply not be a
trustworthy design. Occasionally, the motor on one side of the robot would fail to turn. This behavior was
entirely random, and was not exclusive to one motor, happening almost equally to both sides. This behavior was
observed last term in the robot but was passed off at the time as an artifact of a low battery charge by the author
of the motion control software. As the robot started out each battery test with a fully charged battery and the
movement failures seemed to happen independently of the battery charge, this faulty behavior cannot actually be
the result of a weak battery charge.

The robot chassis was partially disassembled and the connections between the NXT, HiTechnic motor controller,
motors, and encoders were inspected and all found to be sound. Looking around on the internet it appears other
projects have also experienced similar problems with their motors not always moving
(www.chiefdelphi.com/forums/showthread.php?t=75516).

This untrustworthy behavior of the NXT and HiTechnic motor controller is unacceptable in a fully independent
mobile robot. If one side of the robot fails to roll during a turn, it causes the robot's actual turn to be only half of
what was intended. The robot will also drift away from its starting position because this half turn will be
centered on the non-rolling side, not the robot center. Worse yet, if one side of the robot fails to roll during
straight line travel, the robot will also simply turn about the non-rolling side instead of moving in the intended
direction. All such positioning errors are cumulative, and make any navigation based on dead reckoning
impossible requiring constant correction of the robots perceived position with its sensors. In a worst-case
scenario, if one of the motors fails to turn after the robot senses a drop off through its whiskers and attempts to
back away, the result could be a catastrophic fall.

14

Motor Control Software Rewrite

Compensating for these failures required an almost complete rewrite of the motor control software. The old
software would simply send a motion instruction to the NXT controller with a Motor: : setSpeed () function
and assume that instruction was carried out correctly. Such assumptions have been proven false. The new
setSpeed () subroutine also sends motion instructions to the NXT controller, but before doing so it stores the
current encoder positions. After telling the motors to roll, it waits a delay calculated based on the intended
speed of the motors to travel 5 mm, and again checks the encoder positions. If the change in encoder position
for a motor is less than estimated based on the intended motor speed and the time since the instruction to move
was given, the instruction to move is repeated. This is attempted five times in total before the routine gives up
and returns with a warning.

A modified version of the battery torture test was repeated using the new motor control software. After 500
cycles of turning 90° left followed by 90° right taking more than 20 minutes, the motors did not show one
failure to turn, and the robot had drifted only 75 mm from its original position. This increased positioning
reliability comes with a heavy price, however. All the additional communication needed to monitor and correct
the motion of the motors requires significantly more bandwidth from the USB connection. This means the
robot's motion control can be adversely affected by other high bandwidth devices on the same USB host
controller, especially if they transmit large numbers of isochronous data packets. The USB cameras used by the
Schrédinger's Cat robot, unfortunately, are just such a device. When the new software controls an NXT
connected to the same host controller as one of the cameras, the response time is severely delayed, sometimes
taking as long as twelve seconds to respond to instructions from the laptop. Delays of this magnitude are
unacceptable, especially when the laptop is monitoring the impact and floor sensors to stop the robot before a
collision or fall. The laptop currently used in the Schrodinger's Cat robot only has one internal USB host
controller. A second PCMCIA USB host controller was purchased in the 2010 winter term to allow both
cameras to operate simultaneously, bringing the total number of host controllers to two. The new, high
bandwidth NXT control software means that the robot is once again short by one USB host controller. It can
currently receive stereo image data from both cameras or control the motors, but not all three at the same time,
meaning it is still incapable of exploring and mapping its environment using stereo imaging.

Future Recommendations

The Schrodinger's Cat robot still has much room for improvement. The hybrid Omniwheel differential drive
system has proven to work extremely well, but it could still use a suspension system to allow the robot to travel
over more uneven terrain than the flat floors of the Fourth Avenue Building.

The shaft encoders on the TETRIX motors are also quite fragile and unreliable and prone to be knocked loose.
A loose shaft encoder makes for inaccurate positioning. A better solution might be to build wheel encoders, or
in this case sprocket encoders, out of the already installed sprockets. A disk with alternating light and dark
stripes could be printed or milled into the inner surface of the 32 tooth sprockets coupled to the wheels. If
reflective optical interrupters (such as the OSRAM SFH 9240) are mounted on the TETRIX frame channel
facing the stripes on the disk, they will be able to detect the movement of the stripes, and therefore the
movement of the sprocket and the wheel. While such an encoder would not have quite the resolution of the
TETRIX shaft encoders, its accuracy would be greater than a damaged or loose shaft encoder and it would take
an impact strong enough to destroy the robot itself to damage such an encoder. Another possibility might be to
use a sensor like those in laser mice to detect the motion of the sprocket, or simply use such a sensor to detect
the robot's movement over the floor itself like a giant laser mouse.

15

The laptop is severely underpowered, overly large, too
finicky about its power supply, and does not have enough
USB host controllers. It could be replaced with a newer
laptop, but a better solution would be replacing it with a
17cm by 17cm minilTX or 10cm by 7.2cm picolTX
motherboard computer. MinilTX motherboards (such as
the Asus AT3IONT-I) are available with multi core Intel
Atom processors, on board nVidia ION chipset CUDA
video processors, 802.11 WiFi networking, and can be
mounted in cases (such as the Mini-Box VoomPC-2) Figure 13:A VoomPC-2 minilTX computer.
designed for installation in automobiles that are powered

from 12 volt batteries. That is significant because it would

allow the entire robot and all its components to be powered from a single rechargeable lead acid battery that the
robot is already capable of keeping recharged by itself. Most minilTX motherboards include an PCI or PCle
expansion slot to allow the addition of more USB host controllers. It is unknown if there are multihost USB
controller cards that will fit in an automobile installable case, but a lack of sufficient USB host controllers is a
problem that is even more difficult to overcome in a laptop computer.

The NXT / HiTechnic motor controller is adequate for simple robotics projects, but has proven insufficient and
overly complex for larger, more complex designs controlled by more powerful computers. During a current
movement cycle the laptop first calculates the robot movement based on images from its camera. Then it
instructs the NXT to instruct the HiTechnic motor controller to enact the movement. Then it requests the NXT
to request the encoder position data from the HiTechnic motor controller. If the encoder data is other than
expected it has to again instruct the NXT to instruct the HiTechnic to turn the motors. And then again request
the encoder position and so on. Once the motors are turning the computer has to repeatedly request the NXT
poll the impact and floor sensors. If an impact or drop is detected it has to instruct the NXT to instruct the
HiTechnic to stop the motors, then check to confirm the motors have stopped. Every one of these exchanges
takes time, and on a heavily loaded USB connection they can take a lot of time. This limits the upper speed of
the robot to very slow rates as faster speeds could allow the robot to crash or drop catastrophically before the
message to stop reaches the motors.

A better solution for the Schrodinger's Cat robot and other projects would be replacing both the NXT and
HiTechnic with a single custom motor controller more suited to interfacing with a computer. An Arduino could
be used in such a project, but would require developing around the Arduino's design and firmware. A simple 8
bit microcontroller like an Atmel AVR or Microchip PIC could easily control two motors. The Atmel AVR
Attiny2313 is a likely candidate. It has four symmetric Pulse Width Modulation (PWM) signal generators to
control the speed of up to four DC motors through H-bridge motor drivers. Ten of its digital input pins can be
configured as external interrupts allowing the encoder inputs to be monitored with a simple interrupt service
routine (ISR). When the encoder output changes it triggers the appropriate ISR to increment or decrement the
encoder's position variable in memory based on the state of the second encoder input. The ISR can also use one
of the internal timer / counters to calculate the encoder's current rotational speed. The main program has only to
access the position and speed variables for an encoder to automatically know its speed and position and can use
that data to drive the motors by changing the duty cycle of the PWM outputs through a PID or Fuzzy Logic or
other such control scheme. Another of the external interrupts can be used to monitor the floor and impact
sensors, stopping the motors automatically when an impact is detected and then report the impact to the
controlling computer. Such a motor controller would not need to wait for the controlling computer to poll a
separate device to detect trouble, and so could drive the robot safely at much greater speeds than the current

16

Computer / NXT / HiTechnic system can. The ATtiny2312 can communicate with a controlling computer over
RS-232 or USB using emulation in its firmware using one of the many serial converter chips. Such a motor
controller would not be very large and could be mounted in the space underneath the robot frame where the
HiTechnic motor controller is currently located. This would allow the NXT to be removed from the center of
the robot frame, making room for a much larger and higher capacity battery.

Finally, the ESRA still needs a decent cat costume.

17

Appendix A: How to manufacture TETRIX compatible hub spacers

...without expensive machine tools.

Step 1: Cut partway through a piece of ¥4 inch aluminum bar stock
with a 1'% inch hole saw.

Step 2: Partially bore out the pilot hole to °/16 inch diameter with a
step drill.

Step 3: Drill through the center hole with an 8 mm drill.

18

Step 4: Insert a TETRIX wheel hub spacer into the 8mm hole and
use it as a drill guide to drill thru one %/64 inch hole near each 8
mm hole.

Step 5. Insert a 4 inch rod through one of the holes in the
TETRIX wheel hub spacer and into the %/64 inch hole just drilled
into the aluminum to prevent the wheel hub spacer from turning.
Drill thru three more %64 inch holes around the 8 mm center hole
using the fixed wheel hub spacer as a drill guide.

Step 6: Cut the hubs free with the 1'% inch hole saw.

Step 7: Clean up the hubs with 1000 grit wet sandpaper.

19

Appendix B: Source Code

Easy ESRA.c

/*
ESRA.c

This is the Easy ESRA interface API. 1In theory it should allow
even novice programmers to control the ESRA Human Interaction
Device without needing to know all the intricacies of serial port
programming under Linux.

/

X% X% ok ok X %

#include "ESRA.h"
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <termios.h>
#include <sys/stat.h>
#include <errno.h>

/* Globals */

esra_error esra_errno;
int esra_serial_fd = -1;

int esra_servo_numbers [ESRA_PART_COUNT];
int esra_servo_max[ESRA_PART_COUNT];
int esra_servo_min[ESRA_PART_COUNT];
int esra_servo_inverted[ESRA_PART_COUNT];

/
The ESRA_init () function takes an integer input and treats that as
the serial port number the ESRA is supposedly connected to. It
opens the serial port and configures it for communication by later
calls to this library.

Eventually this initialization routine will also load configuration
data from a file (probably under /etc) that contains upper and
lower position limits for each of the ESRA components, but for now
those values will be hardcoded (or just ignored).

L R S . . S

int ESRA_init (const char *port) {

char *default_port = "SO0"; /* This may eventually be get loaded from a
config file */
char *tty_dev_base = "/dev/tty"; /* The ttys all start with this */

char tty_dev([256]; /* A buffer for the full TTY filepath */
struct stat tty_status;
struct termios tty_options;

/* First lets assign some servo numbers and movement ranges. For

now these are hard coded, but eventually they will come from the
config file. */

20

esra_servo_numbers [EYELID] = 0;

esra_servo_numbers [UPPER_LIP] = 1;
esra_servo_numbers [LOWER_LIP] = 2;
esra_servo_numbers [RIGHT_SHOULDER] = 3;

[

[

[

[

esra_servo_numbers [LEFT_SHOULDER] = 4;
esra_servo_numbers [RIGHT_ELBOW] = 5;
esra_servo_numbers [LEFT_ELBOW] = 6;
esra_servo_numbers [TWIST] = -1;
esra_servo_numbers [TILT] = -1;
esra_servo_max [EYELID] = 255;
esra_servo_max [UPPER_LIP] = 255;
esra_servo_max [LOWER_LIP] = 255;
esra_servo_max [RIGHT_SHOULDER] = 255;
esra_servo_max [LEFT_SHOULDER] = 255;
esra_servo_max [RIGHT_ELBOW] = 255;
esra_servo_max [LEFT_ELBOW] = 255;
esra_servo_max [TWIST] = 127;
esra_servo_max [TILT] = 127;

esra_servo_min[EYELID] = 0;
esra_servo_min[UPPER_LIP] = 0;
esra_servo_min[LOWER_LIP] = 0;
esra_servo_min[RIGHT_SHOULDER] = 0;
esra_servo_min[LEFT_SHOULDER] = 0;
esra_servo_min[RIGHT_ELBOW] = 0;
esra_servo_min[LEFT_ELBOW] = 0;
esra_servo_min[TWIST] = 127;
esra_servo_min[TILT] = 127;

esra_servo_inverted[EYELID] = 1;/* Bigger values should mean more
open, not more closed. */
esra_servo_inverted [UPPER_LIP] = 0;
esra_servo_inverted [LOWER_LIP] = 0;
esra_servo_inverted[RIGHT_SHOULDER] = 1; /* Larger positions should
mean the arm goes up. */

esra_servo_inverted [LEFT_SHOULDER] = 0;
esra_servo_inverted[RIGHT_ELBOW] = 1; /* Larger positions should

mean the arm waves to the

right. */

esra_servo_inverted[LEFT_ELBOW] = 1; /* And it's the same for both

elbows. */
esra_servo_inverted[TWIST] = 0;
esra_servo_inverted[TILT] = 0;

/* Now lets set up the serial port */

if (!port || *port == '\0')

snprintf (tty_dev, 255, "%s%s", tty_dev_base, default_port);
else

snprintf (tty_dev, 255, "%s%s", tty_dev_base, port);

if (stat(tty_dev, &tty_status) < 0) {
if (errno == ENOENT)
esra_errno = SERIAL_NO_SUCH_PORT;
else
esra_errno = SERIAL_INIT_FAILURE;
return 0;

21

}
esra_serial_fd = open(tty_dev, O_RDWR | O_NOCTTY | O_NDELAY);

if (esra_serial_fd < 0) {
perror (tty_dev);
esra_errno = SERIAL_INIT_FAILURE;
return 0;

}
fcntl (esra_serial_fd, F_SETFL, 0);

tcgetattr (esra_serial_fd, &tty_options); // Get current attribute
cfsetispeed(&tty_options, ESRA_BAUD); // Set input baud rate
cfsetospeed (&tty_options, ESRA_BAUD); // Set ouput buad rate

tty_options.c_cflag &= ~PARENB; // 8Nl configuration
tty_options.c_cflag &= ~CSTOPB;

tty_options.c_cflag &= ~CSIZE;

tty_options.c_cflag |= CS8;

tcsetattr (esra_serial_fd, TCSANOW, &tty_options); //Set new attribute

return 1;

The ESRA_close () function closes the serial port connection and
does associated cleanup. This should only be called after the
linking software has finished using the ESRA and is about to exit.

*/
int ESRA_close () {
/* There will eventually be a lot more to do here. */

/* Should probably check for errors, but we just want to see the
thing move right now. */
close (esra_serial_f£fd);

return 1;

The ESRA_set_pos () function takes an ESRA body part and position as
inputs, checks to make sure the position is within range for that
body part, and then attempts to send that part to that position.

If the position is out of range, it sends the part to the maximum
or minimum position, sets an error code, and returns a 0.

X% X X X ok o

int ESRA_set_pos (esra_part part, int position) {
static unsigned char sync = 255;
0

static unsigned char servo =
static unsigned char pos = 0;

;
esra_errno = NO_ERROR;

22

if (esra_serial_fd < 0) {
/* The ESRA is not yet initialized. */
esra_errno = NOT_INITIALIZED;
return O0;

servo = (unsigned char) esra_servo_numbers[part];
if (servo < 0) {

esra_errno = SERVO_NOT_ASSIGNED;

return 0;

}

/* Check for inverted servos. */
if (esra_servo_inverted|[part]) position = 255 - position;
if (position > esra_servo_max[part]) {
position = esra_servo_max|[part];
esra_errno = POSITION_OUT_OF_RANGE;
}
if (position < esra_servo_min[part]) {
position = esra_servo_min[part];
esra_errno = POSITION_OUT_OF_RANGE;

pos = (unsigned char) position;

/* These three writes should probably be combined into one. */
write (esra_serial_fd, &sync, 1);

write (esra_serial_fd, &servo, 1);

write (esra_serial_fd, &pos, 1);

if (esra_errno != NO_ERROR) return 0;
return 1;

* And now the functions for specific body parts to make things simple
for novices to code. Note that these functions only call the
ESRA_set_pos () function. That's it. In c++ these would have benn
done with overloading.

*/

inline int ESRA_set_eyelid(int position) {
return ESRA_set_pos (EYELID, position);
}

inline int ESRA_set_upper_lip(int position) {
return ESRA_set_pos (UPPER_LIP, position);
}

inline int ESRA_set_lower_lip(int position) {
return ESRA_set_pos (LOWER_LIP, position);
}

inline int ESRA_set_right_shoulder (int position) {
return ESRA_set_pos (RIGHT_SHOULDER, position);
}

23

inline int ESRA_set_left_shoulder (int position) {
return ESRA_set_pos (LEFT_SHOULDER, position);
}

inline int ESRA_set_right_elbow (int position) {
return ESRA_set_pos (RIGHT_ELBOW, position);
}

inline int ESRA_set_left_elbow(int position) {
return ESRA_set_pos (LEFT_ELBOW, position);
}

inline int ESRA_set_twist (int position) {
return ESRA_set_pos (TWIST, position);
}

inline int ESRA_set_tilt (int position) {
return ESRA_set_pos(TILT, position);
}

#ifdef DEBUG

/*
* This is an example main() function to test out the API. It inits
* the ESRA, sends it through a few moves, and then exits.

*/
int main () {

if ('ESRA_init ("S0")) {
printf ("ESRA init error.\n");
if (esra_errno == SERIAL_NO_SUCH_PORT) {
printf ("No such serial port.");
} else {
printf ("Unable to init serial port for some reason.\n");
}
return 0;

}

ESRA_set_eyelid (255);
//ESRA_set_right_shoulder (255);
//ESRA_set_left_shoulder (255);
ESRA_set_upper_lip(255);
ESRA_set_lower_1lip(0);
sleep(l);

ESRA_set_eyelid(0);
//ESRA_set_right_shoulder (0);
//ESRA_set_left_shoulder (0);
ESRA_set_upper_1lip(0);
ESRA_set_lower_lip(255);

sleep (1) ;

ESRA_set_eyelid (127);
//ESRA_set_right_shoulder (127);
//ESRA_set_left_shoulder (127);

24

ESRA_set_upper_lip(255);
//ESRA_set_lower_lip (127);
sleep(l);
ESRA_set_upper_1lip(0);
ESRA_set_lower_1lip(0);
//ESRA_set_right_elbow (255);
//ESRA_set_left_elbow (255);
sleep (1) ;
//ESRA_set_right_elbow (0);
//ESRA_set_left_elbow(0);
sleep (1) ;
//ESRA_set_right_elbow (127) ;
//ESRA_set_left_elbow (127);

ESRA_close () ;
}

#endif // DEBUG

ESRA.h
/*

* Header file for Easy ESRA interface routines. 1In theory these

* routines should allow even novice programmers to control the ESRA
* Human Interaction Device without needing to know all the

* intricacies of serial port programming under Linux.

*/
#ifndef _ ESRA_H
#define ESRA_H

#define ESRA_VERSION "0.0la"

/*
* Global defines.
* These may eventually be pit into a config file that gets read on init.

*/
#define ESRA_BAUD 9600

/* I don't expect the ESRA to ever have more than 16 moving parts. */
#define ESRA_PART_COUNT 16

/*
* Now for some types and enums etc.

*/

typedef enum _esra_part {
NO_PART,
EYELID,
UPPER_LIP,
LOWER_LIP,
RIGHT_SHOULDER,
LEFT_SHOULDER,
RIGHT_ELBOW,
LEFT_ELBOW,
TWIST,

25

TILT
} esra_part;

typedef enum _esra_error {
NO_ERROR,
NOT_INITIALIZED,
SERIAL_TINIT_FATLURE,
SERIAL_COMM_FAILURE,
SERIAL_NO_SUCH_PORT,
SERVO_NOT_ASSIGNED,
POSITION_OUT_OF_RANGE

} esra_error;

/*
* Global Variables
*/

extern esra_error esra_errno;

/*
* And now for some public function prototypes.

*/

int ESRA_init (const char *);

int ESRA_close();

int ESRA_set_pos(esra_part, int);
inline int ESRA_set_eyelid(int);

inline int ESRA_set_upper_lip(int);
inline int ESRA_set_lower_lip(int);
inline int ESRA_set_right_shoulder (int);
inline int ESRA_set_left_shoulder (int);
inline int ESRA_set_right_elbow(int);
inline int ESRA_set_left_elbow(int);
inline int ESRA_set_twist (int);

inline int ESRA_set_tilt (int);

#endif // ESRA_H

schrodie_motor.cpp
/ *

schrodie_motor.cpp

Loosely based on the original motor.cpp developed for the Winter 2010
term Intelligent Robotics 2. These routines have been severely
rewritten to take into account communications problems between the NXT
brick and the HiTechnic motor controller.

The original version of this code also randomly switched from handling
the robot position as ticks of the encoders and millimeters of
distance traveled. This was confusing and required the user to
understand how a given function will be handling the robot position
before calling that function. I have streamlined that code so that
robot motor positions will only be handled as ticks and the
TICKS_PER_MM function will be used to convert encoder ticks to real
distances.

26

*/
#include "schrodie_motor.h"
#include <stdio.h>

#define SETINPUTMODE 0x05
#define LOWSPEEDY9V 0x0B
#define RAWMODE 0x00
#define LSWRITE OxOF
#define LSREAD 0x10

#define BATT_V 0x54

#define MI1_MODE 0x44
#define M1 PWR 0x45
#define M1_ENC 0x4cC
#define M1_TRG 0x40
#define M2_MODE 0x47
#define M2_PWR 0x46
#define M2_ENC 0x50
#define M2_TRG 0x48

#define MODE_MSK 0bl11111100 // mask for the mode select bits
#define MODE_PWM 0b00000000

#define MODE_SPD 0b00000001

#define MODE_SRV 0b00000010

#define MODE_REV 0b00001000

#define MODE_RST 0b00000011

#define MODE_BSY 0b10000000

#define MODE_NTO 0b00000000 // no disable timeout
//0b00010000 // disable timeout

using namespace std;
int HTPort;

/* The waitMS () function is probably not necessary since we already
have the usleep system command as part of the standard c library.
I'm leaving it for legacy reasons. */

void Motor::waitMS (int ms) {
clock_t endwait;
endwait = clock() + ms * CLOCKS_PER_SEC/1000 ;
//cout << "\t" << (double)clock ()/CLOCKS_PER_SEC << endl;
while (clock () < endwait) {}
//cout << "\t" << (double)clock () /CLOCKS_PER_SEC << endl;
}

/* The setup () function tels the NXT brick to treat the device
connected to the given port as a motor controller. It also sets up
the motor controller to take commands and execute them, and tells
Motor 1 that it needs to rotate backwards because it is on the
right so that positive rotations roll the robot forward. */

void Motor: :setup (int port) {

27

HTPort = port;

// set motor port to I2C
ViUInt8 directCommandBuffer([] = { SETINPUTMODE,
HTPort,
LOWSPEEDO9V,
RAWMODE };
Comm: : SendDirectCommand (false,
reinterpret_cast< ViByte* > (directCommandBuffer),
sizeof (directCommandBuffer), NULL, O0);

// set power to 0, constant speed, reset encoder, reverse motor 1
i2cWrite (M1_MODE, MODE_NTO | MODE_REV) ;
i2cWrite (M2_MODE, MODE_NTO) ;
resetPosition () ;
setModeSpeed () ;
setSpeed (0,0) ;
}

/* The resetPosition () function zeros out the encoder positions. This
function is very important because the encoder counts are limited
to 1l6bits, which is not enough with the sprocket ratios on the
robot to count a full 360 degree turn. This function should be
called before attempting to servo the robot. If it is not, the
robot will only turn the difference between te given angle and what
it believs its current angle is. Note that setting the mode in any
way for motor 1 resets MODE_REV for some unknown reason, so it
needs to be reminded it is running in reverse. */

void Motor::resetPosition() {

i2cWrite (M1_MODE,

(i2cRead (M1_MODE) & MODE_MSK)

| MODE_RST

| MODE_NTO

| MODE_REV); // MODE_REV reminder
i2cWrite (M2_MODE,

(i2cRead (M2_MODE) & MODE_MSK)

| MODE_RST
| MODE_NTO) ;
}
/* The getPosition () function returns the current position of the
encoders in a position structure. This function used to be less

important, but will be more heavily used in this revision of the
code as it will be checked after telling the motors to move to
ensure that the command wasn't lost and the motors are actually
moving. The NXT and HiTechnic motor controller cannot be trusted
to always turn a command to an actuation, so they will need to be
monitored by the software to ensure they respond correctly. */

position Motor::getPosition () {
position ticks;
ticks.left = Motor::i2cRead (M1_ENC, 4);
ticks.right = Motor::i2cRead (M2_ENC, 4);
return ticks;

28

/* The setModeSpeed() function puts the motor controller into constant

speed mode. Under constant speed mode, the encoders are used
solely to control the wheel speeds, and not used for positioning at
all. This mode will be used for travelling long distances over
long time frames where the laptop can montor the robot's position
using the sensors like the cameras and also possibly by monitoring
the encoders and resetin them as necessary. It can allow the robot
to travel great distances inaccurately. */

void Motor: :setModeSpeed () {

i2cWrite (M1_MODE,

(i2cRead (M1_MODE) & MODE_MSK)

| MODE_SPD

| MODE_NTO

| MODE_REV); // Remind motor 1 it runs in reverse.
i2cWrite (M2_MODE,

(12cRead (M2_MODE) & MODE_MSK)

| MODE_SPD

| MODE_NTO) ;

/* The setModeServo () function puts the motor controller into servoing

mode where the encoders are used for positioning instead of speed
control. It is much more accurate than constant speed mode but due
to the limits on the encoder counts cannot be used to travel great
distances or turn at large angles. */

void Motor: :setModeServo () {

}

i2cWrite (M1_MODE,

(12cRead (M1_MODE) & MODE_MSK)

| MODE_ SRV

| MODE_NTO

| MODE_REV); // Motor 1 is still reversed.
i2cWrite (M2_MODE,

(i2cRead (M2_MODE) & MODE_MSK)

| MODE_ SRV

| MODE_NTO) ;

/* The setSpeed() function if the big important one. It sets the

speed of both motors, subject to an upper speed limit set by
TOP_SPEED which is defined in schrodie_motor.h and sends them on
their way. At least in theory.

If one of the speeds given is greater than the limit set by
TOP_SPEED, the greater of the two speeds is reduced to TOP_SPEED by
the speed cap factor capFactor, and the other speed is reduced so
that the ratios between the two speeds remains the same.

Before actually starting the motors, the function gets the values
for the encoder positions. Then, after setting the speeds of both
motors, the subroutine waits for a specified time delay and then
re—-checks the encoder values. If the encoders have not moved
significantly for one motor, the function resends the new motor
speed, waits the delay, and then checks the encoder position
again. */

29

void Motor: :setSpeed (double spdLeft, double spdRight) ({
/* Speeds are in mm/sec (at least theoretically). */

/* Positions for checking to make sure the motors are actually turning */
position start, current;
int attempt; /* What attempt is this to get things moving?

Hopefully we will neer need more than on retry. */

double waitDelay; /* How long in microseconds we wait before
checking the encoders. */

double slowestNonZeroSpeed;

/* Calculate the speed cap factor if needed. */
double capFactor = min(1.0,
TOP_SPEED / max (
abs (spdLeft),
abs (spdRight)
)
)

/* Adjust the speeds if needed. */
spdLeft*= capFactor;
spdRight*= capFactor;

slowestNonZeroSpeed = min (abs (spdLeft), abs(spdRight));
if (slowestNonZeroSpeed == 0)
slowestNonZeroSpeed = max (abs (spdLeft), abs(spdRight));

/* Just return if both speeds are zero. Why would this be called
with two zero speeds? */

if (slowestNonZeroSpeed == 0) return;
start = getPosition();

/* Converts the speed to a power and get things moving (hopefully) */
i2cWrite (M1_PWR, speed2pwr (spdLeft));
i2cWrite (M2_PWR, speed2pwr (spdRight));

/* And now we check to make sure things actually do start moving. */
for (attempt = 0; attempt < MOTOR_COMMAND_RETRIES; attempt++) {

/* Sleep for a given number of micro seconds. */

waitDelay = 1000000 * MOTOR_CHECK_DISTANCE_MM / slowestNonZeroSpeed;

/* If the delay is more than a second (we're really slow), do a
regular sleep for the integer seconds. */
while (waitDelay > 1000000) {
waitDelay —= 1000000;
sleep(l);
}

usleep (waitDelay); // And sleep out the remainder.
current = getPosition();
if (spdLeft != 0

&& (abs(current.left - start.left) < MOTOR_ENCODER_CHECK_THRESHOILD))

30

i2cWrite (M1_PWR, speed2pwr (spdLeft)); // Try again left.

if (spdRight !=0
&& (abs(current.right - start.right) < MOTOR_ENCODER_CHECK_THRESHOLD))
i2cWrite (M2_PWR, speed2pwr (spdRight)); // Try again right.
}
/* We've made multiple attempts to get the motors moving. Hopefully
they actually are. */
}

/* The stop() function stops the motors by setting their speed to
zero. This can probably be declared as a pre-processor macro. */

void Motor::stop () {
setTargetTicks (0,0);
resetPosition () ;
setSpeed (0,0);

}

/* The getTarget () function returns the current target in mm. It does
this by calling the getTargetTicks () function and then converting
from ticks to mm. This function will most likely only be called
during debugging. */

position Motor::getTarget () {
position ticks;
ticks.left = Motor::i2cRead (M1_TRG, 4)/TIC_PER_MM;
ticks.right = Motor::i2cRead (M2_TRG, 4)/TIC_PER_MM;
return ticks;

}

/* The setTargetTicks () function sets the target position in ticks
relative to the current position of both motors. It then gets the
target position back from the motors to make sure the target
position was actually set correctly. Be warned that the encoder
range limitations mean that this function could cause an encoder
overflow if the encoder positions are already near the limits.
Therefore, unless it is being used for small corrections in
position, it should probably only be called after zeroing the
positions of both encoders. */

void Motor::setTargetTicks (int trgLeft, int trgRight) {
position here = getPosition();
int ticLeft, ticRight;
int returnedTicLeft, returnedTicRight;
int attempt;

ticLeft = trgleft + here.left;
ticRight = trgRight + here.right;

for (attempt = 0; attempt < MOTOR_COMMAND_RETRIES; attempt++) {
for (int 1=0; i<4; i++4+) { /* Target is a 32-bit value stored in 4
sequential bytes. */
i2cWrite (M1_TRG+1i, ticLeft>>(8*(3-1)) & OxXFF);
i2cWrite (M2_TRG+1i, ticRight>>(8*(3-1)) & OxFF);
}

returnedTicLeft = Motor::i2cRead (M1_TRG, 4);

31

returnedTicRight = Motor::i2cRead (M2_TRG, 4);
if (returnedTicLeft == ticlLeft && returnedTicRight == ticRight) break;

}

/* The setTarget () function sets the target position in mm of both
motors relative to the current position. It does this by calling
the setTargetTicks () function with values generated with dist2tic()
function. */

void Motor: :setTarget (double trgleft, double trgRight) {
setTargetTicks (dist2tic (trgleft),dist2tic(trgRight));
}

/* The getVoltage () function returns the current battery voltage in
volts. This function will let the laptop know when the robot is
getting hungry. */

double Motor::getVoltage () {
return (double) Motor::i2cRead (BATT_V) * .08;
}

/* The drive () function drives the robot forward at the given speed in
mm/s */

void Motor: :drive (double speed) {
setModeSpeed () ;
setSpeed (speed, speed);

}

/* The driveTo () function drives forward to the specified position
given in mm. Please be aware that the limits on the encoder range
places extreme limits on the range this function is able to target,
especially if the encoder positions are already close to their
maximum before the function is called. for maximum range and
accuracy out of this function, it's probably best to zero out the
encoder positions before calling it. */

void Motor::driveTo (double dist, double speed) {
setModeServo () ;
setTarget (dist, dist);
setSpeed (speed, speed);

}

/* The turnAngle () function turns the robot clockwise to the specified
angle. In other words, a positive angle will turn the robot to the
right and a negative angle will turn the robot to the left. This
function used to be significantly more complex before the new
OmniWheel drive system was installed. Now it simply describes a
radius based on the width of the center wheelbase. */

void Motor::turnAngle (double angle, double revolutionsPerSecond) {
angle = -angle; // + = right, - = left

/* The circumference of the circle traveled by the center two
conventional wheels. */

32

double circumference = 2 * PI * MOTOR_W;

/* The slipRatio is no longer needed for the power
calculations because the corner wheels, being OmniWheels,
can now slide sideways freely. This code has been left in,
but commented out, for historical purposes and also in case
the old wheel architecture is ever re-installed. */

/* Ratio of power applied to the wheels on the [left, right]
side to power doing useful work, i.e. not slipping
sideways. */

/*

double slipRatio = fabs(sgrt(pow (MOTOR_W,2) + pow (MOTOR_L,2))
/ (MOTOR_W));

circumference *= slipRatio;

*/

/* The speed is determined by the circumference of the circle
transcribed by the center two wheels and the revolutions
per second. */

double speed = circumference * revolutionsPerSecond;

/* The target, likewise, is determined by the transcribed
circumference and the intended angle. */
double target = circumference * angle/360;

setModeServo () ;
setTarget (-target, target);

/* And GO. Note that there may be some drifting because the
motors don't always move when told to. The setSpeed()
function attempts to correct for this, but if the motors
don't both fire up on the first go there will still be some
offset in the movement as one motor gets a head start on
the other. there is no way to fix that without fixing the
phantom communication errors between the NXT and the
hiTechnic motor controller. */

setSpeed (speed, speed);
//cout << "circ" << circumference << endl;
//cout << "speed" << speed << endl;
}
/* The turn() function turns the robot counterclockwise the specified
speed. It does set a target angle or put the motors controller
into servoing mode, it Jjust turns. */

volid Motor::turn (double direction, double revolutionsPerSecond) {

/* We don't need an angle, just a direction, but just in case

something other than -1 or 1 is goven, fix it. */
direction = direction / abs(direction); // set to +-1
/* The circumference is just like in the turnAngle() function. */

33

double circumference = 2 * PI * MOTOR_W;

/* And just like the turnAngle () function, we don't need the
slipRatio calculations any more, but we're still leaving them in,
but commented out. */

/* Ratio of power applied to the wheels on the [left,right] side to
power doing useful work, i.e. not slipping sideways. */

/*

double slipRatio = fabs(sqrt(pow (MOTOR_W,2) + pow (MOTOR_L,2))
/ (MOTOR_W));

circumference *= slipRatio;

*/
/* Just like in turnAngle(). */
double speed = circumference * revolutionsPerSecond;

setModeSpeed () ;

/* Again, there may be some drifting as one motor fails to pay
attention and start spinning for some reason. */
setSpeed (-direction*speed, direction*speed);

}

/* The busy () function USUALLY returns true if the motors are en-route
to the target position. BUT NOT ALWAYS. For example, the first
time it's called, it almost always returns a false negative. DO
NOT TRUST THIS FUNCTION. Generally, if the function returns a
true, it is, in fact, busy. However, sometimes when it says it
isn't busy, it actually is. 1It's probably a good idea to confirm
with the encoder positions whenever it this function claims it
isn't busy. */

int Motor::busy () {
return (i2cRead (M1_MODE) & MODE_BSY) || (i2cRead(M2_MODE) & MODE_BSY) ;
}

/* The i2cWrite () function tells te NXT to writes a byte to the
hiTechnic motor controller via the i2c connection. This code
apears to be functional and is directly copied form the original
motor.cpp code. */

void Motor::i2cWrite (int address, int data) {
// prevent buffer overruns
waitMsS (10) ;

// write 3 bytes, expect 0 back, 0x02 is padding
ViUInt8 directCommandBuffer[] = {LSWRITE,
HTPort,
0x03,
0x00,
0x02,
address,
datal;
ViUInt8 responseBuffer[] = { 1,1};
Comm: : SendDirectCommand (true,

34

reinterpret_cast< ViByte* >(directCommandBuffer),
sizeof (directCommandBuffer),

reinterpret_cast< ViByte* >(responseBuffer),
sizeof (responseBuffer));

}

/* The i2cRead () function reads four or less bytes from the given
address over the NXT's i2c connection to the hiTechnic motor
controller. This code has also been kept from the original
code. */

int Motor::i2cRead(int address, int bytes) {
// prevent buffer overruns
waitMsS (10) ;
// ask for data, wait till it arrives
int bytesRead = 0;

do {
// write three bytes, expect some back, 0x02 is padding
ViUInt8 directCommandBuffer[] = {LSWRITE,
HTPort,
0x02,
bytes,
0x02,
address};
ViUInt8 responseBuffer[] = {1, 1};

Comm: : SendDirectCommand (true,
reinterpret_cast< ViByte* > (directCommandBuffer),
sizeof (directCommandBuffer),
reinterpret_cast< ViByte* >(responseBuffer),
sizeof (responseBuffer));
bytesRead = NXT::Sensor::LSGetStatus (HTPort) ;
} while (bytesRead < bytes);

// read data

ViUInt8 directCommandBuffer2[] = {LSREAD, HTPort};

viuInt8 responseBuffer2(] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1};

Comm: : SendDirectCommand (true,
reinterpret_cast< ViByte* >(directCommandBuffer2),
sizeof (directCommandBuffer2),
reinterpret_cast< ViByte* >(responseBuffer2),
sizeof (responseBuffer2));

long signed int result=0;

for (int i = 3; i<3+bytes; i++) {
result <<= 8§;
result |= responseBuffer2[i];

}

return result;

}

/* The speed2pwr () function takes a speed in mm/s and converts it to a
power level sent to the hiTechnic motor controllers using the
TIC_PER_SEC_PER_PWR constant defined in schrodie_motor.h that was
determined through trial and error experimentation. This function
could probably be replaced with a simple pre-processor macro. */

int Motor: :speed2pwr (double speed) {
return (speed*TIC_PER_MM) /TIC_PER_SEC_PER_PWR;

35

// mm/
}

s * tick/mm * (s/tick/pwr)

/* The dist2tic () function converts a distance in mm to encoder ticks
using the constant TIC_PER MM defined in schrodie_motor.h. This

const
also

int Moto
return

}

ant was also deterined experimentally. This function could
be easily replaced with a pre-processor macro. */

r::dist2tic (double mm) {
mm*TIC_PER_MM; // mm * tick/mm = tick

schrodie _motor.h

#include
#include
#include
#include

#ifndef
#define

// TODO:
#define
#define
#define
#define

"NXT++.h"

<iostream>

<ctime>

<cmath>
__ SCHRODIE_MOTOR_H_
__ SCHRODIE_MOTOR_H___

find the right numbers
MOTOR_W 141 // 1/2 the width of the wheelbase, in mm
MOTOR_L 127 // 1/2 the length of the wheelbase, in mm
TIC_PER_MM 11.5//8.7 // mm of travel/encoder tick
TIC_PER_SEC_PER_PWR 40 // ticks/second/pwr increment

// 1000 degrees/second at pwr=100 / 100 * 1 revolution/ 360 degrees *

1440 ticks/revolution

#define
speed in
#define

/* Here

// Try t
#define
// How f
// check
#define
#define

// motor

TOP_SPEED 100*TIC_PER_SEC_PER _PWR/TIC_PER MM // highest representable
mm/ s

PI 3.1459

are the defines for the motor speed setting retries. */

o get it moving 5 times before giving up..

MOTOR_COMMAND_RETRIES 5

ar in millimeters should we wait for a motor to move before

ing up on it

MOTOR_CHECK_DISTANCE_MM 5

MOTOR_ENCODER_CHECK_THRESHOLD (TIC_PER_MM * MOTOR_CHECK_DISTANCE_MM / 2)

2 1s on the left

// speeds are in mm/s, distances are in mm

// angle

Struct p
double
double

}i

namespac

// inita
void s

// reset
void r

s are in degrees
osition {

left;

right;
e Motor {

lise the motor
etup (int port=IN_1);

the encoders
esetPosition();

36

// return the distance travelled by each wheel
position getPosition();

// sets the motors to constant speed mode
void setModeSpeed() ;

// stops the motors.
void stop();

// sets the motors to servo mode
void setModeServo();

// sets the speed of both motors. takes care of unit conversion, and overspeed
correction.
// TODO: slippage correction to emulate 2-wheeled differential drive

void setSpeed(double spdLeft, double spdRight);

// sets the target position of bot motors in ticks and confirms the target was
actually stored. target is relative to current position.
void setTargetTicks (int trglLeft, int trgRight);

// sets the target position of both motors. takes care of unit conversion. Target is
relative to current position.
// TODO: slippage correction to emulate 2-wheeled differential drive

void setTarget (double trglLeft, double trgRight);

// return the current encoder target
// for debugging
position getTarget () ;

// returns the battery voltage in volts
double getVoltage();

// drive forward at the specified speed
void drive (double speed = 100);

// drive forward at the specified speed for the specified distance
void driveTo (double dist, double speed = 100);

// turn counterclockwise in a circle of the specified radius driving at the specified

speed.
// TODO: test, explain how the math works
void curve (double radius, double speed = 100);

// turn in the specified direction at the specified speed
void turn (double direction, double revolutionsPerSecond = .1);

// turn counterclockwise the specified angle at the specified speed.
// use busy to check for done
void turnAngle (double angle, double revolutionsPerSecond = 0.1);

// returns true if the motors are en route to the target postion
// for use in servo mode

int busy();

// internal use
void waitMS (int ms);

37

void i2cWrite (int address, int data);
int i2cRead(int address, int bytes = 1);
int speed2pwr (double speed);

int dist2tic(double mm) ;

}

#endif // SCHRODIE_MOTOR_H

motor_battery_torture_test.cpp

/* This is a simple test program that turns the robot alternately
left, then right, counts the turns, and monitors the battery
voltage. It prints out a .csv file on stdout for every turn count
with the current time, number of turns, and current battery
voltage. This will give me a power curve for the battery and tell
me approximately what the power use is for turning. I expect to
run this program once with the four wheel drive configuration and
then run it again after the OmniWheels are installed to see if
there is any battery life gain to be had from using the OmniWheels
instead of the dragging four wheel drive system. I can also use
this code to determine if there's any left or right bias in the
turning that will build up over repetitions. */

#include "NXT++.h"
#include "schrodie_motor.h"
#include <iostream>
#include <cmath>

#include <sys/stat.h>
#include <time.h>

using namespace std;
int main () {
double battery;
int turns = 0;
double turn_angle = 90;
time_t start_time, elapsed_time;
if (NXT::0pen()){ // Initialize the NXT
Motor: :setup (IN_1);

battery = Motor::getVoltage();

start_time = time (0);
cout << "Starting motor torture test." << endl;
cout << "Starting battery voltage: " << battery

<< " Volts" <<endl;
cout << "Cycle, Seconds Elapsed, Battery Voltage" << endl;

while (battery > 10.0 && turns < 1000) { // Repeat turning left
// then right until the
// battery voltage gets
// below 10 volts or we
// do 1000 cycles (which
// isn't likely)

38

Motor: :resetPosition () ;
Motor: :turnAngle (turn_angle, 1); // Turn 90° at one rev per second.

Motor: :busy(); // Throw out the first busy result because it's
// almost always wrong
usleep (10000) ;
while (Motor::busy()) usleep(1000); // Wait for the motors to
// stop being busy

Motor: :resetPosition () ;
Motor: :turnAngle (-turn_angle, 1); // Turn left

Motor: :busy(); // Throw out the first busy result because it's
// almost always wrong
usleep (10000) ;
while (Motor::busy()) usleep(1000); // Wait for the motors to
// stop being busy

battery = Motor::getVoltage () ;
elapsed_time = time(0) - start_time;
cout << turns << ", " << elapsed_time << ", " << battery << endl;
turns++;
}
} else {

cout << "Unable to initialize NXT." << endl;

schrodie_command_line.cpp
/ *

This is a quick and dirty program to drive schrodie by the command
line. Depending on what name it is run as it performs different
tasks. If the program is called as "right", it turns Schrodie to
the right etc. 1If it is given a command line parameter, that is
interpreted as either a distance or an angle. Distances are given
in centimeters. Angles are given as degrees. If no angle is given,
it assumes a 90 degree turn. If no distance is given, it assumes
three meters. If it is called as "stop", schrodie stops.

The program also continually polls the bump sensors. If a bump is
detected it exits with a -1 return value and outputs which bump
sensor was tripped to stdout. Otherwise it simply exits with a O
"success" return and gives the current battery voltage.

This program exists because some people have difficulties
understanding shared memory, sockets, and other elements of Linux
Inter Process Communication, but can understand how to run a program
from the command line.

Note: Due to the perversity of 1ibUSB under linux, this program MUST

be executed suid root. I am not happy about this, but since it
doesn't use anything but numerical inputs, it might be OK. And

39

we're not super concerned about security on a robot anyways.

*/

#include "NXT++.h"
#include "schrodie_motor.h"
#include <iostream>
#include <cmath>

#include <sys/stat.h>
#include <time.h>

#include <string.h>

using namespace std;
/* Default angle and distance. */

#define ANG_DEFAULT 90
#define DIST_DEFAULT 300
#define SPEED_DEFAULT 100
#define RATE_DEFAULT 0.1

/* Delays to give the NXT time to communicate. */

/* Initial delay is 50ms */
#define BUSY_DELAY_COUNT 5

/* Loop delay is 1lms */
#define WAIT_DELAY 1000

/* Global variables and defines for bump sensors. */

#define BUMP_FRONT_PORT IN_4
#define BUMP_BACK_PORT IN_2
#define BUMP_BELLY_PORT IN_3

int bumpFront = 0;
int bumpBack = 0;
int bumpBelly = 0;

int bump () {
int bumped = 0;

if (NXT::Sensor: :GetValue (BUMP_FRONT_PORT)) {
bumpFront = 1;
bumped = 1;

}

if (NXT::Sensor::GetValue (BUMP_BELLY PORT)) {
bumpBelly = 1;
bumped = 1;

}

if (NXT::Sensor::GetValue (BUMP_BACK_PORT)) {
bumpBack = 1;

bumped = 1;
}

return bumped;

40

}
int main(int argc, char** argv) {

double battery;

char *commandName;

int angDist = 0; // Angle in degrees or distance in centimeters.
double spdRate = 0;

int delayCount = 0;
int bumped;
/* Find out what name we were called as. Possibilities are:
"f", "Fll, "forward"
"b"’ "Bll, "backward"
"r"’ "Rll, "rightll
lll"’ "Lll, "leftll
"S", "Sll’ "StOp"

We only really care about the first character, and that as a
lowercase.
*/

commandName = strrchr (argv[0], '/');

if (commandName) commandName++;
else commandName = argv[0];

cout << commandName << endl;

/* If there's a value parameter, get that too. Note that if it's
not an actual integer number, the value of angDist remains 0 so
the defaults will be used. */

if (argc > 1) angDist = atoi(argv[l]);

/* If there's a second value parameter, use it to set the robot
speed. */

if (argc > 2) spdRate = atof (argv([2]);
if (NXT::0pen()){ // Initialize the NXT
cout << "Initializing the NXT" << endl;

/* Set up the HiTechnic motor controller. */
Motor: :setup (IN_1);

/* Configure the bump sensors. */

NXT: :Sensor: : SetTouch (BUMP_FRONT_PORT) ;
NXT: :Sensor: : SetTouch (BRUMP_BACK_PORT) ;

NXT: :Sensor: : SetTouch (RUMP_BELLY_PORT) ;
/* Get the current battery voltage. */

cout << "Getting the voltage" << endl;

battery = Motor::getVoltage();

41

cout << "Executing the command" << endl;

switch (tolower (*commandName)) {

case 'b': // back

if (angDist == 0) angDist = -DIST_DEFAULT;
else angDist = —-angDist;

case 'f': // forward
if (angDist == 0) angDist = DIST_DEFAULT;
if (spdRate == 0) spdRate = SPEED_DEFAULT;

cout << "Drive" << endl;

Motor: :resetPosition () ;

Motor: :driveTo (angDist * 10, spdRate); /* Convert to mm. Drive
at 1 meter per second
(or slower if the top
speed cap is less) */

Motor: :busy(); // Throw out first busy message.

while (! (bumped = bump()) && Motor::busy()) {
// usleep (WAIT_DELAY) ;
}

/* If we were bumped, then STOP. */
if (bumped) Motor::stop();
break;

case 'l': //left

if (angDist == 0) angDist = —-ANG_DEFAULT;
else angDist = —-angDist;

case 'r': //right
if (angDist == 0) angDist = ANG_DEFAULT;
if (spdRate == 0) spdRate = RATE_DEFAULT;

cout << "Turning" << endl;
Motor: :resetPosition () ;

Motor: :turnAngle (angDist, spdRate); // Turn at one rev per second.
Motor::busy(); // Throw out first busy message.
while (! (bumped = bump()) && Motor::busy()) {

// usleep (WAIT_DELAY) ;
}

/* If we were bumped, then STOP. */
if (bumped) Motor::stop();
break;

case 's': // stop
Motor: :stop () ;
break;

default:
break;

42

} // switch

cout << battery;

if (bumpFront) {
cout << " FRONT";

}

if (bumpBack) {
cout << " BACK";

}

if (bumpBelly) {
cout << " BELLY";

}

cout << endl;

} else {

cout << "Unable to initialize NXT." << endl;

}

if (bumpFront || bumpBack || bumpBelly) return 1;

return 0;

43

