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Project Description 

This project involves designing and building a mobile robot capable of human-like behaviors.  

The means to which these behaviors are achieved are contained in three aspects of the robot‟s 

design.  The first is a mobile base that allows the robot to navigate through an indoor space.  

The second is a head and neck capable of producing several human-like gestures coordinated 

with speech.  The third is an arm and hand assembly used to supplement the robot‟s gestures 

and allow it to grasp and move objects.  Each of these design aspects is integrated to complete 

the first phase of the project and produce a platform for further research.  Subsequent phases 

will involve using existing artificial intelligence, vision, speech, and dialog software to expand the 

capabilities of the robot.  Also, the robot will be used to research a new type of artificial neural 

network at Ohio University.   

This paper details the design and development of the arm and hand assembly within the first 

phase.  The arm and hand, henceforth referred to as arm, are designed to meet the following 

requirements.  First, it must have the ability to grasp an object and place it in a different location.  

Second, it must be similar in scale to that of a human arm and be able to replicate similar 

motions.  The final design should be made with standard components, such that it could be 

easily reproduced and mirrored to create left and right versions.  Finally, the arm should be 

easily mounted to the mobile base.   

The scope of the first phase of the arm‟s development is defined by the following limitations.  

The arm is built with as many un-modified components as possible.  In addition to reducing the 

amount of time necessary for fabrication, this facilitates the final design being easily reproduced.  

The ability of the arm to move an object is primarily symbolic.  With this in consideration, an 

object with a negligible mass is chosen.  This reduces the torque requirements for the arm‟s 

actuators and allows the overall design to be built to a larger scale.  To simplify the software 

design, each joint on the arm will be manually controlled.  Although future phases of the project 

will likely require more sophisticated motion control, this simplified approach allows the robots 

actuators and ranges of motion to be controlled and tested in a straightforward way.  As a first 

step to higher levels of motion control, the forward kinematic equations for position are included 

in the first phase.   

With these limitations in mind, the details of the projects are broken down into the following.  

The mechanical design of the arm deals with its physical construction and range of motion of 

each joint.  System modeling relates the position of the hand to the angles of each joint in the 

arm (kinematics).  Software design includes the programming methods for commanding 

actuators to move a joint to a specified position in addition to a description of the programming 

environment.  The electrical components encompass the hardware necessary to control and 

power the system, actuators, and the devices to send command signal to them.  The first step is 

to complete the mechanical design, the details of which are described below.   
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Mechanical Design 

This project involves using an existing head and neck and modifying an existing mobile base.  

The arm, however, is designed and built from scratch.  For this reason, the majority of work on 

the arm in the first phase revolves around its mechanical design and construction. 

The first step in the mechanical design of the arm is to define its degrees of freedom.  A degree 

of freedom, or DOF, is an independent displacement associated with a particular joint.  Joints 

can be ether prismatic or revolute, or both.  Prismatic joints are capable of linear motions while 

revolute joints are capable of rotating.  In this case each of the arm‟s joints is revolute, and thus, 

each degree of freedom is a rotation.  Each of these DOFs is controlled by an actuator.   

The human arm is considered to have seven degrees of freedom.  These consist of three 

rotations at the shoulder, one at the elbow, and three rotations at the wrist.  The actuators that 

control the shoulder and, to a lesser degree, the elbow have to carry the load of the entire arm, 

hand, and payload.  These actuators must be capable of producing substantially greater torque 

than actuators at other joints.  To reduce the number of high-torque actuators required, the 

shoulder is designed with only two DOFs.  Although the wrist does not have to carry a high load 

like the shoulder, space at this point on the arm is limited.   For this reason, the wrist is given 

only two DOFs.  This leaves a total of five degrees of freedom for the arm instead of seven.  

The human hand has twenty seven degrees of freedom, most of which are associated with the 

fingers.  To grasp a simple object, the motions of the fingers are not needed.  This assumption 

allows the hand to be designed with one degree of freedom, thus greatly simplifying the design.  

A simple representation of the arm is shown in the Figure 1 below.  The red arrows represent 

the axis that each DOF can rotate about.  Although the hand is shown, its DOF is not labeled.   

 
Figure 1:  Robot arm’s degrees of freedom. 

 

As mentioned above, it is important that the final robot design be easy to reproduce and mirror.  

This is facilitated by using TETRIX components whenever possible. TETRIX is a component 

system originally designed for use in high school robotics competitions.  The system consists of 

a variety of prefabricated aluminum components that are designed to be easily modified and 

connected to one another.  Also included are high torque DC gear motors, servos, and motor 

drivers.  These components are compatible with the LEGO Mindstorms system.  The LEGO 

system not only includes components for building robots, but includes a series of Plug „N Play 
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sensors and peripherals in addition to a controller and programming environment.   Together 

these systems allow a designer to quickly build robot prototypes with little or no fabrication.  The 

details of the LEGO controller, programming environment, and electronic components are 

described in later sections.  Figure 2 shows the basic TETRIX robotics kit. 

 
Figure 2: TETRIX robotic kit. 

 

Although the use of TETRIX components reduces the effort and time required to design and 

build the system, not all of the components were initially available.  Thus, the arm needed to be 

designed before the components were acquired.  The Solid Works CAD tool was used to 

accomplish this.  Solid Works is a modeling and simulation environment capable of representing 

three dimensional shapes in space in addition to material properties.  An online CAD library was 

used to acquire models of most of the TETRIX and LEGO components.  These individual 

models are combined in an assembly that defines the spatial and kinematic relationships 

between them.  The resulting virtual assembly is used to evaluate the moments of inertia, mass, 

volume, physical dimensions, etc. at a component or system level.  Also, this assembly is used 

to simulate motion between the components.  This allows the designer to check for collision 

between parts, analyze the range of motion of the entire system, and visualize its performance 

before anything is physically made.  Approximately eight design iterations were investigated 

with this tool before parts were ordered and very little was changed from the CAD model once it 

was actually built.  Figure 3 shows the final model of the arm without any custom fabricated 

parts. 

 
Figure 3: Solid model of robot arm and hand assembly. 
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This model does not include some of the hard ware necessary to complete the assembly in 

addition to the hand.  Figure 4, shows the complete TETRIX assembly and hand. 

 
Figure 4: Final TETRIX robot arm and hand assembly. 

 

In addition to the stock TETRIX components, welding rod was used to fashion the fingers of the 

hand.  The plate that the fingers attach to was also fabricated.  A list of the modified TETRIX 

components is in the appendix. 

 

Electronic Components 

The electronic components used to operate the arms consisted of two electronic motors, four 

electronic servo motors, one motor controller, one servo controller, and the NXT brick. The 

motors were used on the elbow and shoulder joints to provide more torque and stability while 

servo motors were used to control the hand, wrist, and arm rotation. All these components are 

part of the Lego Textrix Robotics division. Using the Tetrix parts along with the NXT brick 

allowed for less time spent integrating and developing drivers, because when programmed with 

RobotC, the drivers and control functions are already integrated into the system allowing for 

more of a plug-and-play environment. This saved time in developing code for controlling the 

arm. 

The main control of out arm is done by the NXT brick. 

This control unit is run by a 32bit ARM7 microprocessor 

and an 8 bit AVR microcontroller. It has 4 six wire input 

ports, and 3 six wire output ports. It also contains a 

USB port for programming and debugging. It is mainly 

programmed using the NXT graphical interface 

language, LabVIEW, RobotC, or NXT++. We chose to 

use RobotC, which is a subset of the C programming language since that is what our group was 
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the most familiar with. This will be discussed further later on in the report. The RobotC interface 

allowed us to download and run programs on the NXT unit, and once downloaded could be run 

directly from the NXT without needing to be hooked to a computer. For our application we were 

using Tetrix products to interface with the NXT we ran all our components from Sensor Port 1 of 

the NXT. The NXT allows up to four controllers to be daisy chained to each sensor port. These 

controllers can be a combination of servo controllers and motor controllers which will be 

discussed later. Any sensor that will be used for additions for arm control will also be plugged in 

to the NXT. 

The motors we used were Textrix DC motors available from Lego Robotics. The motors run at 

152rpm at full power and provide 300oz-in torque and require 12V to operate. Within the 

software the speed can be controlled by setting the percentage of 

the motor speed to lower the RPM of the shaft. This gives the 

motors more versatility when used in projects where more torque 

than can be provided by a servo is needed, but the slower speed of 

the servo is still desired. This was useful in our application a servo 

motor would not have been able to hold up the weight of our robotic 

arm, but we still needed slower movement for a more realistic appearance and allow more 

control for the user. The disadvantage of using motors in this situation is they are heavy and 

more difficult to mount than a servo would be. We installed encoders for position control, but we 

did not use them for this part of the project. The operation of the encoders will be talked about 

later in the report. 

The motors are powered and controlled using a 

HiTechnic DC motor controller. This motor controller 

interfaces the motor with the NXT brick as well as 

providing power to the motor itself. Each motor 

controller can operate two 12V Tetrix motors as well as 

interface with motor encoders which will be discussed 

later. It is this motor controller that allows the motor 

speed to be adjusted by changing the power level 

supplied to the motor by using an internal PID algorithm.  

Encoders are installed on the two motors used on the robot. These 

encoders are made by US Digital. They are used to allow position 

control of the motors so they can perform similar to servos. The 

encoders used are optical quadrature encoders. These encoders use 

two output channels (A and B) to sense position. Using two code tracks 

with sectors positioned 90 degrees out of phase, the two output channels of the quadrature 

encoder indicate both position and direction of rotation. If A leads B, for example, the disk is 

rotating in a clockwise direction. If B leads A, then the disk is rotating in a counter-clockwise 

direction. The encoder also allows the system to use PID control to adjust the speed of the 

shaft.  
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The servo motors used were three HS-475HB servos and one HS-

755HB all made by Hitec. Both servos are 3 pole with karbonite gears 

that can be run at 4.8V or 6V. The 475HB provides about 80 oz-in of 

torque and the 755HB provides 183 oz-in of torque. The 755HB is a 

larger servo than normal is used with the Tetrix system, but the servo 

wire is the same for both servo types, so they can both be used with 

servo controller. The downside of this servo type not being available 

for the Tetrix system is that there is not mounting hardware available 

so a mount had to be fabricated to attack the servo to the Tetrix stock 

parts. The servos have a range of 0 to 255 so they give you excellent 

position control. The motors inside the servo only hold position when powered so when the 

power is removed any weight bearing servos release. The wrist on the robot is an example of 

this. When the program is running the wrist servo supports the hand, but as soon as power is 

removed or the program is ended the hand falls to one of the servo extremes. 

 Like the motors, in order to interact with the NXT device 

the servos must attach to a HiTechnic servo motor 

controller. The servo controller requires a 12V supply and 

it divides this down to 6V to operate the individual servos. 

The servo controller can hold up to six servos together, 

and like the motor controllers the can be chained together 

to allow the use of more servos than on controller could 

handle.  

 

Software 

The programming of the arm movement was done using RobotC language. RobotC was 

developed by Carnegie Mellon University and is a subversion of the C programming language. It 

uses the same syntax as C but a does not have access to the same libraries, so the command 

availability is somewhat limited. There are specific libraries for some aftermarket parts, and 

libraries can be made to incorporate new parts for use with the NXT. The PSP-Nx-lib.c library 

was used in order to use as PS2 controller to operate the arm.  

The software to control the hand can be broken up into three sections: controlling the DC 

motors, controlling the servos, and integrating the PS2 controller. The code for each was tested 

prior to being compiled into the final program. We will start with describing how the DC motors 

are programmed, followed by the servos, the controller integration, and finally how the finished 

control program works.  

The software allows the DC motors to be turned on, turned off, set the power level as well as 

allowing encoders to be used. In order to use the motors the configuration coding should be 

entered at the top of the top of the program. The line “#pragma config(Hubs,  S1, HTMotor,  

HTMotor,  HTServo,  none)” sets sensor port 1 (S1), and configures it to have two motor 

controllers and one servo motor controller chained together. After that each hub must be set. To 

http://www.legoeducation.us/ImagePopup.aspx?reftype=1&refid=1649&defimg=9384&pop=1
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configure a motor you use the line “#pragma config(Motor,  mtr_S1_C1_1,     motorD,        

tmotorNormal, openLoop, reversed, encoder)” this line sets the first controller (C1) on sensor 

port 1 (S1) as a DC motor plugged into the motor 1 slot. The command motorD, sets the name 

of the motor to be used in the program (motorA, motorB, and motorC are designated for NXT 

motors) and tmotorNormal sets the motor in normal mode. The motor can be set in openLoop or 

PID to use the internal PID controller. The PID mode can only be used if an encoder is attached 

to the motor and activated. The motors can also be switched between forward and reversed 

modes in this line. Once these lines at entered it allows you to use motor control commands. 

The following code is a sample motor program: 

#pragma config(Hubs,  S1, HTMotor,  HTServo,  none,     none) 
#pragma config(Motor,  mtr_S1_C1_1,     motorD,        
tmotorNormal, openLoop) 
 
task main() 
{ 
      motor[motorD] = 75;    // Motor D is run at a 75 power 
level. 
      wait1Msec(4000);       // The program waits 4000 
milliseconds  
 
      motor[motorD] = 75;    // Motor D is run at a 75 power 
level. 
      wait1Msec(750);        // The program waits 750 
milliseconds  
} 

 

The code runs the motor forward for 40 seconds and backwards for 7.5 seconds. 

Servos are programmed in a similar way. The hub must be configured for a servo controller in 

one of the spots. The line “#pragma config(Servo,  srvo_S1_C3_1,    ,                     

tServoNormal)” sets the third controller (C3) on sensor port 1 (S1) as a servo plugged into the 

servo1 slot. Unlike motors the tServoNormal command is the only command that needs to be 

entered, but an empty placeholder spot still have to be left. The following code is a sample 

servo program. 

#pragma config(Hubs,  S1, HTServo,  HTServo,  none,     none) 
#pragma config(Servo,  srvo_S1_C1_1,    ,                     
tServoNormal) 
 
task main() 
{ 
   
  while(true) 
  { 
     if(ServoValue[servo1] < 128)          // If servo1 is closer 
to 0 (than 255): 
    { 
      while(ServoValue[servo1] < 255)  // While the ServoValue of 
servo1 is less than 255: 
      { 
        servo[servo1] = 255;                     // Move servo1 
to position to 255. 
      } 
    } 
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    wait1Msec(1000);                             // Wait 1 
second. 
    if(ServoValue[servo1] >= 128)        // If servo1 is closer 
to 255 (than 0): 
    { 
      while(ServoValue[servo1] > 0)     // While the ServoValue 
of servo1 is greater than 0: 
      { 
        servo[servo1] = 0;                         // Move servo1 
to position to 0. 
      } 
    } 
    wait1Msec(1000);                           // Wait 1 second. 
  } 
} 

 

This program reads the servo value and moves it to the closest end stop. 

The controller we used required the add on library "PSP-Nx-lib.c" to make the buttons resond 

properly. A wireless PSP controller was used to control the robot using one button to control 

each degree of freedom. The layout of the controller buttons is as follows and their names: 

      L1                R1 
      L2                R2 
      d                 triange 
   a     c         square     circle 
      b                  cross 
     l_j_b              r_j_b 
     l_j_x              r_j_x 
     l_j_y              r_j_y 

 

The line “PSP_ReadButtonState(SensorPort, Addr, currState)” checks to see if any of the 

buttons have been pressed using a Boolean state, 0 for pressed, 1 for not pressed. The 

joysticks return a 0 at center and has a range from -100 to 100.  

Combining the above knowledge we were able to create a program to run all the above 

components of the arm. Motor 1 controls the shoulder, motor 2 controls the elbow, servo 1 

controls the wrist up and down, servo 2 controls the wrist left and right, servo 3 open and closes 

the hand, and servo 4 moves the entire arm left and right. The pseudo code for the control 

program is as follows: 

If triangle is pressed move shoulder up 
If square pressed move shoulder down 
If circle pressed move elbow up 
If x pressed move elbow down 
If joystick2 pushed up move wrist up 
If joystick2 pushed down move wrist down 
If joystick2 pushed left move wrist left 
If joystick2 pushed right move wrist right 
If R1 pushed close hand 
If L1 pushed open hand 
If R2 pushed move arm right 
If L2 pushed move arm left 
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System Modeling 

As explained previously, this phase of the project is limited to manually controlling each degree 

of freedom.  The operator moves each joint to a new angle and this places the arm in a new 

configuration.  For each configuration the hand is moved to a specific location and orientation.  

The equations that relate the arm‟s configuration to the hand‟s location and orientation are 

called the forward kinematic equations for position.  What is more useful however, is the ability 

to determine the arm configuration that will achieve a desired hand location and orientation.  In 

other words, the position and orientation of the hand must be defined in terms of the joint 

angles.  This is called inverse kinematics.  The forward kinematic equations for the arm are 

developed below followed by some possible solution techniques for the inverse kinematic 

problem.  Developing these equations is the first step to implementing a more sophisticated 

method of motion control.  Although this development is not an exhaustive description of the 

mathematics involves, it highlights the basic concepts.  References are given in the appendix.   

Before developing the forward kinematic equations it is necessary to describe how a frame in 

space can be represented by a matrix.  Also, it is necessary to understand how a transformation 

matrix can map a frame with particular position and orientation to another.  The following 4x4 

matrix represents a frame in Cartesian space. 

 

  

Here, the P elements represent components of a position vector that defines the location of the 

frame relative to a fixed frame.  The n, o, and a elements are components of unit vectors that 

define the x, y, and z axis of the frame respectively.  These vectors determine the frame‟s 

orientation relative to the fixed frame. The bottom row is necessary to keep the matrix square.   

A transformation matrix, in this context, defines the necessary translations and rotations to 

move from one such reference frame to another.  These transformations can be combined for a 

series of reference frames such that the resulting relationship defines the last frame relative to 

the first.  In the case of the robot arm, the first frame is the fixed origin and the last is the hand.  

This is done by simply post-multiplying each transformation matrix with the next.  For example, if 

T12 represents the transformation between frames 1 and 2 and T23 represents the 

transformation between frames 2 and 3, the total transformation between 1 and 3 can be 

calculated as follows. 

 

Using this methodology, a reference frame can be assigned to each joint on the robot arm.  

Through successive transformations between each frame, the total transformation can be 
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determined starting at the fixed base of the arm and ending at the hand.  This will define the 

absolute position and orientation of the hand and be the basis for the forward kinematic 

equations.   

The Denavit-Hartenberg representation specifies a systematic method for assigning these 

reference frames such that the form of the transformation matrix between successive frames is 

the same.  The details of this method are not described here, but the assignments of each 

frame according to this conversion are shown in Figure 5.  It is important to note that, although 

this robot has only revolute joints, the Denavit-Hartenberg method works for prismatic joints or a 

combination of the two.  It will not however, model robots with motions in the Y-direction. 

 
Figure 5: Reference frames bases on Denavit-Hartenberg representation. 

 

Using the schematic above, the so called DH parameters are determined.  These are shown in 

Table 1 below.   

# θ d a α 

1 θ1 0 0 90 

2 θ2 0 a2 0 

3 θ3 0 a3 0 

4 θ4 0 a4 -90 

5 θ5 0 0 90 
Table 1: DH parameters for robot arm. 

Indices for each degree of freedom are listed on the left.  The values of each DOF are 

represented by the θ values which are unknown.  The „joint offset‟ is represented by d.  This is 

zero in all cases for this robot because each joint is in the same plane.  The lengths of each link, 

in meters, are listed in the column labeled a.  The last column lists the angles between the x-

axis of successive frames.   
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These parameters are used to define the transformation matrix between frames.  This general 

form of this matrix is shown below. 

 

Using this matrix, the following relationship defines the forward kinematic equation where each 

A matrix is written in terms of the corresponding parameters from the table above.   

 

The individual equations for each element in terms of the joint angles are given in the appendix 

in addition to MATLAB code that can be used to compute the result for a given set of angles. 

As can be seen by the resulting equations in the appendix, the inverse kinematic solution will be 

difficult to achieve.  Each equation involves multiple coupled angles which make the problem 

difficult to solve analytically.  A closed form solution for a simple five DOF robot such as this 

does exist, but in general the solution must be achieved numerically.  

An attempt was made to use an artificial neural network to map the desired location and 

orientation to the corresponding joint angles.  This was implemented using MATLAB‟s Neural 

Network Toolbox.  A two layer, feed-forward network, with 20 neurons was trained using the 

Levenberg-Marquardt method.  This was done with a built-in GUI tool.  The results of this 

experiment were not accurate.  Without understanding neural network theory better, these 

results can‟t be further interpreted.  A link to the MATLAB code is listed in the appendix.  

 

Performance 

Structural 

The mechanical arm is built from almost entirely pre-fabricated Tetrix aluminum components, 

two DC motors with gears, several small-scale servos, and is built to full-scale human arm size. 

Due to this, it takes a minimal amount of torque to cause vibration in or possibly warp the base 

components. This means that the mechanical arm cannot carry large amounts of weight. It is 

estimated that it can pick up slightly less than three pounds at full extension. However, the 

design is robust and allows large range of movement without detrimental effects on the 

structure, thus providing the possibility for a very human-like interaction with this arm. 
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Position Control 

Currently there are encoders attached to the two DC motors which control the „shoulder‟ and 

„elbow‟ vertical movements however they are not used. The encoders cause difficulty with the 

motors because the motors resist instantaneous position correction and they lock-up. Currently 

all position control is manual and user-operated through a RF wireless joystick controller. 

Object Grasping 

The hand attached to the mechanical arm is designed to mirror a human hand. Currently it only 

has one DOF, its ability to open and close by moving the thumb. This however is sufficient for 

grasping and picking up objects. The movements are relatively slow so that they are somewhat 

more realistic. Additionally, if the servos speed is increased accuracy is lost. 

 

Future Work 

Sensors 

Future work that can be performed on this mechanical arm includes adding sensors. These 

could include sonar range finder, stereo (two) camera vision, or even an experimental smell 

detector. This would allow automation of the entire robot 

Specify End-effecter Position 

Additionally, and more specifically for the mechanical arm, future work could involve solving the 

inverse kinematic equations for all degrees of freedom in the arm. This would allow the user or 

an automated intelligent program utilizing sensors to specify a position and orientation that the 

hand should be in. All the angles of rotation for each motor and servo would be automatically 

calculated and moved to that position. 

Trajectory planning 

With the addition of sensors, the arm and hand could potentially utilize trajectory planning. This 

would entail sensing an object coming toward the robot, calculating its speed and trajectory, and 

moving the arm and hand to a position along that trajectory to potentially deflect or catch the 

incoming object. The movement of the arm and hand would have to be sped up and position 

control accuracy would have to be increased for this to be possible. 

Genetic Search Algorithm 

As long as memory in the NXT brick allows, genetic algorithms could be implemented to allow 

for room mapping and searching. This would allow the robot, and more specifically the arm, to 

know the position of objects in the room and potentially interact with them. 
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Image processing 

Image processing would be an essential upgrade with vision sensors so that the incoming data 

could be interpreted properly. Intelligent processing would allow more accurate readings and 

would provide optimized responses. 

 

Conclusion 

Overall, the goals of the first phase of the robot arm have been meet.  The final assembly is 

made almost entirely of stock TETRIX components.  The parts that were modified were done in 

such a way would be easy to reproduce.  Although the method of motion control is limited in the 

current state, it serves as a strong foundation on which to test the performance and interface of 

the electronic components.  The forward kinematic equations have been developed and the 

process has been well documented for future research with this robot.   
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Useful Links and Downloads: 

TETRIX solid model library (SolidWorks 2009):  

http://web.cecs.pdx.edu/~furnissj/tetrix_models.zip 

Source for TETRIX solid models: 

http://www.3dcontentcentral.com/Search.aspx?arg=tetrix 

Solid model of robot (SolidWorks 2009): 

http://web.cecs.pdx.edu/~furnissj/final_assembly.zip 

Optical encoder manufacture‟s link: 

http://usdigital.com/products/encoders/incremental/rotary/kit/e4p/ 

Optical encoder data sheet: 

http://usdigital.com/products/encoders/incremental/rotary/kit/e4p/ 

TETRIX gear motor data sheet: 

http://web.cecs.pdx.edu/~furnissj/Tetrix%20DC%20drive%20motor.pdf 

C code: 

http://web.cecs.pdx.edu/~furnissj/armjoystick.c 

Photo gallery: 

http://www.flickr.com/photos/furnissj/sets/72157622850565385/ 

Video of final demo: 

http://web.cecs.pdx.edu/~furnissj/robot_arm.wmv 

MATLAB code for neural network inverse kinematic solution: 

http://web.cecs.pdx.edu/~furnissj/neural_network_MATLAB.zip 

http://web.cecs.pdx.edu/~furnissj/tetrix_models.zip
http://www.3dcontentcentral.com/Search.aspx?arg=tetrix
http://web.cecs.pdx.edu/~furnissj/final_assembly.zip
http://usdigital.com/products/encoders/incremental/rotary/kit/e4p/
http://usdigital.com/products/encoders/incremental/rotary/kit/e4p/
http://web.cecs.pdx.edu/~furnissj/Tetrix%20DC%20drive%20motor.pdf
http://web.cecs.pdx.edu/~furnissj/armjoystick.c
http://www.flickr.com/photos/furnissj/sets/72157622850565385/
http://web.cecs.pdx.edu/~furnissj/robot_arm.wmv
http://web.cecs.pdx.edu/~furnissj/neural_network_MATLAB.zip
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RobotC code: 

#pragma config(Hubs,  S1, HTMotor,  HTServo,  none,     none) 
#pragma config(Motor,  mtr_S1_C1_1,     motorD,        tmotorNormal, openLoop) 
#pragma config(Motor,  mtr_S1_C1_2,     motorE,        tmotorNormal, openLoop) 
#pragma config(Servo,  srvo_S1_C1_1,    ,                     tServoNormal) 
//*!!Code automatically generated by 'ROBOTC' configuration wizard               !!*// 
 
/************************************************************************/ 
/*                                                                      */ 
/* Program Name: PSP-Nx-motor-control.c                                 */ 
/* ===========================                                          */ 
/*                                                                      */ 
/* Copyright (c) 2008 by mindsensors.com                                */ 
/* Email: info (<at>) mindsensors (<dot>) com                           */ 
/*                                                                      */ 
/* This program is free software. You can redistribute it and/or modify */ 
/* it under the terms of the GNU General Public License as published by */ 
/* the Free Software Foundation; version 3 of the License.              */ 
/* Read the license at: http://www.gnu.org/licenses/gpl.txt             */ 
/*                                                                      */ 
/************************************************************************/ 
 
const ubyte Addr = 0x02; 
const tSensors SensorPort = S2;        // Connect PSPNX sensor to this port!! 
#include "PSP-Nx-lib.c" 
 
int nLeftButton = 0; 
int nRightButton = 0; 
int nEnterButton = 0; 
int nExitButton = 0; 
int tri, squ, cir, cro, a, b, c; 
 
////////////////////////////////////////////////////////////////////////////// 
// 
//     Gaskin     11/1/09   Modified to work wth ECE578 program 
// 
///////////////////////////////////////////////////////////////////////////// 
 
task 
main () 
{ 
  int powerD = 0; 
  int powerE = 0; 
   
 psp currState; 
 
  // 
  // Note: program cannot be terminated if we hijack the 'exit' button. So there has 
to be an escape sequence 
  //       that will return buttons to system control! We'll use a triple click 
  // 
  nNxtExitClicks = 3;                // Triple clicking EXIT button will terminate 
program 
  // 
  nI2CBytesReady[SensorPort] = 0; 
 
  //SensorType[SensorPort] = sensorI2CCustom9V;        // or perhaps use 
'Lowspeed_9V_Custom0'?? 
  SensorType[SensorPort] = sensorI2CMuxController; 
  wait10Msec (100); 
 
   
  while ( true ) 
    { 
      wait1Msec (5); 
 
//Move shoulder up 
      if ((int)currState.triang==0) 
      { 
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        powerD = -50; 
        tri=(int)currState.triang; 
      } 
  //Move shoulder down 
      if ((int)currState.square==0) 
      { 
        powerD = 10; 
        squ=(int)currState.square; 
      } 
  //Move elbow up 
      if ((int)currState.circle==0) 
      { 
        powerE = -50; 
        cir=(int)currState.circle; 
      } 
  //Move elbow down 
      if ((int)currState.cross==0) 
      { 
        powerE = 5; 
        cro=(int)currState.cross; 
      } 
  //Turn off motors 
      if ((int)currState.cross==1 && (int)currState.circle==1 && 
(int)currState.square==1 && (int)currState.triang==1) 
      { 
        powerD = 0; 
        powerE = 0; 
      } 
  //Move wrist L/R 
      if ((int)currState.r_j_y<-50) 
      { 
        servo[servo1]=ServoValue[servo1]+2; 
        while(ServoValue[servo1] != servo[servo1]) 
        { 
          a=ServoValue[servo1]; 
 
        } 
      } 
 
      if ((int)currState.r_j_y>50) 
      { 
        servo[servo1]=ServoValue[servo1]-2; 
        while(ServoValue[servo1] != servo[servo1]) 
        { 
          a=ServoValue[servo1]; 
 
        } 
      } 
  //Move wrist U/D 
        if ((int)currState.r_j_x<-50) 
      { 
        servo[servo2]=ServoValue[servo2]-2; 
        while(ServoValue[servo2] != servo[servo2]) 
        { 
          b=ServoValue[servo2]; 
 
        } 
      } 
 
      if ((int)currState.r_j_x>50) 
      { 
        servo[servo2]=ServoValue[servo2]+2; 
        while(ServoValue[servo2] != servo[servo2]) 
        { 
          b=ServoValue[servo2]; 
 
        } 
      } 
  //Close hand 
      if ((int)currState.r1==0) 
      { 
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        servo[servo3]=ServoValue[servo3]+2; 
        while(ServoValue[servo3] != servo[servo3]) 
        { 
          c=ServoValue[servo3]; 
 
        } 
      } 
  //Open hand 
      if ((int)currState.l1==0) 
      { 
        servo[servo3]=ServoValue[servo3]-2; 
        while(ServoValue[servo3] != servo[servo3]) 
        { 
          c=ServoValue[servo3]; 
 
        } 
      } 
  //Move arm right 
      if ((int)currState.r2==0) 
      { 
        servo[servo4]=ServoValue[servo4]+2; 
        while(ServoValue[servo4] != servo[servo4]) 
        { 
          d=ServoValue[servo4]; 
 
        } 
      } 
  //Move arm left 
      if ((int)currState.l2==0) 
      { 
        servo[servo4]=ServoValue[servo4]-2; 
        while(ServoValue[servo4] != servo[servo4]) 
        { 
          d=ServoValue[servo4]; 
 
        } 
      } 
    } 
 
  wait10Msec (100); 
 
  StopAllTasks (); 
} 
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MATLAB code: 

function position_orientation = forward_kinematics(joint_angles) 
  
% ============================================================================= 
% forward_kinematics calculates the position and orientation of the end-effector  
% for a 5 DOF open kinematic chain. 
%      
% Input:  joint_angles = [theta1 theta2 theta3 theta5 theta5] 
%         1x5 vector of joint angles measured in degrees 
%  
% Output: position_orientation = [nx ny nz ox oy oz ax ay az Px Py Pz] 
%         1x12 vector containing components of unit vectors, (a,n,o) 
%         that define the x,y, and z axies of the end-effector (orientation) 
%         and componented of a vector P that defines the position 
% ============================================================================= 
  
joint_angles = (pi/180).*joint_angles;  % convert to radians 
theta1 = joint_angles(1); 
theta2 = joint_angles(2); 
theta3 = joint_angles(3); 
theta4 = joint_angles(4); 
theta5 = joint_angles(5); 
  
% link lengths [meters]: 
a1 = 0; a2 = 0.269; a3 = 0.269; a4 = 0.063; a5 = 0; 
% joint offsets [meters]: 
d1 = 0; d2 = 0; d3 = 0; d4 = 0; d5 = 0; 
% angles between sucessive joints [radians]: 
alpha1 = pi/2; alpha2 = 0; alpha3 = 0; alpha4 = -pi/2; alpha5 = pi/2; 
% transformation matricies between sucessive frames: 
A1 = [cos(theta1) -sin(theta1)*cos(alpha1)  sin(theta1)*sin(alpha1) a1*cos(theta1); 
      sin(theta1)  cos(theta1)*cos(alpha1) -cos(theta1)*sin(alpha1) a1*sin(theta1); 
      0            sin(alpha1)              cos(alpha1)             d1            ;  
      0            0                        0                       1]            ;   
   
A2 = [cos(theta2) -sin(theta2)*cos(alpha2)  sin(theta2)*sin(alpha2) a2*cos(theta2); 
      sin(theta2)  cos(theta2)*cos(alpha2) -cos(theta2)*sin(alpha2) a2*sin(theta2); 
      0            sin(alpha2)              cos(alpha2)             d2            ;  
      0            0                        0                       1]            ;   
   
A3 = [cos(theta3) -sin(theta3)*cos(alpha3)  sin(theta3)*sin(alpha3) a3*cos(theta3); 
      sin(theta3)  cos(theta3)*cos(alpha3) -cos(theta3)*sin(alpha3) a3*sin(theta3); 
      0            sin(alpha3)              cos(alpha3)             d3            ;  
      0            0                        0                       1]            ;   
   
A4 = [cos(theta4) -sin(theta4)*cos(alpha4)  sin(theta4)*sin(alpha4) a4*cos(theta4); 
      sin(theta4)  cos(theta4)*cos(alpha4) -cos(theta4)*sin(alpha4) a4*sin(theta4); 
      0            sin(alpha4)              cos(alpha4)             d4            ;  
      0            0                        0                       1]            ;   
   
A5 = [cos(theta5) -sin(theta5)*cos(alpha5)  sin(theta5)*sin(alpha5) a5*cos(theta5); 
      sin(theta5)  cos(theta5)*cos(alpha5) -cos(theta5)*sin(alpha5) a5*sin(theta5); 
      0            sin(alpha5)              cos(alpha5)             d5            ;  
      0            0                        0                       1]            ;   
% total transformation matrix:   
A = A1*A2*A3*A4*A5; 
A = A(1:3,:); %eliminate bottom row 
  
position_orientation = reshape(A,1,[]); % [nx ny nz ox oy oz ax ay az Px Py Pz]] 
  
% round down small numbers 
tolerance = 0.0001; 
for i = 1:length(position_orientation) 
    if abs(position_orientation(i)) < tolerance 
        position_orientation(i) = 0; 
    end 
end 
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Forward Kinematic Equations:  

 

 

 

 

 

 

 

 

 

 

 



 
 

20 
 

Trouble Shooting Guide 

Although we didn’t experience any major technical difficulties after the arm was built and tested, there 

are a few aspects of the assembly that may need attention after more use.  The overall structure of the 

arm is pushing the bounds of the TETRIX components.  To keep the arm in good working condition the 

following should be considered. 

1) At full extension, the motors have to resist a torque that is very near their limit.  For this reason, 

motions that are programmed into the arm must be very slow.  Quick movements 

(accelerations) increase the risk of stripping, bending, or loosening components.  If you want the 

arm to move faster or carry a greater load, a first step would be to make it smaller by shortening 

the tubes. 

2) The chain is tensioned by positioning the tube clamps at the ends of the tubes on the upper 

arm.  When there is load on the arm, the chain will become loose due to flex in the system.  This 

can’t be avoided.  If the chain becomes excessively loose, follow these steps to adjust it. 

- Loosen the set screw that binds the 40T gear to the DC motor shaft that controls the elbow 

joint.  This will make the elbow joint move freely. 

- Loosen the 4 tubing clamps on the upper arm.  Make sure it doesn’t fall apart. 

- On the non-chain side, slide the clamps away from the center of the tube a couple of 

millimeters and re-tighten the clamps.  See below.  The tubing plugs may slide away from 

the ends of the tube when you loosen the clamps.  Make sure you slide them back before 

you retighten the clamps.   

 

 
 

- Do the same on the other side.  As you move the clamps away, you will feel the chain 

getting tight.  Make the chain as tight as you can without sliding the clamp off the end of the 

tube.  This process it a bit awkward and may take several attempts. 

- Make sure you don’t rotate the clamps relative to one another.  This will put a twist in the 

arm. 

- Re-tighten the set screw on the 40T gear.  Make sure the screw is against the flat on the 

motor shaft. 
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3) The main shoulder pivot may become loose.  Follow these steps to correct the problem. 

- Loosen the set screws that bind the inside split clamps to the main axle.  These are 

highlighted in the figure below.  On the real robot, these pieces have been modifies and 

don’t look exactly the same as in the figure. 

 

 
 

- Sandwich these components together and simultaneously tighten the set screws.  This will 

take two people.  Try to get at least one setscrew on each clamp to tighten against the flat 

on the axle. 

- Now, do the same thing with the axle set collars.  See figure below. 

 

 

 

My final word of advice is in regard to the supposed position control of the DC motors with RobotC.  

There is no PID algorithm for position control, only for speed.  After reading everything I could find 

about this on RobotC forums and in the documentation, there does not seem to be a reliable way to 

command the motors to a position.  The main approach that I found was to drive the motor at a 

constant speed (with the PID speed control) in a while loop until some encoder value was reached.  If 

you want to implement some sophisticated method of motion control with the robot, I don’t think this 

will cut it.  If you read about other’s frustrations with this on the forums, you will see that it hasn’t cut it 

for anyone else ether.  My advice would be to design a controller on your own unless you find successful 

solution on the internet.   
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Bill of Materials 

Part Name Part Number Vendor Quantity Cost Notes 

TETRIX Single-Servo Motro Bracket W739060 
Lego 
Education 

3 10.95/2   

TETRIX Single-Servo Motro Bracket* W739060 
Lego 
Education 

1 10.95/2 *modified for thumb 

HiTech HS-475 HB Servo W739080 
Lego 
Education 

3 24.95/1   

Large Servo* NA Robotics Lab 1 NA *mountin tabs cut off 

TETRIX Tube (220mm) W739076 
Lego 
Education 

2 9.95/2   

TETRIX Tube (220mm)* W739076 
Lego 
Education 

2 9.95/2 *cut to make chain tight 

TETRIX Tube (220mm)* W739076 
Lego 
Education 

1 9.95/2 *cut to for elbow joint 

TETRIX Split Clamp W739078 
Lego 
Education 

1 7.95/2   

TETRIX Split Clamp* W739078 
Lego 
Education 

3 7.95/2 
*clamp cut for clearance, set 
screws added 

TETRIX Split Clamp* W739078 
Lego 
Education 

1 7.95/2 *set screw added 

TETRIX Tubing Plug Pack* W739193 
Lego 
Education 

8 2.95/2 
*8mm holes drilled for servo 
wire routing 

TETRIX L Bracket W739062 
Lego 
Education 

8 5.95/2   

TETRIX L Bracket* W739062 
Lego 
Education 

2 5.95/2 *cut to mount base to 120T gear 

TETRIX Axle Set Collar W739092 
Lego 
Education 

3 3.95/6   

TETRIX Bronze Bushing W739091 
Lego 
Education 

5 15.95/12   

TETRIX Bronze Bushing* W739091 
Lego 
Education 

2 15.95/12 *cut to length for shoulder joint 

TETRIX Axle Spacer (1/8") W739100 
Lego 
Education 

8 1.95/12   

TETRIX Gear (40T) W739028 
Lego 
Education 

3 24.95/2   

TETRIX Gear (120T) W739085 
Lego 
Education 

2 29.95/1   

TETRIX Gear (120T)* W739085 
Lego 
Education 

1 29.95/1 
*tapped to mount L bracket at 
shoulder 

TETRIX DC Drive Motor W739083 
Lego 
Education 

2 29.95/1   

TETRIX Motor Encoder Pack W739140 
Lego 
Education 

2 79.95/1 
same as US Digital E4P-360-236-
D-H-T-3  

TETRIX 16T Sprocket W739165 
Lego 
Education 

2 18.95/2   

TETRIX Chain W739173 
Lego 
Education 

1 14.95/1   

TETRIX Motor Shaft Hubs W739079 
Lego 
Education 

2 7.95/2   

TETRIX 100mm Axle W739088 
Lego 
Education 

3 17.95/6   

TETRIX Motor Mount W739089 
Lego 
Education 

2 19.95/1   
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TETRIX Channel (416mm) W739069 
Lego 
Education 

1 19.95/1   

HiTechnic DC Motor Controller W991444 
Lego 
Education 

1 79.95/1   

HiTechnic Servo Controller W991445 
Lego 
Education 

1 79.95/1   

HiTech Servo Horn W739020 
Lego 
Education 

3 5.95/1   

TETRIX Tube Clamp W739077 
Lego 
Education 

10 7.95/2   

Servo Extension W739081 
Lego 
Education 

3 1.95/1   

TETRIX Servo Joint Pivot Bracket W739063 
Lego 
Education 

1 11.95/1   

TETRIX Servo Joint Pivot Bracket* W739063 
Lego 
Education 

1 11.95/1 *cut for nut clearance on hand 

Coat hanger* NA NA 5 NA *cut and bent for fingers 

Custom sheet metal servo bracket  NA machine shop 1 NA mounts large servo to base 

 


