
Lecture 3 - 1pykc - 29-Jan-02 ISE1/EE2 Computing

Matlab Lecture 3: Finishing with MATLAB

◆ Part solution to Lab 1:-

function [t, sinewave] = sinegen(fsig, fsamp, ncycle)
% Sinewave Generation
% fsig = signal frequency
% fsamp = sampling frequency
% ncycle = number of cycles to generate
%
% Peter Cheung
% 15th October 1998.

% calculate angular increment per sample
delta_angle = 2*pi*fsig/fsamp;

% create angle vector for ncycle cycles
t = 0:delta_angle:ncycle*(2*pi);

% create sine wave
sinewave = sin(t);
% convert angle to time: time = angle/(2*pi*f)
t = t/(2*pi*fsig);

function [t, sinewave] = sinegen(fsig, fsamp, ncycle)
% Sinewave Generation
% fsig = signal frequency
% fsamp = sampling frequency
% ncycle = number of cycles to generate
%
% Peter Cheung
% 15th October 1998.

% calculate angular increment per sample
delta_angle = 2*pi*fsig/fsamp;

% create angle vector for ncycle cycles
t = 0:delta_angle:ncycle*(2*pi);

% create sine wave
sinewave = sin(t);
% convert angle to time: time = angle/(2*pi*f)
t = t/(2*pi*fsig);

Lecture 3 - 2pykc - 29-Jan-02 ISE1/EE2 Computing

Solution to Lab 1 (con’t)

% Model answer to Lab Session 1
% Exercise 2 - file: lab1_2.m

% define sampling frequency
fs = 44100;

% define signal frequency
f = 1000;

% create sine wave
[t,sinewave]=sinegen(f,fs,4);

% plot it
plot(t,sinewave);
grid

% label axes
xlabel('Time (in sec)');
ylabel('Amplitude');
title('Sinewave at 1kHz');

% Model answer to Lab Session 1
% Exercise 2 - file: lab1_2.m

% define sampling frequency
fs = 44100;

% define signal frequency
f = 1000;

% create sine wave
[t,sinewave]=sinegen(f,fs,4);

% plot it
plot(t,sinewave);
grid

% label axes
xlabel('Time (in sec)');
ylabel('Amplitude');
title('Sinewave at 1kHz');

Lecture 3 - 3pykc - 29-Jan-02 ISE1/EE2 Computing

Must use Add Path (or Set Path)

◆ Must use Set Path manual or
addpath command to make
new .m files visible!

Lecture 3 - 4pykc - 29-Jan-02 ISE1/EE2 Computing

Lab 1 (con’t) - Noisy Sinewave

Lecture 3 - 5pykc - 29-Jan-02 ISE1/EE2 Computing

Logical Subscripting

◆ The logical vectors created from logical and relational operations can be
used to reference subarrays.

◆ Suppose X is an ordinary matrix and L is a matrix of the same size that
is the result of some logical operation. Then X(L) specifies the elements
of X where the elements of L are nonzero.

◆ Suppose:

x = 2.1 1.7 1.6 1.5 NaN 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8

» x = x(finite(x))
x = 2.1 1.7 1.6 1.5 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8

Lecture 3 - 6pykc - 29-Jan-02 ISE1/EE2 Computing

Logical Subscripting in action

◆ Now there is one observation, 5.1, which seems to be very different
from the others. It is an outlier. The following statement removes
outliers, in this case those elements more than three standard
deviations from the mean.

x = x(abs(x-mean(x)) <= 3*std(x))

x = 2.1 1.7 1.6 1.5 1.9 1.8 1.5 1.8 1.4 2.2 1.6 1.8

x = x(abs(x-mean(x)) <= 3*std(x))

x = 2.1 1.7 1.6 1.5 1.9 1.8 1.5 1.8 1.4 2.2 1.6 1.8

Lecture 3 - 7pykc - 29-Jan-02 ISE1/EE2 Computing

Structures in MATLAB

◆ Structures are multidimensional MATLAB arrays with elements accessed
by textual field designators. For example,

S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+'

◆ creates a scalar structure with three fields.
S =
 name: 'Ed Plum'
 score: 83
 grade: 'B+'

◆ an entire element can be added with a single statement.
S(3) = struct('name','Jerry Garcia',...
 'score',70,'grade','C')

Lecture 3 - 8pykc - 29-Jan-02 ISE1/EE2 Computing

Assignment: Image Warping

◆ Four Tasks:
❖ Image rotation
❖ Image shearing

❖ Edge detection

❖ Image blurring

◆ Deadline
❖ See Assignment sheet - submit to Level 6 Teaching Office

◆ Deliverables:-
❖ Well commented listing of your MATLAB files

❖ Evidence that it works (i.e. hardcopy for each of the special effects)
❖ Floppy disk containing a ready-to-try copy of your programmes

Lecture 3 - 9pykc - 29-Jan-02 ISE1/EE2 Computing

Problem 1: Rotation (1)

Show(rotate(clown,pi/3))Show(clown)

Lecture 3 - 10pykc - 29-Jan-02 ISE1/EE2 Computing

Problem 1: Rotation (2)

Destination ImageSource Image

Forward Mapping

(xsource,ysource)

(xcentre,ycentre)

(xdestination,ydestination

)

y

Theta

x

y

x

Lecture 3 - 11pykc - 29-Jan-02 ISE1/EE2 Computing

Problem 1: Rotation (2)

Lecture 3 - 12pykc - 29-Jan-02 ISE1/EE2 Computing

Problem 1: Rotation (3)

-1

Lecture 3 - 13pykc - 29-Jan-02 ISE1/EE2 Computing

Problem 2 & 3: Shearing & Edge Detection

