Learning

A set of fundamental ideas
• **Types of Adaptation (McFarland)**

 • **Behavioral** - behaviors are adjusted relative to each other

 • **Evolutionary** - descendents are based on ancestor’s performance over long time scales

 • **Sensory** - sensors become more attuned to the environment

 • **Learning as adaptation** - anything else that results in a more ecologically fit agent

• **Learning Methods**

 • Reinforcement learning

 • Neural network (connectionist) learning

 • Evolutionary learning

 • Learning from experience
 • memory-based
 • case-based

 • Inductive learning

 • Explanation-based learning

 • Multistrategy learning
Types of Learning

- Numeric or symbolic
 - numeric: manipulated numeric functions
 - symbolic: manipulate symbolic representations
- Inductive or deductive
 - inductive: generalize from examples
 - deductive: optimize what is known
- Continuous or batch
 - continuous: during interaction w/ world
 - batch: after interaction, all at once
Some Terminology

- **Reward/punishment**: Positive/negative “feedback”
- **Cost Function/Performance Metric**: Scalar (usually) goodness measure
- **Induction**: Generating a function (a hypothesis) that approximates the observed examples
- **Teacher, critic**: Provides feedback
- **Plant/Model**
 - System/Agent that we want to train
- **Convergence**
 - reaching a desired (or steady) state
- **Credit assignment problem**
 - who should get the credit/blame?
 - hard to tell over time
 - hard to tell in multi-robot systems
• **Unsupervised Learning**
 - **Reinforcement Learning (RL)** allows a robot to learn on its own, using its own experiences as reinforcement (with some built-in notion of desirable and undesirable situations, associated with reward and punishment)
 - the designer can also provide reinforcement (reward/punishment) directly, to influence the robot
 - However, the robot is never told what to do

• **Q Learning Algorithm**
 - $Q(x,a) \leftarrow Q(x,a) + b \left(r + \lambda E(y) - Q(x,a) \right)$
 - x is state, a is action
 - b is learning rate
 - r is reward
 - λ is discount factor (0,1)
 - $E(y)$ is the utility of the state y, computed as $E(y) = \max(Q(y,a))$ for all actions a
 - Guaranteed to converge to optimal, given infinite trials
• **Supervised Learning**

 • supervised learning requires the user to give the exact solution to the robot in the form of the *error direction* and *magnitude*.

 • Thus, the *user must know* the exact behavior for each situation.

 • This approach can take a *very long time* and requires user/designer supervision, which is not always desirable.

• **Neural Networks**

 • **Hebbian learning** (*increase synaptic strength* along pathways associated with stimulus and correct response)

 • **Perceptron** learning (delta rule or back-propagation)

 • Algorithm.
• **NNs are RL**

 • In all NNs, the goal is to minimize the error between the network output and the desired output
 • This is achieved by adjusting the weights on the network connections
 • **Note:** NNs are a form of reinforcement learning
 • NNs perform supervised RL with immediate error feedback

• **Classical Conditioning**

 • Classical conditioning comes from psychology (Pavlov 1927)
 • Assumes that **Unconditioned Stimuli** (e.g., food) cause **Unconditioned Responses** (e.g., salivation); **US** => **UR**
 • A **Conditioned Stimulus** is, over time, associated with an unconditioned response (**CS** => **UR**)
 • E.g., CS (bell ringing) => UR (salivation)
 • Instead of encoding SR rules, conditioning can be used to **form the associations automatically**
 • Can be **encoded in NNs**
• **Connectionist Adaptive Heuristic Conditioning (AHC)**
 - Learn set of gain multipliers for exploration (Gachet et al)

• **Associative Learning**
 - *Learning new behaviors* by associating sensors and actions into rules
 - **E.g.**: 6-legged walking (Edinburgh U.)
 - Whisker sensors *first*, IR and light later
 - **3 actions**: left, right, ahead
 - User provided feedback (shaping)
 - Learned
 - avoidance,
 - pushing,
 - wall following,
 - light seeking
• **2-Layer Perceptron Learning**
 • Edinburgh R2
 • Whisker sensors first, IR and light later
 • **3 actions:** left, right, ahead
 • Experimenter provided feedback (shaping)
 • Learned avoidance, pushing, wall following, light seeking

• **Neural Network Examples**
 • Robot motion planning
 • articulation/manipulation
 • **Control of complex plants:** robots, aircraft
 • Control and coordination of **multiple vehicles**
• **More NN Examples**

 • Some domains and tasks lend themselves very well to supervised NN learning

 • The best example is *robot motion planning* for *articulation/manipulation*

 • The answer to any given situation is well known, and can be trained

 • E.g., NNs are widely used for learning *inverse kinematics*

• **Evolutionary Methods**

 • Genetic/evolutionary approaches are based on the evolutionary search metaphor

 • in them, the states/situations and actions/behaviors are represented as "genes"

 • different combinations are tried by various "individuals" in "populations".

 • individuals with the highest "fitness" perform the best, are kept as survivors,
Evolutionary Methods (cont)

- and the others are discarded.
 - This is the selection process.
 - The survivors' "genes" are mutated, crossed-over, and new individuals are so formed, which are then tested and scored.
 - In effect, the evolutionary process is searching through the space of solutions to find the one with the highest fitness.
- Solving optimization problems using fitness function
 - operators
 - Represent agent by a string (of genes)
 - Select ‘best’ individuals for reproduction and apply
 - Cross over, mutation
• **Summary of Evolution**
 • Evolutionary methods solve search and optimization problems using
 • a fitness function
 • operators
 • They represent the solution as a genetic encoding (string)
 • They select ‘best’ individuals for reproduction and apply: Cross over, mutation
 • They operate on populations

• **Levels of Application**
 • 1) for tuning parameters (such as gains in a control system)
 • 2) for developing controllers (policies) for individual robots
 • 3) for developing group strategies for multi-robot systems (by testing groups as populations)
Genetic Algorithm vs Genetic Programming

- **GAs v. GPs**
 - When applied to **strings** of genes, the approaches are classified as genetic algorithms (GA)
 - When applied to **pieces of executable programs**, they approaches are classified as genetic programming (GP)
 - GP operates at a higher level of abstraction than GA

- **Classifier Systems**
 - Use GAs to learn **rulesets**
 - ALECSYS - **Autonomouse**
 - Learn **behaviors and coordination**
Questions and Problems

- Propose how to use classical conditioning for a walking robot. Write a Lisp code for it. You want to teach robot various behaviors, not only walking.
- How to use Q algorithm to teach robot various gaits?
- Think how to adopt the decision diagrams, inductive learning and other ideas shown earlier to teach a hexapod various gaits.
Sources

- Maja Mataric