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Introduction:evolution vs intelligence

e  Life on earth has evolved for some 3.5 billion years.

o Initially only the strongest creatures survived, but over time some
creatures developed the ability to recall past series of events and
apply that knowledge towards making intelligent decisions.

e  The very existence of humans is testimony to the fact that our
ancestors were able to outwit, rather than out power, those whom
they were in competition with.

e This could be regarded as the beginning of intelligent behavior.

Theses:

1. Evolution leads to
intelligent natural systems

2. Evolutionary methods can
lead to realization of
intelligent artificial systems

Picture provided courtesy of www.dinodon.com



Introduction:intellectual adaptation

Some species were able to compete in the survival game by
having an increased number of offspring,

Others survived through making themselves well hidden by
making use of camouflage

We will focus our attention on those “creatures” whose response
to the threat of their environment was intellectual adaptation.

Picture courtesy of www.dinodon.com



Introduction

Simulated evolution Is the process of duplicating certain aspects
of the evolutionary system

Cellular Automata and Partial Differential Equations are most
general models of all phenomena and systems in nature.

With Simulated Evolution we will produce artificially intelligent
automata
capable of solving problems in new and undiscovered ways.

We hope to discover a deeper understanding of the very
organization of intellect.

The basis of this approach:
humans appear to be very intelligent creatures,

there 1s no reason to believe that we are the most intelligent creatures that
could possibly exist.
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Theory

“Intelligent behavior is a composite ability to predict one’s
environment coupled with a translation of each prediction
Into a suitable response in light of some objective”

(Fogel et al., 1966, p. 11)

Success In predicting an environment Is a prerequisite for
Intelligent behavior.



Theory

o |et us consider the environment to be a sequence of
symbols taken from a finite alphabet.

 In general, environment is a state machine and we are a
state machine that wants to predict the symbol from the
environment

* The task before us is to create an algorithm that would:

— operate on the observed indexed set of symbols and

— produce an output symbol that agrees with the next symbol to
emerge from the environment.

o|f we know the environment, this would be easy problem
for FSM theory

*But we do not know the environment, we want to learn it
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Theory
The basic procedure is as follows:

A collection of algorithms makes up the initial population.

They are graded based on how well they predict the next
symbol to come out after being fed the given environment.

The ones that receive a grade above some threshold level are

retained as parents for the next iteration, the rest are discarded.

These offspring are then judged by the same criteria as their
parents.

The process continues
until an algorithm of sufficient quality is achieved
or the given time lapse period expires.




Theory

* The machines can be judged in a variety of ways:

— whether or not it predicted the next symbol correctly, one at a time,
or

— we could first expose the machine to a number of symbols taken
from the environment, then let it guess.

« Addition:_maintain efficiency by penalizing complex
machines.

e DEFINITION:

— recall length: how many symbols we expose the machine to
before it has to make it’s prediction.




1.2 Prediction
Experiments
of Fogel



Prediction Experiments

In Fogel’s Prediction Experiments, there is a given environment at
the start

Itisa from the input alphabet.
The are all identical.

They are run through the environment and judged based on how well
they predict the symbols that follow.

At the end
to create 3 more offspring.

All 6 machines are then run through the same testing procedure, and
the best 3 are chosen... and so on... {(P + C) selection.}

Every five iterations, the best machine is taken and
the next symbol based on the last input symbol given,
— and the output given is taken and attached to the environment string.




Prediction Experiments

The Fogel experiments were done using the 5-state machine in Table 1.1 as
the initial machine (all of the seed machines were a copy of this one).

'::-'11':]:"JL

Lol DAL
Shbacc Spaningl o F 1% gl lel

1 1 z

L n !

2 i E |
p, I 2 I
A | = 1
: | 5 rl
= B S 1
-+ L 1 I
> : i L
3 I 2 :

Table 1.1



Prediction Experiments:Sensitivity to
mutations

The first four experiments.

Goal: to demonstrate the sensitivity of the procedure’s
capability to predict symbols In the sequence as a
function of the types of mutation that were imposed on
the parent machines.

The environment used was the repeating pattern
(101110011101)*.

Only a single mutation was applied to each parent to
derive It’s offspring.




Prediction Experiments

The first four experiments.
These Initial experiments have no penalty for complexity.
Consider, why a penalty for complexity?

— Because huge machines would simply develop that are

nothing but the sequence of symbols we input!
This Is not the desired end!
Occam’s Razor, overfitting.
The Experiments 1, 2, 3, and 4 differed in mutations

We will evaluate the quality of learning and
the size of the machine



Prediction Experiments

e Mutation was one of these 5 types :
— Add a state (with certain probability pi)

— Delete a state (with probability pj)
— Randomly change a next state link
— Randomly change the start state

— Change the start state to the 2n state
assumed under available experience.

All mutation types specified by certain probabilities




Prediction Experiments Figure 1.5
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Prediction Experiments

« Several thousand generations were undertaken.
 each of the final machines grew to between 8 and 10 states.
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Prediction Experiments

o In Experiment 4 a series of perfect predictor-machines were found
after the 19t symbol of experience.

» Poorest prediction occurred in experiment 3, but even this machine
showed a remarkable tendency to predict well after the first few
iterations of/the environment string.

o The 15t experiment is considered typical and will be used as the basis
for comy{rison from now on.
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Prediction Experiments
Machine Complexity

The effect of imposing a penalty for machine complexity is
shown in figure 1.6.

The solid curve of experiment 5 represents experiment 1
duplicated with a penafty of 0.01 (or 1%0) per state.
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Prediction Experiments

Machine Complexity without or with penalty

* The benefit penalty for states is in figure 1.7,
o experiment 5 has significantly less states of FSM,
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Prediction Experiments

Machine Complexity

e but as we can see in figure 1.6 the only time there is a significant

difference in prediction capability iIs in the beginning.

» So, for long sequences, it is better to have less states.
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Prediction Experiments

Mutation Adjustments
It is reasonable to suspect that by increasing the probability of the ‘add-a-state’
mutation we might improve the prediction capability.
This is demonstrated in figure 1.9, where experiment 6 is a repetition of experiment 1
— with the probability of the ‘add-a-state’ increased to 0.3
— with the “‘delete-a-state’ probability decreased to 0.1.

We can see that experiment 6 outperforms experiment 1.
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Prediction Experiments

Number of Mutations per Iteration

The benefits of increasing the number of mutations per iteration is shown in figure

1.10, which shows experiments 1, 7, and 8 representing single, double, and triple
mutation respectfully.

The size of each of these machines is shown in figure 1.11.
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Prediction Experiments

Recall Length in stable and noisy environments

 In the case of a purely cyclic environment with no
change to the input symbols, increasing the recall
length provides for a larger sample size and an
Increased prediction rate.

e Inanoisy environment that has changes to the

environment string it might be better to forget some
past symbols



Prediction Experiments

Role of Recall Length in Stable (Cyclic) Environment
Figure 1.12 shows the difference in recall lengths.

During the initial sequence, the behavior appears quite
random, but one can see that the longer recall length did
exhibit faster learning of the cyclic environment.
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Pefcant commecd

Prediction Experiments

Radical Change in Environment

Figure 1.13 and 1.14 demonstrate some interesting behavior.
The solid line of Figure 1.13 demonstrates a normal evolutionary transition, but at

symbol number 120 the environment undergogs a radical change.
This change was the\xcomplete reversal of all/the symbols in our environment.
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Prediction Experiments

Radical Change in Environment

| was at this point that the number of states increased quickly as a great deal of

“unlearning” h&kto take place.
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Prediction Experiments
Radical Change in Environment

The dotted line in figure 1.13 shows the comparison of machines that were not
exposed to the radical change and instead started after it had already occurred

This score compares favorably with the first solid line when one considers that a

machine is judged over the entire length of it’s experien
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New Series of Prediction

Experiments
Predicting Primes
* The new Interesting experiments:

— the environment represents I
an incremental count within the string.

 For example, 01101010001, digits 2, 3, 5, 7,
and 11 areall 1’s

— which are all the

2

\ o1
01101010001



Prediction Experiments

Predicting Primes

We can see in figure 1.16 that experiment 15 ended up predicting the prime numbers
quite well towards the end, and we can see in figure 1.17 that it ended up with very
few states.

This is easily understood when one notices that the higher we get into the
environment string the less frequent prime numbers become.
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We can see in figure 1.17 that Experiment 15 ended up with very few states.
This is easily understood when one notices that the higher we get into the

environment string the less frequent prime numbers become.
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Prediction Experiments

Predicting Primes

To make things more interesting Fogel et al increased the length of
recall and gave a bonus for predicting a rare event.

So the score given for predicting a 1 was the number of 0’s that
preceded it and the score given for predicting a 0 was the number
of 1’s that preceded it.

One can see that IS much more valuable than
predicting a 0.

Analysis of the results showed that the machines quickly “learned”:

to

some hints towards an increased tendency to predict multiples of 5°s as not
prime.




Experiment with Humans

Experiment:

— human subjects were given a recall frame of 10 and asked to
predict the next symbol

Result.
— The evolutionary process consistently outperformed the humans.

One may argue that this is unfair :
— on one side machines adapting through several iterations
— on the other humans who are unchanging,

But at this point we regard the system Itself as the

Intelligent process,
Is FSM better?

— not just the single iteration of a machine.



They key Is Adaptation

e The key to the success of the
evolutionary machines is in their
continual adaptation to the

environment.

e The goal Is not to enc
machine that can prec

up with a final
Ict well.

e The goal Is to come u

0 With a process

that through continued
mutation/selection always generates

the best machine.




Evolutionary Programming Is
Evolution of FSM

« Evolutionary programming Is not so much about
programming, its more about the of
automaton.

e Compared to the genetic algorithms:
— you don’t just have a bit string that encodes parameters,

— you have to encode the Initial state, the transition table, and
the alphabet,

— then you have to come up with problem specific mutations,
or genetic mutators...

e There iIs nothing like the




1.3 Pattern
Recognition
and
Classification




Pattern Recognition and Classification

The key to understanding a sequence of foreign symbols
IS to try and find a recognizable pattern within them.

If there IS no pattern, It Is assumed to be random.

In contrast: If we can turn out a good prediction score it
may reveal the presence of an unchanging signal.

Variability in prediction score means the data may
contain a message.

If we CAN demonstrate a good prediction score, the
guestion arises:.
— what is the nature of the signal?

The state machine with acceptable score 1s a good
description in itself.




Pattern Recognition and
Classification

e How well do these state machines describe
the signal?

 How well can they emulate human thought?

 (Can they recognize and classify patterns in
the same manner as a human operator?



Pattern Recognition and
Classification

—  Aseries of broadband signals were generated
—  then expressed in an 8-symbol alphabet,
— Input into a computer program that would evolve to predict
their behavior.
They were generated with the goal of creating 4 sets of
4 signals that held ,

— such as the number of peaks and valleys and their locations
being roughly the same.




Figure 1.20. 16 patterns for pattern recognition
experiment
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Pattern Recognition and
Classification: assumptions

 An eight-symbol evolutionary program was
used to predict each next symbol in an
unending repetition of each of these patterns.

* There was no penalty for complexity.

* There was10 generations prior to each prediction.

o here was also a “magnitude of the difference”
error cost matrix specification of the goal.




Pattern Recognition and Classification

Table 1.2 indicates the average prediction error rate of
these evolutionary programs applied to their own signal
after the first 50, 100, 200, ahd 400 predictions.

It can be seen that the greatest amount of “learning”
occurred In the early stages of development.

J / Recall Length L

Pattern 50 / 100 200 400
1 0.330 0.172 0.158 0.165
2 0.307 0.306 0.211 0.145
3 0.228 0.195 0.091 0.056
4 0.248 0.209 0.111 0.114
5 0.106 0.091 0.057 0.045
6 0.043 0.051 0.051 0.047
7 0.082 0.041 0.048 0.050
) 0.268 0.267 0.288 0.276
9 0.185 0.163 0.172 0.149
10 0.207 0.141 0.088 0.070
11 0.184 0.082 0.078 0.052
12 0.312 0.107 0.090 0.072
13 0.122 0.102 0.091 0.081
14 0.103 0.126 0.110 0.109
15 0.165 0.176 0.152 0.136

16 0.063 0.068 0.067 0.065



Pattern Recognition and

Classification:what is similarity of
patterns?

Each evolved machine was a characterization of the signal in

which it developed, this is obvious.

One might think it is also obvious that we recognize

similarities in the signals through similarities in the machines,
but this is not such an easy task since these machines can often grow to

be very complex,
— and what method would you use to make such a comparison?

It iIs much more natural to accomplish the comparison by
allowing the evolved machines to attempt a prediction of the
OTHER, similar signals.

The similarity between patterns should be demonstrated by
the similarity in prediction scores.




Pattern Recognition and Classification

e Table 1.3 shows the results of such a comparison:
—  Things did not turn out the way we had hoped.

 Aswas expected, each machine predicted it’s own signal very

well.
but the remaining scores showed that none could classify the signals in

the desired manner.

Predictor-Machinc 1 Predictor-Machine 2 Predictor-lachine 3
Evaluated over Evaluated owver Evalualed over
45 o0 45 90 45 90
Pattern Symbols Symbols Syvmbols Symbols Symbols Symbols
1 0.250 0.292 4.727 5.865 12.136 12.045
2 4.727 5.315 0.023 0.427 5.159 7.787
3 4.841 4.697 4. 864 4. 820 0.023 0.034
4 4.500 3.629 5.659 6.00 11.159 11.258
5 2.796 3.348 5.886 5112 5.432 8.843
4] 1.091 1.539 3. 136 3.933 9.068 9.551
T 1.296 1.697 3.364 3.112 11.8B86 11.933
8 1.432 2753 2.318 2.292 12.09] 12.506
o 3.773 4685 50000 5.348 4. 682 5.315
10 6273 6. TR B.546 7.225 & 068 G472
11 5.250 5.607 5136 4. 7OR 3.818 4.29
12 3.000 2.978 3.250 3.225 4.727 g Table 1.3
13 4.432 4.258 3.136 3.337 3.796 3. 764
14 5.341 5.382 3.818 4.112 6.727 6.753
15 4.455 4. 854 4.386 4.214 5.046 4.989

16 3.682 4.090 2.636 3.416 3.682 5.663




Pattern Recognition and

Classification:humans versus
machines

Predictor machines recognize similarity differently than
humans.

A human operator would simply look at the signals and note
the number of peaks and valleys and
and magnitude, making the comparison a trivial task.

But there i1s no demand that the evolutionary program emulate
human behavior in performing the same task.




Control Systermn Design

o So far we’ve looked at such problems as:

— detection (Is there a signal?)

— discrimination (if so, what is the signal?),

— recognition (has the signal been seen before?),

— classification (if not, which of a set of signals is it most like).

But almost all of these only in that they
can help to solve the



Control System Design

So what is this problem of control?
Let us define a system as a plant.

This could be any system:
— acomputer program,
— another state machine,
— aliving organism.
We have no idea what the nature of this system is:

— all we know is that given some input string it will produce some output
string.

The problem of control = to understand such a system.
We want to be able to tell the plant what to do

— and have it achieve some desired result or goal.



Control System Design
e But:

 If we don’t understand anything about the
nature of the system,

 and only have an output that was spewed out by
the plant on some given input,

— how can we possibly hope to be able to control
such a system (be able to tell it what to do)?

» \We use evolutionary programming.




How do we use evolutionary programming to
solve the problem of control?

e The process Is as follows :

— 1. Create a state machine that you believe best describes the
plant, but this initial machine is actually not very relevant.

* In theory, it could be anything, but we should attempt to emulate the
plant as close as we can.

— 2. We then give our newly created machine the sequence of
Input symbols that was given to our original plant,

 and judge it based on how well it could predict the actual output that
was given by the plant.




Control System Design

3. We continually evolve the machine to become a perfect
predictor of the plant,

this meaning that the machine will spit out the same output as the plant
when they are both given some input sequence.

4. Now, if we want to control the plant, we need to determine
the input string that will achieve our desired end.

To do this we simply look at our state machine and determine the input
symbols that would be required to produce our desired output.




Control System Design

 This I1s where the actual
functionality of evolutionary
programming comes in.

e |t allows us to develop a machine
that will further allow us to

understand some unknown system.




Unrecognized
Observations

« There have been several ideas that have been considered
as potentially important but were not given sufficient
attention because of time and technological restraints.

— 1. Asuitable choice in mutation noise may increase the
prediction rates of machine.

— 2. While the best parents will usually produce the best children,
lower ranked parents should be retained as protection against
gross non-stationarity of the environment (Radical Change).

— 3. The concept of recombination has been quite successful in
nature, so perhaps it would be beneficial in evolutionary
programming experiments as well.




Summary

So let’s look at the whole thing in perspective.

Intelligence was defined as:
— the ability to predict a given environment,
— coupled with the ability to select a suitable response in light of
of the prediction and the given goal.
The problem of predicting the next symbol was reduced to
the problem of
given some environment.

These machines were driven by the available and
were evaluated in terms of the given



Summary

But we need not constrain ourselves to a symbol
predicting machine,
In fact the same process could be applied to any

well defined goal within the of the
system.

Thus the evaluation will take place in terms of
response behavior, in which prediction of one’s
environment Is an implicit intervening variable.

We have seen a variety of such experiments.




But even further implications are possible.

The scientific method could be regarded as an
evolutionary process in which a succession of

models are generated and evaluated.

Therefore, simulation of the evolutionary process
IS tantamount to a mechanization of the
scientific method.

Induction, a process that previously was
regarded as requiring creativity and imagination
has now been reduced to a routine procedure.




Summary

o So If we make our desired goal one of self-preservation, such
machines may begin to display self-awareness in that they can
describe essential features of their survival if so requested.

 What are goals made of?

— They are made up of the various factors that lead towards self-
preservation.

— Only those creatures that can successfully model themselves can alter
their sub-goals to support their own survival.

— To succeed their self-Image must be In close correspondence to
reality.

» With this knowledge we can hope to achieve a greater
understanding of our own intellect, or of even greater significance,
to create inanimate machines that accomplish these same tasks.
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