Resolution in propositional and first-order logic

• Next time:
 • More on resolution & theorem proving systems (Chapter 10 of R&N)
 – Read chapter 6 in Luger/Stubblefield about Prolog
Resolution in First-Order Logic

In propositional logic:

\[\text{at-home} \lor \text{at-work} \land \lnot \text{at-home} \]

\[\text{at-work} \]

In first-order logic:

To generalize resolution proofs to FOL, we must account for
- Predicates
- Unbound variables
- Existential & universal quantifiers

Idea: First convert sentences to clause form
Then unify variables

UNIFY

\[\forall x \ \text{at-home}(x) \lor \text{at-work}(x) \land \lnot \text{at-home}(y) \]

\[\text{at-work}(x) \]
Outline

• Resolution in first-order logic
 • Proving logic sentences using resolution
 • Answering questions using resolution
 • Extensions to basic resolution
 • Resolution strategies

• Logic programming
Basic steps for proving a conclusion \(S \) given premises \(
\text{Premise}_1, \ldots, \text{Premise}_n
\) (all expressed in FOL):

1. Convert all sentences to CNF

2. Negate conclusion \(S \) & convert result to CNF

3. Add negated conclusion \(S \) to the premise clauses

4. Repeat until contradiction or no progress is made:
 a. Select 2 clauses (call them parent clauses)
 b. Resolve them together, performing all required unifications
 c. If resolvent is the empty clause, a contradiction has been found (i.e., \(S \) follows from the premises)
 d. If not, add resolvent to the premises

If we succeed in Step 4, we have proved the conclusion
Resolution Examples

Example 1:
- If something is intelligent, it has common sense
- Deep Blue does not have common sense
- Prove that Deep Blue is not intelligent

1. \(\forall x. I(x) \Rightarrow H(x) \)
2. \(\neg H(D) \)
Conclusion: \(\neg I(D) \)
Denial: C3: I(D)

\[C1: \neg I(x) \lor H(x) \]
\[C2: \neg H(D) \]

A resolution proof of \(\neg I(D) \):

Proof also written as:
- C4: \(\neg I(D) \)
- C5: \(\square \)
- r[C1b, C2]
- r[C3, C4]
Resolution Examples (cont.)

Example 2:

Premises:
- Mother(Lulu, Fifi)
- Alive(Lulu)
- ∀x ∀y. Mother(x,y) ⇒ Parent(x,y)
- ∀x ∀y. (Parent(x,y) ∧ Alive(x)) ⇒ Older(x,y)

Prove:
- Older(Lulu, Fifi)

Denial:
- ¬Older(Lulu, Fifi)
Proof consists of 4 resolution steps: longer than the proof with GMP, because we can only resolve two clauses at once using this form of resolution.
Example 3:

- Suppose the desired conclusion had been “Something is older than Fifi”
 \(\exists x. \text{Older}(x, \text{Fifi}) \)

- Denial:
 \(\neg \exists x. \text{Older}(x, \text{Fifi}) \)
 also written as: \(\forall x. \neg \text{Older}(x, \text{Fifi}) \)
 in clause form: \(\neg \text{Older}(x, \text{Fifi}) \)

- Last proof step would have been

> Don't make mistake of first forming clause from conclusion & then denying it:

- Conclusion:
 \(\exists x. \text{Older}(x, \text{Fifi}) \)
 clause form: \(\text{Older}(C, \text{Fifi}) \)
 denial: \(\neg \text{Older}(C, \text{Fifi}) \)

Cannot unify Lulu, C!!
Outline

- Resolution in first-order logic
 - Proving logic sentences using resolution
 - Answering questions using resolution
 - Extensions to basic resolution
 - Resolution strategies

- Logic programming
Resolution for Question-Answering

- So far, resolution was used to just prove logic sentences.
- Resolution’s unification mechanism allows us to answer questions as well:
 - Consider again the proof of “Something is older than Fifi”
 \[\exists x. \text{Older}(x, \text{Fifi}) \]
 - Denial clause:
 \[\neg \text{Older}(x, \text{Fifi}) \]
 - Substitution made in disproof:
 \[\{x/\text{Lulu}\} \]
 - So Lulu is the “something” that’s older than Fifi.
 \[\rightarrow \text{Answers question “what is older than Fifi?”} \]

In general, to answer “what \(x \) has such-and-such properties?”

- Prove “there exists an \(x \) with such-and-such properties”
- Extract substitution for \(x \)
Question-Answering

Example 1:

“Who is Lulu older than?”

- Prove that
 “there is an x such that Lulu is older than x”

- In FOL form:
 \(\exists x. \text{Older}(\text{Lulu}, x) \)

- Denial:
 \(\neg \exists x. \text{Older}(\text{Lulu}, x) \)
 \(\forall x. \neg \text{Older}(\text{Lulu}, x) \)
 in clause form: \(\neg \text{Older}(\text{Lulu}, x) \)

- Successful proof gives
 \(\{x/\text{Fifi}\} \) [Verify!!]

Example 2:

“What is older than what?”

- In FOL form:
 \(\exists x \exists y. \text{Older}(x, y) \)

- Denial:
 \(\neg \exists x \exists y. \text{Older}(x, y) \)
 in clause form: \(\neg \text{Older}(x, y) \)

- Successful proof gives
 \(\{x/\text{Lulu}, y/\text{Fifi}\} \) [Verify!!]
Getting Multiple Answers

• Assume additional facts:
 Father(BowWow, Fifi)
 \neg Father(x, y) \lor Parent(x, y)
 Alive(BowWow)

• We can then answer \exists x. Older(x, Fifi) using
 \{x/Lulu\} or \{x/BowWow\}
 (i.e., 2 distinct proofs exist)

Q: Is it possible to find all answers to a given question using the resolution rule?
Ans: Yes, if the premises in the knowledge base are all Horn clauses
 \neg A_1 \lor \neg A_2 \lor \ldots \lor \neg A_n \lor B
 A_1 \land A_2 \land \ldots \land A_n \Rightarrow B

Achieved by finding all ways to refute a query
Getting Multiple Answers (cont.)

To find all ways of refuting \(\neg \text{Older}(x, \text{Fifi}) \):

- Find unit clauses this resolves with (if any), adding substitutions for successful refutations to Answers

 If \(\text{Older}(\text{Fang}, \text{Fifi}) \) was in KB, we would have

 \[
 \text{Answers} = \text{Answers} \cup \{x/\text{Fang}\}
 \]

- Find clauses of the form

 \[
 \neg A_1 \lor \neg A_2 \lor \cdots \lor \neg A_n \lor \text{Older}(x, \text{Fifi})
 \]

 and resolve

- If successful, with unifier \(\theta \), recursively find all refutations of the corresponding antecedent instances \((\neg A_1, \neg A_2, \ldots, \neg A_n) \)

- “Compose” the substitutions for these refutations with \(\theta \) and add to Answers

Details in (R&N, p. 275)
Outline

• Resolution in first-order logic
 • Proving logic sentences using resolution
 • Answering questions using resolution
 • Extensions to basic resolution
 • Resolution strategies

• Logic programming
Factoring

- Resolution is “not quite” refutation-complete
 e.g. $P(x,y) \lor P(u,v)$ and $\neg P(s,t) \lor \neg P(w,z)$ are clearly contradictory, yet we can’t derive □

- Factoring:
 Allows us to unify 2 literals of the same clause

\[
\begin{align*}
P(x,y) \lor P(u,v) & \quad \neg P(s,t) \lor \neg P(w,z) \\
\{u/x,v/y\} & \quad \{w/s,z/t\}
\end{align*}
\]
Equality

• Suppose we are given:
 \[
 \text{Older}(\text{Lulu}, \text{Fifi}) \\
 \neg \text{Older}(x, x)
 \]

 resolution cannot be applied here

• Now, what if we know that Lulu & Fifi refer to the same entity?

 Need an additional rule & axioms to treat equality

 \textbf{Paramodulation}: essentially, substitution of equals (but with unification)

• Proving \(\neg(\text{Lulu} = \text{Fifi}) \):

 \[
 \begin{align*}
 &\text{Older}(\text{Lulu}, \text{Fifi}) \quad \text{Lulu} = \text{Fifi} \\
 \quad \quad \text{Older}(\text{Fifi}, \text{Fifi}) \quad \neg \text{Older}(x, x) \\
 \quad \quad \quad \{x/\text{Fifi}\} \\
 \end{align*}
 \]
Outline

- Resolution in first-order logic
 - Proving logic sentences using resolution
 - Answering questions using resolution
 - Extensions to basic resolution
 - Resolution strategies

- Logic programming
Resolution Strategies

In a general KB, there may be many resolutions that can be applied at a given step.

\[C2. \text{Alive}(Lulu) \]

\[C5. \neg \text{Older}(Lulu, Fifi) \]
\[C6. \text{Parent}(Lulu, Fifi) \]
\[C7. \neg \text{Alive}(Lulu) \lor \text{Older}(Lulu, Fifi) \]
\[C8. \text{Older}(Lulu, Fifi) \]
\[C9. \square \]

We can use specific resolution strategies to ensure that we do not perform “useless” resolutions.
Resolution Strategies

• Backward chaining strategy:
 Reason backwards from a goal
 (used for finding multiple answers to a query)

• Unit resolution:
 One of the parent clauses is always
 chosen to contain a single literal

\[\text{at-home}(x) \lor \text{at-work}(x) \quad \text{at-home}(y) \]

\[\text{at-work}(x) \]

Idea: Length of resolvent always decreases by 1
 → gets closer to empty clause
 (i.e., unit resolution is a Greedy method)

Caveat: Unit resolution is not complete!
Resolution Strategies (cont.)

• Input resolution:
 One of the parent clauses is contained in the original KB.

 Input resolution is equivalent to unit resolution (and hence also incomplete).

• Linear resolution:
 Each parent is a linear resolvent, i.e., is either in the initial KB or is an ancestor of the other parent.

```
P ∨ Q  ¬P ∨ Q  P ∨ ¬Q  ¬P ∨ ¬Q
```

Linear resolution is complete.
Resolution Strategies (cont.)

- **Set-of-support resolution:**

 Given a set of clauses Γ, a set of support resolvent of Γ is a resolvent whose parents are either clauses of Γ or descendants of such clauses.

 Set-of-support resolution: always use a denial clause or a descendant of a denial clause as one parent.

 Idea: “Focus” the proof on using the denial clause(s) to derive a contradiction rather than grinding arbitrary KB facts together.
Outline

• Resolution in first-order logic
 • Proving logic sentences using resolution
 • Answering questions using resolution
 • Extensions to basic resolution
 • Resolution strategies

• Logic programming
Logic Programming

Robert Kowalski’s equation:

\[
\text{Programming} = \text{Logic} + \text{Control}
\]

In logic programming, algorithms are created by augmenting logical sentences with information to control the inference process (Russell & Norvig).

An FOL definition of the list member function:

\[
\forall x \forall l. \text{Member}(x, [x|l]) \\
\forall x \forall y \forall l. \text{Member}(x, l) \Rightarrow \text{Member}(x, [y|l])
\]

Logic programming can be thought of as a “declarative language”

\[
\text{Program} = \text{sequence declarations} \\
\text{Control} = \text{implicit} \\
\text{Program execution} = \text{proof} \\
\text{e.g., prove} \ \text{member}(3, [2, 1, 3])
\]