An Overview of Biometrics

13th October 2003
IC3
Scarlet Schwiderski-Grosche

Outline of presentation

- Introduction to biometric authentication
- Biometric methods
- State of the art in biometrics
- A critical view on the state of the art

What is user authentication?

- The process of confirming an individual's identity, either by verification or by identification
 - A person recognising a person
 - Access control (PC, ATM, mobile phone)
 - Physical access control (house, building, area)
 - Identification (passport, driving licence)

Authentication methods

- Token – “something that you have”
 - such as smart card, magnetic card, key, passport, USB token
- Knowledge – “something that you know”
 - such as password, PIN
- Biometrics – “something that you are”
 - A physiological characteristic (such as fingerprint, iris pattern, form of hand)
 - A behavioural characteristic (such as the way you sign, the way you speak)

What is biometrics?

- The term is derived from the Greek words bio (= life) and metric (= to measure)
- Biometrics is the measurement and statistical analysis of biological data
- In IT, biometrics refers to technologies for measuring and analysing human body characteristics for authentication purposes
- Definition by Biometrics Consortium – automatically recognising a person using distinguishing traits

How does it work?

- Each person is unique
- What are the distinguishing traits that make each person unique?
- How can these traits be measured?
- How different are the measurements of these distinguishing traits for different people?
Verification vs. identification

- Verification (one-to-one comparison) – confirms a claimed identity
 - Claim identity using name, user id, ...
- Identification (one-to-many comparison) – establishes the identity of a subject from a set of enrolled persons
 - Employee of a company?
 - Member of a club?
 - Criminal in forensics database?

Biometric identifiers

- Universality
- Uniqueness
- Stability
- Collectability
- Performance
- Acceptability
- Forge resistance

Biometric technologies

- Covered in ANSI X9.84-2003:
 - Fingerprint biometrics – fingerprint recognition
 - Eye biometrics – iris and retinal scanning
 - Face biometrics – face recognition using visible or infrared light (called facial thermography)
 - Hand geometry biometrics – also finger geometry
 - Signature biometrics – signature recognition
 - Voice biometrics – speaker recognition

Biometric technologies

- Found in the literature:
 - Vein recognition (hand)
 - Palmprint
 - Gait recognition
 - Body odour measurements
 - Ear shape
 - DNA
 - Keystroke dynamics

Static vs. dynamic biometric methods

- Static (also called physiological) biometric methods – authentication based on a feature that is always present
- Dynamic (also called behavioural) biometric methods – authentication based on a certain behaviour pattern

Classification of biometric methods

- Static
 - Fingerprint r.
 - Retinal scan
 - Iris scan
 - Hand geometry
- Dynamic
 - Signature r.
 - Speaker r.
 - Keystroke dynamics
Major components of a biometric system:
- Data collection
- Signal processing
- Matching
- Decision
- Storage
- Transmission

Also called data acquisition
- Comprises input device or sensor that reads the biometric information from the user
- Converts biometric information into a suitable form for processing by the remainder of the biometric system
- Examples: video camera, fingerprint scanner, digital tablet, microphone, etc.

Sampled biometric characteristic must be similar to the user's enrolled template
- The users may require training
- Adaptation of the user's template or re-enrolment may be necessary to accommodate changes in physiological characteristics
- Sensors must be similar, so that biometric features are measured consistently at other sensors

The biometric feature may change
- The presentation of the biometric feature at the sensor may change
- The performance of the sensor itself may change
- The surrounding environmental conditions may change

For feature extraction
- Receives raw biometric data from the data collection subsystem
- Transforms the data into the form required by matching subsystem
- Discriminating features extracted from the raw biometric data
- Filtering may be applied to remove noise
Matching subsystem

- Key role in the biometric system
- Receives processed biometric data from signal processing subsystem and biometric template from storage subsystem
- Measures the similarity of the claimant’s sample with the reference template
- Typical methods: distance metrics, probabilistic measures, neural networks, etc.
- The result is a number known as match score

Decision subsystem

- Interprets the match score from the matching subsystem
- A threshold is defined. If the score is above the threshold, the user is authenticated. If it is below, the user is rejected
- Typically a binary decision: yes or no
- May require more than one submitted samples to reach a decision: 1 out of 3
- May reject a legitimate claimant or accept an imposter

Storage subsystem

- Maintains the templates for enrolled users
- One or more templates for each user
- The templates may be stored in:
 - physically protected storage within the biometric device
 - conventional database
 - portable tokens, such as a smartcard

Transmission subsystem

- Subsystems are logically separate
- Some subsystems may be physically integrated
- Usually, there are separate physical entities in a biometric system
- Biometric data has to be transmitted between the different physical entities
- Biometric data is vulnerable during transmission

Enrolment

- Process through which the user’s identity is bound with biometric template data
- Involves data collection and feature extraction
- Biometric template is stored in a database or on an appropriate portable token (e.g. a smart card)
- There may be several iterations of this process to refine biometric template

Security of enrolment

- Requirements for enrolment:
 - Secure enrolment procedure
 - Binding of the biometric template to the enrollee
 - Check of template quality and matchability
Biometric system model

Possible decision outcomes

- A genuine individual is accepted
- A genuine individual is rejected (error)
- An impostor is rejected
- An impostor is accepted (error)

Errors

- Balance needed between 2 types of error:
 - Type I: system fails to recognise valid user ('false non-match' or 'false rejection')
 - Type II: system accepts impostor ('false match' or 'false acceptance')
- Application dependent trade-off between two error types

Pass rates

- Error tolerance threshold is crucial and application dependent
- Tolerance too large causes Type II errors (impostors admitted)
- Tolerance too small causes Type I errors (legitimate users rejected)
- Equal error rate (EER): false non-match (FRR) = false match (FAR)

Error curves of biometric authentication methods
Biometric technologies

- Fingerprint recognition
- Hand geometry reading
- Retinal scan
- Iris scan
- Face recognition
- Signature recognition
- Speaker verification

Life detection

- Make sure that input at biometric sensor originates with life user

Fingerprint recognition

- Ridge patterns on fingers uniquely identify people
- Classification scheme devised in 1890s
- Major features: arch, loop, whorl
- Each fingerprint has at least one of the major features and many "small features" (so-called minutiae)

Features of fingerprints

- Arch
- Loop
- Whorl

Fingerprint recognition (cont.)

- In an automated system, the sensor must minimise the image rotation
- Locate minutiae and compare with reference template
- Minor injuries are a problem
- Life detection is important (detached real fingers, gummy fingers, latent fingerprints)

Fingerprint authentication

- Basic steps for fingerprint authentication:
 - Image acquisition
 - Noise reduction
 - Image enhancement
 - Feature extraction
 - Matching
Fingerprint processing

- a) Original
- b) Orientation
- c) Binarised
- d) Thinned
- e) Minutiae
- f) Minutiae graph

Assessment – fingerprint recognition

- **Advantages**
 - Mature technology
 - Easy to use/non-intrusive
 - High accuracy (comparable to PIN authentication)
 - Long-term stability
 - Ability to enrol multiple fingers
 - Comparatively low cost
- **Disadvantages**
 - Inability to enrol some users
 - Affected by skin condition
 - Sensor may get dirty
 - Association with forensic applications

Hand geometry

- Features: dimensions and shape of the hand, fingers, and knuckles as well as their relative locations
- Two images taken, one from the top and one from the side

Hand geometry measurements

Assessment – hand geometry

- **Advantages**
 - Mature technology
 - Non-intrusive
 - High user acceptance
 - No negative associations
- **Disadvantages**
 - Low accuracy
 - High cost
 - Relatively large readers
 - Difficult to use for some users (children, arthritis, missing fingers or large hands)

Eye biometrics

- Iris scanning
 - Coloured portion of the eye surrounding the pupil – trabecular meshwork
 - Complex iris pattern is used for authentication
- Retinal scanning
 - Retinal vascular pattern on the back inside the eyeball
 - Pattern of blood vessels used for authentication
Accurate biometric measure
Genetic independence: identical twins have different retinal pattern
Highly protected, internal organ of the eye

Advantages
- Potential for high accuracy
- Long-term stability
- Feature is protected from variations (regarding external environment)
- Genetic independence

Disadvantages
- Difficult to use
- Intrusive
- Perceived health threat
- High sensor cost

Assessment – retinal scanning

Iris pattern possesses a high degree of randomness: extremely accurate biometric
Genetic independence: identical twins have different iris patterns
Stable throughout life
Highly protected, internal organ of the eye
Patterns can be acquired from a distance (1m)
Not affected by contact lenses or glasses

Iris scanning

Iris scanning

Iris code developed by John Daugman at Cambridge University
Extremely low error rates
Fast processing
Monitoring of pupil’s oscillation to prevent fraud
Monitoring of reflections from the moist cornea of the living eye

The iris code
Assessment – iris recognition

Advantages
- Potential for high accuracy
- Resistance to impostors
- Long term stability
- Fast processing

Disadvantages
- Intrusive
- Some people think the state of health can be detected
- High cost

Face biometrics

Static controlled or dynamic uncontrolled shots

Visible spectrum or infrared (thermograms)

Non-invasive, hands-free, and widely accepted

Questionable discriminatory capability

Face recognition

Visible spectrum: inexpensive

Most popular approaches:
- Eigenfaces,
- Local feature analysis.

Affected by pose, expression, hairstyle, make-up, lighting, glasses

Not a reliable biometric measure

Assessment – face recognition

Advantages
- Non-intrusive
- Low cost
- Ability to operate covertly

Disadvantages
- Affected by appearance and environment
- Low accuracy
- Identical twins attack
- Potential for privacy abuse

Facial thermogram

Captures the heat emission patterns derived from the blood vessels under the skin

Infrared camera: unaffected by external changes (even plastic surgery!) or lighting

Unique but accuracy questionable

Affected by emotional and health state

Assessment of facial thermogram

Advantages
- Non-intrusive
- Stable
- Not affected by external changes
- Identical twins resistant
- Ability to operate covertly

Disadvantages
- High cost (infrared camera)
- New technology
- Potential for privacy abuse
Signature recognition

- Handwritten signatures are an accepted way to authenticate a person
- Signature generating process is a trained reflex - imitation difficult especially 'in real time'
- Automatic signature recognition measures the dynamics of the signing process

Dynamic signature recognition

- Variety of characteristics can be used:
 - angle of the pen,
 - pressure of the pen,
 - total signing time,
 - velocity and acceleration,
 - geometry.

Assessment of signature recognition

- **Advantages**
 - Resistance to forgery
 - Widely accepted
 - Non-intrusive
 - No record of the signature
- **Disadvantages**
 - Signature inconsistencies
 - Difficult to use
 - Large templates (1K to 3K)
 - Problem with trivial signatures

Speaker verification

- Linguistic and speaker dependent acoustic patterns
- Speaker's patterns reflect:
 - anatomy (size and shape of mouth and throat),
 - behavioural (voice pitch, speaking style)
- Heavy signal processing involved (spectral analysis, periodicity, etc.)

Speaker recognition systems

- Text-dependent: predetermined set of phrases for enrolment and identification
- Text-prompted: fixed set of words, but user prompted to avoid recorded attacks
- Text-independent: free speech, more difficult to accomplish

Assessment – speaker recognition

- **Advantages**
 - Use of existing telephony infrastructure or simple microphones
 - Easy to use/non-intrusive/hands free
 - No negative association
- **Disadvantages**
 - Pre-recorded attack
 - Variability of the voice (ill or drunk)
 - Affected by background noise
 - Large template (5K to 10K)
 - Low accuracy
Choosing the biometrics

- Does the application need identification or authentication?
- Is the collection point attended or unattended?
- Are the users used to the biometrics?
- Is the application covert or overt?

Choosing the biometrics

- Are the subjects cooperative or non-cooperative?
- What are the storage requirement constraints?
- How strict are the performance requirements?
- What types of biometrics are acceptable to the users?

Time for a break...

Outline

- Application domains for biometric products
- Overview of biometric products
- How good are biometrics today?

Application domains (I)

- Access control
 - To devices
 - Cellular phones
 - Logging in to computer, laptop, or PDA
 - Cars
 - Guns, gun safes
 - To local services
 - Debitting money from cash dispenser
 - Accessing data on smartcard
 - To remote services
 - E-commerce
 - E-business
Application domains (II)

- Physical access control
 - To high security areas
 - To public buildings or areas
- Time & attendance control
- Identification
 - Forensic person investigation
 - Social services applications, e.g. immigration or prevention of welfare fraud
 - Personal documents, e.g. electronic drivers license or ID card

Fingerprint recognition: overview

- Sensors
 - Optical sensors
 - Ultrasound sensors
 - Chip-based sensors
 - Thermal sensors
- Integrated products
 - For identification – AFIS systems
 - For verification

Fingerprint recognition: sensors (I)

- Optical fingerprint sensor
 - [Fingerprint Identification Unit FUI-01/500 by Sony]
- Electro-optical sensor
 - [DELSY® CMOS sensor module]
- Capacitive sensor
 - [FingerTIP™ by Infineon]

Fingerprint recognition: sensors (II)

- Thermal sensor
 - [FingerChip™ by ATMEL (was: Thomson CSF)]
- E-Field Sensor
 - [FingerLoc™ by Authentec]

Fingerprint recognition: integrated systems (I)

- Physical Access Control System
 - [BioGate Tower by Bergdata]
- [BioMouse™ Plus by American Biometric Company]

Fingerprint recognition: integrated systems (II)

- Keyboard G 81-12000 by Cherry
- System including fingerprint sensor, smartcard reader and display by DELSYS
- [TravelMate 740 by Compaq und Axiar]
Face recognition

- Face recognition system [One-to-One™ by Biometric Access Corporation]

Iris recognition

- Iris recognition system at Heathrow airport
 - Large-scale trial of iris recognition system at Heathrow Airport for immigration control (no passports)
 - http://news.bbc.co.uk/1/hi/uk/1808187.stm

Retinal recognition

- Retinal recognition system [Icam 2001 by Eyedentify]

Hand geometry reading

- Hand geometry reader for two finger recognition by BioMet Partners

Dynamic signature verification (I)

- Electronic pen [LCI-SmartPen]
Dynamic signature verification (II)

Multimodal biometric systems

- Combination of biometric technologies, e.g.,
 - Fingerprint and face recognition
 - Face recognition and lip movement
 - Fingerprint recognition and dynamic signature verification
- Increase the level of security achieved by the system
- Enlarge the user base

Which biometric method / product is best?

- Depends on the application
 - reliability
 - security
 - performance
 - cost
 - user acceptance
 - life detection
 - users that are unsuitable
 - size of sensor

How good are biometric products?

- How can we find out, how good a biometric product is?
 - Empirical tests of the product
- In the past year, there were two independent test series of biometric products
 - in Japan
 - in Germany

Different threat scenarios

1. Regular biometric sensor using artificially generated biometric data
2. Replay attack of eavesdropped biometric data
3. Manipulation of stored biometric reference data

Test in Japan

- Tsutomu Matsumoto, a Japanese cryptographer working at Yokohama National University
- 11 state-of-the-art fingerprint sensors
- 2 different processes to make gummy fingers
 - from live finger
 - from latent fingerprint
- Gummy fingers fooled all 11 fingerprint sensors 80% of the time
Test in Germany (I)
- Computer magazine c’t (see http://www.heise.de/ct/english/02/11/114/)
- 11 biometric sensors
 - 9 fingerprint sensors,
 - 1 face recognition system, and
 - 1 iris scanner
- Fingerprint sensors –
 - Reactivate latent fingerprints (optical and capacitive sensors)
 - Apply latex finger (thermal sensor)

Test in Germany (II)
- Face recognition system –
 - Down- (up-)load biometric reference data from (to) hard disk
 - No or only weak life detection
- Iris recognition –
 - Picture of iris of enrolled person with cut-out pupil, where a real pupil is displayed
 - All tested biometric systems could be fooled, but the effort differed considerably

Conclusions
- Biometric technology has great potential
- There are many biometric products around, regarding the different biometric technologies
- Shortcomings of biometric systems due to
 - Manufacturers ignorance of security concerns
 - Lack of quality control
 - Standardisation problems
- Biometric technology is very promising
- Manufacturers have to take security concerns serious

References

References (cont.)
- Nanavati et al., Biometrics: Identity Verification in a Networked Society, Wiley.
- The Biometric Consortium: http://www.biometrics.org/

Manufacturers of bio. products
- Fingerprint recognition – sensors
 - American Biometric Company [http://www.abio.com]
 - Biometric Access Corp. (BAC) [http://www.biometricaccess.com]
 - Sony [http://www.sony.com]
 - UltraScan [http://www.ultra-scan.com]
 - Infineon [http://www.infineon.com]
 - Veridicom [http://www.veridicom.com]
 - Authentec [http://www.authentec.com]
 - DELSY [http://www.deisy.de]
 - ATME [http://www.atmel-grenoble.com]
Manufacturers of bio. products

Fingerprint recognition – integrated systems
- BergData [http://www.bergdata.com]
- Cherry [http://www.cherry.de]
- American Biometric Company [http://www.abio.com]
- VeriTouch [http://www.veritouch.com]
- Dermalog [http://www.dermalog.de]
- Fujitsu [http://www.fujitsu.com]
- Siemens [http://www.siemens.com]

Face recognition
- Plettac electronic security GmbH [http://www.plettac-electronics.de]
- eTrue.com (Miros) [http://www.eTrue.com]
- Visage Technology [http://www.visage.com]
- Visionics [http://www.visionics.com]
- Biometric Access Corporation [http://www.biometricaccess.com]
- Dermalog [http://www.dermalog.de]

Iris recognition
- IrisScan [http://www.irisscan.com]
- Sensar [http://www.sensar.com]
- Dermalog [http://www.dermalog.de]
- LG Corporate Institute of Technology [http://www.lgcit.com]
- Eyedentify [http://www.eyedentify.com]

Retinal recognition
- Eyedentify [http://www.eyedentify.com]

Handgeometry reading
- Dermalog [http://www.dermalog.de]
- Biomet Partners [http://www.biomet.ch]

Dynamic signature verification
- LCI Technology Group [http://www.smartpen.net]
- Wacom [http://www.wacom.com]
- BS Biometric Systems GmbH [http://www.bs-biometricsystems.com]
- Topaz [http://www.topazsystems.com]

Speaker recognition
- Dermalog [http://www.dermalog.de]
- ITT and Buytel [http://www.buytel.com]
- Keyware Technologies [http://www.keyware.com]
- Nuance [http://www.nuance.com]
- OTG The Ottawa Telephony Group [http://www.otg.ca]
- T-NETIX [http://www.t-netix.com]
- VeriVoice [http://www.verivoice.com]