Project I. Face Analysis

eigen-faces

Project II: Face Detection

Lecture note for Stat 231-CS276A: Pattern Recognition and Machine Learning
Lecture 1:

Introduction to Pattern Recognition

1. Examples of patterns in nature.
2. Issues in pattern recognition and an example of pattern recognition
3. Schools in pattern recognition
4. Pattern theory

Examples of Patterns

Crystal patterns at atomic and molecular levels

Their structures are represented by 3D graphs and can be described by deterministic grammar or formal language
Examples of Patterns

Constellation patterns in the sky.

The constellation patterns are represented by 2D (often planar) graphs.

Human perception has strong tendency to find patterns from anything. We see patterns from even random noise --- we are more likely to believe a hidden pattern than denying it when the risk (reward) for missing (discovering) a pattern is often high.

Examples of Patterns

Biology pattern --- morphology

Landmarks are identified from biologic forms and these patterns are then represented by a list of points. But for other forms, like the root of plants, Points cannot be registered crossing instances.

Applications: biometrics, computational anatomy, brain mapping, …
Examples of Patterns

Pattern discovery and association

Statistics show connections between the shape of one’s face (adults) and his/her Character. There is also evidence that the outline of children’s face is related to alcohol abuse during pregnancy.

Examples of Patterns

Patterns of brain activities:

We may understand patterns of brain activity and find relationships between brain activities, cognition, and behaviors.
Examples of Patterns

Patterns with variations:
1. Expression – geometric deformation
2. Lighting – photometric deformation
3. 3D pose transform
4. Noise and occlusion

A wide variety of texture patterns are generated by various stochastic processes. How are these patterns represented in human brain?
Examples of Patterns

Speech signal and Hidden Markov model

Examples of Patterns

Natural language and stochastic grammar.

The little boy who saw a dog was afraid
Examples of Patterns

A story generated from the rules:
\[\alpha \beta_1 \beta_2 \delta_1 A^1 B^2 C \uparrow H^1 \downarrow I^2 K^4 \downarrow \psi^c \]

A lion (emperor in Russian), three daughters (\(\alpha\)). The daughters go walking (\(\beta_1\)),
ostay in the garden (\(A^1\)). A dragon kidnaps them (\(A^1\)). A call for rescue (\(B^2\)).
Quest for three heroes (\(C \uparrow\)). Three battles with the dragon (\(H^1 - I^2\)), rescue of the
maidens (\(K^4\)), Return (\(\downarrow\)), and reward (\(\psi^c\)).

- \(\alpha\) = initial situation
- \(\beta_1\) = departure of elders
- \(\beta_2\) = death of parents
- \(A^1\) = kidnapping of a person
- \(A^2\) = seizure of a magical agent
- \(B^1\) = call for help
- \(D^1\) = test of hero
- \(E^1\) = sustained ordeal

Applications

- Lie detector,
- Handwritten digit/letter recognition
- Biometrics: voice, iris, finger print, face, and gait recognition
- Speech recognition
- Smell recognition (e-nose, sensor networks)
- Defect detection in chip manufacturing
- Reading DNA sequences
- Fruit/vegetable recognition
- Medical diagnosis
- Network traffic modeling, intrusion detection

... ...
Two Schools of Thinking

1. Generative methods:
 Bayesian school, pattern theory.
 1). Define patterns and regularities (graph spaces),
 2). Specify likelihood model for how signals are generated
 from hidden structures
 3). Learning probability models from ensembles of signals
 4). Inferences.

2. Discriminative methods:
 The goal is to tell apart a number of patterns, say 100 people in a company,
 10 digits for zip-code reading. These methods hit the discriminative target
 directly, without having to understand the patterns (their structures)
 or to develop a full mathematical description.

 For example, we may tell someone is speaking English or Chinese in the
 hallway without understanding the words he is speaking.

 “You should not solve a problem to an extent more than what you need”

Levels of task

For example, there are many levels of tasks related to human face patterns

1. Face authentication (hypothesis test for one class)
2. Face detection (yes/no for many instances).
3. Face recognition (classification)
4. Expression recognition (smile, disgust, surprise, angry)
 identifiability problem.
5. Gender and age recognition

6. Face sketch and from images to cartoon
 ⋯ needs generative models.
7. Face caricature
 ⋯ ⋯

The simple tasks 1-4 may be solved effectively using discriminative methods,
but the difficult tasks 5-7 will need generative methods.
Schools and streams

Schools for pattern recognition can be divided in three axes:

Axis I: generative vs discriminative
(Bayesian vs non-Bayesian)
(--- modeling the patterns or just want to tell them apart)

Axis II: deterministic vs stochastic
(logic vs statistics)
(have rigid regularity and hard thresholds or have soft constraints on regularity and soft thresholding)

Axis III: representation—algorithm—implementation

Examples:
Bayesian decision theory, neural networks, syntactical pattern recognition (AI), decision trees, Support vector machines, boosting techniques,

An example of Pattern Recognition

Classification of fish into two classes: salmon and Sea Bass by discriminative method
Features and Distributions

Decision/classification Boundaries
Main Issues in Pattern Recognition

1. Feature selection and extraction
 --- What are good discriminative features?
2. Modeling and learning
3. Dimension reduction, model complexity
4. Decisions and risks
5. Error analysis and validation.
6. Performance bounds and capacity.
7. Algorithms

What is a pattern?

In plain language, a pattern is a set of instances which share some regularities, and are similar to each other in the set. A pattern should occur repeatedly. A pattern is observable, sometimes partially, by some sensors with noise and distortions.

How do we define “regularity”?
How do we define “similarity”?
How do we define “likelihood” for the repetition of a pattern?
How do we model the sensors?
What is a pattern

In a mathematical language, Grenander proposed to define patterns with the following components (1976-1995)

1. Regularity \(R = \langle G, S, \rho, \Sigma \rangle \)
 - \(G \) --- a set/space of generators (the basic elements in a pattern), each generator has a number of “bonds” that can be connected to neighbors.
 - \(S \) --- a transformation group (such as similarity transform) for the generators
 - \(\rho \) --- a set of local regularities (rules for the compatibility of generators and their bounds)
 - \(\Sigma \) --- a set of global configurations (graphs with generators being vertices and connected bonds being edges).

2. An image algebra \(I = \langle C(R), E \rangle \)
 - The regularity \(R \) defines a class of regular configurations \(C(R) \).
 - But such configurations are hidden in signals, when a configuration is projected to a sensor, some information may get lost, and there is an equivalence relationship \(E \). The image algebra is a quotient space of \(C(R) \). I.e. some instances are not identifiable by images
 - In philosophy, patterns are our mental perception of world regularities.

3. A probability \(p \) on \(C(R) \) and on \(I \)
 - In a Bayesian term, this is a prior model on the configuration and the likelihood model for how the image looks like given a configuration.