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Introduction

This project was originally supposed to be a collaborative effort between 
myself and another teammate.  From our discussions, the scope of the project was 
going to include speech recognition that would trigger facial expressions.  
Unfortunately, my partner dropped out of the class with only about two weeks left, 
and took all of his work with him

As a result, I had to redefine the scope of the project, omitting the speech 
recognition portion.  What was left was a genetic algorithm to iteratively develop 
facial expressions for the Niels Bohr robot.  The data from the algorithm would also 
be used to set the parameters for a randomized expression generator.  I also 
intended to interface with the robot by writing the output from my algorithm 
software directly to a file that could be used by the control application.  Even 
without the speech recognition, this feature set turned out to be a handful in itself, 
as I had to develop, program and test the software, repair the robot, and integrate 
the two somehow.

Ultimately, the only thing missing was a closed feedback loop, as the output 
from the algorithm program needed to be entered into the control application 
manually.  I will explain the progress of my work and the reasons for the lack of this 
or any other features later on.

Description of Genetic Algorithm

The algorithm I used is based on genotypes consisting of a set of 6 genes, 
each gene representing the position of a servo in the robot’s face.  The servos that I 
chose for the genotypes were left and right eyebrow up/down, eyes up/down, left 
and right corner of mouth up/down, and mouth open/closed.  I chose these 
particular servos because they are all, with the exception of the eye position, 
required to form the basic static facial expressions: happiness, sadness, anger, and 
surprise.  The position of the eyes can add an extra layer of subtlety or direction to 
these expressions, but are is not directly necessary to convey the expressions.

The genotypes made up of these genes are grouped into an array called a 
generation, and they start out with completely random values.  In every generation, 
there is a feedback phase, during which the genotypes are displayed on the robot’s 
face, and one or more human observers rates the expression generate by the 
genotype for its accuracy or appropriateness at conveying the desired expression.  I 
decided to only evaluate one expression per generational line, because trying to 
evaluate multiple expressions per generation becomes very complex to program, 
and also slows the process by which the genotypes increase in fitness over the 
generations.  The slowing is due to the limited number of genotypes per generation 



– the default value is 20, because the time it takes to evaluate an expression is very 
large compared to a genetic algorithm where the computer evaluates fitness based 
on a pre-determined fitness function.  To evaluate more than one expression in a 
generation, the generation would have to be effectively split into two sub-
generations, one per expression, because the expressions evaluated become 
mutually exclusive as their fitness increases.  That is to say, a happy face becomes 
a poorer sad face as it becomes more happy, and vice versa; although the 
expressions can start out muddled, perhaps looking both sad and angry, as they 
become more accurate in portraying one emotion the expressions become less and 
less appropriate examples of the other emotions.

In order to put selective pressure on the genotypes to improve their fitness, 
three processes are used – elitism, crossover, and mutation.  Elitism in this case 
means that a variable number of the most fit expressions per generation are 
allowed to continue without modification into the next generation.  The number of 
genotypes that are allowed to continue in this way can be defined by the user, but 
is set by default to 2.  Genotypes above a certain level of fitness that are not 
selected as “elite” are allowed to mingle their genes through the crossover function, 
producing composite “children” of the next generation.  For each two genotypes 
being crossed over, the exact genes that are swapped will be different.  The total 
number of genes that are swapped, and the particular genes that are swapped are 
both randomly chosen.  Following the crossover process, the child genotypes are 
also subjected to mutation, where a random number of randomly selected genes 
are changed in value by a random number, which is either added or subtracted from 
the original gene value.  The remainder of the unfit genotypes simply have all of 
their genes randomized, and better luck next time.

The result of successive generations being subjected to these processes are 
genotypes of an increasing fitness, as well as a large amount of data, as the values 
of every gene in the genotypes of a generation can be written to file at the end of 
every generation.  Part of the algorithm program are two functions that search the 
data from a generation, and for a given level of fitness, determine the minimum and 
maximum values for each gene in the genotypes that meet or exceed the chosen 
level of fitness.  In this way, the range of servo values are found which correlate 
strongly with the expression being evaluated.  In the second function, the ranges 
generated by the first function are used to generate a genotype with random gene 
values that fall between the ranges.  This is, in effect, a random expression 
generator, which will generate random variations of the expression that was 
evaluated by the generation of genotypes from which the ranges were taken.  
Because all of the possible gene values correspond to a high level of fitness, each 
genotype generated in this way should also have a fitness that meets or exceeded 
the chosen level.



Software Implementation

The software implementing this algorithm was coded entirely in C++, using 
object oriented programming techniques.  The data structure used to store the 
generation data is a two dimensional array, a matrix, with columns equal to the 
number of genes plus a field for fitness to be stored, and rows equal to the number 
of genotypes per generation.  This matrix is stored in the private data of a class, the 
public members of which are the various functions of the genetic algorithm.  The 
following is a complete list of the functions implemented, and a description of how 
they operate.

Basic genetic algorithm functions - 

int Init_Generation() - This function is called once at the beginning of a new line of 
generations.  It initializes the arrays used to store the genotype data, and generates 
the defined number of genotypes and genes with random values between 0 and 
254.

int Randomize(int Gtype) – This function randomizes the genes of a single 
genotype, specified by the generation array member Gtype.  While I was writing the 
code, I was thinking about the way that my algorithm would attempt to increase the 
fitness of the genotypes from generation to generation.  I decided that only using 
elitism – carrying the most fit genotypes over to the new generation unchanged – to 
improve the fitness of the group might be insufficient.  Instead of crossing over and 
mutating the remaining genotypes, it might be desirable to instead cross over and 
mutate only those genotypes that got a fitness rating above a certain level.  
Genotypes of insufficient fitness, instead of passing their poor genes on, could then 
be randomized for a chance at a better combination.

int Crossover(int GtypeA, int GypeB) – This crossover function swaps the 
genes from the genotypes identified by the generation array members GtypeA and 
GtypeB.  It functions in the same way that I originally designed it, crossing over a 
random number of random genes up to a defined number of genes, set with 
NUM_CROSSOVER in the header.  It does this by incrementing a for loop that steps 
through each gene position for the genotype arrays.  For each gene position, if the 
number of genes that have been selected is less than the specified maximum,  the 
function either selects that gene for crossover or leaves it alone.  For the selected 
gene positions, the genes from the parents are swapped.  This actually changes the 



values of the parent genes, because only a single two-dimensional array is used to 
store genotypes.  The transition from one generation to the next takes place by 
changing the genotypes in the current generation, not by creating child genotypes 
in a new array.

int Mutate(int Gtype) – This mutation function mutates the genotype 
identified by the generation array member Gtype.  It functions in the same way as 
originally specified, mutating a random number of random genes within a 
predefined range, which is set with NUM_MUTATE.  I did however change the way 
the actual mutation occurs; instead of increasing the gene value by a percentage, I 
decided to instead change the gene value by a percentage of the maximum, 254.  
This eliminates situations where genes with low values do not change by an 
appreciable amount, basically becoming stuck low over generations.

int Feedback(int Gtype, char Expression[]) – This function collects and stores 
feedback for a single genotype.  The feedback data is stored into a parallel array 
that mirrors the generation array, with the same number of “rows” representing 
genotypes.  For every genotype, there are a set number of fields for feedback in the 
form of integers.  The variable controlling the number of fields is 
FEEDBACK_ARRAY_BYTES, in the header.  The feedback function gives the user a 
text prompt telling them to enter a value between 1 and 10, rating the 
appropriateness of the expresion generated by the genotype at conveying the 
desired emotion.  The array of characters 'Expression' passes the name of the 
expression being evaluated.  This function can be called up to the number of times 
defined in the array length variable for a single genotype.  Each successive call will 
store its data in the next available array location, if any.

int Calc_Fitness(int Gtype) – This function converts feedback data for a single 
genotype into an integer representing the fitness of the genotype.  The fitness 
integer is the rounded result of a floating point average of all the entered feedback 
for the genotype.  If there are less than the maximum number of feedback datum, 
only those data that have been entered are used to calculate the fitness, but in 
normal operation of the algorithm all data should be entered.

int Find_Elites() - After the feedback data has been converted into fitness 
values, this function can be called to find the most fit members of the current 
generation, and the values identifying those members are stored in a separate 



array.  The number of genotypes that are selected and stored this way can be set 
with the variable NUM_ELITES in the header.

int Find_Exp_Ranges(int Fitness) – For a given value of fitness, this function 
searches through the generation array and keep track of the highest and lowest 
values for each gene from the members of the generation whose fitness value is 
higher than the argument.  So if the integer 6 is passed into this function, the 
ranges found will represent all members of the generation with a fitness of 6 or 
above.  3 values are stored in different arrays for each gene – High, Low, and 
Absolute.  High and Low are self explanatory, and the Absolute value is just the 
difference between the High and Low values for that gene.  The function finds these 
values by stepping through each genotype in the generation array, and comparing 
its fitness value to the function argument.  If the fitness is greater than or equal to 
the argument, the function steps through each gene in that genotype.  For each 
gene, the value is compared with High and Low.  If the gene value is greater than 
High or less than Low, the gene value replaces High or Low, respectively.  High 
starts at 0 for each gene, and Low starts at 0.  It is possible for this function to 
generate erroneous values if either no feedback or feedback on only a single 
genotype had been entered when Calc_Fitness() function was called.  If no feedback 
had been entered, Calc_Fitness would have failed, and all of the genotypes would 
have the default value of 0 for fitness.  This would be easy to spot, because the 
range arrays would remain at their default values of 0 for High and 255 for Low.  If 
only a single genotype had feedback, then both the High and Low ranges would 
have the same value for each gene, and the absolute values would be all zeros.

int Gen_Expression(char Filename[]) - Once the Find_Ranges function has 
been called for the current generation, this function can be called to generate, print, 
and write out to file a single random expression, with values that fall into the ranges 
determined by Find_Ranges().  The filename to write the expression to is specified 
with the argument Filename, and it is assumed to be a new file, as the file pointer 
starts at the beginning of the file and will overwrite any existing data.  In order to 
generate the value for each gene, the random number generator finds a number 
between 1 and the absolute range for that gene.  Then, the low range value for that 
gene is added, which yields a number in between the high and low range for that 
gene.



Read/Write functions – 

These functions all do more or less the same thing, which is to read or write 
data from the generation array to file.  The data can either be stored in its raw form, 
to load back into the generation array later, or converted into usable servo values.  
The read function only reads raw data, one generation at a time, but the write 
functions can output converted or unconverted data, and write either a whole 
generation or a single genotype at one time.  

The write functions that convert the data first do so by using the minimum 
and maximum servo values entered with the Set_Servo_Ranges function to convert 
the data by scaling the raw value by the ratio between the raw total range, 254, and 
the real servo value range, servo maximum minus servo minimum. To this scaled 
value, the minimum value is added, completing the conversion.  

The filename to write the genotype or generation to is specified with the 
argument Filename, and it is assumed to be a new file, as the file pointer starts at 
the beginning of the file and will overwrite any existing data.

Print functions – 

There are several print functions, which all do the same basic thing – print 
data to the console.  These are mostly for debug purposes, and can print the 
contents of a single genotype is raw or converted form, and entire generation in raw 
form, the array numbers of the current elites, if any,  the entered feedback for each 
genotype, if any, and the ranges found from the last Find_Ranges function, if any.

Interface Functions - 

int Set_Servo_Ranges() - Necessary for interfacing with the robot, this 
function is used to set the minimum, maximum and default servo values for each 
servo that is controlled.  From the minimum and maximum values, the total range is 
also calculated and stored.

int Write_Servo_Ranges(char * filename) – Writes the current servo range 
values out to a file.

int Read_Servo_Ranges(char * filename) – Reads servo range values from a 
file.

int Send_Gtype(int Gtype) – This function takes the stored gene values for the 
selected genotype, converts them to raw servo values according to the entered 
servo ranges, and outputs them to be displayed directly on the robot's face.



int Display_Elites() - This function works like the Send_Gtype function, except 
that instead of outputting a specified genotype to the robot, the elite genotypes of 
the current generation are displayed, one after the other, switching on a keystroke.

int Reset_Servos() - Resets all of the servos on the robot that are being 
controlled to their default values, as entered in the Set_Servo_Ranges function.

Here are some screenshots from my algorithm program, showing some of the 
functionality.

The main menu



A new generation

A genotype



Same genotype being mutated

Two genotypes before crossover



Crossover procedure

Same genotypes after crossover

Hardware Implementation

The robot used in this project is the Niels Bohr robot from the PSU robot 
theatre.  It consists of considerably more than just a face, having wheels to move 
around, a fully movable neck, various sensors and an arm with a gripping hand.  
However, in my case the face was the only part of interest.  The robot’s face is a 
rubber Halloween mask, with various attachment points for the servos that are used 
to generate expressions.  When the servos move, the mask is deformed, moving the 
facial feature at the location where the servo is attached.  The eyebrows and mouth 
are moved with servos that pull on wire lines, dragging the eyebrows up and the 
mouth down from their resting positions.  The cheek servos have X-shaped 
attachments, one arm each of which is attached directly to the back of the mask at 
a point roughly corresponding to the cheek/corner of the mouth.  The eyes have two 
degrees of freedom, able to look up/down and left/right.  However, in the genotype 
of the algorithm, I only took into account the servo controlling the vertical 
movement of the eyes, as the horizontal movement is not at important at conveying 
emotion.  One main shortcoming is that all of the servos are attached to the mask 
with small circles of Velcro, one circle on the servo and one on the mask.  This 
means that after a certain level of tension, the servos simply detach from the mask, 



limiting the range of motion.  Unfortunately, the servos cannot by attached 
permanently to the mask, for two reasons.  First, any adhesive strong enough to 
outperform the Velcro would damage the mask if someone were to attempt to 
remove it, and second, the mask must be removed in order to access any part of 
the face, for instance to replace a servo or adjust one of the control wires.

When I began to integrate the robot into my project, I found that time and 
neglect had left it in fairly sorry shape.  Most of the Velcro tabs attaching the servos 
had peeled off of the mask, since they had been attached with the weak adhesive 
that they were supplied with on their backs.  The mask itself had several tears in it, 
and was only held in position on the head by a single clip in the back.  Once I had 
completed the basic repair work needed to reattach all of the servos, I went about 
trying to connect to the robot.

Control Software

Originally, this project was to have used the program Visual Show Automation 
in order to interface with the robot.  I thought at the time that this was necessary, 
because I did not know how to either output on a serial COM port, or communicate 
the proper information to the robot's servo control chip.  The system that I designed 
to use Visual Show was slow and clumsy.  Instead of interfacing directly with the 
genetic algorithm software that I wrote myself, it would be necessary to generate 
servo values, print them out, and then enter them by hand into the VSA interface.

Ultimately, I found what I needed to have my genetic algorithm program 
communicate directly with the robot.  The two required tools were a datasheet for 
the MiniSSC II servo control chip, and a free library that allows C and C++ programs 
to easily output bytes one at a time or in a string on serial COM ports, including 
emulated USB serial ports.  The library is included in my program from 'Algorithm.h', 
titled 'rs232.c' and 'rs232.h'.  The functions it defines are used in all of my functions 
that communicate directly with the robot.  The functions in the library include 
excellent documentation, but basically they consist of functions to open and close a 
specified serial port, and to output either a single byte, or an array of bytes to that 
port.  Only the latter is important for this project.

The MiniSSC II servo controller operates at 9600 baud, and accepts 
commands consisting of 3 bytes.  The first byte is always equal to 0xFFFF, or 
decimal 255.  The second byte is address of the servo on the chip, out of a total of 8 
servos with one chip, or 16 with both chips connected.  The third byte is the servo 
value, a number between 0 and 255, which is converted by the controller to reflect 
either a 90 or 180 degree range of motion.  The range of motion depends on the 
position of a jumper on the chip.



So in lieu of VSA, I made functions to output a single genotype to the robot, to 
display the elite genotypes on the robot, and to reset the values of each servo to 
the set defaults.  This is the basic functionality that allows each generated 
expression to be displayed in turn on the robot so that feedback can be entered as 
quickly as possible.  The rotation for a generation would go like this:

1.Display expression on robot

2.Enter feedback

3. Repeat 1 and 2 for each expressions

4. Generate fitness values for each expression

Following this loop, the fitness values are used to generate the elites, and to 
determine which genotypes are crossed over and mutated, as opposed to simply 
randomized.

Results

I started by generating some random expressions using my algorithm 
program, and entering the servo values into VSA.  What I found was that the range 
of the expressions generated was minimal;  there was not a dramatic difference 
between the minimum and maximum positions.  After fiddling with the servos and 
the attachment points on the mask, I was able to improve the expressions 
generated somewhat, but this system has some fundamental limitations, which I go 
into further in the discussion.

After playing with the program for a while, I ran 3 test generations in my 
program to try to generate some expressions.  The expressions I evaluated for 
where happy, sad, and surprised.  I found that I was able to get usable expressions 
after about 10 generations.  On the following page are 3 of the best expressions 
that I was able to generate with my algorithm.

These results were obtained, laboriously, before I developed the new software 
for directly communicating with the robot.  Transferring the generated expressions 
of a generation from the console program into VSA, entering feedback, and 
completing crossover and mutation took approximately ten minutes per generation.  
Accordingly, in order to run the number of generations it took to obtain these faces, 
about two hours were required.  Using the new protocol, the time necessary to 
complete a generation should is closer to 3-5 minutes, a large improvement.



“
Happy” face “Sad” Face

“Surprised” face



The randomized expression generator was somewhat disappointing when 
used with the actual robot.  Although it works exactly as designed, the range of 
facial expressions generated using actual algorithm data was minimal, and although 
I could see and hear the servos moving from one expression to the next, I often had 
a hard time telling the expressions apart.

Discussion and Conclusions

The part of this project that worked the best was definitely the software 
implementation of the algorithm and random expressions generator.  I was very 
happy to get some proof that the algorithm could evolve usable expressions, 
instead of a constant stream of random faces.  And, based on testing the random 
expression generator with data from a generation containing some fit genotypes, I 
know from comparing the resulting generated expressions to the more fit examples 
in the generation that the random generator was doing its job.  However, as I 
mentioned in the results, the difference between the expressions generated in this 
fashion were minimal when actually displayed on the robot.

The main limiting factor for good facial expressions and the optimal function 
of the facial servos is the mask used, and the way in which the servos are attached 
to the mask.  The mask is made of a light rubber, but it is still not pliable enough to 
be dramatically deformed by the servos.  This is due to three factors: actual 
mechanical resistance from the mask, the limited torque of the servos, and the sub-
optimal method of attaching the servos.  The first two factors could be dealt with 
easily, by replacing either the mask, the servos, or both.  The mask should be 
replaced with one that is either thinner or made of a more stretchy material, and 
the servos should be upgraded to a model that can apply more force.  As for the 
method of attaching the servos to the mask, this will be more difficult, and will 
require engineering an entirely new system.  One possibility would be to use metal 
clasps on the servos, connected to rings attached permanently with strong adhesive 
to the back of the mask.  This would allow the mask to be removed when necessary, 
but also allow the servos to exert their full force on the mask without detaching the 
connections as the Velcro is prone to do.  

If I had more time to work on this robot, it would also be helpful to rethink the 
way in which the facial servos are oriented.  For example, in their current 
orientation, the eyebrow servos and the mouth servo do not exert force in exactly 
the direction that the mask should deform.  The eyebrow servos should pull the 
mask upwards, and the mouth servo should pull it downwards at its point of 
attachment, but all of these servos instead pull the mask inwards as well.  This 
causes the eyebrows not to move as much as they could, and causes the lower lip 



of the mask’s mouth to pull inwards noticeably when it opens wider than about half 
an inch.  A solution to this problem would be to mount pulleys to redirect the angle 
at which the wire control lines pull on the mask.  Two pulleys could be mounted at 
the eyebrow level, one above each eye, and one pulley could be mounted in the 
space where the chin is.

Another improvement that I would make would be to add something like a 
rigid skeletal structure to the robot’s face.  Right now, the shape of the robot’s head 
is roughly cuboid, and the lack of internal structure supporting the mask severely 
limits the realism of the robot’s face.

The improvement to the algorithm program allowing direct communication 
with the robot was a big step forward for the project, but the time needed to 
evaluate a generation of 20 genotypes is still too long.  A future implementation of 
this program would benefit from a GUI, allowing users to rate an expression with a 
single click, for instance having a slider acting like a number line from 0 to 10 that 
would generate a floating point value depending on where the user clicked.  It does 
not take long for a user to evaluate an expression, because the only important 
metric is the overall emotional gestalt that the expression conveys.  In short, the 
face either works or it doesn't, and it is not feasible or necessary to examine or rate 
each individual feature of the expression on how it contributes to the whole.  The 
expression cannot be broken down into something like “happy right eyebrow, sad 
left eyebrow, surprised cheek, angry mouth.”  It is not the individual parts of the 
face that are happy, or sad, or surprised, it is the integrated whole.  So, because a 
user can take in the face in an instant, it makes sense to allow them to commit their 
impression just as instantaneously.  

If a genotype can be rated in a few seconds, then a generation could be rated 
inside of a minute.  Because the elites, crossover, mutation and randomization are 
handled automatically, dealing with them takes less than a second.  With a 
hypothetical one minute generation, usable expressions and data could be obtained 
in a few minutes, and refined results in under a half hour.  A days work could yield 
commercial animatronic grade results, with a full set of static expressions.


