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Evolution of Simulated Millipede Gait 

 

Introduction 

The relative performance of crossover, mutation, double crossover, and double mutation genetic 

algorithms in generating an optimal cyclic forward gait for a simulated millipede was explored. A 

graphical software program written in C# simulated the motion of a millipede of varying physical 

characteristics (e.g. spine length, leg number, leg size, leg spacing). Matlab was used to create 3D plots 

that represent the performance of the tested genetic algorithms. 

 

Millipede Leg Position Genome 

A snapshot of a millipede's legs placement provides an angle (θ) for each leg. A 0° leg angle describes a 

leg perpendicular to the spine. A rotational limit of ± 20° was selected to avoid crossed legs. Forward 

leg rotation is represented by a positive angle. Each leg angle was expressed as a 5-bit binary string, 

termed a leg position gene. The concatenation of all leg position genes in fixed leg order results in a 

binary string, termed a genome. For example, if a millipede has 6 legs, a 30-bit binary string captures the 

millipede's leg positions. The initial/reset leg-state of a millipede is a 30-bit binary string of zeros (all 

legs are perpendicular to the spine i.e. straight out).  

 

Millipede Motion 

Millipede motion occurs by cyclic execution of the following two steps: 

1. Rotational movements of each leg of the millipede (i.e. represented by a genome). The spine 

does not move, and is grounded. 

2. A body motion (forward/backward/rotation), which resets each leg to perpendicular. 

Step 1 represents the millipede reaching with its legs, and step 2 represents the resulting motion of the 

millipede’s body as it straightens out its legs.  

 

The transformation of the legs rotations into various millipede body motions for a millipede with N pairs 

of legs of length L is determined as follows: 



 

 

The forward motion of each leg (  ) is given by:       

Linear motion of left side of millipede (      ) is given by:   
∑     
     

 
 

Forward motion of right side of millipede (       ) is given by:   
∑     
      

 
 

Forward motion of the millipede occurs if:                           

Backward motion of the millipede occurs if:                           

Clockwise motion of the millipede occurs if:                           

Counter-clockwise motion of the millipede occurs if:                           

 

If the conditions for backward, forward, clockwise, or counter-clockwise motion are satisfied: 

The magnitude of forward motion is given by:          (              )  

The magnitude of backward motion is given by:          (              )  

The magnitude of clockwise motion is given by:                   

The magnitude of counter-clockwise motion is given by:                  

 

Millipede Fitness 

Millipede fitness was arbitrarily evaluated as the magnitude of forward motion. The fittest leg position 

genome has a +20° rotation for each leg, since a millipede that reaches forward with its legs to the 

greatest extent will move forward the furthest when its legs are reset. E.g. for a 6 legged millipede, the 

optimal gait was represented by the genome: “10100 10100 10100 10100 10100 10100” (gaps for visual 

clarity).  

 

Note that a different fitness criteria could have just as readily been selected (e.g. backwards or rotational 

motion). 

 

Evolutionary Process 

The following steps describe the generalized evolutionary process: 

1. Random rotational leg motions (genes) were generated for a millipede and the resulting genome 

placed in a genome pool. The process was repeated until a genome pool of        genomes was 

created. The genome pool was then evolved over       generations using a particular genetic 



 

 

algorithm. The genome from the resulting genome pool with the highest genome fitness was 

recorded. This entire step was repeated 100 times and the average of the recorded highest 

genome fitness values was determined for the given       and      . 

 

2. Step 1 repeated for every combination of        (odd value) and      (even value) in the 

domain:              and             . The average highest genome fitness value for 

each unique combination of       and       was then plotted using Matlab. 

 

3. Steps 1 & 2 were performed for each of the genetic algorithms: 

a. Random (no genetic algorithm applied to each generation). 

b. Crossover 

c. Double crossover 

d. Mutation 

e. Double mutation 

 

Description of Genetic Algorithms 

The application of each genetic algorithm followed the form: 

1. Remove the parent genome with the lowest fitness from the pool. This results is a pool size of: 

       . This is an even number due to the odd values for pool sizes that were used. 

2. Make a copy of the parent genome with the highest fitness. 

3. Evolve each parent genome (in the case of mutation or double-mutation), or pair of genomes (in 

the case of crossover or double-crossover), using the given genetic algorithm. This does not 

change the pool size, which is:        . 

4. Add in the parent genome with the highest fitness. This restores the pool size to:      . 

 

The particular evolution action on each genome is described below. In all evolutionary strategies, if the 

decimal value of any evolved gene in a child genome was outside the range ± 20,  it was truncated to 

fall within that range. 

 

Crossover: 

Two parent genomes were combined to create two child genomes as shown below.  



 

 

 

 

Double crossover: 

Two parent genomes were combined to create two child genomes as shown below: 

 

 

Mutation: 

A bit in the genome bit string was inverted at a random position in the bit string. 

 

Double Mutation: 

Two bits in the genome bit string were inverted at two random positions in the bit string. 

 

Results: 

The fitness value for each pool size and number of evolution generations are plotted below for each 

evolutionary strategy. The highest fitness value possible (fastest forward motion) was normalized to a 

value of 10.  

 

The minimum pool size and number of generations required to achieve the highest fitness value for each 

evolutionary strategy is summarized in the table below: 

 

6-Legged 

Millipede 
Random Crossover Mutation 

Double 

Crossover 

Double 

Mutation 

Pool size none 35 10 10 8 

Generations none 37 19 10 8 

 



 

 

The most effective evolutionary strategy was double mutation, which required the smallest genome pool 

size (8) and least number of generations (8) to achieve optimal fitness. 

 

The least effective evolutionary strategy was random evolution, which never reached optimal fitness 

within the pool-size and generations domain. 

 

Matlab Plots For 6-Leg Millipede 
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