
FPGAs & Synthesizable Verilog

•  Quick tour of the Virtex 5
•  Verilog

 -- Modules
 -- Combinational Logic (gates)
 -- Sequential Logic (registers)
 -- Memories

•  Beehive Verilog tree

Xilinx Virtex V FPGA

XC5VLX110T:
•  1136 pins, 640 IOBs
•  CLB array: 54 cols x 160 rows = 69,120 LUTs
•  148 36Kbit BRAMs = 5.3Mbits
•  64 DSP48E (25x18 mul, 48-bit adder, acc)
•  PCIe, 10/100/1000 Mb/s Ethernet MAC

Figures from Xilinx Virtex II datasheet

Virtex V CLB

Figures from Xilinx Virtex V datasheet

Figures from Xilinx Virtex V datasheet

Virtex 5
Slice

Schematic

.73ns
.59ns

.1ns
.25ns

.4ns

Block Memories (BRAMs)

32k x 1 – 1k x 36
cascadable

512 x 72

8k x 4 – 512 x 72

BRAM Operation

BRAM
Single-port

Config.
CLK
WE

Address

Data_in Data_out

2.1ns

Wiring in FPGAs

Figures from Xilinx App Notes

Using an HDL description
Using Verilog you can write an executable functional
specification that

• documents exact behavior of all the modules and their
interfaces

• can be tested & refined until it does what you want

An HDL description is the first step in a mostly automated
process to build an implementation directly from the
behavioral model

Logic Synthesis Place & route HDL
description

Gate
netlist

CPLD
FPGA

Stdcell ASIC •  HDL→ logic
•  map to target library (LUTs)
•  optimize speed, area

•  create floor plan blocks
•  place cells in block
•  route interconnect
•  optimize (iterate!)

Physical design Functional design

Basic building block: modules

// single-line comments
/* multi-line
 comments
*/
module name(input a,b,input [31:0] c,output z,output reg [3:0] s);

 // declarations of internal signals, registers

 // combinational logic: assign

 // sequential logic: always @ (posedge clock)

 // module instances

endmodule

In Verilog we design modules, one of which will be identified as
our top-level module. Modules usually have named, directional
ports (specified as input, output) which are used to communicate
with the module.

Don’t forget this “;”

Wires
We have to provide declarations* for all our named wires (aka
“nets”). We can create buses – indexed collections of wires – by
specifying the allowable range of indices in the declaration:

wire a,b,z; // three 1-bit wires
wire [31:0] memdata; // a 32-bit bus
wire [7:0] b1,b2,b3,b4; // four 8-bit buses
wire [W-1:0] input; // parameterized bus

Note that [0:7] and [7:0] are both legitimate but it pays to
develop a convention and stick with it. Common usage is
[MSB:LSB] where MSB > LSB; usually LSB is 0. Note that we can
use an expression in our index declaration but the expression’s
value must be able to be determined at compile time. We can also
build unnamed buses via concatenation:

{b1,b2,b3,b4} // 32-bit bus, b1 is [31:24], b2 is [23:16], …
{4{b1[3:0]},16’h0000} // 32-bit bus, 4 copies of b1[3:0], 16 0’s

* Actually by default undeclared identifiers refer to a 1-bit wire, but this means typos get
you into trouble. Specify “`default_nettype none” at the top of your source files to avoid
this bogus behavior.

Continuous assignments

// 2-to-1 multiplexer with dual-polarity outputs
module mux2(input a,b,sel, output z,zbar);
 // again order doesn’t matter (concurrent execution!)
 // syntax is “assign LHS = RHS” where LHS is a wire/bus
 // and RHS is an expression
 assign z = sel ? b : a;
 assign zbar = ~z;
endmodule

If we want to specify a behavior equivalent to combinational logic,
use Verilog’s operators and continuous assignment statements:

Conceptually assign’s are evaluated continuously, so whenever a
value used in the RHS changes, the RHS is re-evaluated and the
value of the wire/bus specified on the LHS is updated.

This type of execution model is called “dataflow” since evaluations
are triggered by data values flowing through the network of wires
and operators.

LHS must be of type wire

Boolean operators
•  Bitwise operators perform bit-oriented operations on vectors

•  ~(4’b0101) = {~0,~1,~0,~1} = 4’b1010
•  4’b0101 & 4’b0011 = {0&0, 1&0, 0&1, 1&1} = 4’b0001

•  Reduction operators act on each bit of a single input vector
•  &(4’b0101) = 0 & 1 & 0 & 1 = 1’b0

•  Logical operators return one-bit (true/false) results
•  !(4’b0101) = 1’b0

~a NOT

a & b AND

a | b OR

a ^ b XOR

a ~^ b
a ^~ b

XNOR

Bitwise Logical
!a NOT

a && b AND

a || b OR

a == b
a != b

[in]equality
returns x when x
or z in bits. Else

returns 0 or 1
a === b
a !== b

case [in]
equality

 returns 0 or 1
based on bit by bit

comparison

&a AND

~&a NAND

|a OR

~|a NOR

^a XOR

~^a
^~a

XNOR

Reduction

Note distinction between ~a and !a
when operating on multi-bit values

Other operators

a ? b : c If a then b else c
Conditional

-a negate

a + b add

a - b subtract

a * b multiply

a / b divide

a % b modulus

a ** b exponentiate

a << b logical left shift

a >> b logical right shift

a <<< b arithmetic left shift

a >>> b arithmetic right shift

Arithmetic

a > b greater than

a >= b greater than or equal

a < b Less than

a <= b Less than or equal

Relational

Numeric Constants

Constant values can be specified with a specific width and radix:

123 // default: decimal radix, 32-bit width
’d123 // ’d = decimal radix
’h7B // ’h = hex radix
’o173 // ’o = octal radix
’b111_1011 // ’b = binary radix, “_” are ignored
’hxx // can include X, Z or ? in non-decimal constants
16’d5 // 16-bit constant ‘b0000_0000_0000_0101
11’h1X? // 11-bit constant ‘b001_XXXX_ZZZZ

By default constants are unsigned and will be extended with 0’s
on left if need be (if high-order bit is X or Z, the extended bits
will be X or Z too). You can specify a signed constant as follows:

8’shFF // 8-bit twos-complement representation of -1

To be absolutely clear in your intent it’s usually best to explicitly
specify the width and radix.

6.111 Fall 2008 14 Lecture 3

Hierarchy: module instances

// 4-to-1 multiplexer
module mux4(input d0,d1,d2,d3, input [1:0] sel, output z);
 wire z1,z2;
 // instances must have unique names within current module.
 // connections are made using .portname(expression) syntax.
 // once again order doesn’t matter…
 mux2 m1(.sel(sel[0]),.a(d0),.b(d1),.z(z1)); // not using zbar
 mux2 m2(.sel(sel[0]),.a(d2),.b(d3),.z(z2));
 mux2 m3(.sel(sel[1]),.a(z1),.b(z2),.z(z));
 // could also write “mux2 m3(z1,z2,sel[1],z,)” NOT A GOOD IDEA!
endmodule

Our descriptions are often hierarchical, where a module’s
behavior is specified by a circuit of module instances:

Connections to a module’s ports are made using a syntax that
specifies both the port name and the wire(s) that connects to it,
so ordering of the ports doesn’t have to be remembered.

This type of hierarchical behavioral model is called “structural”
since we’re building up a structure of instances connected by
wires. We often mix dataflow and structural modeling when
describing a module’s behavior.

6.111 Fall 2008 15 Lecture 3

Parameterized modules
// 2-to-1 multiplexer, W-bit data
module mux2 #(parameter W=1) // data width, default 1 bit
 (input [W-1:0] a,b,
 input sel,
 output [W-1:0] z);
 assign z = sel ? b : a;
 assign zbar = ~z;
endmodule

// 4-to-1 multiplexer, W-bit data
module mux4 #(parameter W=1) // data width, default 1 bit
 (input [W-1:0] d0,d1,d2,d3,
 input [1:0] sel,
 output [W-1:0] z);
 wire [W-1:0] z1,z2;

 mux2 #(.W(W)) m1(.sel(sel[0]),.a(d0),.b(d1),.z(z1));
 mux2 #(.W(W)) m2(.sel(sel[0]),.a(d2),.b(d3),.z(z2));
 mux2 #(.W(W)) m3(.sel(sel[1]),.a(z1),.b(z2),.z(z));
endmodule

could be an expression evaluable at compile time;
if parameter not specified, default value is used

Example: A Simple Counter

0 1

0
1

0

+1

enb
clr

clk

// 4-bit counter with enable and synchronous clear
module counter(input clk,enb,clr,
 output reg [3:0] count);
 wire [3:0] next_count = clr ? 4’b0 :
 enb ? count+1 :
 count;
 always @(posedge clk) count <= next_count;
endmodule

count
4 4

Inside always: LHS must be of type reg, always use <=

Example: Shift Register

clk

// shift register
reg q1,q2,out;
always @(posedge clk) begin
 q1 <= in;
 q2 <= q1;
 out <= q2;
end

out

clk clk

in
q1 q2

Non-blocking assignment (<=) semantics:
 1) evaluate all RHS expressions in all active blocks
 2) after evals complete, assign new values to LHS

// shift register
reg q1,q2,out;
always @(posedge clk) q1 <= in;
always @(posedge clk) q2 <= q1;
always @(posedge clk) out <= q2;

FPGA Memories

•  Distributed memory (built using LUTs as RAMs)
–  Combinational (w/o clock) read + sync (w/ clock) write
–  32/64/128/256 x 1 using a one or more LUTs
–  Wider using multiple LUTs in parallel
–  Multiple read ports; fake by building multiple copies of memory
–  (* ram_style = “distributed” *) pragma

•  Block memory (built using BRAMs)
–  True dual port: two read/write ports
–  Both reads and writes are synchronous (need clock edge!)
–  Widths of 1 to 36 bits, Depths of 32k to 1k
–  Special 512 x 72 hack
–  FIFO support built-in
–  (* ram_style = “block” *) pragma

Example: register file

// 16-entry 32-bit register file
(* ram_style = “distributed” *)
reg [31:0] regfile[15:0];
wire [4:0] a_addr,b_addr,w_addr;
wire [31:0] a_data,b_data,w_data;
wire weRF;

// async read
assign a_data = regfile[a_addr];
assign b_data = regfile[b_addr];

// sync write
always @(posedge clk)
 if (weRF & w_addr != 0) regfile[w_addr] <= w_data;

Example: instruction cache

 (* ram_style = "block" *)
 reg [31:0] instCache[1023:0]; // 1k x 32 bram
 reg [9:0] instAddr;
 always @(posedge clock) begin
 if (~stall | ~Ihit) instAddr <= Iaddr;
 if (~Dmiss & (RDdest == whichCore))
 instCache[{pcx[9:3], cacheAddr}] <= RDreturn;
 end
 assign instx = instCache[instAddr];

 (* ram_style = "distributed" *)
 reg [20:0] instTag[127:0]; // 128 x 21 distributed mem
 assign Itag = instTag[pcx[9:3]];
 always @(posedge clock) begin
 if (writeItag) instTag[pcx[9:3]] <= pcx[30:10];
 end;

Verilog Links

•  Quick reference manual for “modern” Verilog (Verilog-2001) w/
examples:

•  http://www.sutherland-hdl.com/online_verilog_ref_guide/
verilog_2001_ref_guide.pdf

•  Open-source Verilog simulation
–  http://www.icarus.com/eda/verilog/
–  http://gtkwave.sourceforge.net/

Beehive
Verilog

Simulating Beehive

•  ssh beehive@ra.csail.mit.edu
•  mkdir yourname
•  cd yourname
•  tar xfz ../beehive_sim.tgz
•  cd beehive
•  make | more

6.111 Fall 2008 Lecture 1 24

Verilog Assignment #1

•  Current behavior of lock unit:
–  P

•  Read i/o space with AQ[2:0] = 5, AQ[8:3] = lock #
•  Returns 2 if core already has lock
•  Otherwise sends Preq message on ring, converted to Pfail if

another core owns lock
–  If Preq makes it all around the ring, set lock, return 1
–  If Preq converted to Pfail, return 0

–  V
•  Write i/o space with AQ[2:0] = 5, AQ[8:3] = lock #
•  If core owns lock, clear lock bit
•  If core doesn’t own lock, send Vreq message on ring, which

causes owner to clear their lock bit
•  New behavior

–  Return 2 if core already has lock, or if it was the previous owner of
the lock and no Preq messages have been seen for that lock (in which
case set the lock bit). Hint: need more than two lock states…

6.111 Fall 2008 Lecture 1 25

Verilog Assignment #2

•  Implement broadcast Messages
•  Suggestions

–  Use a message destination of 0 to indicate broadcast
–  Modify messenger to receive messages destined for either its core

number or 0
–  Modify messenger to remove broadcast messages it placed on the

ring

6.111 Fall 2008 Lecture 1 26

