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Abstract This paper present a new approach to the Color Fourier Transformation.
Color image processing is investigated in this paper using an algebraic
approach based on triplet (color) numbers. In the algebraic approach,
each image color pixel is considered not as a 3D vector, but as a triplet
(color) number. The so-called orthounitary transforms are introduced
and used for color image processing. These transforms are similar to
a fast orthogonal and unitary transforms. Simulations using the color
Wavelet-Haar-Prometheus transforms on color image compression have
also been performed.

Keywords: Clifford algebra, color images, color wavelet, edge detection, orthouni-
tary transforms.

1. Introduction
Fourier analysis based on orthogonal and unitary transforms plays

an important role in digital image processing. Transforms, notably the
classical discrete Fourier transform, are extensively used in digital image
filtering and in power spectrum estimation. Other Fourier transforms—
e.g., the discrete cosine/sine transforms, wavelet transforms—are often
employed in digital image compression. All the above-mentioned trans-
forms are used in digital grey-level image processing. However, in re-
cent years an increasing interest in color processing has been observed.
Our approach to color image processing is in using so-called color triplet
numbers [1]–[7] for color images and to operate directly on three-channel
(RGB-valued) images as on single-channel triplet-valued images. In the
classical approach every color is associated to a point of the 3D color
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RGB vector space. In our approach, each image color pixel is considered
not as a 3D RGB vector, but as a triplet (color) number.

A natural question that arises in our approach is the definition of
color (RGB-channel) transforms that can be used efficiently in edge
detection and digital image compression. The so-called orthounitary
(triplet-valued or color-valued) Fourier transforms are introduced and
are used for color image processing. These transforms are similar to fast
orthogonal and unitary transforms. Therefore, fast algorithms for their
computation can be easily constructed. Simulations of application of
color transforms to color image compression have also been performed.
The main contributions of this paper are: a) the definition and analysis
of properties of the orthounitary (color) Fourier transforms (in partic-
ular, color Wavelet-Haar-Prometheus transforms); b) showing that the
triplet (color) algebra can be used to solve color image processing prob-
lems in a natural and effective manner.

2. Color images
The aim of this section is to present algebraic models of the subjective

perceptual color space. The color representation we are using is based
on Young’s theory (1802), asserting that any color can be visually repro-
duced by a proper combination of three colors, referred to as primary
colors. The color image appears on the retina as a 3D vector-valued
((R,G,B)-valued) function

f col(x) =
(
fR(x), fG(x), fB(x)

)
= fR(x)iR + fG(x)iG + fB(x)iB ,

where fR(x) =
∫
λ sobj(x, λ)HR(λ)dλ, fG(x) =

∫
λ sobj(x, λ)HG(λ)dλ, and

fB(x) =
∫
λ sobj(x, λ)HB(λ)dλ, sobj(x, λ) is the color spectrum received

from the object, HR(λ), HB(λ), HR(λ) are three photoreceptor (cone
or sensor) sensitivity functions, λ is the wavelength and iR := (1, 0, 0),
iG := (0, 1, 0), iB := (0, 0, 1).

In our approach, each image color pixel is considered not as a 3D
RGB vector, but as a triplet number in the following two forms (see
[1] in this book): fcol(x) = fR(x)1col + fG(x)εcol + fB(x)ε2

col, fcol(x) =
flu(x)elu + fCh(x)ECh, where ε3 = 1. The first and the second expres-
sions are called the A3(R|1, εcol, ε

2
col)- and A3(R,C)- representations of

color image, respectively. Numbers of the form C = x + yεcol + zε2
col

are called the triplet, 3-cycle, or color numbers. Every color num-
ber C = x + yε1 + zε2 is a linear combination C = x + yε1 + zε2 =
aluelu + zChECh = (alu, zCh) of the “scalar” aluelu and “complex” parts
zChECh in the idempotent basis {elu,ECh}. Real numbers alu ∈ R we
will call intensity (luminance) numbers, and complex numbers zCh =
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b + jc ∈ C are called the chromaticity numbers. Thus flu(x) is a
real-valued (grey-level) image and fCh is a complex-valued (chromatic-
valued) image.

A 2D discrete color image can be defined as a 2D array fcol :=
[fcol(i, j)]Ni,j=1 i.e., as a 2D discrete Acol

3 -valued function in one of the
following forms fcol(i, j) : Z2

N −→ Acol
3 (1, ε1, ε2), fcol(i, j) : Z2

N −→
Acol

3 (R,C), (i, j) ∈ Z2
N . Here, every color pixel fcol(i, j) at position

(i, j) is a color number of the type

fcol(i, j) := fr(i, j) + fg(i, j)ε1 + fb(i, j)ε2

or of the type

fcol(i, j) := flu(i, j)elu + fCh(i, j)ECh.

The set of all such images forms N2D Greaves-Hilbert space L(Z2
N ,

Acol
3 ) = (Acol

3 )N
2

= RN2
1 + R

N2
ε1 + RN2

ε2 = RN2
elu + CN2

ECh =
RN2 ⊕CN2

, where RN2
1, RN2

ε1, R
N2

ε2 are real N2D Hilbert spaces of
red, green, and blue images, respectively, RN2

is the N2D real space of
gray-level images, and CN2

is the N2D complex space of chromaticity
images.

A color linear operator L2D :
(
Acol

3

)N2 −→ (
Acol

3

)N2

, L2D[fcol] =
Fcol is said to be orthounitary if L−1

2D = L∗
2D. Orthounitary operators

preserve scalar product 〈.|.〉 and form orthounitary group transforms
OU(Acol

3 ). This group is isomorphic to the direct sum of orthogonal and
unitary groups O(R)elu +U(C)ECh and every element has the represen-
tation L2D = O2Delu + U2DEch, where O2D ∈ O(R) and U2D ∈ U(C)
are orthogonal and unitary transforms, respectively. For color image pro-
cessing we shall use separable 2D transforms. The orthounitary trans-
form L2D[fcol] = Fcol is called separable if it can be represented as Fcol =
L2D[fcol] = L1D[fcol]M2D, i.e. L2D = L1D ⊗ M1D is the tensor product
of two 1D orthounitary transforms of the form L2D = L1D ⊗ L1D =
(O1 ⊗O2)elu + (U1 ⊗ U2)Ech, where O1,O2 and U1,U2 are 1D orthog-
onal and unitary transforms, respectively. Thus, we can obtain any
orthounitary transform, using any two pairs of orthogonal O1,O2 and
unitary transforms U1,U2. In this work we shall use one pair of orthog-
onal and unitary transforms where O1 = O2 = O and U1 = U2 = U. In
this case we obtain a wide family of orthounitary transforms of the form
L2D = (O ⊗ O)elu + (U ⊗ U)Ech using different 1D orthogonal trans-
forms. In this work we shall use the more simple orthounitary trans-
forms L = O · elu + U · ECh with U = O · diag(z0, z1, . . . , zN−1), where
diag(z0, z1, . . . , zN−1) is a diagonal matrix of chromatic (complex) num-
bers. In this case we have L = O ·elu +O ·diag(z0, z1, . . . , zN−1) ·ECh =
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O·diag(C0,C1, . . . ,CN−1), where Ck := 1elu+zkECh, k = 0, 1, . . . , N−1,
are color (triplet) numbers. Hence, our orthounitary transforms are rep-
resented as the product of an orthogonal transform O and a triplet-
valued (color) diagonal matrix diag(C0,C1, . . . ,CN−1). A large num-
ber of orthounitary transforms can be devised by appropriate choice
of the orthogonal transform O and the diagonal transform parameters
C0,C1, . . . ,CN−1.

3. Color Wavelet-Haar-Prometheus transforms
One of the aims of this paper is to define three-channel transforms

(the so-called color Fourier transforms) that could eventually be used
in digital color image compression. We have experimented with the
so-called color Wavelet-Haar WH2n , color Wavelet-Haar-Prometheus
WHP2n , Wavelet-Haar-Hartley WHH3n , and Wavelet-Haar-Hartley-
Prometheus WHHP3n , transforms [8]–[9].

Orthogonal and unitary Wavelet-Haar and Wavelet-Haar-Prometheus
transforms have the factorizations: WHP2n = WH2n∆2n , WHP2n =
WH2n∆2n , and

WH2n =
n∏

i=1

[
(I2n−i

◦⊗ F2) ⊕ I2n−2n−i+1

]
, (1)

WH2n =
n∏

i=1

[
(I2n−i

◦⊗ F2) ⊕ I2n−2n−i+1

]
, (2)

respectively, where

I2n−i

◦⊗ F2 = C

[
I2n−i ⊗ [1 1]
I2n−i ⊗ [1 − 1]

]
, I2n−i

◦⊗ F2 = C

[
I2n−i ⊗ [1 ω3]
I2n−i ⊗ [1 − ω3]

]
are the generalized tensor products of the identity matrix I2n−i with

F2 =
[

1 1
1 −1

]
and F2 =

[
1 ω3

1 −ω3

]
=

√
2

2

[
1 1
1 −1

] [
1

ω3

]
, re-

spectively. Here, c =
√

2
2 , F2 is the classical Walsh transform and F2

is the complex ω3-deformed Walsh transform, where ω3 = 3
√

1 = e2πi/3

and ∆2n is a diagonal matrix, whose diagonal elements form the Shapiro
(±1)-sequence. If α = (α1, α2, . . . , αn) is the binary representation of
the number of the αth row of ∆2n , where αi ∈ Z2, then for diago-
nal elements ∆α,α we have the expression ∆α,α = (−1)

�n−1
i=1 αiαi+1 . The

quantity b(α) =
∑n−1

i=1 αiαi+1 is the number of occurrences of the digi-
tal block B = (11) in the binary representation (α1, α2, . . . , αn) of the
number α.
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Using two pairs (WH2n ,WH2n) and (WHP2n ,WHP2n) of fast or-
thogonal and unitary Haar-Wavelet transforms (1–2), we construct 1D
color Wavelet-Haar and Wavelet-Haar-Prometheus 2n-point fast trans-
forms as

WH2n = WH2n ·elu+WH2n ·ECh =

(
n∏

i=1

[
(I2n−i

◦⊗ F2) ⊕ I2n−2n−i+1

])
,

(3)

WHP2n = WH2n∆2n =
(
WHP2n · elu + WHP2n · ECh

)
∆2n =

=

(
n∏

i=1

[
(I2n−i

◦⊗ F2) ⊕ I2n−2n−i+1

])
∆2n , (4)

where F2 = F2 · elu + F2 · ECh =

√
2

2

([
1 1
1 −1

]
· elu +

[
1 ω3

i −ω3

]
· ECh

)
=

√
2

2

[
1 ε
1 −ε

]
.

We see that the color Haar-Wavelet transform has the same fast algo-
rithm as the orthogonal and unitary transforms in Eqs. (1). Note that
the product of ε with a color pixel fcol = (fR, fG, fB) = fR1+fGε1+fBε2

is realized without multiplications as the right shift of color components
εfcol = ε(fR, fG, fB) = ε(fR1 + fGε1 + fBε2) = (fB1 + fRε1 + fBε2) =
(fB, fR, fG). In this case the situation is the same as for Number Theo-
retical Transforms.

The next example of color (orthounitary) Haar-like wavelet transforms
is based on Haar-Hartley H3 (3×3)-transforms. Using these transforms
we construct an “elementary” three-point color transform of the follow-
ing form in the A3(R,C)-algebra: HF3 = H3 · elu + F3 ·ECh =

1√
3

⎡⎣ 1 1 1
1 h1 h2

1 h2 h1

⎤⎦ elu +
1√
3

⎡⎣ 1 1 1
1 h1ω

1
3 h2ω

2
3

1 h2ω
1
3 h1ω

2
3

⎤⎦ECh =

1√
3

⎡⎣ 1 1 1
1 h1ε

1 h2ε
2

1 h2ε
1 h1ε

2

⎤⎦ =
1√
3

⎡⎣ 1 1 1
1 h1 h2

1 h2 h1

⎤⎦⎡⎣ 1
ε1

ε2

⎤⎦ , (5)

where h1 := cas
(

2π
3

)
= cos

(
2π
3

)
+sin

(
2π
3

)
, h2 := cas

(
2π2
3

)
= cos

(
2π2
3

)
+

sin
(

2π2
3

)
and ω1

3 := cis
(

2π
3

)
= cos

(
2π
3

)
+ i sin

(
2π
3

)
, ω2

3 := cis
(

2π2
3

)
=

cos
(

2π2
3

)
+i sin

(
2π2
3

)
. We use the orthogonal and unitary Wavelet-Haar-

Hartley and Wavelet-Haar-Hartley-Prometheus 3n-point transforms that
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follow: WHP3n = WH3n∆3n , WHP3n = WH3n∆3n , and

WH3n =
n∏

i=1

[
(I3n−i

◦⊗ F3) ⊕ I3n−3n−i+1

]
, (6)

WH3n =
n∏

i=1

[
(I3n−i

◦⊗ F3) ⊕ I3n−2n−i+1

]
, (7)

respectively, where

I3n−i

◦⊗ F3 =

⎡⎣I3n−i⊗[1 1 1 ]
I3n−i⊗[1 h1 h2 ]
I3n−i⊗[1 h2 h1 ]

⎤⎦, I3n−i

◦⊗ F3 =

⎡⎣I3n−i⊗[1 ω1
3 ω2

3 ]
I3n−i⊗[1 h1ω

1
3 h2ω

2
3 ]

I3n−i⊗[1 h2ω
1
3 h1ω

2
3 ]

⎤⎦
are the generalized tensor products of the identity matrix I3n−i with

H3 =
1√
3

⎡⎣ 1 1 1
1 h1 h2

1 h2 h1

⎤⎦ and H3 =
1√
3

⎡⎣ 1 1 1
1 h1ω

1
3 h2ω

2
3

1 h2ω
1
3 h1ω

2
3

⎤⎦ ,

respectively, and ∆3n is a diagonal matrix whose diagonal elements form
the 3-point Shapiro ω3-sequence. If α = (α1, α2, . . . , αn) is the 3-ary
representation of the number in the αth row of ∆3n , where αi ∈ Z2, then

for diagonal elements ∆α,α we have the expression ∆α,α = ω
�n−1

i=1 αiαi+1

3 .
Using these fast orthogonal and unitary Wavelet-Haar-Hartley-Pro-

metheus transforms (6–7) we construct 1D fast color Wavelet-Haar-Hart-
ley-Prometheus 3n-point transforms by WHP3n = WH3n∆3n and

WH3n =
(

n∏
i=1

[
(I3n−i

◦⊗ HF3) ⊕ I3n−3n−i+1

])
, (8)

where HF3 is the color 3-point Hartley transform (5).

4. Edge detection and compression of color
images

One of the primary applications of this work could be in edge detection
and color image compression. For edge detection, we convolve the color
(3 × 3)-masks mcol(i, j) with a color image fcol(i, j) of size N × N :

f̂(i, j) =
∑

(i,j)∈Z2
N

mcol(k, l)fcol(i − k, j − l).

We use color Prewitt’s-like masks for detection of horizontal, vertical,
and diagonal edges. As entries instead of real numbers these masks have
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Figure 1. Color edge detector. Left: original image, right: detected edges.

triplet numbers:

mH
col =

⎡⎣ 1 ε ε2

0 0 0
−1 −ε −ε2

⎤⎦ , mV
col =

⎡⎣ 1 0 −1
ε 0 −ε
ε2 0 −ε2

⎤⎦ ,

mLD
col =

⎡⎣ ε ε2 0
1 0 −ε2

0 −1 −ε

⎤⎦ , mRD
col =

⎡⎣ 0 1 ε
−1 0 ε2

−ε −ε2 0

⎤⎦ .

The effect of the masks in homogenous and nonhomogenous color regions
differs substantially. Let us analyze both cases in detail. At any position
(i, j) of a homogenous color region after convolution we get

f̂col =

⎡⎣ f11
R + f12

B + f13
G

f11
G + f12

R + f13
B

f11
B + f12

G + f13
R

⎤⎦−
⎡⎣ f31

R + f32
B + f33

G
f31

G + f32
R + f33

B
f31

B + f32
G + f33

R

⎤⎦ = 0,

since, for all 9 pixels we have f11
col = f12

col = f13
col = f21

col = f22
col = f23

col =
f31
col = f32

col = f33
col = color const = C. For horizontal nonhomogenous

color regions we have f11
col = f12

col = f13
col = C1 = a1

luelu + bfz1
chEch, and

f31
col = f32

col = f33
col = C2 = a2

luelu + z2
chEch. Hence, f̂col =

=

⎡⎣f11
R + f12

B + f13
G

f11
G + f12

R + f13
B

f11
B + f12

G + f13
R

⎤⎦−
⎡⎣f31

R + f32
B + f33

G
f31

G + f32
R + f33

B
f31

B + f32
G + f33

R

⎤⎦=

⎡⎣a1
lu

a1
lu

a1
lu

⎤⎦−
⎡⎣a2

lu
a2

lu
a2

lu

⎤⎦ = ∆aluelu.

Fig. 1 shows the result of color edge detection.
We have performed a number of simulations on the use of orthouni-

tary transforms in the area of color image compression. We have exper-
imented both with 2n × 2n and 3n × 3n-pixel images by using WHP2n ,
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WHP3n , and WHP2n , WHP3n transforms. Figures 2–3 illustrate the
WHP3n and WHP2n , WHP3n transforms of the color image “BA-
BOON” after the first iterations of the fast algorithms of these transfor-
mations. Examples of 2D color histrograms of chromaticity planes for
different spectrums are shown in Fig. 4.

Figure 2. Left: original “BABOON” image, right: wavelet spectrum of “BABOON”
after the first iterations of ���3n .

5. Conclusion
A system of color-valued 2D basis functions has been defined in this

paper. This system can be used to obtain color orthounitary Fourier
transforms and series analyses of color images. Properties of the color
Fourier transforms are presented. It is shown that such color series have
properties similar to the classical orthogonal Fourier series. A family
of discrete color orthounitary 2D Fourier transforms has also been pre-
sented that can be used in color image compression. In particular, the
color Wavelet-Haar-Prometheus transforms are defined and used to ob-
tain the color Wavelet-Haar-Prometheus series.

The analysis presented in this paper provides a very general frame-
work for the definition of other multicolor transforms based on multiplet
hypercomplex numbers. The derivation of such multicolor transforms
is the subject of ongoing research. The motivation of this ongoing re-
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Figure 3. Wavelet spectrum of “BABOON” after the first iterations. Left: WH2n ,
right: ��3n .

Figure 4. Examples of 2D histograms of the chromaticity plane. From top to bottom
from left to right: original “BABOON” image, WH3 spectrum, ��3 spectrum,
���3 spectrum.

search is to define multicolor transforms that can be used efficiently in
multicolor satellite image compression.
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