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Abstract 

The concept of colour and multispectral image recog- 
nition connects all the topics we are considering. Colour 
(multispectral) image processing is investigated in this pa- 
per using an algebraic approach based on triplet numbers. 
In the algebraic approach, each image element is consid- 
ered not as a 3 0  vectol; but as a triplet number The main 
goal of the paper is to show that triplet algebra can be used 
to solve colour image processing problems in a natural and 
effective manner In this work we propose novel methods for  
wavelet transforms and splines implementation in colour 
space. 

1. Introduction 

The concept of colour and multispectral image recogni- 
tion connects all the topics we are considering. In this pa- 
per, the term "multicomponent (multispectral, multicolour) 
image" is used for an image with more than one compo- 
nent. An RGB image is an example of a colour image hav- 
ing three separate image components R(red), G(green), and 
B(blue). Most of the colour image processing was done in 
the usual colour vector representations, such as RGB, HSV, 
CIE . . . , etc. 

Multispectral (multichannel) image processing is investi- 
gated in this paper using an algebraic approach based on hy- 
percomplex numbers. This has proven to be more appropri- 
ate for multispectral-valued signals compared to traditional 
component-wise approaches. The suitability of such tech- 
nique is often credited to the inherent correlation that exists 
between the spectral channels of an image. 

In the algebraic approach, each image element is consid- 
ered not as a mD vector, but as a mD hypercomplex num- 
ber (m is the number of image spectral channels). Note that 
both these suppositions are only hypothesis. We have no 
biological evidence in the form of experiments that would 
verify that the brain actually uses any of the algebraic prop- 

erties coming from the structures of vector spaces or hy- 
percomplex algebras. We only know that we are able to 
recognize object in an invariant manner. 

The main goal of the paper is to show that hypercom- 
plex algebras can be used to solve image processing prob- 
lems in multispectral environment in a natural and effective 
manner. We know that primates and animals with different 
evolutionary histories have colour visual systems with vari- 
ous dimensions. For example, the human brain uses 3D hy- 
percomplex (triplet) numbers to recognize colour (RGB)- 
images and mantis shrimps use 10D multiplet numbers to 
recognize multicolour images. It is our aim to show that 
the use of hypercomplex algebras fits more naturally to the 
tasks of recognition of multicolour patterns than the usage 
of colour vector spaces. One can argue that i t  is conceiv- 
able that the nature has through evolution also leamed to 
utilize useful properties of hypercomplex numbers. Thus, 
the visual cortex might have the ability to operate as a hy- 
percomplex algebra computing device. 

In this paper we focus our attention on 3D hypercomplex 
(triplet) numbers and colour wavelets and colour splines in 
triplet-valued space. 

2. Triplet algebra and colour images 

Triplet numbers were considered by De Morgan [ I ]  and 
Greaves [5 ] .  According to them the numbers of the form 
C = z+y&,,l +z& are called triplet and form algebra [7]: 

&(R)  = Jb(Rll,&cO~,&l) := R1 + + R&,l, 
&$l = 1, 

( 1 )  
which is called triplet (color) algebra and denoted by AT'. 

One can show that triplet algebra is  the direct sum of real 
R and complex C fields 

A3(R) = R . el, + C . E c ~ ,  (2) 

where el,, and E c ~  are the "real" and the "complex" hy- 
perimaginery units, respectively. Therefore, every triplet C 
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is a linear combination C = ael, + Z E C ~  of the "scalar" 
and "complex" parts ael, and z E c ~ ,  respectively. The real 
numbers a E R are called intensity (luminance) numbers 
and complex numbers z E C we will call chromaticity num- 
bers. 

A color image can be considered as a vector-valued 
((R,G,B)-valued) function 

fCoz(zc,y) = f ~ ( z , y ) i + f ~ ( z , y ) j  + ~ B ( z , Y ) ~ .  (3) 

Using color transformation to separate the color image onto 
two terms: 1D luminance (intensity) term and 2D chro- 
maticity term (color information) [7]: 

fcoi(zc,Y) = f l u ( z , Y ) e  + fCh(T,Y),  (4) 

where e = (i + j + k ) / d )  ( e , f C h ( z , y ) )  = 0. This is 
well-known user oriented HSV model of perceptual colour 
space. 

The same result is obtained if we consider a color image 
as a triplet-valued function [7-121, 114-171: 

fcol(z,Y) = 

= f iu(z ,  Y) . el, + f C h ( z ,  Y)  ' E c ~ .  
fR(z,Y)1coi -k fG(z,Y)Ecoi + fB(z ,Y)&l  = (5)  

Most of the data used in image processing are real- 
valued. Wavelets and splines were developed for the real- 
valued signals and then generalized on complex-valued 
ones. But usually processing techniques do not depend on 
real of complex essence of the data and do not provide the 
different ways of real and complex data. Meanwhile, the 
particular qualities of complex data can have a certain in- 
terest. In our case colour images are represented as triplet- 
valued functions (5). They form the space of colour images 
as the space of triplet-valued functions. In this space we 
define a new triplet-valued (colour) wavelets. 

Intensity term fiu(z,y) of the colour image is real- 
valued and therefore can be processed by the ordi- 
nary (gray-level) wavelet methods. The chromatic term 
f C h ( z , y )  is complex-valued and it is necessary to define 
a modification of wavelets and splines in order to take into 
account the complex nature of the chroma. 

3. Triplet-valued wavelets 

Let G R ( t )  be an ordinal real-valued mother wavelet. We 
define the complex-valued wavelet as an analytic signal [2]: 

(6) 

where X[$R(t)] is the Hilbert transform of the real-valued 
mother wavelet. Now we construct triplet-valued (colour) 
mother wavelet by 

$,""'(t) = $l"(t) . el, + $Jch(t) . Em, 

+lICh(t) = $R(t)  + i$'(t) = G R ( t )  + i X [ G R ( t ) ] ,  

(7) 

where is a real-valued wavelet (luminance wavelet) 
and $Ch is the complex-valued (chromatic) wavelet defined 

Further, we define tripled-valued continuous and discrete 

Let G R ( t )  be a real-valued mother wavelet and its scaled 

by (6). 

wavelet transforms. 

and shifted versions 

form the orthonormal basis of the space L2(R). 
Let Q r ( t )  be an imaginary part of complex-valued 

mother wavelet in (6). Then the complex-valued wavelet 
basis is defined as 

are scaled and shifted versions of $'(t). 

fined as follows 
Hence, the tripled-valued (colour) wavelet basis is de- 

where $eT(t) is a real-valued wavelet basis for luminance 
terms and $E!(t) is a complex-valued wavelet basis for 
chromatic terms. 

Finally we define 1D and 2D direct and inverse triplet- 
. valued continuous wavelet transforms. The pair of 1D trans- 

forms has the following form: . 

+m 

--m -CO 

where 

--oo 

is a normalization factor and ,co'(w) is the Fourier trans- 
form of the tripled-valued mother wavelet $@ (t) .  

In 2D case we have another pair of the tripled-valued 
continuous wavelet transforms: 

+-m t - m  
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Analogously, we define discrete counterpart of continu- 
ous wavelets. The real-valued wavelets have the following 
form 

where @(t) is a mother wavelet. Thus, $ t ,k ( t )  is simply a 
scaling and translation of the mother wavelet, lCIR(t). 

Using complex wavelet definition (6) we can define the 
complex-valued (chromatic) wavelet basis functions by 

where $;,,(t) is a scaling and translation of imaginary part 
of the complex mother wavelet as in Eq. (14). They form 
colour wavelet basis in the space of colour triplet-valued 
functions. 

Finally, we construct triplet-valued (colour) wavelets by 

They form colour wavelet basis in the space of colour 
triplet-valued functions. 

Now, we can define discrete colour wavelet transforms. 
In I D  case the discrete colour wavelet transform has the 
following form: 

The real and imaginary parts of the-different complex 
mother wavelets are shown in Fig. 1 and Fig. 2. Examples of 
chromatic and triplet-valued wavelets are shown in Fig. 4. 

. I  4. Triplet-valued splines 

Similarly to colour wavelets, it IS possible to construct 
colour splines. 

Let pn(z) be a B-spline [18]. B-splines are symmetncal, 
bell shaped functions constructed from a rectangular pulse: 

1, - ; < x < ;  
(21) 

0,  otherwise 

by 

. .  

(22) 
where (x)? = max(0, zn). We define the complex-valued 
B-spline as an analytic signal: 

P,Ch(5) = P,"(.) + iPL(4 = P,R(.) + +t[P,"(4Jj (23) 

where 'H[PE(z)] is the Hilbert transform of real-valued 
B-spline p,"(z). We construct triplet-valued (colour) B- 
splines in the same'way as triplet-valued wavelets: 

Pz'(.) = Pn(z) . el, + P,Ch(x) . E c ~ .  (24) 

Another colour spline types (for example, Moms, Keys', 
Schaum's, sinc modifications) can be constructed in the 
same way. First, construct the complex-valued spline as an 
analytic signal sCh(z) )  of spline function s(z). Second, 
construct the tripled-valued spline as scol(z) = s ( x )  .el, + 

The real and imaginary parts of- the different complex 
splines are shown in Fig. 3 and examples of chromatic and 
triplet-valued splines are shown in Fig. 5. 

s C h ( z ) .  E c ~ .  

5. Conclusion 

In this study we define a new method of constructing 
triplet-valued (colour)) wavelets and splines. It is based on 
triplet algebra and Hilbert transform of signal. 
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parts for different complex wavelets (con- 
tinue) 

Figure 3. Examples of real and imaginary 
parts for different complex splines 
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Figure 4. Left: examples of chromatic 
wavelets (intensity is equal to 0.5); Right: ex- 
amples of triplet-valued wavelets as a func- 
tion two spatial coordinates (third axis is in- 
tensity, surface is coloured in accordance 
with chromatic component values) 

Figure 5. Left: examples of chromatic splines 
(intensity is equal to 0.5); Right: examples of 
triplet-valued splines as a function two spatial 
coordinates (third axis is intensity, s,urface is 
coloured in accordance with chromatic com- 
ponent values) 
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