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(8] g'o‘lé' ,{lgégdwan and P. M. Grandaptive Filters Englewood Cliffs increase the number of possible transformations for integer-valued

NJ: Prentice-Hall, pp. 68-81, 1985. matrices, Perkowski introduced the concept of linearly independent
[9] ,Adaptive Filters Englewood Cliffs, NJ: Prentice-Hall, p. 22, logic and polynomial expansions confined to operationsin(2)
1985. [18], [19]. Fast transforms for Perkowski linearly independent logic

[10] S. Haykin, Introduction to Adaptive Filters New York: Macmillan,

New York. 1984. were developed in [10]. The idea of using complex-valued rather

than integer-valued transformation matrices for spectral processing
of Boolean functions is considered for the first time in this article.
By increasing still further the number of possible different entries
in the transformation matrices with complex numbers, one can
expect the reduction of their spectral representation, especially if
Family of Unified Complex Hadamard Transforms both the original functions and their spectra are presented in the
form of some kind of decision diagrams, which have already been
proposed for UCHT’s [8], [20]. In particular, the Walsh—Hadamard
transform is one of many UCHT matrices introduced here. Some
Abstract—Novel discrete orthogonal transforms are introduced in of the UCHT matrices have_ a unique half-spectrum p_roperty (HSP).
this paper, namely the unified complex Hadamard transforms. These 1here are general fast algorithms from the representation of transform
transforms have elements confined to four elementary complex integer matrices in the form of layered Kronecker matrices. In addition,
numbers which are generated based on the Walsh-Hadamard transform, constant-geometry fast algorithms with in-place architecture are also
gisr:‘gng ;éngfnggmg% Orzart:;rr\iwcaé::a; réoggléluas' s-gc]iei ngzr:;ﬁ_“on of higher -\ ailable for the new transforms. The complex BIFORE transform
instead has only fast transform without constant geometry algorithm.
_Index Terms—Digital signal processing, discrete transforms, fast algo- The existence of constant-geometry fast butterflies is suitable for
rithms, orthogonal transforms, unified complex Hadamard transforms. efficient very large-scale integration (VLSI) implementation. The
introduced UCHT’s may be used for various applications, where
|. INTRODUCTION the Walsh-Hadamard transform has already been used [1], [2],

In this brief, novel discrete orthogonal transformations with eL4]_[7]; (1], [b12]’| [17_]];_ [35]’ [56]_‘ [28], [31|H?j9]' ((j;enerallly,_the
ements which are integer-valued complex numbers and may gHTsmay e classified as the integer-valued and complex integer-

considered as systems of complex Walsh functions are introduc¥al.ued transforms. The integer-valued and complex integer-valued

These transforms may be useful in applications where the nddgifices have elements confined to tw&1) and four complex
bers £1 and+/), respectively. Comparing the complex integer-

for complex-valued discrete orthogonal transforms arises, such 44"

digital signal processing (DSP). These systems of functions af@luéd UCHT's between themselves, those that possess HSP will
transformations are called complex Hadamard transforms (CHTR§ advantageous as they require half of the spectral coefficients for
and are confined to four complex valuesl(and=+). In the literature, 2halysis. However, it should be pointed out that if the functional
there exists another transformation based on four-valued compfi3{@ are real numbers, the existence of the HSP in complex integer-
Walsh functions, called the “complex BIFORE transform” [22]. Foyalued UCHT’s has no additional storage advantage compared to the
real-valued input data, the complex BIFORE transform reduces td™€ger-valued counterparts (e.g., Walsh-Hadamard transform). But,
BIFORE or Hadamard transform whose bases are Walsh functioH complex integer-valued transforms [3], [12], [23], [24], [26],
The basic definition of the complex BIFORE transform is basdd’] are suitable for problems with complex-valued functions and
on a recursive formula defining one class of complex Hadamal@f such functions, the UCHT's with half spectrum property is the
matrices that involves diagonalization of higher order matrices aA#PSt compact representation.
multiple Kronecker products. The unified complex Hadamard trans-A humber of applications of new transforms in the area of
forms (UCHT’s) have recently been considered as a tool in spectf@ectral computer-aided design of digital circuit is shown in [8],
approach to logic design [8], [9], [20], [21]. Like its predecessord9], [20], [21]. Some of them are detection of Boolean symmetries
the UCHT's show similar properties and characteristics. The classi@ld compact classification scheme [20], [21]. The above applications
techniques of transforming will be employed, i.e., the truth vector 6&n be also performed using other spectral approaches based on
the function is transformed into a unique spectral domain, and by thélsh and Reed-Muller transforms [7], [29] as well as classical
fact that the transform matrix is orthogonal, the property of revealirapproaches [13]. They are important in many real life problems of
some information more clearly while concealing others is sustaineisigning and optimizing digital circuits such as Boolean matching,
The spectral domain is called a complex spectral domain, where teehnology mapping and designing with universal logic modules [7].
information from the truth vector is transformed, and divided intéds mentioned earlier, some UCHT's are simply systems of complex
Walsh functions while others becomeralued Chrestenson functions
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functions [16], and disjoint spectral translation that allows extendirig;jz, kr) are elements off and B at row j 4, columnk and row
the possibility of low complexity realization to a large class of s, columnk g, respectively. Thenod« Kronecker additiorof A and
multiple-valued logical functions [14]. Similar results can be obtaineB denoted asi©, B, is defined by the following matrix operation,
for these UCHT's that are different from Chrestenson functions. Thehere elements il are expanded in a Kronecker product manner
methods should be computationally more effective as Chrestensoto a submatrix with dimensions x ¢z and the values in such a
transform matrix does not possess HSP. Finally, based on UCHTssbmatrix are the results of the particular elementdoinod — ¢
new complex decision diagrams to store and calculate the UCH@dition with the respective elements Bf i.e.,
spectra have t_Je_en mtroduced by the same guthor_s_m [8], [20]. A'(0,0)  a'(0,1) - a'(0,c4)
These new decision diagrams are complex hybrid decision diagrams, d(1.0)  d'(1,1) - d'(Lea)
complex algebraic decision diagrams, complex multiterminal decision 49, ,B = . - o (2)
diagrams, real and imaginary decision diagrams and complex edge- : : . :

valued decision diagrams. With the existence of HSP, the size of a'(r4,0) a'(ra,1) -+ d(ra,ca)

aI_I d'ﬁe"?”t comp_lex Qe0|s_|on diagrams is aIV\{ayg r_educe_d by halfand where we have the equation shown at the bottom of the page,
Since this reduction is unique only to UCHT'’s, it is obvious that

) . . . with +, representing thenod — ¢ addition.
such a feature is useful particularly in handling complex-valued dataDeﬁnition 3. Let A be anr x ¢ matrix, such thafA] = {a(j, k)}

functions. where0 < j < r,0 < k < ¢,a(j, k) is an element o at row; and
columnk. If [B] = {b(k)} is al x ¢ row matrix and[C] = {c(j)}

Il. FAMILY OF UNIFIED COMPLEX HADAMARD TRANSFORMS is anr x 1 column matrix, then the matrix operatoris defined as

In this section, the concept of family of UCHT'sis introduced [AoB] = {a(j.k) b(k)} ©)

and such a family is proposed to represent discrete signals and

systems. Several properties of the new family are outlined. Thad

generation of the transformation matrices commences from the basic , . .

Walsh-Hadamard transformation matrix. All members of UCHT's [A0Cl={a(, k) ()} )

may be produced by newly defined direct matrix operator and Property 1: The following properties o may be derived:
recursively generated to higher dimension matrices by a single

Kronecker product. It must be noted that although the basis functions (Ao B)@" = (AQ") o (BR") (5)
in the definition that generates all UCHT matrices are discrete (ABT)QC: (AoC)BT (6)
Walsh functions, each member of the newly defined UCHT fulfills (Ao B1)o By = Ao (By o By) @

requirements of complex Hadamard matrices; there are altogether
64 such different matrices that are introduced in this section, all of
which are generated by one unifying formula. Half of the UCHT, 4
matrices fulfill the requirement of the novel half-spectrum theorem. o
The theorem shows that from the knowledge of only half the vector (AoBoC)=(AoB)oC=A0oBoC 9)
of the full spectrum, one is able to recover the full original data.

It is shown in this brief that UCHT matrices can be generated o . . -
recursively in a variety of ways by using new operators on matrice%r.'d@ denotes a right-hand side Kronecker product appi¢ehes.
They are: the direct matrix operator, theyd — ¢ Kronecker operator,
and the rotation operator. Different mathematical properties of such IV. BAsic DEFINITIONS AND PROPERTIES OFUCHTS
operators are given. The introduced UCHT's have several DSPin the definitions of existing discrete orthogonal transforms, the
applications. When dealing with complex signals or multiple-valuegiements of transformation matrices normally consist of discrete
logic systems coded as complex numbers, there are some inheggilies of+1 and—1, or generalizations that permit valuesF ™/
computational advantages in UCHT matrices and can be usedfdpa primegq, which leads to a complete orthonormal system known
efficiently analyze and synthesize such complex input functions. as the Chrestenson system [26], [33]. In this section, some new

matrix definitions are introduced to open a new concept of a family
IIl. PRELIMINARIES of discrete transforms that can be used to process complex and
multiple-valued functions.

Through this brief, two setsZ, and C4 are defined asZ, =
{0,1,---,¢ = 1} andCs = {+1,—1,+i, —i}, respectively.A is
an N x N square matrix, wherpd] = {a(j, k)},a(j, k) € Z4.

Definition 4: If H, =i is a square nonsingular matrix of order

[af] = {a0P)], (1) N =q",there exists a unique inverd; . If [H,,] and[H, '] have
elements fronC, then H,, is a multiple-valued transform.

Definition 2: Let [A] = {a(ja,ka)} be anra x c4 matrix and The transformation matrices are defined by a set of basis discrete-
[B] = {b(jB, kB)} be anrp x cg matrix, with0 < j4 <ra—1,0 < valued functions. To ensure that no information is lost in the resulting
ka<ca—-1,0<jp<rp—land0 < kg <cp—1.a(ja,ka)and spectrum, orthogonality in the transformation matrix is essential. This

(AoBoC) =(AoB) o C* (8)

here[B1] = {b1(k)} and B, = {b2(k)} arel x ¢ row matrices,

Definition 1: Let H be anr X ¢ matrix, such that[H] =
{(j,k)}, 0<j<r—1,0<k<c—1h(jk) is an element of
H at row j and columnk. Then the power matrix of an integer
with respect toH is anr x ¢ matrix defined by

a(ja,ka)+406(0,0)  a(ja,ka)+,0(0,1) -+ a(ja, ka)+45(0,cn)
. a(ja,ka)+q0b(1,0)  a(ja.ka)+40(1,1) a(ja,ka) 44 b(1,en)
a(ja,ka)= . . .

a(ja,ka) +40(re,0) a(ja,ka)+40(re,1) --+ a(ja,ka)+4b(re,cB)
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requires zero correlation between pairs of different basis functions. InProperty 2: If H{T] = ¢ and the condition of existence of UCHT
general, ifH is an orthogonalV x N matrix with real entries, then matrix is satisfied, then the higher dimension matffs of size
2" x 2" is orthogonal in complex domain if

HH" = NI. (10)
H, =i* (18)
Definition 5: Let ¢ = 4 and H represent the resulting matrix of » times ,
H =" = {h(j,k)}, thenH is said to be orthogonal in the complexwhere A,, = AQ, -+ ©,4 andH, " =1/NH,.
domain [30] if Definition 7: Let H, be a2™ x 2" square matrix, such thd,
N is recursively defined by

|det H| = N'/*N (11) 7O, g
# = [ ] (19)

and H®  HY

HH*=H H=NI (12) where each submatri®'” . j € {1,2.3,4}. has dimension of

. ) 2"~! x 2"~! The Rotation operatorR on the square matrix{,
where H™ represents the complex conjugate transpos odnd H g recursively defined a&" " clockwise rotations involving” "+

is said to be a CHT. The resulting matriX can be easily used as g,pmatrices each of ordéf—"' for » — mon— 1,21

a binary, ternary, or quaternary transform as any two, three, or allpgfinition 8: The Inverse Rotatioroperator R~ on a2" x 2"
four elements in the transformation matrix can be used for coding gf ,are matrixH, is recursively defined ag” " anticlockwise
two-, three-, or four-valued logic functions respectively. In additionyiations involving 4" "+ submatrices each of order ' for
with an appropriate coding of the original function, the UCHT may _ o —1,--+,2,1,

be used as a multiple-valued transform. /

. A . . Property 3: Let H{T] be defined for some. Then if
Definition 6: The transformation core matrix for any UCHT is

(7] [7]
defined as =l (20)
hy ' hy
Al =wio | o[l = 13) . o :

1 1o {r-_ ot 7 (13) hE»] € Cij€ 24,10g,;(h£ 1Y € 2, and HI" is orthogonal in the
where W, is the Walsh-Hadamard transform matrix of order 2 [g]csmplenx domain, then the higher dimension maify” of the size
[22] 2" x 2" is orthogonal in complex domain if

‘ “log (b)Y ( 7l7] —log; (R ( pl7]
S gy, 1 ECh € {123 i = |7 . (Hrf?) ) (Hﬁl) (21)
T = Z 0g, Tj, Ty € 4y J € { Pt } R_ lo%i(hQ )(H,7T_1) R_logi(hg )(HnT—l)
=1
] ’ ) ) where R is the Rotation operator on a recursive matrix, which is
Equation (13) may be expressed in a matrix form as given by Definitions 7, 8, and (20), respectively.
H1[T1 = A[TT]W1 = WHA[,‘I] (14) Prpperty 4: Let Property 3 be 'Sa'[ISerd for a multiple-valued
’ ‘ matrix 4, where[A] = {a(j, k)}.a(j, k) € Z4. Then, for anyr
where RO g | ROV
- _ H,= —a(1,0) ! —a(1,1) ! . (22)
4[r] _ l n(l+7) m(l—73) (15) R H,.. R H,._:
T2 -m) n(l4m) : [+] i k)
Theorem 2: Let Hy- be any UCHT matrix. Ifh(j, k) is an
and element of 77 at rowj and columnk, where0 < j,k < 2", then
A_l[n+n mn-m) n!
U 16 -
R QL—Q ry(r1+ ) (16) hGi k) = ] b (23)
r=0

and the italic subscriptd. and R denote the left and right matrix, where

respectively, as shown in (14). The proofs of (15) and (16) are

immediate from properties of UCHT. From (13), it is obvious thak, = 71 + (72 — 71)jr + 71(73 — L)ksr
there are, altogethe#® = 64 UCHT's.

All UCHT matrices can be separated into two groups of 32 )
basic matrices dependent on the existence of the HSP (Theorm-1-Jn—2.""Jjo) @Nd{kn_1,kn—2,- -, ko) denote the respective
5). These transformation matrices are listed in Table I. The symgypary representations of the decimalsand &, respectively, i.e.,
“\/" indicates the existence of the half-spectrum property for a givéri)m = (Jn—12dn—2,"" o) a_”‘_j_<k>10 = (kn—1,kn—2,-- ko).
transformation matrix. Proof: From (13) of Definition 6,h(0,0) = 71,2(0,1) =

Theorem 1:Let 4 be a2 x 2 multiple-valued matrix[4] = 7173:h(1,0) = 7 andr(1,1) = —nn. If 2 = 1, then by the
{a(j.k)}.a(j. k) € 2. Let H™) = i represent the mapping of &rithmetic expansion [2]ho may be written asho = 7 + (72 —
4-valued integers into unit circle of complex plane with elements ifi )Jo + (s = Dko + (11 i ?73 — 72 = 1273) joko.

C., where H; is the smallest (core) matrix of the sizex 2. Then  Since, from Property 2H;" is derived from the power matrix

+(11 — 7173 — T2 — T273) jrke. (24)

the condition of existence of the UCHT matrix féF.” is of the unit complex number with respect to multiplemody
Kronecker additionof the respective multiple-valued matrix, any
|a(0,0) + a(1,1) — a(0,1) — a(1,0)| = 2. (17)  of the elements ofZ}! denoted as:(j, k) is derived fromn times

multiplication of each correspondinly. with » ranging from 0 to

Proof: From (13) of Definition 6 and sincH{‘"] =44 n — 1. Hence

a(0,0) =log, 1, a(0,1) =log, 173 n—1
— oo T h(Gky =[] o
(L(]_,()) - 105—’;1 T2, a(l, 1) = 10?”' —T2T3. vt

Solving the four equations, (17) is proved. O O
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TABLE |
List oF UCHT's HSP

T =1 T =1 73=—1 T=—I
T |5 |OSF 1 UCHT Matrix |z, |7 [#SF 1UCHT Matrix | |7, |5 |#SP|UCHT Matrix |5, |13 [SP|UCHT Matrix
L CEEEEL (i o | [|M ]! RESR L [—i—i
1 { -1 1 -1 1 -1
\ 1 = 1 —i 1 - 1 —
Lt (1] ! |7 (i-i] ||| (-] P! i i
1 1 11 11 [1 1
L O A6 T B L i1 Ll (v 21 i -1
1 [1 i L1 1
i |1 1 1] |} 1 R i1 (-1 -1 i |1 i =i
i —i i —i i =i i =i
g O O L L | I AL I N L L -1
i1 ! i1 !
i -1 (11 18 |-t (i - i [-1 11 i |-1 —ii
i i i -
iol=i | o (1= | [P |7 (i1 S (- [ - -l
i -1 i -1 i -1 i -1
-1 |1 1 1 [-1|1 ( i 3 -1]1 -1 -1 1|1 1 - - A
-1 1 -1 1 -1 1 -1 1
-1 |i , AL , (i -1 )| |1 , (1 < 1]1) ) - 1]
-1 i -1 i -1 i \ -1 i
-1 -1 (1 -1 ]| io-i ]| -1 1 ||t - -
-1 -1 -1 -1 -1 -1 -1 -1
e TR G RN o NI N U A R | A T B i IR - 1]
-1 —i -1 —i -1 - -1 —i
=i |1 (1] |7 (i i1 -1 -1 || (- =i ]
—i i —i i —i i —i i
p L TR | OO R I i LA I (N VRS U I N e L O -1 - |FE i 1
i 1 i -1 i -1 i -1
=i |-l 1 -1 ]| |t i-i] ]! (11 ] |7t i i
i i — —i ~i —i {_i -
== T N e i1 il e | S T O e S O I A
= i 1 i 1 —i 1
Lemma 1: For 7 = 0 in (13) Lemma 1 shows that the Walsh—Hadamard transform is simply one
ne1 . of many UCHT's derived from Definition 6.
h(j, k) = w(j, k) = (=1) 2= Irhr (25) Definition 9: Let F(j) denote the coded data sequence where

wherew(j, k) defines the element of the Walsh—-Hadamard transforrga

W, at rowj and columnk, respectively.

Proof: Letr = 0in (13). Then;, = » = 73 = 1. Substituting,

we haveH}’] = Wi. From (23) and (24)

n—1

h(j, k) = H 1— 25, k.
r=0
But (—1)% = 1 — 2jk, hence

n—1
> ke

h(j k)= (—=1)= = w(j.k).

<j< N -1andF(j) may be a real or complex number which
épends on a particular coding of the data. Then, like other discrete
transforms, the corresponding UCHT of the data sequence may be
expressed in the matrix form as

7 =H,F (26)

where Z = [Z(0), Z(1),---, Z(k),---, Z(N = 1)]' and F =
[F(0),F(1),---, F(j),---. F(N — 1)]T. The values ofZ(k) are
complex numbers. Since the transform is orthogonal, the data se-
guence may be uniquely recovered by the inverse transform, i.e.,

1 -
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Expressed in the form of one-dimensional discrete Fourier traris-follows that
form (DFT), (26) and (27) are

h(V—l—;,k‘) 5 [+ B,
N-1 N—1 n—1 EE—— H <_’ 5 )
Z(k) =Y Wk, ))F(j) =Y F(j)(ﬂ m) (28) hjk ro NP
J=0 J=0 r=0 "ot il o
and N ot < a + a+ 3J7)
N—1 n—1
F(j)=—= N ZZ(k)(Hh ) (29) and ‘/
a4+
whereh. is defined as in (24) with the indicgsand’ interchanged. o
Definition 10: Let H be an orthogonal transform in the real or — ™ -k +(m-1)+ (M -7 -1 - nn)k
complex domain. By Definition 9, a spectrum of integer-valued data 71+ (T — Dkr
sequence may be represented by (26) and (27). The existeht®of _ T2 (73 + Lkr
for the transform matrix is defined as the existence ¢f&2)N x 1 T4+ 71 (Ts — Dk

vectoer/z which completely characterizes the full transform VeCtoé|m|IarIy
Z of the orthogonal transform, with the ability to recover the unique N
transform vectorZ.

a + /;

Theorem 3: If a HSP is to exist inH!™, thens in (13) must be
imaginary. _ 1+ 1113 — ks
Proof: For the HSP to exist in transform vectd, nonlinear AT = D+ (2 = T) + (T = T2 = 1173 = T2Ts) by
manipulation of rows inH\”) must be available to distinguish one  _ 71 +71(73 — Dk,
row from the other. From Definition 6, i/, and H; represeng x 1 To — To(Ts + 1)k
column vectors, such that If 75 is imaginary andrs € C4, then the equations reduce to
"l _ Ho 3 -
H; |: :| o+ | _T
2y a i
then the obvious condition for such existencefis = AH,, where and
A is a constant. SincéI{T] is orthogonal in the complex domain, a T
the rows are not linearly dependent of each other. Therefore, the a+8 w
existence ofA in the equation will determine the existence of theeS ectively. Sincey. m € Cs. thereforen 7 = 77 = 1. Then
HSP. Therefore p Y. 1,72 € Cy, 171 ™=
—_— - . n—1
T2 T1 )\fl )\f'l h(f\' - l_J,k _
= = = —_— T172)Jr + (T172)7r 1T
(_) A<> (A) (WS ) i~ Hlomi+ mid = (e,
Hence,3 = —73. Sincers € (4, Theorgm 3 is proved. U Since(rim2) € C4,C4 is a set with four complex unitary elements,
Theorem 3 shows that the HSP exists for 32 UCHT's. and the integer power of any element ih is cyclic, then if

Theorem 4: If H." satisfies Theorem 3, then the elements of the —  mod 4, (1 )" = (m172)"7. The proof of (30) is completed.
UCHT matrix are mathematically related by -

hMN —=1=j.k) = (rir) h(j. k) (30) Theorem 5: If H!'! satisfies Theorem 3 anil and Z are accord-

ing to Definition 9, then
wherevy = nmod4.

Proof: From (23) and (24) Z(N —1—=k)=(nm)" Z(k) (31)
. e . wherey = nmod4.
h(j k) = H T4 (2 = m)jr + (7 = ks Proof: From (28)
r=0
+(r1 — i3 — 12 — T2T3) ik, Z(k) = Zh(k»J)F(J)

where 0 < j,k < 2",j. and k. denote ther-th bit binary Then

representations of the decimaland k respectively. Then N-1
_— Z(N=1-k)= > hN—1-kj)F().
N =1—j.k)= H[Tl+(T2_Tl);7"+7—1(7—3_1)kr i
=0 _ From (30)
+ (11— 1173 — T2 — T273) jr Ky -
o . Z(N —1—k) = 3 [(rnm) Bk IF()
EH&—I-,@)} . ) — 1 o e
=
where a and 3 are two linear functions of,. such thata = Then
T14+7(m—1)k- andp = (o —71)+ (71 — T2 — 7173 —7273) k. Then . ’ =
L Z(N =1—k)=(nm)" Y bk j)HFQ).
(G, k) k) H(oz—i—@]r =0

This completes the proof of (31). O
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Theorem 5 is called the half-spectrum theorem, which implie®ome loss in parameter estimation accuracy, as is the case in satellite
that only half of the spectral coefficients are required for synthesiadar altimetry. The Walsh—-Hadamard transform is used for such an
and analysis. This will reduce the computational cost of the UCHApplication [5]. Also, it is well known from the literature that the fast
by half. If the signal is purely real valued, the integer-valuetValsh—Hadamard transform can be efficiently used for the calculation
UCHT'’s (e.g., Walsh—Hadamard transforms) are better choices, siridéehe DFT [28] for implementing adaptive filters [11] and for DFT
the complex integer-valued counterparts (though they use only hsgffectrum filter realizations [34]. The usual frequency-domain FIR
the number of spectral coefficients) each requires double storafijéering problem can be easily converted into a Walsh frequency-
The existence of HSP in the complex integer-valued UCHT’s @omain filtering problem, and similar structure results in a possible
particularly useful in the synthesis and analysis of complex-valuadternative for infinite-impulse response filter implementations [17].
signals or multiple-valued data, where each discrete data is coded iAto efficient method for implementation of a class of isotropic
some complex integer. With such a coding, the resulting spectral apsadratic filters using the Walsh—Hadamard transform was also
efficients will also be complex integers. Most signals in radar, songmroposed [6]. Advantages of the 2-D Walsh—-Hadamard transform,
and communications have in-phase and quadrature components, alsg known asS or sequential transform [25], in lossless image com-
they are complex valued [5]. Hence, there is a practical need geession are well known. An integrated-circuit chip implementing 2-D

operate on complex numbers. Walsh—Hadamard transform has been implemented for commercial
Lemma 2: Let A be a2 x 2 multiple-valued matrix,[4] = applications by Philips Corporation [25]. Some other applications of
{a(j,k)},a(j, k) € Zi. Let Hi = i”* represent the mapping of Walsh—-Hadamard and other related transforms are described in [1],
4-valued integers into the unit circle of the complex plane. Then, tfi2], [4], [12], [26], [31]-[33]. As the Walsh—Hadamard transform is
higher dimension matribf,, of size2" x 2" is one of the UCHT's, it is thus believed that the important properties

of the UCHT’s presented in this article may also be of interest to
researchers working in the above-mentioned areas where the standard
(32) Walsh—Hadamard matrices had been applied.

H,=H 0H, ,=H, 19H =Ho" =i"e"=i"

where® denotes the Kronecker product and represents the-time
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2) The distortion function for which we analyze the phase transi-
tions is quite general. In most clustering algorithms, a square
error or weighted-square-error distortion measure is usually
used. In effect, this amounts to assuming the underlying dis-
tribution of the data to be Gaussian [2]. But in practical
applications, the distribution could be arbitrary. We propose a
general distortion measure based on the higher order statistics
(HOS) of the data.

Positive definiteness of the Hessian is used as a criterion for splitting
the clusters. This criterion was chosen over the perturbation variant
of the HDA method [8], because knowing to predict the next critical
temperature allows acceleration of the annealing process between
transitions, while being more careful during the transition. It may also
be mentioned here that the idea of using the entire data distribution
appears in [8], in the context of rate-distortion theory. While we
express the condition for bifurcation as a general condition on the
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