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Family of Unified Complex Hadamard Transforms

Susanto Rahardja and Bogdan J. Falkowski

Abstract—Novel discrete orthogonal transforms are introduced in
this paper, namely the unified complex Hadamard transforms. These
transforms have elements confined to four elementary complex integer
numbers which are generated based on the Walsh–Hadamard transform,
using a single unifying mathematical formula. The generation of higher
dimension transformation matrices are discussed in detail.

Index Terms—Digital signal processing, discrete transforms, fast algo-
rithms, orthogonal transforms, unified complex Hadamard transforms.

I. INTRODUCTION

In this brief, novel discrete orthogonal transformations with el-
ements which are integer-valued complex numbers and may be
considered as systems of complex Walsh functions are introduced.
These transforms may be useful in applications where the need
for complex-valued discrete orthogonal transforms arises, such as
digital signal processing (DSP). These systems of functions and
transformations are called complex Hadamard transforms (CHT’s)
and are confined to four complex values (�1 and�i). In the literature,
there exists another transformation based on four-valued complex
Walsh functions, called the “complex BIFORE transform” [22]. For
real-valued input data, the complex BIFORE transform reduces to a
BIFORE or Hadamard transform whose bases are Walsh functions.
The basic definition of the complex BIFORE transform is based
on a recursive formula defining one class of complex Hadamard
matrices that involves diagonalization of higher order matrices and
multiple Kronecker products. The unified complex Hadamard trans-
forms (UCHT’s) have recently been considered as a tool in spectral
approach to logic design [8], [9], [20], [21]. Like its predecessors,
the UCHT’s show similar properties and characteristics. The classical
techniques of transforming will be employed, i.e., the truth vector of
the function is transformed into a unique spectral domain, and by the
fact that the transform matrix is orthogonal, the property of revealing
some information more clearly while concealing others is sustained.
The spectral domain is called a complex spectral domain, where the
information from the truth vector is transformed, and divided into
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the real spectral domain and imaginary spectral domain. Both real
and imaginary spectral domains are integer numbers. In order to
increase the number of possible transformations for integer-valued
matrices, Perkowski introduced the concept of linearly independent
logic and polynomial expansions confined to operations inGF(2)

[18], [19]. Fast transforms for Perkowski linearly independent logic
were developed in [10]. The idea of using complex-valued rather
than integer-valued transformation matrices for spectral processing
of Boolean functions is considered for the first time in this article.
By increasing still further the number of possible different entries
in the transformation matrices with complex numbers, one can
expect the reduction of their spectral representation, especially if
both the original functions and their spectra are presented in the
form of some kind of decision diagrams, which have already been
proposed for UCHT’s [8], [20]. In particular, the Walsh–Hadamard
transform is one of many UCHT matrices introduced here. Some
of the UCHT matrices have a unique half-spectrum property (HSP).
There are general fast algorithms from the representation of transform
matrices in the form of layered Kronecker matrices. In addition,
constant-geometry fast algorithms with in-place architecture are also
available for the new transforms. The complex BIFORE transform
instead has only fast transform without constant geometry algorithm.
The existence of constant-geometry fast butterflies is suitable for
efficient very large-scale integration (VLSI) implementation. The
introduced UCHT’s may be used for various applications, where
the Walsh-Hadamard transform has already been used [1], [2],
[4]–[7], [11], [12], [17], [25], [26], [28], [31]–[39]. Generally, the
UCHT’s may be classified as the integer-valued and complex integer-
valued transforms. The integer-valued and complex integer-valued
matrices have elements confined to two(�1) and four complex
numbers (�1 and�i), respectively. Comparing the complex integer-
valued UCHT’s between themselves, those that possess HSP will
be advantageous as they require half of the spectral coefficients for
analysis. However, it should be pointed out that if the functional
data are real numbers, the existence of the HSP in complex integer-
valued UCHT’s has no additional storage advantage compared to the
integer-valued counterparts (e.g., Walsh-Hadamard transform). But,
the complex integer-valued transforms [3], [12], [23], [24], [26],
[27] are suitable for problems with complex-valued functions and
for such functions, the UCHT’s with half spectrum property is the
most compact representation.

A number of applications of new transforms in the area of
spectral computer-aided design of digital circuit is shown in [8],
[9], [20], [21]. Some of them are detection of Boolean symmetries
and compact classification scheme [20], [21]. The above applications
can be also performed using other spectral approaches based on
Walsh and Reed–Muller transforms [7], [29] as well as classical
approaches [13]. They are important in many real life problems of
designing and optimizing digital circuits such as Boolean matching,
technology mapping and designing with universal logic modules [7].
As mentioned earlier, some UCHT’s are simply systems of complex
Walsh functions while others becomeq-valued Chrestenson functions
for q = 2 or 4 [26], [33]. It is then obvious that the UCHT’s can
be used in different applications of complex Walsh functions and
Chrestenson functions in processing of multiple-valued functions,
especially for the case of four-valued functions. Much work has
already been done for Chrestenson transform, e.g., characterization
of ternary threshold functions [15], development of measures of the
dependence of multiple-valued logic functions on the linear logic
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functions [16], and disjoint spectral translation that allows extending
the possibility of low complexity realization to a large class of
multiple-valued logical functions [14]. Similar results can be obtained
for these UCHT’s that are different from Chrestenson functions. The
methods should be computationally more effective as Chrestenson
transform matrix does not possess HSP. Finally, based on UCHT’s,
new complex decision diagrams to store and calculate the UCHT
spectra have been introduced by the same authors in [8], [20].
These new decision diagrams are complex hybrid decision diagrams,
complex algebraic decision diagrams, complex multiterminal decision
diagrams, real and imaginary decision diagrams and complex edge-
valued decision diagrams. With the existence of HSP, the size of
all different complex decision diagrams is always reduced by half.
Since this reduction is unique only to UCHT’s, it is obvious that
such a feature is useful particularly in handling complex-valued data
functions.

II. FAMILY OF UNIFIED COMPLEX HADAMARD TRANSFORMS

In this section, the concept of afamily of UCHT’s is introduced
and such a family is proposed to represent discrete signals and
systems. Several properties of the new family are outlined. The
generation of the transformation matrices commences from the basic
Walsh-Hadamard transformation matrix. All members of UCHT’s
may be produced by newly defined direct matrix operator and
recursively generated to higher dimension matrices by a single
Kronecker product. It must be noted that although the basis functions
in the definition that generates all UCHT matrices are discrete
Walsh functions, each member of the newly defined UCHT fulfills
requirements of complex Hadamard matrices; there are altogether
64 such different matrices that are introduced in this section, all of
which are generated by one unifying formula. Half of the UCHT
matrices fulfill the requirement of the novel half-spectrum theorem.
The theorem shows that from the knowledge of only half the vector
of the full spectrum, one is able to recover the full original data.

It is shown in this brief that UCHT matrices can be generated
recursively in a variety of ways by using new operators on matrices.
They are: the direct matrix operator, themod�q Kronecker operator,
and the rotation operator. Different mathematical properties of such
operators are given. The introduced UCHT’s have several DSP
applications. When dealing with complex signals or multiple-valued
logic systems coded as complex numbers, there are some inherent
computational advantages in UCHT matrices and can be used to
efficiently analyze and synthesize such complex input functions.

III. PRELIMINARIES

Definition 1: Let H be an r � c matrix, such that[H ] =
fh(j; k)g; 0 � j � r � 1; 0 � k � c � 1; h(j; k) is an element of
H at row j and columnk. Then the power matrix of an integera
with respect toH is an r � c matrix defined by

[aH ] = a
h(j;k)

: (1)

Definition 2: Let [A] = fa(jA; kA)g be anrA � cA matrix and
[B] = fb(jB ; kB)g be anrB�cB matrix, with0 � jA � rA�1; 0 �
kA � cA�1; 0 � jB � rB�1 and0 � kB � cB�1. a(jA; kA) and

b(jB; kB) are elements ofA andB at row jA; columnkA and row
jB; columnkB ; respectively. Themod-q Kronecker additionof A and
B denoted asA�pB; is defined by the following matrix operation,
where elements inA are expanded in a Kronecker product manner
into a submatrix with dimensionrB � cB and the values in such a
submatrix are the results of the particular element ofA mod � q

addition with the respective elements ofB; i.e.,

A�qB =

a0(0; 0) a0(0; 1) � � � a0(0; cA)
a0(1; 0) a0(1; 1) � � � a0(1; cA)

...
...

. . .
...

a0(rA; 0) a0(rA; 1) � � � a0(rA; cA)

(2)

and where we have the equation shown at the bottom of the page,
with +q representing themod � q addition.

Definition 3: Let A be anr� c matrix, such that[A] = fa(j; k)g
where0 � j � r; 0 � k � c; a(j; k) is an element ofA at rowj and
columnk. If [B] = fb(k)g is a 1� c row matrix and[C] = fc(j)g
is anr � 1 column matrix, then the matrix operator� is defined as

[A �B] = fa(j; k) b(k)g (3)

and

[A �C] = fa(j; k) c(j)g: (4)

Property 1: The following properties of� may be derived:

(A �B)
n = (A
n) � (B
n) (5)

(ABT ) �C = (A �C)BT (6)

(A �B1) �B2 = A � (B1 �B2) (7)

(A �B �C)T = (A �B)T �CT (8)

and

(A �B �C) = (A �B) � �C = �A � �B � �C (9)

where [B1] = fb1(k)g andB2 = fb2(k)g are 1 � c row matrices,
and
n denotes a right-hand side Kronecker product appliedn times.

IV. BASIC DEFINITIONS AND PROPERTIES OFUCHTS

In the definitions of existing discrete orthogonal transforms, the
elements of transformation matrices normally consist of discrete
values of+1 and�1; or generalizations that permit values ofe2�ni=q

for a primeq; which leads to a complete orthonormal system known
as the Chrestenson system [26], [33]. In this section, some new
matrix definitions are introduced to open a new concept of a family
of discrete transforms that can be used to process complex and
multiple-valued functions.

Through this brief, two setsZq and C4 are defined asZq =
f0; 1; � � � ; q � 1g and C4 = f+1;�1;+i;�ig; respectively.A is
anN �N square matrix, where[A] = fa(j; k)g; a(j; k) 2 Zq.

Definition 4: If Hn = iA is a square nonsingular matrix of order
N = qn; there exists a unique inverseH�1

n . If [Hn] and[H�1
n ] have

elements fromC4 thenHn is a multiple-valued transform.
The transformation matrices are defined by a set of basis discrete-

valued functions. To ensure that no information is lost in the resulting
spectrum, orthogonality in the transformation matrix is essential. This

a
0(jA; kA) =

a(jA; kA) +q b(0; 0) a(jA; kA) +q b(0;1) � � � a(jA; kA) +q b(0; cB)
a(jA; kA) +q b(1; 0) a(jA; kA) +q b(1;1) � � � a(jA; kA) +q b(1; cB)

...
...

. . .
...

a(jA; kA) +q b(rB; 0) a(jA; kA) +q b(rB; 1) � � � a(jA; kA) +q b(rB; cB)
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requires zero correlation between pairs of different basis functions. In
general, ifH is an orthogonalN �N matrix with real entries, then

HHT = NI: (10)

Definition 5: Let q = 4 andH represent the resulting matrix of
H = iA = fh(j; k)g; thenH is said to be orthogonal in the complex
domain [30] if

jdetHj = N1=2N (11)

and

HH� = H�H = NI (12)

whereH� represents the complex conjugate transpose ofH; andH
is said to be a CHT. The resulting matrixH can be easily used as
a binary, ternary, or quaternary transform as any two, three, or all
four elements in the transformation matrix can be used for coding of
two-, three-, or four-valued logic functions respectively. In addition,
with an appropriate coding of the original function, the UCHT may
be used as a multiple-valued transform.

Definition 6: The transformation core matrix for any UCHT is
defined as

H
[� ]
1 = W1 � �1

�2
� [1 �3] (13)

whereW1 is the Walsh–Hadamard transform matrix of order 2 [9],
[22]

� =

3

j=1

43�j logi �j ; �j 2 C4; j 2 f1; 2; 3g:

Equation (13) may be expressed in a matrix form as

H
[� ]
1 � A

[� ]
L W1 �W1A

[� ]
R (14)

where

A
[� ]
L =

1

2

�1(1 + �3) �1(1� �3)
�2(1� �3) �2(1 + �3)

(15)

and

A
[� ]
R =

1

2

�1 + �2 �3(�1 � �2)
�1 � �2 �3(�1 + �2)

(16)

and the italic subscriptsL andR denote the left and right matrix,
respectively, as shown in (14). The proofs of (15) and (16) are
immediate from properties of UCHT. From (13), it is obvious that
there are, altogether,43 = 64 UCHT’s.

All UCHT matrices can be separated into two groups of 32
basic matrices dependent on the existence of the HSP (Theorem
5). These transformation matrices are listed in Table I. The symbol
“
p

” indicates the existence of the half-spectrum property for a given
transformation matrix.

Theorem 1: Let A be a 2 � 2 multiple-valued matrix[A] =

fa(j; k)g; a(j; k) 2 Z4. Let H [� ]
1 = iA represent the mapping of

4-valued integers into unit circle of complex plane with elements in
C4; whereH1 is the smallest (core) matrix of the size2 � 2. Then
the condition of existence of the UCHT matrix forH [� ]

1 is

ja(0; 0) + a(1; 1)� a(0; 1)� a(1; 0)j = 2: (17)

Proof: From (13) of Definition 6 and sinceH [� ]
1 = iA

a(0; 0) = logi �1; a(0; 1) = logi �1�3

a(1; 0) = logi �2; a(1; 1) = logi��2�3:
Solving the four equations, (17) is proved.

Property 2: If H [� ]
1 = iA and the condition of existence of UCHT

matrix is satisfied, then the higher dimension matrixHn of size
2n � 2n is orthogonal in complex domain if

Hn = iA (18)

whereAn = A�q
n times� � � � � � � � � � � � �qA andH�1

n = 1=NHn.
Definition 7: Let Hn be a2n � 2n square matrix, such thatHn

is recursively defined by

Hn =
H

(1)
n�1 H

(2)
n�1

H
(3)
n�1 H

(4)
n�1

(19)

where each submatrixH(j)
n�1; j 2 f1; 2; 3; 4g; has dimension of

2n�1 � 2n�1. The Rotation operatorR on the square matrixHn

is recursively defined as4n�r clockwise rotations involving4n�r+1

submatrices each of order2r�1 for r = n; n � 1; � � � ; 2; 1.
Definition 8: The Inverse RotationoperatorR�1 on a 2n � 2n

square matrixHn is recursively defined as4n�r anticlockwise
rotations involving 4n�r+1 submatrices each of order2r�1 for
r = n; n � 1; � � � ; 2; 1.

Property 3: Let H [� ]
1 be defined for some� . Then if

H
[� ]
1 =

h
[� ]
0 h

[� ]
1

h
[� ]
2 h

[� ]
3

(20)

h
[� ]
j 2 C4; j 2 Z4; logi(h

[� ]
j ) 2 Z4 andH [� ]

1 is orthogonal in the

complex domain, then the higher dimension matrixH
[� ]
n of the size

2n � 2n is orthogonal in complex domain if

H [� ]
n =

R� log (h ) H
[� ]
n�1 R� log (h ) H

[� ]
n�1

R� log (h ) H
[� ]
n�1 R� log (h ) H

[� ]
n�1

(21)

whereR is the Rotation operator on a recursive matrix, which is
given by Definitions 7, 8, and (20), respectively.

Property 4: Let Property 3 be satisfied for a multiple-valued
matrix A; where[A] = fa(j; k)g; a(j; k) 2 Z4. Then, for any�

Hn =
R�a(0;0)Hn�1 R�a(0;1)Hn�1

R�a(1;0)Hn�1 R�a(1;1)Hn�1
: (22)

Theorem 2: Let H
[� ]
n be any UCHT matrix. Ifh(j; k) is an

element ofH [� ]
n at row j and columnk; where0 � j; k � 2n; then

h(j; k) =

n�1

r=0

hr (23)

where

hr = �1 + (�2 � �1)jr + �1(�3 � 1)kr

+(�1 � �1�3 � �2 � �2�3)jrkr: (24)

hjn�1; jn�2; � � � ; j0i andhkn�1; kn�2; � � � ; k0i denote the respective
binary representations of the decimalsj and k; respectively, i.e.,
hji10 = hjn�1; jn�2; � � � ; j0i2 andhki10 = hkn�1; kn�2; � � � ; k0i2.

Proof: From (13) of Definition 6,h(0; 0) = �1; h(0; 1) =
�1�3; h(1; 0) = �2 and h(1; 1) = ��2�3. If n = 1; then by the
arithmetic expansion [2],h0 may be written ash0 = �1 + (�2 �
�1)j0 + �1(�3 � 1)k0 + (�1 � �1�3 � �2 � �2�3)j0k0.

Since, from Property 2,H [� ]
1 is derived from the power matrix

of the unit complex numberi with respect to multiplemod-q
Kronecker additionof the respective multiple-valued matrixA; any
of the elements ofH [� ]

n denoted ash(j; k) is derived fromn times
multiplication of each correspondinghr with r ranging from 0 to
n � 1. Hence

h(j; k) =

n�1

r=0

hr:
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TABLE I
LIST OF UCHT’s HSP

Lemma 1: For � = 0 in (13)

h(j; k) = w(j; k) = (�1)
j k (25)

wherew(j; k) defines the element of the Walsh–Hadamard transform,
Wn at row j and columnk; respectively.

Proof: Let � = 0 in (13). Then,�1 = �2 = �3 = 1. Substituting,
we haveH [�]

1 � W1. From (23) and (24)

h(j; k) =

n�1

r=0

1� 2jrkr:

But (�1)jk = 1 � 2jk; hence

h(j; k) = (�1)
j k

� w(j; k):

Lemma 1 shows that the Walsh–Hadamard transform is simply one
of many UCHT’s derived from Definition 6.

Definition 9: Let F (j) denote the coded data sequence where
0 � j � N � 1 andF (j) may be a real or complex number which
depends on a particular coding of the data. Then, like other discrete
transforms, the corresponding UCHT of the data sequence may be
expressed in the matrix form as

~Z = Hn
~F (26)

where ~Z = [Z(0); Z(1); � � � ; Z(k); � � � ; Z(N � 1)]T and ~F =
[F (0); F (1); � � � ; F (j); � � � ; F (N � 1)]T . The values ofZ(k) are
complex numbers. Since the transform is orthogonal, the data se-
quence may be uniquely recovered by the inverse transform, i.e.,

~F = H
�1
n

~Z =
1

N
Hn

~Z: (27)
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Expressed in the form of one-dimensional discrete Fourier trans-
form (DFT), (26) and (27) are

Z(k) =

N�1

j=0

h(k; j)F (j) =

N�1

j=0

F (j)

n�1

r=0

hr (28)

and

F (j) =
1

N

N�1

k=0

Z(k)

n�1

r=0

hr (29)

wherehr is defined as in (24) with the indicesj andk interchanged.
Definition 10: Let H be an orthogonal transform in the real or

complex domain. By Definition 9, a spectrum of integer-valued data
sequence may be represented by (26) and (27). The existence ofHSP
for the transform matrix is defined as the existence of a(1=2)N � 1

vector ~Z1=2 which completely characterizes the full transform vector
~Z of the orthogonal transform, with the ability to recover the unique
transform vector~Z.

Theorem 3: If a HSP is to exist inH [�]
1 ; then�3 in (13) must be

imaginary.
Proof: For the HSP to exist in transform vector~Z; nonlinear

manipulation of rows inH [� ]
1 must be available to distinguish one

row from the other. From Definition 6, if~H0 and ~H1 represent2�1
column vectors, such that

H
[� ]
1 =

~HT
0

~HT
1

then the obvious condition for such existence is~H1 = �
�~H0; where

� is a constant. SinceH [� ]
1 is orthogonal in the complex domain,

the rows are not linearly dependent of each other. Therefore, the
existence of� in the equation will determine the existence of the
HSP. Therefore

�2
��2�3

= �
�1
�1�3

=
���1
��1�3

=
���1
���1��3

:

Hence,�3 = ���3. Since�3 2 C4, Theorem 3 is proved.
Theorem 3 shows that the HSP exists for 32 UCHT’s.
Theorem 4: If H [� ]

n satisfies Theorem 3, then the elements of the
UCHT matrix are mathematically related by

h(N � 1� j; k) = (�1�2)

h(j; k) (30)

where 
 = nmod4.
Proof: From (23) and (24)

h(j; k) =

n�1

r=0

�1 + (�2 � �1)jr + �1(�3 � 1)kr

+(�1 � �1�3 � �2 � �2�3)jrkr

where 0 � j; k � 2n; jr and kr denote ther-th bit binary
representations of the decimalj andk respectively. Then

h(N � 1� j; k) =

n�1

r=0

[�1 + (�2 � �1)�jr + �1(�3 � 1)kr

+ (�1 � �1�3 � �2 � �2�3)�jrkr]

�

n�1

r=0

�+ ��jr

where � and � are two linear functions ofkr; such that� =
�1+�1(�3�1)kr and� = (�2��1)+(�1��2��1�3��2�3)kr. Then

h(j; k) =

n�1

r=0

(��+ ��jr):

It follows that

h(N � 1� j; k)

h(j; k)
=

n�1

r=0

�+ ��jr

��+ ��jr

=

n�1

r=0

�+ �

��
�jr +

�

��+ ��
jr

and

�+ �

��

=
�1 + �1(�3 � 1)kr + (�2 � �1) + (�1 � �2 � �1�3 � �2�3)kr

��1 + ��1(��3 � 1)kr

=
�2 � �2(�3 + 1)kr
��1 + ��1(��3 � 1)kr

:

Similarly
�

��+ ��

=
�1 + �1(�3 � 1)kr

��1 + ��1(��3 � 1)kr + (��2 � ��1) + (��1 � ��2 � ��1��3 � ��2��3)kr

=
�1 + �1(�3 � 1)kr
��2 � ��2(��3 + 1)kr

:

If �3 is imaginary and�3 2 C4; then the equations reduce to

�+ �

��
=

�2
��1

and
�

��+ ��
=

�1
��2

respectively. Since�1; �2 2 C4; therefore�1��1 = �2 ��2 = 1. Then

h(N � 1� j; k)

h(j; k)
=

n�1

r=0

[(�1�2)�jr + (�1�2)jr] = (�1�2)
n:

Since(�1�2) 2 C4; C4 is a set with four complex unitary elements,
and the integer power of any element inC4 is cyclic, then if

 = nmod4; (�1�2)

n � (�1�2)

 . The proof of (30) is completed.

Theorem 5: If H [� ]
n satisfies Theorem 3 and~F and ~Z are accord-

ing to Definition 9, then

Z(N � 1� k) = (�1�2)

Z(k) (31)

where 
 = nmod4.
Proof: From (28)

Z(k) =

N�1

j=0

h(k; j)F (j):

Then

Z(N � 1� k) =

N�1

j=0

h(N � 1� k; j)F (j):

From (30)

Z(N � 1� k) =

N�1

j=0

[(�1�2)

h(k; j)]F (j):

Then

Z(N � 1� k) = (�1�2)


N�1

j=0

h(k; j)F (j):

This completes the proof of (31).
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Theorem 5 is called the half-spectrum theorem, which implies
that only half of the spectral coefficients are required for synthesis
and analysis. This will reduce the computational cost of the UCHT
by half. If the signal is purely real valued, the integer-valued
UCHT’s (e.g., Walsh–Hadamard transforms) are better choices, since
the complex integer-valued counterparts (though they use only half
the number of spectral coefficients) each requires double storage.
The existence of HSP in the complex integer-valued UCHT’s is
particularly useful in the synthesis and analysis of complex-valued
signals or multiple-valued data, where each discrete data is coded into
some complex integer. With such a coding, the resulting spectral co-
efficients will also be complex integers. Most signals in radar, sonar,
and communications have in-phase and quadrature components, i.e.,
they are complex valued [5]. Hence, there is a practical need to
operate on complex numbers.

Lemma 2: Let A be a 2 � 2 multiple-valued matrix,[A] =
fa(j; k)g; a(j; k) 2 Z4. Let H1 = iA represent the mapping of
4-valued integers into the unit circle of the complex plane. Then, the
higher dimension matrixHn of size 2n � 2n is

Hn = H1 
Hn�1 = Hn�1 
H1 = H1

n = i

A
n = i
A

(32)

where
 denotes the Kronecker product and
n represents then-time
multiple Kronecker products. Also, by Definition 6

H
[� ]
n = W1 �

�1
�2

� [1 �3] 

n (33)

whereN = 2n. Equation (5) may be applied to (33) to reduce the
computational time.

V. CONCLUSION

A new class of discrete orthogonal transforms has been introduced.
The transform is based on the mapping of 4-valued integers into
the unit circle of the complex plane with elements strictly in the
set f1;�1; i;�ig. Under the various permutations of the integers,
there exist some conditions which will lead to the transform being
mapped to and being orthogonal in the complex domain. This has
been identified as the family of UCHT’s, as the mapping of the
multiple-valued transforms into the complex domain will result in
square basis matrices which satisfy the Hadamard’s determinant
equation in the complex domain. Intuitively, Walsh–Hadamard being
an integer-valued transform is merely a special case of the UCHT’s.

Nonlinear manipulations of the transform matrices lead to the
HSP. This property does not exist for all the UCHT’s. Conditions
for the existence of the property have been derived and proven.
The existence has caused a reduction in computational costs of
those special transforms, and leads to the derivation of compact
representation of multiple- and complex-valued functions [8], [20].
This property does not hold for the well-known Walsh–Hadamard
transform.

Another advantage of the new transform is the existence of not
only fast algorithms based on layered Kronecker products that can
be represented by a series of strand matrices (which is similar to
the complex BIFORE transform), but also a constant geometry fast
algorithm that is well suited to VLSI hardware implementation. In
such an architecture, only one butterfly stage has to be implemented
and the processed data can be fed back to the input to be processed
by the same circuitry.

Signal parameters in many DSP applications are estimated using
the Fourier power spectrum. However, computing the Fourier trans-
form is relatively complicated and there are applications for which
it is important to achieve hardware savings, even at the expense of

some loss in parameter estimation accuracy, as is the case in satellite
radar altimetry. The Walsh–Hadamard transform is used for such an
application [5]. Also, it is well known from the literature that the fast
Walsh–Hadamard transform can be efficiently used for the calculation
of the DFT [28] for implementing adaptive filters [11] and for DFT
spectrum filter realizations [34]. The usual frequency-domain FIR
filtering problem can be easily converted into a Walsh frequency-
domain filtering problem, and similar structure results in a possible
alternative for infinite-impulse response filter implementations [17].
An efficient method for implementation of a class of isotropic
quadratic filters using the Walsh–Hadamard transform was also
proposed [6]. Advantages of the 2-D Walsh–Hadamard transform,
also known asS or sequential transform [25], in lossless image com-
pression are well known. An integrated-circuit chip implementing 2-D
Walsh–Hadamard transform has been implemented for commercial
applications by Philips Corporation [25]. Some other applications of
Walsh–Hadamard and other related transforms are described in [1],
[2], [4], [12], [26], [31]–[33]. As the Walsh–Hadamard transform is
one of the UCHT’s, it is thus believed that the important properties
of the UCHT’s presented in this article may also be of interest to
researchers working in the above-mentioned areas where the standard
Walsh–Hadamard matrices had been applied.
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Data Clustering Using Hierarchical Deterministic
Annealing and Higher Order Statistics

A. N. Rajagopalan, Avinash Jain, and U. B. Desai

Abstract—In this brief, we propose an extension to the hierarchical
deterministic annealing (HDA) algorithm for clustering by incorporating
additional features into the algorithm. To decide a split in a cluster, the
interdependency among all the clusters is taken into account by using
the entire data distribution. A general distortion measure derived from
the higher order statistics (HOS) of the data is used to analyze the phase
transitions. Experimental results clearly demonstrate the improvement in
the performance of the HDA algorithm when the interdependency among
the clusters and the HOS of the data points are also utilized for the
purpose of clustering.

I. INTRODUCTION

The problem of data clustering is quite extensively encountered in
image processing. Important applications include image segmentation
[1], pattern recognition [2], and image compression using vector
quantization [3]. Recently, Roseet al. proposed a novel clustering
method, in which the annealing process with its phase transitions
leads to a natural hierarchical clustering [4]–[8]. One does not need
to know the total number of clusters in advance. Rather, one has
a natural way of deciding on the final number of clusters. Unlike
traditional clustering methods [9]–[15], which are basically descent
algorithms, the hierarchical deterministic annealing (HDA) clustering
algorithm is insensitive to the choice of the initial configuration.

In this brief, we extend the HDA method to include two important
additional features.

1) In [6], the Hessian corresponding to a cluster is computed
by considering only the points which belong to that cluster,
and hence, a split in the cluster is governed by only those
points. In our method, the intercluster dependencies are also
accounted for by considering theentire data distribution (and
not just individual clusters) to compute the Hessian. As will
be shown, the utility of considering intercluster dependency
becomes significant when data points belonging to different
clusters overlap.

2) The distortion function for which we analyze the phase transi-
tions is quite general. In most clustering algorithms, a square
error or weighted-square-error distortion measure is usually
used. In effect, this amounts to assuming the underlying dis-
tribution of the data to be Gaussian [2]. But in practical
applications, the distribution could be arbitrary. We propose a
general distortion measure based on the higher order statistics
(HOS) of the data.

Positive definiteness of the Hessian is used as a criterion for splitting
the clusters. This criterion was chosen over the perturbation variant
of the HDA method [8], because knowing to predict the next critical
temperature allows acceleration of the annealing process between
transitions, while being more careful during the transition. It may also
be mentioned here that the idea of using the entire data distribution
appears in [8], in the context of rate-distortion theory. While we
express the condition for bifurcation as a general condition on the
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