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Abstract: The algebraic system consisting
of finite set of elements with two internal
operations of addition and multiplication
has been studied. For the above system which
satisfies all the axioms of the fields
except for the axiom of associativity, which
may, but need not be satisfied, the name
spurious Galois field and the symbol SGFC(Q>
has been proposed. Such an approach has
allowed to show that the spurious Galois
fields form a class of algebraic systems
containing all the isomorphic Galois fields
as its smaller subclass. Some properties of
SGFC(q) have been presented and some domains
of their applications also pointed cut. The
author follows the notation commonly used in
coding theory (21, [41.

I. Introduction

The idea of the spurious Galois fields
has appeared in the context of software
implementation of computing in finite fields
using the Zech’s logarithm: it turned out
that the program realizing addition in GFC(qQ)
also works after replacing the Zech’'s
logarithm by another similar function,
giving unpredictable results. Thus the plan
of the paper is as follows: section 1II
contains the definition of spuriocus Galois
fields, section III gives the rules of
computing in SGFCg), and defines conditions
which could allow the GF(Q) to be spurious,
section IV describes some properties of
SGFC(q), and section V shows how to sclve the
problem of sof tware implementation of
operations in SGF(Q) to obtain the useful
tool for studying the properties of the
spurious Galois fields.

II1. Definition of spurious Galois fields

Let
<SF,+, > 1

be an algebraic system consisting of
non-empty, finite set of elements in which

two internal binary operations called
addition and multiplication respectively,
are defined and let
card SF=q, q=pm, p-prime, m-positive
integer 21
be satisfied.
The spurious Galois field, denoted by

SGFCq),
axioms:

S.1. 30 € SF V a € SF a+0=0+a=a,
S. 2. Va € SF 3 ~a € SF atC-ad=(-ad+a=0,

is the system (1), satisfying the
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S.3. ¥V a, b SF a+b=b+a,
S.4. 3 -1 € SF [-1=1 if p=2

or -1 coc a2

if pr2l,
S.5. <SF',"> is an abelian multiplicative
group, sF* denoting SF-<0>. This axiom

implies that SF=<O0,1 ,w.w?. .. .wq—a),

wq_1=1,
S.8 ¥ a,b,c € SF {a.(b+cd=a.b+a.c]
&[C(b+c). a=b. a+c. al.

I1I. Computation in SGFC(qgd

Let Q=(0,1,...,9-2>. From the axioms S.5.
and S.8 it follows that multiplicative
operations can be concisely described using
the formulae

Vr.s €Q wr.ws=wr+sCmodq—1)’

&)
Vreqol=ta=31T, ¢
Vr,k € Q Cmr)k=wrk Cmod q—1>' C4d
Vr eQw .0=0. 4]

To perform addition in SGF(Q> one must
know the discrete implicite function

WSO op 4% I
defined on the set (-®,0,1,...,9-2> and
taking the values from this set. Here, the

symbol -o denotes an element of the set
different from the other__elements; this
symbol is used to express w ©=0.
Then 1+a)_°°=mo giving
SZC~ad =0 for p22. (arp)
By the axiom S.4 we get
SZC0>=-w if p=2, )
SZlCg-1>21=-w if p>a. <

The values of the function SZ(x> for x*-ow,
xx0 if p=2 and x*(g-1>-2 if p>2 must all be
different but they can be chosen arbitrarily
so as to satisfy the condition

SZCx0 #x 100

because there is only one identity element
of the groupoid <SF, +>.

It should be noted that the function
SZCx) fully determines the properties of the
groupoid. It is proposed 1o name the
function S2Z(x> spurious Zech's logarithm.

Additive operations are performed
according to the relations
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T =
vVr eqQ —w = © i P 11
+ — -
oF Cg-1>/2 C(mod g-12 if pra,
O if SZ|r-s|=-ow,
r S_
w if w =0, 12

VY r,se Q o +a°= o if o =0,
wmin(r.s)+ﬂ|r—s|(mod q-12

if whw %0 and SZ|r-s |=-w.

IV. Some properties of SGFC(q)

To calculate the number of all possible

SGFCgd’s it is necessary, with (72+C10>
satisfied, te solve relatively simple
combinatorial problem. Its solution is as
follows:
q-2 K
Cg-2>! L C-1> k! if p=2,
k=2
nsCqd = 13
q-3 x
Cg-3>! T, (-157Cg-2-kd>/kt if p>2,
k=0
nsCqd denoting the number of all possible

SGFC(q)’s. Table I was calculated using this
formula for the first 18 values of q.

Table I

q nsCqgd
2 1
3 1
4 1
5 3
7 53
8 265
=] 2118
11 148328
13 160198531
186 32071101048
17 513137618783
19 138547156531 408
23 19690321 886243846661
28 S92392223066689871 7143
a7 5334505483383880543285151 3
28 41541538485757163802896059089
31 336486461 50633026804268078701 89

T 3ETT Y7581 073836838777732377428235481

It is thus possible to construct ns(gQd
different SGFC(g)'s. Among them there are
all the isomorphic GFC(gd's. For a given g
the multiplication table is the same for all
SGFCq), each SGF(g> having a different
addition table. The distribution of SGF(qg
elements in the addition table can be very
various, but all the addition tables are
symmetrical relative to the diagonal,
because the groupoid <SF,+> is commutative.

Generally, addition in SGFC(Q) is not an
associative operation except for SZ(x)=Z2(xD,

namely, if SZCxD becomes the Zech’s
logarithm. However, there exist SGFC(g)’s
containing a subset of elements for which

addition is associative. This subset is
formed by one or more subfields of GFC(qgd
“implanted" into SGFCqgD.
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It has been observed that for g>5, for a
certain number of SGF(g)’s, which are not
GF(q)’s, the addition tables have a form of
latin square. These SGF(qg)’s, further called

latin square SGF(g)’'s, seem to be most
interesting for applications.
Although addition in the latin square

SGFCq) with SZ(x0*Z2(x is not associative,
the equations

a+x=b, y+a=b 14>
have the unique solution for each pair
a,beSF, because in this case the groupoid
<SF, +> becomes a quasi-group.

It has been noted that each latin square
SGFC(q) satisfies the condition

SZCxO=SZCg-1 -3 +x Cmod q-1D. 15>

Taking into account (15> it can be easily
proved that for p>2

SZCOd=[(B8g-112Cg-1218 (mod 23. c1ed

* |
Let now {3 be a generator of (SF , >,

then ﬁ=wk. Ck,gq-12>=1 and

5200 g X g KX 2 KSZTCO (SO

Therefore

kSZ'(xD>=SZLkxCmod g-131 Cmod g-12 17>

Thus knowing SZ(x) for one latin square
SGFC(q) it is possible to calculate other
functions SZ*(xD determining up to
[eCq-1D1/m new latin square spurious Galois
fields, ¢C.) denoting the Euler’s function.

The formulae (153+(17> can considerably
simplify the work of finding all the latin
square SGF(gd's.

To calculate the number of all possible
latin square SGF(g)’s one must attack the
problem much more complicated than the
latter in calculating nsCgd. However, table
II estimates this number. It should be noted
that all the GF(gd’'s belong to the ensemble
of latin square SGF(Q)’s.

Table II.

number of number of

4 latin square SGFC(q)> isomorphic GFCqd
2 1 1
3 1 1
4 1 1
s 2 2
7 4 2
8 3 2
9 12 2
11 56 4
13 224 4
16 631 3 a
17 c.104 8
19 c.:lO,5 5}
23 ~::.10IS 10
28 c.lOS 4
27 c.107 4
29 c.107 ia
31 <:.108 8
32 c.10 6

c € [1,100]




Frankly speaking it is difficult to state
with full certainty that the coefficient c
was chosen properly.

V. Software approach to computing in SGFCq>

The easiest way to implement operations
in SGFCqQ is to replace the abstract
representation of elements of SGFC(qg) by the
set of integers

F=¢0,1,...,9-1> csd
and to apply the bi jective mapping
T: SF » F 19
defined by the function
x+1 1f %0,
TS = % 20>
O if & =0.
It can be verified that
VvV a,b € SF (TCa.b>=TCa)3TCb>J
&L TCa+bd=TCad$TCbd 1. c21d

Therefore the mapping T is an isomorphism,
and this being so, there exists the inverse
mapping

-1

T : F » SF

T_1(x3={

In this way the operations in SGFC(Q) can be
transformed into simple arithmetic
operations on integers.

For almost all applications it is
sufficient to define five functions
realizing the product, k-th power, sum,
multiplicative inverse and additive inverse
of elements of SGFC(q), denoted respectively

22>

o<t if o,
23>

0 if x=0.

PCx,y), PRC(x,k), SC(x,yd, MI(x), AICxXD and
expressed as follows
PCx, yD =TC el ot , (@=25)
PRCx, kD =Tl X712k, 25>
SCx, yd ='1‘wa_1+ wy_lj. (€= p)
MIC3O=Tc1 0™ 13, 27
ATCO=TC-w< 1> caed

Taking into account (2)+(12) and (18)+(28)
one obtains immediately
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1+{x+y-2 (mod g-121 if x%,y>0,

PC(x,yd ={

0 if x=0 or y=0, 2o
1+[Cx-1D.k CmOd g-1> if x>0,
PRCx, kD=
O if x=0, €302
g+l-x if 1,
MICxO = 310
1 if %=1,
x+Cg-1d/2 Cmod gq-13
if x*0 and p>2,
AICx={ x if »#0 and p=2, c32>
O if x=0,
1+Imin{x, y>+SZ|x-y|-1Cmod g-1>)
if x,y®0 and SZ|x-y|=-ow,
Sx. y2= max<{x,y} if x=0 or y=0,
o} if SZjx-y|=-o. (33
The formulae ((28)+(33) can be easily

written down in any high-level programming
language.

Conclusion

It can be hoped that the spuriocus Galois
fields can find some applications in the
discrete mathematics, coding theory and
algebraic theory of automata. The existence
of a great number of latin square SGF(Q)’'s

for sufficiently great q seems to be
interesting for cryptography {1l. In some
domains one can also use the ‘“linear

recurring relations" over SGF(q), generating
the periodic sequences having the properties
different from those over GFCqd £33.

It is also noteworthy to say that the
software based upon the formulae (29)+(33D
is universal, namely, it can be used to
compute in SGFCq>, GFC(g) and GF(p) as well.
It has been practically verified that this
software is a useful tool for implementation
of coding and decoding procedures of
generalized cyclic codes.
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