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Abstract— Every commercially available FPGA supplies high
routing capabilities. However, placement and routing are pro-
cessed by a computer before being sent to the chip. This non-
adaptive feature does not fit well with bio-inspired applications
such as growing systems or neural networks with changing
topology. Therefore we propose a new kind of routing, built in
hardware and totally distributed. Unlike previous works about
routing, our approach does not need a central control over the
process. In this paper we present a new FPGA embedding this
algorithm, as well as the basic idea of our architecture, based on a
parallel implementation of Lee shortest path algorithm. We then
present a second algorithm that decreases the number of possible
congestions, a third that reduces the execution time, and a fourth
that combines both techniques. Finally we introduce different
neighborhoods and compare all these algorithms in terms of area,
speed, path length and congestion.

I. INTRODUCTION

Since the appearance of the first FPGA [5], the routing
complexity of such devices has continuously increased. These
routing capabilities are however static in the sense that a
computer has to create a routing scheme in a placement and
routing (P&R) process before configuring the FPGA. During
this operation, a software tries to minimize the delays between
the modules put into the logic elements of the device. This
approach has the advantage of providing a general view over
the entire configuration, with the possibility of optimizing both
the area and the speed of the design.

After configuration, the FPGA possesses a functionality,
characterized by the content of the logic elements (typically
look-up tables, registers and/or logic gates) as well as by their
connectivity. Some applications such as JBits [8] for Xilinx
devices allow a user to partially reconfigure a part of the
FPGA, but with the risk of burning the device in case of short
circuits. Moreover this reconfiguration is applied serially by a
computer connected to a JTAG port, and is therefore slow and
centralized, not managed by the FPGA itself.

This lack of adaptability, in terms of functionality and
routing, does not fit well with bio-inspired applications. Life
is characterized by its inherent plasticity, at different levels:
species evolve to better adapt to their environment, individuals
learn how to respond to specific stimuli, and self-healing
capabilities allow an organism to survive after an attack. As
living beings are composed of cells, bio-inspired systems are
often built on cellular systems, and to allow plasticity, the cell
functionality and the intercellular routing should be adaptable.

Cellular systems implemented on FPGAs could possibly
need to create data paths at runtime. For instance, a neural
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network could change its connectivity to adapt to new condi-
tions or to self-organize [2], or a cellular artificial organism
could grow from a single cell up to an entire organism [16],
a first step to self-repair. Therefore, such applications need a
distributed routing system managed by the FPGA itself, with-
out external intervention, letting cells initiating new routings.
The basic blocks of such system should also be modifiable,
for functionality adaptation and self-repair. Furthermore, this
system would have to be electrically safe, avoiding short
circuits that could damage the chip.

To reduce this lack of adaptability, a chip called POEtic [13]
has been developed, based on an array of logic elements with
a basic connectivity, and a second layer composed of an array
of routing units, implementing a distributed routing algorithm
[18]. In this paper we briefly present this algorithm, HIDRA,
for Hardware Incremental Distributed Routing Algorithm, and
propose some improvements to avoid congestion problems that
can appear when the density of connections is too high. A
third algorithm, whose aim is to reduce the execution time of a
routing process is also presented, as well as a fourth one being
a mix of both new approaches. Unlike previous work about
parallel routing, these four algorithms have been implemented
with a neighborhood of 3, 4, 6 and 8, in order to find the best
candidates under constraints of connection density, number of
pins and area available. The new algorithms are then compared
in terms of speed, area required and congestion, with the one
of POEtic.

The next section briefly presents the main innovative fea-
tures of the reprogrammable part of the POEtic chip. Then,
in section Il we present some hardware implementations
of the routing problem. Section IV shows our hardware
implementation, and all the basics of our approach. Then,
chapter V proposes a new algorithm, that can fit to software or
hardware, and whose purpose is to minimize the congestion
problem. Section VI shows a line-search approach in order
to reduce the execution time, as well as an attempt to reduce
the execution time and the congestion. Section VII presents
different neighborhoods that can be used. We then show the
experiment that has been used to compare algorithms and
neighborhoods in terms of speed, congestion, path length and
area. We finally conclude by a summary of the advantages of
each approach.
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I1. POETIC CHIP REPROGRAMMABLE PART

The goal of the POEtic chip is to ease the implementation
of bio-inspired applications involving evolution (Phylogeny),
development (Ontogeny), and/or learning (Epigenesis). It is
mainly composed of a full custom microprocessor and a
reconfigurable part. The first one is a 32-bit RISC with a
parallel access to the second part. All details about the chip can
be found in [13], and we will just focus here on the specific
features of POEtic, before going further into the distributed
routing.

LR

Fig. 1. Our architecture, based on a layer of programmable logic elements
at the bottom, an interface, and a top layer of routing units.

The reconfigurable part of the chip (Figure 1) is composed
of a plane of basic programmable elements called molecules,
and a plane of routing units that implement our distributed
routing algorithm. A molecule contains basically a 4-LUT
and a flip-flop, the output being combinational or sequential
(Figure 2). The intermolecular communication is realized
by the way of switch boxes. Each switch box consists of
eight input lines (two from each cardinal direction) and eight
corresponding output lines, and are implemented with 8-input
multiplexers. Two outputs are sent into each of the four
neighbours of the molecule, as shown in figure 2.

A molecule can be used in eight different operational modes,
and can be, for instance, a 4-LUT, two 3-LUT, a 16-bit shift
register, an output or an input to the routing plane, or can
serve to configure other molecules. This last mode is one of
the new features of POEtic, and allow a molecule to partially
reconfigure other molecules of the chip, with a serial access to
the configuration bits. This can be very useful for evolutionary
or self-repair mechanisms, where the cells of an organism can
dynamically change their behavior by modifying the content
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Fig. 2. Structure of a molecule.

of LUTSs, or all configuration bits of some molecules. We
can also notice that no configuration can create short circuits,
permitting to use POEtic for evolvable hardware applications.

Finally, the dynamic creation of data paths is the last specific
feature of POEtic. The molecules can launch routing processes
to configure the multiplexers of the routing units, allowing
cells to connect at runtime.

I11. BACKGROUND ON HARDWARE ROUTING

The goal of a routing algorithm is to find a path between a
starting and a final point, or to find a way to connect different
points in a graph. It can be to link one source to many targets
(broadcast), or many sources to many targets (in an FPGA
for instance), but it often has to minimize the length of paths
created (in electronic circuits, we want to reduce the delay
propagation, just like we want to minimize the time of a trip by
car between two cities). Therefore, the shortest path problem
is closely related to routing algorithms.

In 1959, Dijkstra proposed an algorithm to solve the shortest
path problem [7] in a graph where nodes are connected with
edges of positive weights. Giving two points in the graph,
the algorithm finds the shortest path between them in a time
O(n?). Two years later, Lee designed an algorithm [11] to
find the shortest path in a two-dimensional array of units,
each one of them being connected to its 4 neighbors. This
is basically a simplified version of Dijkstra’s in the sense that
a 2D array can be considered as a regular graph with weights
equal to 1. The idea is to define a source and a target, and let
an expansion phase start from the source. Every point waits
for the expansion wave, and when it is reached, it stores its
distance to the source. When the target is found, a traceback
process follows the distances from n (distance of the target)
to 0 (the source). Figure 3 illustrates the result of this process
for a target with distance 3. We can notice that this algorithm
is sequential, as only one node is being expanded at a time.
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Fig. 3. In Lee algorithm, after having reached the target, the path between
the source and the target is created by the traceback phase.
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Later, in 1968, Mikami and Tabuchi introduced another
algorithm [12], based on a line-search system. The expansion
phase differs from Lee’s, the source expanding lines instead of
just reaching the first four neighbors. Therefore, in one step,
every point on the same horizontal or vertical line than the
source is reached. Subsequently every reached point expands
lines as well, until the target is found. This algorithm always
finds a path if it exists, but not necessarily the shortest. Its real
advantage arises with a parallel implementation, where a line
is expanded in one clock cycle, as we will explain in section
V1. Other approaches have also been proposed, but are out of
the scope of this article.

Based on the same idea of Lee’s algorithm, parallel imple-
mentations have been proposed. In 1996, Adamatzky [1] and
Hochberger [9], separately solved the shortest path problem
with cellular automata.

Some hardware implementation of Lee algorithm have been
realized, based on SIMD, MIMD, analog devices, or digital
devices, to exploit the inherent parallelism of this algorithm.
An FPGA with hardware-assisted routing has been created
by DeHon et al. [6], but the interconnection network is
too simple for really adaptive applications. Before that, four
digital chips have been proposed, by Breuer [3], losupovicz
[10], Ryan [17], and finally by Nestor [15]. All of these
approaches are based on cells, each one representing a cell
of figure 3. While these systems deal with cells connected
by non-directional links and are useful for the routing of
PCB wires, in 2001, Moreno introduced a hardware design
of an algorithm for routing directional links [14]. It is based
on routing units connected to 4 neighbors, and implementing
a routing algorithm, with a small amount of logic required.
Here again, as for every other implementation, the algorithm
starts with a source and target defined by an external agent.
However, the new idea is to configure multiplexers that could
be used later to connect different parts of an electronic device.
This approach was intended to create a routing algorithm for
bio-inspired hardware like an electronic substrate on top of
which applications such as adaptive neural networks could be
implemented.

All of these parallel implementations follow the same prin-
ciple of having cells for the expansion and traceback phases,
and an external agent (a controller or configuration bits) to
control which cells have to be connected. In cellular systems
however, a good point would be to let the cells connect
themselves without any external control, to let a system grow,
or self-repair. We therefore introduce a new totally distributed
algorithm, where the cells are responsible for connecting to
each other. We base our approach on identifiers (ID), a source
having an 1D, and a target knowing the ID of its corresponding
source.

V. HARDWARE IMPLEMENTATION: HIDRA

This algorithm was originally designed for the POEtic chip.
The molecules in mode input or output store an ID in the LUT,
used as a 16-bit shift register. A routing unit is connected to
four molecules via an interface and access the ID in a serial
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manner. This interface, while connecting 4 logic elements
in our physical implementation (Figure 1), could easily be
changed to deal with 9 elements or more, depending on the
density of routing units that has to be achieved.

We now describe the distributed routing algorithm HIDRA,
as it is realized in POEtic, before showing some possible
improvements. The basic algorithm was designed for a 4-
neighbors system, because of constraints of size and number
of pins. We will show later that an 8-neighborhood is more
efficient, and would be the best solution for a bigger chip.

A. Routing Units

First of all, let’s fix the global architecture of a routing unit,
as only its controller will change for the different algorithms.
We assume that the identifier of a source or a target is stored
outside the routing unit, in order not to depend on the identifier
size. This identifier will be accessed in a serial manner, by
sending a read enable. A second external signal, a trigger,
should be supplied to the routing unit. It can be the same
for all units, and is managed by the controller of any of these
units, and serves to indicate the number of clock cycles needed
to compare two identifiers. For instance, if we deal with 16-
bit identifiers, then when enabled, the trigger should supply
a ’1” every 16 clock cycles. Finally, since the goal is to link
logic elements dynamically, a signal can be sent from the logic
element to the routing unit, and vice versa, and a signal from
the logic element has to indicate if the routing unit has to act
as nothing special or an input or output. In this case, another
signal selects if it has to initiate a connection or if it just waits
for another one to launch the routing process (an output of a
cell won’t necessarily need to be connected, while an input has
to retrieve data from somewhere). Finally, a feedback signal
indicates to the logic element if it is connected through the
routing layer or not.

Figure 4 shows the rough structure of a routing unit, as
well as its major outputs. We can observe that two wires send
data to each direction. The one called val out is used during
the routing process to send signals from the controller to the
neighbors, while under normal operation it simply sends the
value selected from the switchbox. Four multiplexers are used
for this purpose and managed by the controller (in the initial
state, the switchbox output is selected, while in all others
states, the value from the controller has the priority). The
one called prop_out serves to propagate values through the
entire array. It implements a priority mechanism that selects
where to propagate the signal at "1’ depending on its origin.
If a "1’ comes from the south only the north output will be
"1, conversely if a ’1” comes from the west, the north, south
and east will be ’1’, and so on. The interesting feature of
this system is that it creates a priority of the most bottom-
left propagation unit. Consequently, if many routing units
propagate a ’1’, the most bottom-left will be aware of its
special position, allowing the selection of one unit out of many.

The switchbox is composed of five multiplexers (MUX),
one pointed to each direction, and one to select a value to be
sent to the element connected to the routing unit. Each MUX
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Fig. 4. The general architecture of a routing unit, showing the controller and the switchbox.

connected to a neighbor has four inputs, i.e. one from each
other direction, and one from the logic element connected to
the routing unit, while the MUX to the logic element can
select from any of the four neighbors input. Every multiplexer
is controlled by three configuration bits managed by the
state machine. Two of them really define the behavior of
the multiplexer, while the third indicates if the multiplexer
is configured or not, that is, if it is part of a path or not. The
controller has to deal with these three bits during the expansion
phase, in order not to erase an existing path. Moreover it is
used to follow an existing path from the source by reusing it.

B. Controller

All components described previously are similar for our
different algorithms, the controller being the only change. This
controller is built with a finite state machine of 6 states, a prop-
agation unit, and a serial comparator to compare identifiers.
Our basic distributed algorithm is based on different phases
that we will explain in this section.

o Phase 1. When in initial state, a routing unit wanting to
be connected sends a ’1’ through the propagation line.
If more than one routing unit wants to start a routing
process, the propagation unit allows the controller to
know whether it is the most bottom-left or not. This
operation is executed in one clock cycle, the propagation
being combinational.

« Phase 2. After this step, the most bottom-left is consid-
ered to be the master for this routing process, and starts
sending its identifier in serial through the propagation
line. Every routing unit, being a source or a target, sends
an enable to its external element to shift the identifier and
the trigger. Every source or target compares the received
identifier bit with its own identifier, until the trigger sends
a ’1’. After these n clock cycles the sources and targets
know whether they have to be involved in the current
routing process or not, that is if they have the same
identifier as the master.

« Phase 3. During the next step, lasting one clock cycle,
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the master sends a ’1’ through the propagation line if
it is a source. In this case, all sources that detected the
same identifier are disabled, in order to make sure that
the master source, and only that one, will be the one
connected. If the master is a target, then all other targets
with the same identifier will be disabled. Actually, if
targets did not disable, the routing of the entire chip
could be faster. However we chose our option because
in a cellular system, even if many cells have inputs with
the same ID, only one may want to connect to another
one.

« Phase 4. While the previous steps are identical for all
algorithms presented in this paper, the next phase will
differ for each particular algorithm. The expansion phase,
in the basic implementation, is a parallel implementation
of Lee’s algorithm. The source involved in the process
starts by sending a 1’ to its four neighbors through
the val_out port. At each clock cycle, a routing unit
checks whether a signal arrives from a neighbor. In case
of many inputs being active at the same time, priority
is given to the north, then east, south and west. The
origin of the signal is stored in two registers, and during
the next clock cycle the routing unit sends a "1’ to
its neighbors. The controller checks, before sending the
signal, if the multiplexer corresponding to the direction
is already configured or not, in order not to destroy any
existing paths. An exception occurs when the multiplexer
is configured and selects the value coming from the origin
of the expansion. In this case it means that it is part of
a path starting from the current source, and it is a good
point to reuse the existing path. If no existing path blocks
up the new one to be created, then this phase only requires
d clock cycles, d being the Manhattan distance between
the source and the target.

o Phase 5. When the target is reached by the expansion
phase, after one clock cycle, it propagates a "1’ through
the propagation line, indicating the end of the process,
and sends a ’1’ to the neighbor being its origin. The
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neighbor then propagates it to its own origin, and so
on, until the source is reached. During this traceback
phase, every routing unit on the path configures the
corresponding multiplexer accordingly to its origin.

Once the routing process finished, a new one can start, until
every routing unit wanting to be connected is connected. Then,
the circuit can execute any task, using the paths created to
send values through the chip. We can observe that at any time
a routing unit can start a new routing process.

The physical implementation of the routing unit controller
consists of 5 flip-flop and a 6-state finite state machine. The
first register indicates if it is already connected as an input or
an output, the second whether it is the master of the routing
process, a third if it participates or not to the current process,
and the last two indicate the origin of the expansion.

C. Congestion Problem

In some cases, where the density of sources and targets
is too high, a congestion problem can occur, the expansion
phase not being able to reach the target. In this case, a flag
is set to ’1’ by one of the routing units, indicating that
no solution is found. If we deal with the hypothesis of a
microprocessor capable of accessing the reconfigurable array,
then the microprocessor should try to change the place of some
components to check if this could avoid this trouble.

V. REDUCING CONGESTION: HIDRA-RC

As we will see later, with a 4-neighborhood, congestions
appear quite fast, so there should be a way to reduce it.
As the creation of paths corresponds to the configuration of
multiplexers, a basic idea to reduce the congestions is to
minimize the number of multiplexers used to connect sources
and targets instead of only trying to minimize the paths length.
This concept can be applied whenever more than one target is
connected to a source, which is the case in many applications
(in neural networks, the output of a neuron is often used by
several neurons).

In 1986, Watanabe and Sugiyama [19] proposed a parallel
routing algorithm very efficient in this sense, when many
targets have to connect to the same source. It finds the quasi-
minimum Steiner-Tree between all the points that have to
be connected together. This algorithm is very interesting,
but needs to know exactly all routing units that want to be
connected, while in our approach we want to allow the creation
of paths a posteriori, to have a fully dynamic system.

We therefore propose an adaptation of our basic algorithm
capable of reducing the number of multiplexers involved in
paths. While in the standard implementation the source starts
the expansion phase, in this new algorithm, the source and
every routing unit that is part of an existing path connected
to this source launch the expansion. This way, the routing
process finds the shortest path between the target and the
existing path connected to the source. Figure 5 shows the
difference between the standard algorithm HIDRA and the
one reducing the congestion, HIDRA-RC (for HIDRA with
Reduced Congestion). The numbers in the squares represent
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the time when the routing unit was reached by the expansion.
In this situation we can observe that two multiplexers are saved
for further routing process, because of the reuse of an existing
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Fig. 5. On the left, the result with HIDRA. On the right, the improved
version, HIDRA-RC.

With HIDRA-RC, we do not guarantee to find the shortest
path considering the existing ones, but by reducing the number
of multiplexers configured, we let more of them available for
further routing process. We will see with the experiments that
the improvement can be very important, making HIDRA-RC
an excellent candidate for new chips implementations where
the targeted applications have a high density of connections.

V1. REDUCING EXECUTION TIME:
HIDRA-RT AND HIDRA-RTC

In HIDRA, the expansion phase needs at least |z; — x| +
ly: — ys| clock cyclest. Following the idea of Mikami, and
adapting its principle to a parallel implementation, this time
can be dramatically reduced, by using lines extensions instead
of simply having a front wave increasing every clock cycle.

The algorithm HIDRA-RT (for Reduced Time), only needed
small changes in the state machine of the routing unit con-
troller. Waiting for the expansion wave, if a routing unit is
reached by a neighbors, then it propagates the signal to the
opposite direction in a combinational manner. Then, the next
clock cycle, it will propagate to the other directions, like in
HIDRA. Figure 6 shows the first two steps of expansion, the
arrows being the sense of propagation.
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Fig. 6. In two steps of expansion, target 1 is reached.

1This corresponds to the Manhattan distance between the two points.
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In an environment with a small number of existing paths,
a new path would only need two clock cycles of expansion,
because with an horizontal line followed by a vertical one, all
points can be reached. It is also important to notice that this
algorithm will always find a path between two points if such a
path exists. However, it won’t necessarily be the shortest one;
which is the price to pay for a reduced execution time.

An extension to HIDRA-RT, HIDRA-RTC, has been also
realized, as a mixture of HIDRA-RC and HIDRA-RT. It is
based on line-search, but with the features allowing to reduce
the potential number of multiplexers requisitioned. In this
algorithm, the source and all routing units that are part of an
existing path connected to this source launch the expansion,
and then this expansion is made by sending lines, like in
HIDRA-RT. A routing unit reached by the wave directly prop-
agates it to the directions where multiplexers are configured to
select the corresponding origin, and to the opposite direction of
the origin. We will observe that this solution have congestion
statistics between HIDRA and HIDRA-RT.

VII. DIFFERENT NEIGHBORHOODS

The physical implementation of HIDRA was realized with
a 4-neighborhood, because of area and pins restrictions. How-
ever, we implemented the four previous algorithms with dif-
ferent neighborhoods. We chose the three regular tessellations,
made of units of triangles, squares and hexagons, and the
Moore neighborhood (8 neighbors) (Figure 7).

ng u;I

338333

Fig. 7.

The four neighborhoods implemented.

While previous works on parallel routing was made with a
4-neighborhood, we will show here that different ones can be
more efficient. For instance, an 8-neighborhood with a density
being a quarter of the one of a 4-neighborhood has the same
efficiency in terms of congestion, while it uses half of the area
in terms of silicon.

As far as the implementation of these neighborhoods is
concerned, the state machine stays the same, only more logic
being used to deal with more neighbors. The origin register,
only requiring two bits for 3 and 4 neighbors also requires
three bits for 6 and 8 neighbors. Finally the switchbox’ size
really makes the difference, as the number of multiplexers
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equals n + 1 for a n-neighborhood, and as its size and humber
of configuration bits also depends on it. For instance, for an
8-neighborhood, the switchbox contains 36 configuration bits,
while only 12 are required for a 3-neighborhood.

While the 8-neighborhood will show to be the best solution,
it is important to bear in mind the number of pins that should
be used to connect different chips together. Table I illustrates
the number of pins for an array of X by Y routing units.

TABLE |
NUMBER OF PINS FOR AN ARRAY OF X BY Y ROUTING UNITS

Neighborhood Pins
3 2X +4Y +8
4 4X 4+4Y +8
6 8X +8Y +38
8 12X +12Y
These equations only take care of the signals
val_out/val_in, prop-out/prop_in. An interesting

feature comes from the fact than the prop signal can be
shrunken into only one wire to pass from a chip to another,
thus dramatically reducing the number of pins.

The number of pins required by the 8-neighbors solution
could be an handicap if we would like to create a chip with
an important number of routing units. However, in this case,
not every routing unit on the border has to be connected to an
external pin. This would reduce the total routing capacity of
a multi-chip design, but this way we can put as many routing
units as required inside a device.

VIIl. ALGORITHMS COMPARISON

We presented four algorithms and four different neigh-
borhoods, making sixteen ways of implementing distributed
dynamic routing. As VHDL implementations have been de-
veloped for all of them, it is easy to compare them in
terms of space, execution time, and congestion. Actually, for
experiments requiring a huge number of runs, we used a
software implementation of each algorithm instead of Mod-
elsim simulations in order to reduce the simulation time. This
shortcut has been checked to make sure it acts exactly like
the parallel implementation, and that the evaluations of clock
cycles elapsed are identical.

The results of these experiments offers a lot of data to
analyze, to compare algorithms and neighborhoods. First of
all, we have a look at the number of transistors of each
implementation. Then the three following subsections show
the most interesting result highlighting the main differences
concerning the execution time, the path lengths, and the
congestion.

A. Transistors

As the goal of our approach is to create hardware imple-
mentations of routing algorithms, the number of transistors
needed for each one is a very important factor, helping to
choose one solution among the others. A VHDL description
of all of the 16 solutions has been developed, at the RTL
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level, and synthesized with Leonardo and a special set of basic
elements to fit in, counting the number of needed transistors.
We assume 2 transistors for an inverter, 4 for a NAND gate,
and 20 for a register. We chose to make a comparison in terms
of transistors instead of CLBs or LEs of commercial FPGAs,
as the aim of our algorithms is to be physically implemented
more than being put onto an FPGA. Table Il illustrates this
number for every algorithm and neighborhood.

TABLE I
NUMBER OF TRANSISTORS OF A ROUTING UNIT FOR EACH
IMPLEMENTATION (TRANSISTORS/REGISTERS)

3 4 6 8
HIDRA 736/23 884/26  1476/40  1952/48
HIDRA-RC 862/23  1078/26  1826/40  2422/48
HIDRA-RT 772123 958/26  1592/40  2070/48
HIDRA-RTC  834/23  1048/26  1748/40  2240/48

Firstly, we can notice than the smallest solution is the one
that has been physically implemented, as the area was the main
issue in this project. Secondly, we can see that the 8-neighbors
solution uses approximately twice the area of the 4-neighbors
one, which will be very important in the conclusion. Thirdly,
we can observe that the switchbox occupies a large amount
of resource (from 36.5% to 58.4%), letting the rest for the
controller.

B. Execution Time

The evaluation of execution time is based on the number
of clock cycles needed to complete the routing process. In
order not to introduce a bias due to congestion, we divide the
total number of clock cycles by the number of routed paths.
This way we obtain the average number of clock cycles for
the creation of one path. We can notice that the difference
between the algorithms is not really significant, due to the fact
that only the expansion phase differs from one to another. As
we showed before, there is a kind of latency for every routing
process, because of one clock cycle is needed for defining a
master, 16 for the identifier (in our case), one to know if a
source or a target launched the process, and at the end, one to
create the path. So there are at least 19 clock cycles, the rest
being the expansion phase.

Table 111 shows the average number of clock cycles for each
algorithm with a 4-neighborhood, on a array of size 20 x 20,
with or without the latency period.

TABLE Il
EXECUTION TIME WITH A 4-NEIGHBORHOOD

Algorithm With latency  Without latency
HIDRA 34.36 14.98
HIDRA-RC 30.41 11.41
HIDRA-RT 23.01 4.01
HIDRA-RTC 22.66 3.66
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C. Path Length

With regard to the length of created paths, the definition of
our algorithms allows to predict that HIDRA performs better
than the others, since the line search approach does not nec-
essarily find the shortest path and the reduction of congestion
implies a potential lengthening of the paths. However, it is
very important to notice that HIDRA-RC creates paths with
less than one more multiplexer than HIDRA. This difference
can be considered as relatively insignificant compared to the
advantage in terms of congestion. Table IV shows the average
length of a path in our experiments with three targets per
source, for an array of 20 x 20.

TABLE IV
AVERAGE PATH LENGTH, DEPENDING ON THE ALGORITHM AND THE
NEIGHBORHOOD

3 4 6 8
HIDRA 20.68 1498 12.66 9.86
HIDRA-RC 20.85 1535 13.39 10.70
HIDRA-RT 2891 1542 15.03 1285
HIDRA-RTC  28.92 15.67 1539 13.50

One can observe that the higher the neighborhood, the
shorter the paths. This is due to the fact that in an 8-
neighborhood for instance, diagonals allow to reduce the
length to maz(|X; — X;|, |Y: — Ys|) if there is no existing
path on the way. However, this advantage requires the use of
bigger multiplexers in the case of 6 and 8 neighbors. Therefore
the propagation time of a signal won’t be significantly better
with 6 and 8 neighbors.

D. Congestion

With regard to congestion, the bigger the neighborhood,
the more we avoid this problem, because there are more
possibilities to find a way from a point to another. Figure
8 shows the number of congestions within 200 runs, with the
HIDRA algorithm, for the four different neighborhoods and
three targets per source.

The interesting fact of this graph is that we can observe
that for neighborhoods 3, 4, 6 and 8 the performance starts
degrading respectively at points 25, 50, 100 and 200. For a
total number of 20x20=400 routing units, we can deduce that
for a random placement of sources and targets, the acceptable
density of targets is 1/16, 1/8, 1/4 and 1/2, if three targets are
connected to one source. It is more interesting to observe that
even with different numbers of targets per source the factor
2 between the neighborhoods is preserved, showing that the
8-neighborhood seems to be a very good candidate.

Let’s now have a look at the different algorithms within the
same neighborhood. We compare the four algorithms with the
8-neighborhood, this one being the best in terms of congestion.
As there would be no difference between HIDRA and HIDRA-
RC with one target per source, we choose to deal with 3 targets
per source 2. Figure 9 shows the number of congestions for a

2The same results appear with 2 or 4 targets per source.
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number of paths to create, with HIDRA.
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depending on the number of paths to create.

As expected, HIDRA is more efficient than HIDRA-RT,
as it always finds the minimal existing path. There is also a
huge difference between HIDRA and HIDRA-RC, the second
avoiding the congestion problem for many more runs. Finally,
it is interesting to observe that HIDRA-RTC shows almost the
same behavior as HIDRA. As HIDRA-RTC is faster, if the
small amount of additional logic required, it can be a good
alternative to HIDRA.

IX. CONCLUSION

In this paper we described the HIDRA algorithm and all its
derivatives to reduce congestion or execution time, as well as
different neighborhoods. Thanks to the results obtained with
our experiments, we are now capable of choosing an option
depending on the number of transistors and pins available and
on the projected density of connections.
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The major result consists of the comparison between 4 and
8 neighbors. Keeping in mind that there is a factor 2 in terms
of number of transistors between 4 and 8 neighbors, and that
there is a factor 1/4 in terms of congestion, we can argue that
it is better to have a design with n x n number of routing
units of 8 neighbors instead of having 2n x 2n routing units
of 4 neighbors. In this configuration, the number of transistors
with 8 neighbors is divided by 2, and the congestion troubles
are dramatically reduced by a factor 2.

We can also consider HIDRA-RTC as an excellent candidate
for applications that need a fast routing. This algorithm has
almost the same congestion characteristics than HIDRA, but
can really reduce the execution time, with only a small amount
of additional logic.

With regard to congestion, HIDRA-RC appeared to be the
best solution, allowing a better density of sources and tar-
gets. Therefore, for applications with an important number of
connections required, the best approach would be HIDRA-RC
with an 8-neighborhood.

Finally we can observe that the congestion curves show
a phase transition between “everything can be routed” to
”nothing can be routed”. Such transition is exactly what can be
seen in percolation models [4], and we are currently working
on a characterization of our algorithms from this point of view.
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