CoDeNios: A Function Level Co-Design Tool

Yann Thoma and Eduardo Sanchez
Logic Systems Laboratory
Swiss Federal Institute of Technology
1015 Lausanne, Switzerland
{yann.thoma,eduardo.sanchez}Qepfl.ch

Abstract

The need of co-design systems, along with the FPGA
complexity, is increasing dramatically, both in indus-
trial and academic settings. New tools are necessary
to ease the development of such systems. Altera
supplies a development kit with a 200’000 equiv-
alent gates FPGA; combined with its proprietary
Nios configurable processor, it allows co-design and
multi-processor architecture creation. In this paper,
we present a new tool, CoDeNios, which lets a de-
veloper partition a C program at the function level,
and automatically generates the whole system.

1 Introduction

Until recently, co-design[4] was limited to complex
industrial projects. The high cost of such systems
did not allow academic projects to use co-design.
Now, with the development of Field Programable
Gate Arrays (FPGAs), the conception of such sys-
tems is easier. The reprogrammable capability of
FPGASs permits prototyping at a low cost, which is
very important for universities and industries. The
problem now is the lack of tools aiding development
of these systems. With this aim in view, Altera sup-
plies the Nios processor family. This soft IP core is
a configurable RISC processor which can be used in
any design.

In this paper we present CoDeNios (CO-DEsign
with a NIOS), a new tool based on a Nios processor,
which helps a developer make a hardware/software
partition[3] of a C program. This partition is made
at the function call level. For each function declared
like void fname(...), the user can force it to be
calculated either by the main processor, by a slave
processor, or by a hardware module. For the last
case, the developer has to write a VHDL file to define
the function behavior. Apart from this human inter-
vention, the whole interface between hardware and

software is automatically generated (C and VHDL
files).

Contrarily to other systems like COSYMA [2],
which automatically makes a partition, our software
lets the user choose it. This particularity allows the
developer to test any hardware module by automat-
ically interfacing it to a processor. It is also use-
ful for academic courses, where students can do the
partition themselves, and evaluate their work. P.
Chou, R. Ortega and G. Borriello [1] have created
a system to synthesise a hardware/software inter-
face for a micro-controller. Their work is made for
peripherals present outside the chip which contains
the controller. With our tool, the processor and
its user-defined peripherals are implemented in the
same chip. Thus, CoDeNios is better suited for sys-
tem prototyping and hardware module evaluation.

This paper is structured as follows: Section 2 de-
scribes the APEX20K? FPGA family supplied by
Altera”™ and the Nios processor used by CoDe-
Nios. Section 3 focuses on CoDeNios itself, explain-
ing its possibilities, while section 4 explores the per-
formances of a design generated by our application.
Finally section 5 concludes by discussing current and
future work.

2 APEX20K family and Nios

Altera, with the APEX20K family, offers FPGAs
with densities ranging from 30’000 to over 1.5 million
gates. It is built for system-on-a-programmable-chip
(SOPC) designs, with embedded system blocks used
to implement memories as dual-port RAM, ROM,
CAM, etc. For our application, we use a devel-
opment board with an APEX20K200E, from the
APEX20K family (cf. figure 1). This FPGA con-
tains 106’496 configurable memory bits, and 200’000
equivalent gates, which is enough to implement a 3-
processor design.

Along with these new FPGAs which allow SOPC

MultiCore Architecture

Embedded System Block (ESB)

Dual-Port RAM
ROM
CAM

Lut

1/0 Features
oS SSTL-2/-3
GTL+ HSTL
QT LWPECL
AGP MultiVlt 1/0

Clock Management
Upto 4 PLLs
ClockShift Circuitry
ClockBoost Circuitry
ClockLock Circuitry

Figure 1: APEX Device Features

designs, Altera supplies a new processor. The Nios
(cf. table 1) is a configurable RISC processor, work-
ing with 16 or 32 bits (instruction and data). A
wizard helps create a Nios with all the necessary
parameters.The size of instructions, as well as the
number of registers, is decided by the user. A mul-
tiplication unit can be added to speed up multipli-
cations, with a cost in term of gates. The most in-
teresting possibility is the ability to add as many
peripherals as needed. Many of them are already
supplied by the wizard: memory interfaces for ROM
or RAM, UART to manage a serial COM, IDE con-
troller, timer, etc. All these peripherals are mem-
ory mapped for the processor. User-defined periph-
erals can also be added, by specifying the address
range, an optional interrupt number and the number
of clock cycles for write and read operation. When
all the processor parameters are set, a VHDL entity
is generated, which can be included in any design.

As CoDeNios supports a multi-processor architec-
ture, we chose a 16 bit Nios, so as to allow a max-
imum of processors in a design. One single special
peripheral was added, which contains all hardware
and slave processor calculated functions. It has an
address range of 2, used to access a counter (1 ad-
dress for a 32 bit counter accessible in 2 read cycles)
and to define a protocol for calling functions and
pass parameters.

3 CoDeNios

The hardware/software partitioning of a task aims
to accelerate it, by taking advantage of hardware
speed. An important issue is therefore to be able to
find bottlenecks where hardware can speed up a sys-

Table 1: Nios processor characteristics

’ Feature \ Description ‘
type RISC
pipeline 4 levels

(5 for load/store)
16 or 32 bits

instructions and

data size

number of registers | 128, 256 or 512
frequency < 50 MHz

place approximately 26’000

bits for the 16 bits
version

tem. Then the new solution needs to be evaluated in
order to prove it is better than the original software
execution. Currently there is no theory to calculate
precisely the execution time of a co-design system,
so many experiments and measures have to be run.

A second co-design problem is the interface be-
tween hardware and software. For each new hard-
ware module connected to a processor a protocol has
to be defined. The conception of this part of a sys-
tem can be very time-consuming, so automating this
task would be a great advantage for a developer.

CoDeNios proposes to solve both problems. This
tool, based on the Nios processor described above,
has a graphical user interface which enables a de-
veloper to make a partition of a C program, at the
function level, simply by click, drag and drop oper-
ations. This partition allows a function to be cal-
culated by the main processor, by a slave, or by a
hardware module. Once the choices are validated,
an interface between the different processors and the
hardware modules is generated in the form of VHDL
and C files. The original C code of the main proces-
sor is transformed to call slave modules, while for a
slave Nios, the whole C code is generated. For the
hardware, the whole system is generated, except the
architecture of hardware modules. For them, a tem-
plate is generated, letting the developer describe the
function behavior.

3.1 Function Selection

At the beginning of a project, the developer writes
a C program for a 16 bit Nios. The C file can be
opened with CoDeNios. A graphical user interface
(GUI), as shown in figure 2, lists all functions re-
turning void! in a rectangle representing the main
processor. It is then possible to drag and drop a

LThis limitation will be reduced, by also allowing functions
returning an integer.

#l-test.cnp - CoDeNios2

File Edit Wiew Help COM Tools

=10l |

| BER S c 2@

main processor

Ready

)]

Figure 2: CoDeNios graphical user interface

function outside this rectangle to make it a hard-
ware module. By clicking on it, a hardware module
can be turned into a slave processor, and vice versa.
For both entities, all input and output parameters
are listed, connected by an arrow. For a parameter
passed in C by reference (int *a), the direction (in-
put, output, input-output) can be changed by the
user, by clicking on the arrow. The value or the ref-
erence can be sent to the slave module, allows the
use of pointers to access a shared memory.

When the whole system is configured correctly,
buttons on the GUI can launch VHDL and C file
generation, hardware synthesis, placement and rout-
ing, C compilation, and finally start up the execution
of the program on the board, assuming the FPGA
is configured. This command sends all different ex-
ecutable codes for every processor on-chip. Then,
with a terminal, CoDenios installs a communication
between the main processor and the user, who can
view printf () results and type characters which are
sent to the FPGA.

3.2 Automatic Interface Generation

As explained above, CoDeNios generates VHDL files
implementing a protocol between all processors and
hardware modules. For a Nios-to-Nios communica-

tion, no intervention of the user is required, whereas
he has to write VHDL for a Nios-to-hardware com-
munication. In this last case, a template is gener-
ated, declaring the entity and implementing a small
state machine. The state machine corresponds to
the protocol the developer has to respect. First, ev-
ery input and output parameter of the function is
declared as ports. For an output parameter, an ad-
ditional port, called load x (where x is the name of
the parameter), is used to load the result value in
a register outside the entity. An input signal called
start goes to '1’ for one clock cycle, indicating that
the input parameters are loaded, and that the entity
can start the calculation. An output signal called
done has to be put at 1’ during one clock cycle to
inform an external controller that all output param-
eters are loaded, and that the calculation is over.

As an example, the Greatest Common Divider
(GCD) function is declared like this: void gcd(int
a,int b,int *c). Figure 3 shows the template
generated, which implements a state machine wait-
ing for the start signal to be '1’. When this event
occurs, it loads the value 0 in the output register of
¢ and sets done to ’1’ to signify the treatment is fin-
ished. From this template, the developer only needs
to change the architecture, or to map an existing
VHDL file into the architecture.

library ieee;
use ieee.std_logic_1164.all;

entity gcd is port (
—-- input parameter
a_in: in std_logic_vector(15 downto 0);
-- input parameter
b_in: in std_logic_vector(15 downto 0);
-- output parameter
c_out: out std_logic_vector(15 downto 0);
-- put it at ’1’ to load the output
—-— parameter
load_c: out std_logic;

clk: in std_logic; -- clock signal
rst: in std_logic; -- reset, ’0’ active
-- ’1’ during one clock cycle to begin
-- the treatment
start: in std_logic;
-- put it at ’1’ during ome clock cycle
-- when the treatment is finished
done: out std_logic
); end gcd;

architecture struct of gcd is

type state_type is (s0,sl);
signal state,n_state: state_type;

begin

process(state,start)

begin
-- default output values
done<=’0";
c_out<=(others=>’0");
load_c<=’0";

n_state<=state;

case state is

when s0=> -- wait for start
if start=’1’ then

n_state<=sli;

end if;

when s1=>
done<=’1’;
load_c<=’1";
n_state<=s0;

end case;

-- treatment finished

end process;

process(rst,clk)
begin

if rst=’0’ then
state<=s0;

elsif clk’event and clk=’1’ then
state<=n_state;

end if;

end process;

end struct;

Figure 3: Generated VHDL file for GCD function

3.3 Parallelism

Regarding the C files, each original function which
is chosen to be calculated by a slave (processor or
hardware) is replaced by two new calls, one to start
the function calculation, and one to wait for its
termination. Continuing with the GCD example,
gcd(a,b,&c) will be replaced by:
hcall_gcd(a,b,&c) ;hwait () ;

hcall_gcd() launches the new hardware func-
tion calculation, and hwait() waits for its termi-
nation and retrieves the output parameters. This
call/termination splitting allows us to take advan-
tage of the hardware parallelism. It is possible to
call several independent? functions and then to wait
until they are all finished. By calling the most time-
consuming functions first, the total execution time
can be dramatically reduced (cf. figure 4).

3.4 Execution Time Evaluation

As presented above, one important aspect of CoDe-
Nios is its capacity to evaluate the execution time of

2Two functions are said to be independent if they are called
consecutively, and no output parameters of the first are input
of the second.

a hardware or software function. With this aim in
view, some counters are automatically placed in the
system. One global 32bit counter is directly accessi-
ble by the main processor. It is set to 0 with a soft
reset of the FPGA, and counts the clock cycles. It
makes it possible to evaluate the total time of dif-
ferent (parallel or not) function calls. A counter is
attached to each co-design module, in order to eval-
uate the real number of clock cycles of a function
execution. It does not take into account the time to
pass parameters and to call the function. Its value is
retrieved by the master after the output parameters.

The global counter value is accessible via a func-
tion void GetTime(time t *t) and the module
counters are accessible by void GetFuncTime (int
FUNCID,time_t *t). They are declared in an auto-
matically generated file which contains all the pro-
cedures responsible for the co-design function calls.

3.5 Memories

As multi-processor architectures are possible with
CoDeNios, several memories are used. The main
processor places its executable code in the onboard
SRAM of 1MB. The slaves each use only one on-chip
RAM of 1KB. This limitation is due to the number

Software: fl 2 f3

fl
et
Hardware T t T

a e t
Il f2 Il
=
ta tE t(
f3
tﬂ te tf
Hardware f t,= time to call the
with parallelism:quq—» function and to
2 e b pass the
! | parameters

t= execution time

t= time to pass the output
parameters and to end
the function

Figure 4: 3 types of executions

of embedded system blocks® of the APEX20KE200
(52 blocks of 2048 bits). A larger RAM for each
would have prevented having 3 processors on-chip.
A shared memory of 1KB can be added automati-
cally in order to pass arrays to co-design functions
(by passing a pointer). It is shared between the main
processor and all co-design modules. To manage this
RAM, a simple arbitration is implemented, giving a
different priority to each module.

4 Performance

The performance of a design made with CoDeNios
depends on the hardware implementation written by
the user for the hardware functions. The total exe-
cution time depends on the parameter passing time ,
the calling time, and the hardware calculation time.
The parameter passing time is very small; a write in-
struction for an input parameter, and a read one for
an output. On the other hand, to call and then to
wait for a function costs 113 clock cycles. Because of
this, the efficiency of the hardware user-defined mod-
ules is very important. One single addition would be
slower by hardware, the latency of 113 clock cycles
being too long, whereas a mathematical series cal-
culation could be more efficient in hardware. Note
that for an industrial purpose these 113 clock cycles
could be reduced, by changing the generated C code.
Currently, this code is split into different functions
(one to call, and one to wait). As a software function
call costs time, by putting all operations inline we
could gain a lot of time. This has not been done yet,
because of the C code clarity, which is important for
student projects. Another way to save time would be
not to allow exact calculation of hardware function

3The embedded system blocks are used to implement
memories.

execution time. In the current version, this value is
retrieved after the function termination. By delet-
ing it, 4 clock cycles could be spared, but, because
they allow the developer to evaluate the software so-
lution as well as the hardware one, this deletion was
not done.

Finally, the performance of a system depends on
the parallelism imposed by the developer. If more
than one function can be launched at the same time,
the execution time can be dramatically reduced.

5 Conclusion

In this paper we presented a co-design tool called
CoDeNios. This pedagogic tool helps a developer
make a hardware/software partition of a C program,
and generates the interface between the hardware
and the software. A multi-processor architecture is
also possible, sparing the user the task of interfacing
the different processors.

CoDeNios, in its present state, can be used as a
teaching tool. The students can rapidly test hard-
ware modules by integrating them in a co-design sys-
tem, without having to develop a protocol to syn-
chronize the hardware and the software. To evalu-
ate the efficiency of their hardware modules, C func-
tions permit to retrieve counters values. Therefore
it is possible to compare a software solution with a
hardware one.

In the latest version of Nios (v2.0), the developer
can add a user-defined module inside the core pro-
cessor, a feature which overlaps a subset of the Co-
DeNios possibilities. This new development is inter-
esting in that it highlights the importance of the cur-
rent co-design trend that our project follows. Even
though the performances of the Nios add-on are bet-
ter in term of speed, our system allows for a much
richer and wider range of applications. In effect, the
Nios system is limited to the call of one module at
a time and a maximum of two operands per mod-
ule. In contrast, it is possible to implement fully
parallel module calls with CoDeNios, with as many
arguments (input/ouput) as desired, and add extra
features, such as shared memory access from the
hardware module. This higher flexibility and wealth
of potentialities make CoDeNios a perfect tool for
teaching applications.

In addition to the educational function of CoDe-
Nios, an industrial use is possible. Having the possi-
bility to create a complete system mixing hardware
and software implies a small development time. To
make this even easier, a tool to generate VHDL from
C functions is currently being developed in our lab.

It will be able to transform a subset of C (if, for,
while, +, -, *, /) calculating with 16 bit integers into
a hardware pipeline. Integrated with CoDeNios, it
will complete the automation of the system genera-
tion. The development process will also be totally
automated based on the user choices.

Finally, besides the C to VHDL translation, we
will add new possibilities to CoDeNios. First, func-
tions which return an integer will be potential slave
calculated functions. For instance, a developer will
be allowed to use a co-design function in a condi-
tional statement, or in an expression. Second, the
function parameter size is currently fixed to 16 bits.
This limitation will be removed, allowing different
types of data to be sent to a co-design module.

References

[1] P. Chou, R. Ortega, and G. Boriello. Syn-
thesis of the hardware/software interface in
microcontroller-based systems. In Proceedings of
the International Conference on Computer Aided
Design, pages 488-495, Los Alamitos, California,
1992. IEEE Computer Society Press.

[2] J. Henkel, T. Benner, and R. Ernst. Hard-
ware generation and partitioning effects in the
COSYMA system. In Proceedings of the Inter-
national Workshop on Hardware-Software Code-
stgn, 1993.

[3] A. Kalavade and E. A. Lee. The extended par-
titioning problem: Hardare/software mapping,
scheduling, and implementation-bin selection. In
G. De Micheli, R. Ernst, and W. Wolf, editors,
Readings in hardware/software co-design, Series
in Systems on Silicon, pages 293-313. Morgan
Kaufmann, June 2001.

[4] G. De Micheli and R. K. Gupta. Hardware-
software co-design. In G. De Micheli, R. Ernst,
and W. Wolf, editors, Readings in hard-
ware/software co-design, Series in Systems on

Silicon, pages 30—44. Morgan Kaufmann, June
2001.

