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Abstract

A cellular hardware implementation of a spiking neural
network with run-time reconfigurable connectivity is pre-
sented. It is implemented on a compact custom FPGA board
which provides a powerful reconfigurable hardware plat-
form for hardware and software design. Complementing
the system, a CPU synthesized on the FPGA takes care of
interfacing the network with the external world. The FPGA
board and the hardware network are demonstrated in the
form of a controller embedded on the Khepera robot for a
task of obstacle avoidance. Finally, future implementations
on new multi-cellular hardware are discussed.

1. Introduction

Spiking neurons depart from traditional connectionist
models in the sense that the information is transmitted by
the mean of pulses (or spikes) [9], rather than by firing rates.
This may allow spiking neurons to have richer dynamics
and to exploit the temporal domain to encode or retrieve in-
formation in the exchanged spikes. Spiking neurons have
been used as controllers in evolutionary robotics, e.g. to
perform vision-based obstacle avoidance [7] and phototaxis
[4]. Hardware implementations of spiking networks may
bring benefits such as very low power consumption, for ex-
ample in neuromorphic sensors [13, 17], or very fast update
speed [12, 22].

Here a cellular digital hardware implementation of a
spiking neural network with run-time reconfigurable con-
nectivity is presented. It is composed of a regular 2D array
of cells where each cell acts as a spiking neuron. Cells have
a configuration input which allows to change the type and

the connectivity of the neuron at run-time. The system is
validated in a task of navigation for the Khepera robot [15].

The custom FPGA board (FPGA module) provides a
compact and powerful reconfigurable hardware platform.
Embedded hardware and software design is possible (soft-
core processor) and can be used for evolvable hardware or
evolutionary robotics research. It can be used as a stan-
dalone device or on robots such as the Khepera.

Section 2 describes the FPGA module. Section 3 ex-
plains the principles of the cellular spiking neural network
with reconfigurable connectivity. Section 4 describes the
implementation on the FPGA and the experiment with the
Khepera robot. Results are discussed in section 5 before
concluding in section 6.

2. FPGA Module

FPGAs are very flexible for implementing hardware sys-
tems. Any digital system can be implemented inside, pro-
vided that the resources are sufficient (fig. 1). A com-
pact FPGA module has been developed, based on the
APEX20K200E FPGA (200’000 gates) from Altera. It
can be used as a standalone device, or plugged on mobile
robots. In particular it is fully mechanically and electrically
compatible with the Khepera miniature robot [15] which
is a robot which accepts extension modules. This FPGA
module provides a powerful reconfigurable hardware plat-
form for evolvable hardware or evolutionary robotics exper-
iments.

There exists another FPGA module compatible with the
Khepera, developed by Applied AI Systems Inc. [2]. It
is based on the discontinued XC6216 FPGA from Xilinx
[32]. Although that FPGA is a very suitable device for un-
constrained evolution [28], it does not suit our application
because of the few resources available (24’000 gates).



Figure 1. Any digital system can be im-
plemented on an FPGA (given enough re-
sources): e.g. CPU, dedicated hardware units
(FFT unit, logic functions), serial communica-
tion controller, on-chip RAM.

Figure 2. The FPGA module mounted on top
of the Khepera robot. The module is com-
posed of two PCBs, one for the FPGA and an-
other for the power supply. The module can
also be used standalone or on other robots.

2.1 Description and Architecture

The FPGA module contains the FPGA together with
SRAM and Flash memory and several connectors to inter-
face with a PC and user extensions (table 1 lists the fea-
tures of the module). When used on the Khepera robot, the
FPGA module extends considerably the capabilities of the
robot. However, the module can also be used standalone or
on another robot. In the latter case, the I/O pins previously
used to communicate with the Khepera become user I/O.

Some tough problems of space optimization had to be
solved to fit the system on a PCB of 58mm of diameter (size
of the Khepera robot). The result is a module composed of
two stacked PCBs (fig. 2):

• The FPGA board turret (digital part) includes the ma-

• APEX20K200E-2X FPGA with 200’000 gates, 106’496 RAM
bits (8320 logic elements)

• 1 MByte Flash memory (512Kx16)
• 256 KBytes SRAM (two 64Kx16 chips)
• 2 user and 2 system push-buttons, 3 user LEDs, configuration

switches
• 26 3.3V user I/O, 2 5V-compatible user I/O (e.g. TTL serial

line)
• 26 5V-compatible I/O for the Khepera bus or user I/O
• Stackable modules (multi-FPGA system sharing a single clock)
• RS232 connector with transceiver
• JTAG connector for Altera ByteBlasterMV and MasterBlasters

programmers
• Compatible with Excalibur board software development Kit
• Supply voltage: 4.5V to 25V
• Power board generates 1.8V and 3.3V (1.4A each voltage)
• On-board logic for configuring the FPGA from Flash
• Self-reconfiguration may be triggered by the FPGA
• Oscillator (33MHz) and zero skew clock distribution
• Power-on reset circuitry
• Clock and power pins available for user modules

Table 1. Features of the FPGA module

jor components such as the FPGA, the configuration
controller (EPM7064), the memories, the oscillator,
the serial transceiver, etc. A supplementary clock pin
is placed next to the existing Khepera bus pins to allow
for stacked FPGA modules to share the same clock.

• The Power board turret (analog part) comprises the
voltage regulators that generates the 1.8V and the 3.3V
required by the digital components. The supplemen-
tary power pins (1.8V, 3.3V, GND) are placed next to
the existing Khepera bus pins to be used by the FPGA
board turret or by other user turrets.

The architecture of the FPGA module is similar to that
of the Excalibur development board [1], modified to per-
form as a fully Khepera-compatible extension module. The
module is also compatible with the Excalibur development
tools. The latter allow to design SoC (System on a Chip),
mixing hardware and software. Those tools provide a syn-
thesizeable 16 and 32 bit CPU (called Nios) and several pe-
ripherals are readily available (e.g. UART or SPI commu-
nication controllers, timers, parallel I/O). The main parts of
the FPGA module architecture are shown in fig. 3 and are
described below.

Memories and memory bus.The Flash memory contains
the configuration of the FPGA, used on power-up or reset.
It can also store user data or CPU-executable files. Two
SRAM chips can be used for program and data memory. A
memory bus interfaces the SRAMs and Flash memories to
the APEX FPGA and to the configuration controller. The
FPGA has full access to the memories. The configuration
controller only accesses the address bus and control signals.

Configuration controller. The FPGA is SRAM-based
and its configuration is volatile, i.e. its configuration needs
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Figure 3. FPGA module architecture: in ad-
dition to the FPGA there are RAM and Flash
memories and connectors for interfacing.

to be downloaded after each power-up or reset. The con-
figuration controller takes care of the download procedure
by transferring the configuration file from the Flash to the
FPGA. The configuration controller is a non-volatile device
and is programmed only once. In normal use this device is
never reconfigured.

User interfaces.The module provides two user push-
buttons, three user LEDs and two system push-buttons
(CPU-clear and system-reset). Configuration switches al-
low the user to select configuration options of the mod-
ule (JTAG target device, clock source for multi-module
systems, self-reconfiguration enable, main/alternate FPGA
configuration selection). In addition, several extension con-
nectors are available, providing 26 3.3V I/O pins, 2 5V-
compatible I/O pins, power (GND, 1.8V, 3.3V, 5V) and
clock pins.

Programming interfaces.A JTAG and a serial interface
with an RS232 transceiver is available through the same
connector. The serial interface allows for communication
with the FPGA and downloading user programs in the CPU
memory. The JTAG interface is used to download a design
in the configuration controller or the FPGA.

Khepera bus. All the digital I/O pins of the Khepera
expansion bus are connected to the FPGA and hence sev-
eral interfacing modes are possible between the FPGA and
the Khepera or the Khepera extension modules. Memory
mapped I/O is the simplest form of interfacing. However it
is also possible to use serial communication (RS232) or the
K-Net protocol developed by K-Team [14]. When used as a
standalone module, 26 supplementary 5-V compatible pins

Figure 4. Top: cellular structure of the net-
work. Each box is a cell (neuron). Bottom:
input connectivity pattern allowed for each
neuron. The connectivity pattern indicates
from which neighbours (outlined boxes) the
current neuron (gray box) receives spikes. In
addition, each neuron has an extra input from
the oustide world. In total there are 6 connec-
tivity patterns. The bottom right connectivity
pattern is an unconnected cell. The complete
set of functionalities is doubled because each
neuron can be excitatory or inhibitory, giving
a total of 12 different functionalities.

are available for general purpose I/O.

3. Cellular spiking network with reconfig-
urable connectivity

In this project we are interested in exploring the process
of growth and differentiation in multi-cellular organisms.
Therefore the chip is organized in a number of cells (de-
tailed in section 3.1) that can express a certain functionality
resulting from a simple morphogenetic process (described
in section 3.3).

The multi-cellular organism has the structure of a regular
2D array of cells. Each cell implements one functionality,
which is selected from a set of predefined functionalities
(something akin to skin, muscle, neuron cells, etc. in living
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Figure 5. The cell has inputs (spikes com-
ing from neighbouring cells), outputs (spike
sent to neighbouring cells) and a function
input indicating what is the function of the
cell (connectivity and sign of the neuron). In
total 12 functions can be selected with this
input: 6 connectivities times two sign types.

organisms). In the present case the cellular system imple-
ments a spiking neural network. Hence the functionality
of each cell is a spiking neuron. However there exist sev-
eral kinds of spiking neuron. Each kind is considered as a
different functionality that a cell can assume. The differ-
ent functionalities are given by a combination of connec-
tivity pattern (one of 6 possible connectivity patterns) and
type of neuron: excitatory or inhibitory (spike ”sign”). The
connectivity pattern indicates, for each neuron, from which
connected neighbouring neurons it will receive spikes. In
total, each cell can assume one of 12 different functional-
ities. This set of functionalities is called afamily of func-
tions. Figure 4 (top) shows an array of 8 by 8 cells, where
each cell is a spiking neuron. Figure 4 (bottom) shows the
6 connectivity patterns that are available.

3.1 Cells

Cells have inputs and outputs to exchange data, as well
as a configuration input (fig. 5). Here cells act as spik-
ing neurons (although one could imagine different func-
tionalities, such as filters, etc.) Inputs are used to receive
incoming spikes from neighbouring neurons, and outputs
are used to send outgoing spikes. The configuration input
(function ) is used to select the functionality of the cell
inside the family of functions.

The cellular implementation has two characteristics.
First, all cells are architecturally identical, although they
may be functionally different. Second, all the necessary
logic for the behaviour of a cell resides within it (common
blocks among several cells cannot be shared).

To allow run-time reconfiguration a condition must be
met: cells must betotipotent. In other words cells must im-
plement all possible functionalities (combinations of con-
nectivity pattern and neuron type). The effective cell func-
tionality changes at run-time according to thefunction
input.

Totipotent cells must be able to connect according to

Figure 6. Effect of incoming spikes on the
membrane potential. Each time a spike is re-
ceived the membrane potential is increased.
When a threshold is reached the neuron emits
a spike (gray column) and the potential is re-
set to 0.

any of the predefined connectivity patterns. This is done
by implementing all the connectivity patterns for the cell at
design-time. At run-time thefunction input is used to
select which pattern to effectively use. This approach in-
cludes some overhead as more routing resources and logic
are used on the FPGA than what will be effectively used for
a given configuration at run-time.

In addition each totipotent cell must be able to imple-
ment excitatory or inhibitory neurons. The neuron type has
no effect on the computation happening within it, but has ef-
fect on the postsynaptic neurons. Neurons must hence know
the type of the presynaptic neurons they are connected to.
In the current implementation each neuron has two outputs:
one along which the spikes are sent, and another indicating
the type of the neuron. If routing ressources are critical al-
ternatives exist: it is possible to use a serial implementation
where neurons first transmit their sign, then the spikes.

The functionality of each cell comes from a memory
storing the configuration of the whole network. However,
this is not the FPGA configuration itself (i.e. the bitstream
generated by the synthesis tools and downloaded to it). Sim-
ilarities exist between cells described here and SBlocks of
the virtual FPGA [11] or the Virtual Reconfigurable Circuits
[23], which are also configurable blocks or systems imple-
mented over an FPGA to allow abstraction from the FPGA
architecture.

3.2 Spiking neuron model

The spiking neuron model is a minimalistic model which
allows compact implementations and which has been previ-
ously implemented on a microcontroller with only 60 bytes
of RAM [8]. It is a discrete-time, integrate-and-fire model
with leakage and a refractory period. Each neuron has
weighted inputs (+2 or -2 depending on whether the presy-
naptic neuron is excitatory or inhibitory) from connected
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Figure 7. The three arrays on the left are snap-
shots of the signaling phase with one type
of signal and two diffusers (gray cells) at the
start of the signaling phase (left), after two
time steps (middle) and when the signaling is
complete (right). The number inside the cells
is the intensity of the signal in hexadecimal.
The expression table used in the expression
phase is shown on the right. In this exam-
ple the signal D matches the second entry
of the table with signal F (smallest Hamming
distance), thus expressing function F1.

neurons. Each neuron has one more external input, e.g. to
connect from a sensor, with fixed weight of +10. The neu-
ron integrates the incoming spikes in the membrane poten-
tial, according to the weights of the connections. Once the
membrane potential reaches a threshold (here set to 4), the
neuron fires (emits a spike), resets its membrane potential to
0 and enters a refractory period where it does not integrate
incoming spikes for one time step. After the integration
phase and if the neuron has not fired, leakage is applied by
decrementing membrane potential by 1. If the potential is
below zero then it is reset to zero to limit its dynamic range.
The main characteristics compared to other models is that
few computations are needed to update the neuron state at
each network step (e.g. no multiplications or exponentials).
Figure 6 shows the effect of incoming spikes on the mem-
brane potential.

3.3 Evolution

Finding the functions to put in each cell of the system
can be difficult and hence evolution is used. Direct codings
[33] are not very flexible in cases where new cells are added
to the system (no bits are available to give a function to that
cell), or when the system reorganizes, because the number
of elements in the system must be known in advance and
cannot change throughout the life of the system. Also direct
codings may pose some problems of scalability.

Therefore we have developed an alternative genetic cod-
ing, calledmorphogenetic system, which has been designed
specifically for cellular circuits. It assigns a functionality

to each cell of the circuit from a set of predefined function-
alities. The process works in two phases: first asignal-
ing phasethen anexpression phase(fig. 7). The signaling
phase relies on the ability of the cellular circuit to exchange
signals among adjacent cells to implement a diffusion pro-
cess. The second phase, expression, finds the functionality
to be expressed in each cell by matching the signal intensi-
ties in each cell with a corresponding functionality stored in
an expression table. The genetic code or chromosome con-
tains the position of diffusing cells (diffusers) and the con-
tents of the expression table, which are both evolved using
a genetic algorithm. For more details see [21]. The mor-
phogenetic system is remotely inspired by the mechanisms
of gene expression and cell differentiation of living organ-
ism [3], notably by the fact that concentrations of proteins
and inter-cellular chemical signaling regulate the function-
ality of cells. Related work include the use of development
mechanisms coupled with genetic algorithms, e.g. [5, 10].
Also biologically plausible development models have been
proposed which may help evolve more complex systems
[16].

The morphogenetic system is implemented in software
in the Nios CPU within the FPGA. The CPU sets the
function input of each cell according to the chromo-
some.

4 Hardware implementation

An array of 64 neurons has been implemented on the
FPGA module. As an example application, it was used in
a task of obstacle avoidance on the Khepera robot. For this
reason we not only describe the network but also the neces-
sary interfaces to communicate with the robot.

4.1 Description

The implementation is a mixed hardware and software
design. The hardware contains mainly the spiking network
itself. The software (executed in the Nios CPU) takes care
of interfacing the network with the outer world, i.e. the
robot, the user and the I/Os. The architecture shown in fig-
ure 8 includes the Nios CPU, a neural network layer, a con-
figuration layer and a network I/O interface. The function
of each part is described below.

4.1.1 CPU

A 16-bit Nios CPU synthesized on the FPGA interfaces be-
tween the network and the rest of the system. This includes
communication with the robot (sending motor commands,
reading sensors) through the TTL-compatible serial com-
munication line of the Khepera robot. The CPU also com-
municates with the host PC by sending monitoring infor-
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Figure 8. System architecture. The neural net-
work layer contains the cellular spiking net-
work. The configuration layer holds the con-
figuration of the network layer. The network
I/O interface allows to write spiketrains and
read the activity of neurons. The CPU han-
dles the communication with the Khepera.

Figure 9. The configuration layer holds the
functionality of each neuron. It is imple-
mented as a writeable array of registers. The
contents of each register are sent to the
function input of the corresponding cell.

mations. The CPU can run and stop the spiking network,
for example to monitor its activity step by step or to match
its speed with that of the rest of the system. The CPU also
interprets the chromosome by running the signaling and ex-
pression phases of the morphogenetic system. It then con-
figures the network accordingly by the mean of the config-
uration layer.

4.1.2 Configuration layer

To clarify the architecture, the configuration layer is sepa-
rate from the network layer. The configuration layer (see
fig. 9) holds the information controlling the functionality
of each cell (neuron in this case) in the network layer. The
configuration layer is implemented as an array of registers,
with one register per cell. The contents of the registers are
connected to thefunction input of the cell. Therow

Figure 10. Cell architecture implementing a
spiking neuron. The main parts are a regis-
ter holding the membrane potential value, a
connectivity mask block, an addend block, a
leakage and normalization block and a con-
trol unit.

andcol inputs allow to select a specific register by means
of decoders which can then be written by the CPU using the
wr anddata inputs

4.1.3 Neural network layer

The neural network layer is composed of an array of totipo-
tent cells which implement spiking neurons (outlined boxes
in the network layer in fig. 8 are cells). The cells are con-
nected at design-time to a set of 25 neighbouring cells so
that they can express all connectivity patterns described pre-
viously (a 26th input is used as the external input to the neu-
ron).

Figure 10 shows the architecture within the cell to imple-
ment a spiking neuron. Control inputs (clock , enable ,
reset ) allow to run, pause and reset the network. The in-
puts from connected neurons arein1 ..in n, which convey
the incoming spikes, andins1 ..ins n which indicate the
type of connected neurons (spike ”sign”). Thefunction
input tells the neuron which connectivity pattern to use and
what is the type of the neuron. The two outputs areout ,
along which output spike is sent, andouts , which is the
type of the current neuron, as defined byfunction .

The spiking neuron contains a 7-bit register (V) holding
the membrane potential. The register size is defined by the
number of inputs and by their maximum weights (25 inputs
with a weight of +/-2 and one external input with a weight
of +10). The inputs are time-multiplexed. The number of
clocks for one network step is equal ton+1 (wheren is the
total number of inputs,n = 26 here).

The control unit is in charge of generating the neces-
sary sequence to multiplex the inputs in clock cycles1 to
n, to update the register with the contribution of the in-
puts (sok=0 ). At clock cyclen + 1 (sok=1 ) the output
is updated (emission of a spike if the register is above a
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given threshold) and the register is loaded with the content
of the leakage and normalizationblock. That block decre-
ments the value of the register if it is not above the threshold
(leakage) or resets the register to 0 if its value is above the
threshold or below 0.

The generation of the proper run-time connectivity is
done by theconnectivity maskunit. It generates a connectiv-
ity mask, according to thefunction input, implemented
as a look-up table. The connectivity mask is then ANDed
with the inputs to give the effective input spikes. Those are,
together with the signs, multiplexed and sent to theaddend
block. This block generates the value to be added to the reg-
ister, by means of multiplexers. SignalZ of thecontrolunit
indicates whether the addend block handles input1 (exter-
nal input) which has a fixed weight of 10, or inputs2 to n
which have a weight of +2 or -2, depending on the sign.

4.1.4 Network I/O interface

The network I/O interface is composed of two types of units
(fig. 8) which allow the network to run with minimal soft-
ware intervention. The first unit, thespike generator, is a
frequency-programmable generator of spikes which is used
to feed sensory informations to the network (e.g. spike fre-
quency proportional to the activation of a sensor). The sec-
ond unit, theactivity measure, measures the average activity
of the connected neuron over a given time window. This al-
lows to actuate effectors proportionally to the firing rate of a
neuron (the network is updated several times before reading
the activity measurement unit).

4.2 Implementation results

The behaviour of the whole system has been tested by
generating random networks, applying random inputs, and
comparing the spike trains of each neuron to a software im-
plementation.

After place and route, timing analysis gives a theoreti-
cal maximum frequency of about 42MHz. A network up-
date requires 27 clock cycles. At the operating frequency
of the FPGA module of 33MHz this gives 1.2 millions up-
dates/second.

Table 2 summarizes the number of logic elements (LE)
and the longest register to register delay for the complete
system and its main blocks. Data for the main blocks are
obtained by standalone compilation of the blocks. Synthesis
optimizations may reduce resource use when blocks are part
of the complete system. This is the case for the neuron:
it uses 109 LE standalone but when part of a network of
64 neurons the resources are of about 90 LE per neuron.
Clearly the network and configuration layer is taking most
of the space (5939 LE of the 8222 LE of the whole system)
and is where optimizations should be seeked. Also there is

Entity Resource
use (LE)

Longest
delay

• Complete system 8222 23.3 ns
• CPU (incl. UART and I/O) 2121 17.9ns
• Network interface 163 7.83ns
• Net. and config. layer (64 cells) 5939 21.7ns
• Single neuron 109 13.3ns

Table 2. Number of logic elements and
longest register to register delay after place
and route for the complete system and its
main blocks (compiled individually). The net-
work interface is composed of 8 spike gener-
ators and 2 activity measurement blocks.

a significant amount of delay introduced when the neurons
are interconnected (the network and configuration layer has
a 75% longer register to register delay than a single neuron).
As this may be a performance bottleneck, further study is
needed to identify what causes that delay and whether it
can be decreased.

4.3 Robot obstacle avoidance

A spiking network was evolved as a controller for a
Khepera miniature robot to do obstacle avoidance using the
information coming from its infra-red sensors. The fitness
functions seeks to maximize forward speed and distance
from the obstacles and minimize rotation.

The system, shown in figure 11, is composed of an array
of 8x8 neurons. Four sensory groups of two cells are con-
nected to the infrared sensors via the spike generators. Two
other cells are connected to the activity measurement units
and are used to set the speeds of the wheels.

The robot runs with a sensory-motor period of 100ms.
During that period, the network is updated 20 times. At the
end of the sensory-motor period, the spike generators are
programmed to reflect the new activity of the infra-red sen-
sors for the next sensory-motor period. According to the
distance to the obstacles, either 0, 1 (the ”low” activity),
or both input neurons (”low” and ”high” activity) of each
sensory group receive a spike train of period 2 (one spike
every two time steps). Then the units in charge of measur-
ing the activity of the output neurons are read and the speed
of the wheels is updated accordingly. A minimum activity
of the neuron sets the speed of the wheel to +80 mm/s. A
maximum activity sets the speed to -80 mm/s. The speed of
the wheels scales linearly in between. Note that the speed
of the wheels is inversely proportional to the activity of the
output neurons: this allows the robot to move forward when
no obstacles are sensed and thus when there is potentially
no activity in the network. Alternatively, to avoid introduc-
ing engineering knowledge, bias neurons (constantly firing
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Figure 11. Application of the hardware spik-
ing network. The objective is perform ob-
stacle avoidance using the sensory informa-
tion coming from the proximity sensors of
the robot which are sent to 8 input neurons.
Two output neurons control the speed of the
wheels.

neurons) could be placed in the system to provide activity
at all time.

Previously, evolution has been performed using a soft-
ware simulation of the network (but with the real robot) to
determine the parameters of the system (e.g. coding for the
input and outputs). The software simulation did not use an
hardware oriented language (like SystemC) but was written
in C++. However, constructs which can be easily imple-
mented in hardware were used and the software model of
the neuron is the same as the hardware model. To test the
hardware network, the chromosomes of some of the best
individuals at the obstacle avoidance task have been down-
loaded to the Nios CPU, which programs the network ac-
cordingly. Experiments show that the fitness and behaviour
of the robot using the hardware network is similar to that
using the software network [21]. The variations depend on
experimental factors (e.g. initial position of the robot).

5 Discussion

The work described in this paper is a continuation of pre-
vious research [21]. The novelty resides in the development
of a compact FPGA-based module which can be used stan-
dalone or as a robot extension, and in the hardware imple-
mentation of the spiking neural network.

Other hardware implementations of spiking neurons
have been proposed, in analog [19] and in digital circuits
[12, 22]. Analog implementations require few transistors

and can be very energy efficient. The cited digital imple-
mentations are specialized accelerator chips which focus on
high speed. In this project, we are not particularly interested
in speed, as the limiting factor is the speed of movement of
the robot, but we are interested in exploring evolution of
multi-cellular structures. Hence our system differs notably
from previous architectures by its cellular nature: all the
necessary logic for the behaviour of a cell resides within it,
and all cells are architecturally identical.

The custom FPGA module has been demonstrated with
the Khepera robot. However the module is not tied to the
Khepera and can be used on other robots or in a standalone
fashion.

A high network update speed is obtained: 27 clock cy-
cles are necessary for updating a network of 64 neurons,
which means 1.2 Mio updates/sec at the operating fre-
quency of 33MHz. The number of clock cycles for a net-
work update is independent of the number of neurons in
the system. This departs from a software implementation
where update time scales with the number of neurons. This
network has a total of 1664 connections. In software, even if
only one instruction of one clock cycle was needed to pro-
cess a connection, this would result in at least 1664 clock
cycles for a network update. In this case the hardware ver-
sion is at least two orders of magnitude faster than the soft-
ware version at identical clock speeds. High update speed
can be very interesting. For example, in character recog-
nition systems for postal addresses or in voice recognition
systems, a fast throughput is needed.

In the robotic application presented here the network
needs only be updated about every millisecond. Indeed it
has been slowed down by disabling it during part of the
time. In cases where network speed is not critical further
space optimizations could be considered.

Resources used scale linearly with the number of neu-
rons. The neuron model is minimalistic and permits com-
pact implementations. It is believed that its implementation
is quite efficient, although further space optimization may
be possible. Also, less than 64 neurons can be used for ob-
stacle avoidance [8]. However, we have previously inves-
tigated other applications which may also be implemented
in hardware and which need that amount of neurons, e.g.
pattern recognition [21].

The current neuron model lacks the capacity to adapt
(learn). Models with richer dynamic and learning have been
described and applied to the recognition of moving patterns
[6]. Optimizations and simplifications have been proposed
for hardware implementations [29, 30].

Network connectivity has been evolved using software
simulations of the network. Implementing the genetic al-
gorithm and measuring the fitness in the CPU within the
FPGA to have complete evolution on the robot remains to
be done, but should be fairly straightforward. Also the chro-
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mosome could be decoded in hardware to obtain the func-
tion of each cell. This could be done in the configuration
layer by means of signaling and expression units. Alternate
signaling mechanisms could take into account the environ-
ment and may render the system more robust or allow run-
time relocation of sensors and actuators [26].

Although the network can change connectivity at run-
time, we do not reconfigure the FPGA but a circuit which
is implemented in it. Devices exist which allow fast recon-
figuration (e.g. Xilinx Virtex). When used with appropriate
software (e.g. Xilinx JBits) it is possible to modify par-
tially the configuration of the FPGA at run-time. Using
FPGA reconfiguration may increase the flexibility of our
system. However, a miniature system such as the one de-
scribed in this article has only limited memory and compu-
tational power: embedding the manufacturer’s tools to use
reconfiguration is likely to be impossible.

The cellular implementation of the spiking neural net-
work is particularly suited to custom hardware using the
cell as the functional block, as in Embryonic-style circuits
(e.g. the BioWall [25]). Such hardware uses the cellular
approach to provide a self-repairing substrate [24] by us-
ing totipotent cells which differentiate according to their
coordinates in the cellular system. When faults are de-
tected ([18] pp. 251–258), the coordinate system is altered
to avoid the faulty cell. The spiking network described in
this paper, which is also based on the principle of totipotent
cells, would suit nicely on an Embryonic substrate. This
may add the very interesting property of self-repair to the
network.

6 Conclusions

A cellular spiking neural network with reconfigurable
connectivity has been implemented on an FPGA. An array
of 64 neurons has been implemented and demonstrated in a
task of obstacle avoidance for the Khepera robot.

The cellular spiking network is very suited for a new cir-
cuit which is under development: the POEtic circuit [31].
The POEtic circuit is meant to be a platform to test several
bio-inspired mechanisms. It is a multi-cellular electronic
circuit which is composed of a regular 2D array of cells
(i.e. functional units). It includes hardware features to im-
plement evolution (’P’ or Phylogenesis), development (’O’
or Ontogenesis) and learning (’E’ or Epigenesis). The PO-
Etic circuit is reprogrammable and its functionality comes
from its configuration bits or genotype, which can be easily
evolved. To implement development, the complete genome
of the whole system can be stored in each cell, allowing
growth and self-repair. In addition, each cell has virtual in-
put/output connections to sensors and actuators.

Furthermore the POEtic circuit has a dynamical routing
mechanism through which connections betwen components

can be built automatically and atrun-time[20, 27]. The dy-
namical routing can be launched by the logic elements, not
only by an external controller. This is a very powerful fea-
ture which does not exist on conventional FPGAs, where
physical connections must be planned atdesign-time: the
compilation tools place the components on the FPGA and
connect them using the available resources. Afterwards,
there is no possibility to change connections (some recent
FPGAs allow partial reconfiguration which could be ex-
ploited to this end, but extreme care must be used to avoid
short circuits).

With the dynamical routing mecanism, cells need not be
connected physically at design-time. Dynamical routing re-
lies on identifiers which mark the source and target cells
and builds the necessary connections at run-time. Cells can
also ask at run-time to build new connections even if not
originally planned. The network described in this paper has
a run-time reconfigurable connectivity up to the extent that
has been planned at design-time. With dynamical routing
the connectivity patterns of the spiking network could be
built automatically when needed and also new connectivity
patterns could be explored at run-time. This would greatly
increase the richness of the connectivity compared to the
current approach.

The area required by a dynamical routing mechanism on
a conventional FPGA would be very large, however, the PO-
Etic circuit will contain this dynamical routing mechanism
”for free” as part of its architecture. This makes it a plat-
form of choice to implement cellular neural networks with
reconfigurable connectivity. Such implementations will be
considered in the future.
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