A Cognitive PHY/MAC Paradigm for Spectrum Sensing, Allocation, and Control

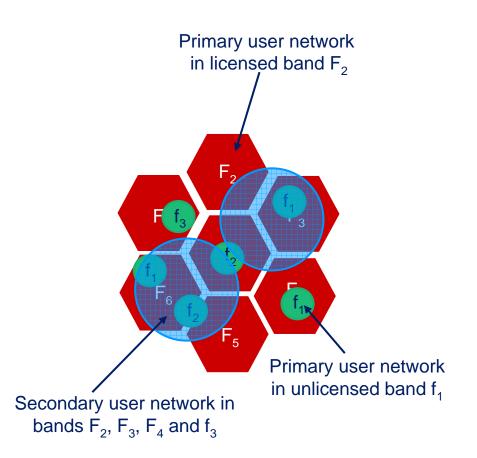
Danijela Cabric

Graduate Student Researcher

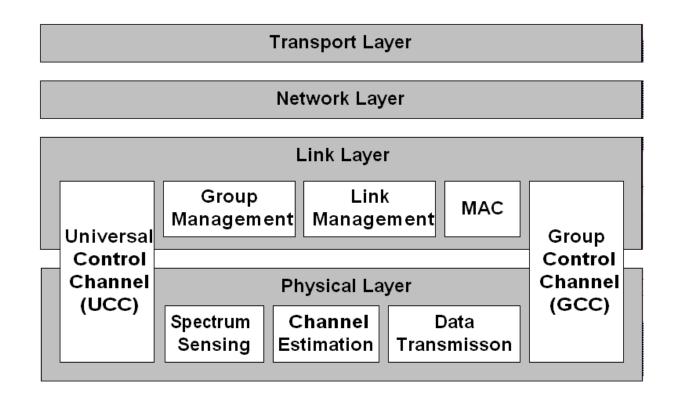
Berkeley Wireless Research Center, UC Berkeley

November 1, 2004

Outline


Our Vision

- Proposed Cognitive OSI Model:
 - Physical Layer Functions
 - Link Layer Functions
- Spectrum Sensing
- Channel Allocation
- Control Channel
- Open Questions



Towards Virtually Unlicensed Spectrum

- Spectrum is divided into:
 - Licensed bands
 - Unlicensed bands
- Our vision is that:
 Cognitive users can create virtually unlicensed bands
- Cognitive users are secondary users in primary users' networks:
 - Use primary user's unused spectrum resources on a non-interfering basis

General OSI Stack for a Cognitive Radio

Spectrum Sensing

- Goal: Reliably detect presence of a Primary User
- Different Primary Users have different sensitivity thresholds
- Three possible approaches:
 - 1. Matched Filter
 - 2. Energy detector
 - 3. Feature detector
- Local Spectrum Sensing
 - Each user makes decision on a Primary User presence based on its local sensing measurements
- Cooperative Spectrum Sensing
 - Users within a group share their local spectrum sensing measurements and jointly decide on the presence of a Primary Users

- This is the <u>optimal way</u> for signal detection, even demodulation
- Maximizes signal to noise ratio
- Requires coherency with primary user signal:
 - signal structure: modulation type, order, packet format
 - carrier and timing synchronization
 - channel knowledge
- Pilots, preambles, synchronization words, training sequences, spreading codes can be used for coherent detection
- Examples:
 - TV signals have narrowband pilot for audio, video carriers
 - CDMA systems have pilot channels, paging channels, etc.
 - OFDM systems have fixed preamble for packet acquisition
- Drawback: CR would need <u>special receiver for each Primary User</u>

Energy Detector

- Energy detector is <u>sub-optimal</u> non-coherent receiver
- Simple technique similar to Spectrum Analyzer approach

$$\begin{array}{c} x(t) \\ \hline \\ A/D \end{array} \xrightarrow{} N \text{ pt. FFT} \xrightarrow{} Block \text{ Average} \\ for period T \end{array} \xrightarrow{} Compare \\ with Threshold \end{array} \xrightarrow{} Y = \begin{cases} 0 \text{ absent} \\ 1 \text{ present} \end{cases}$$

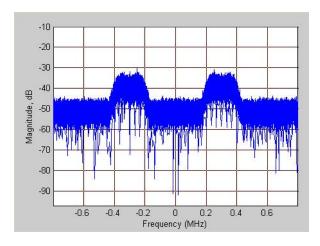
Processing gain is proportional to N and T

Drawbacks:

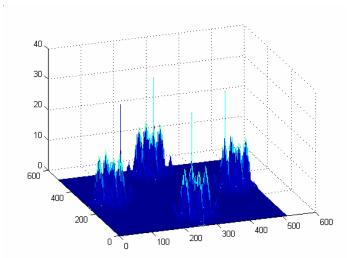
- Threshold is highly susceptible to <u>unknown or changing noise levels and</u> <u>interference</u>
- <u>Does not differentiate</u> between modulated signals, noise, and interference
- <u>Does not work</u> if the signal is direct-sequence or frequency hopping signal, or any time varying signal
- Good for narrowband signals, but wide band signals in the frequency selective fading might not be detected

Feature Detection

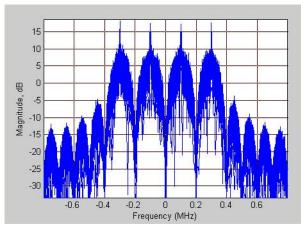
- Modulated signals are coupled with sine-wave carriers, pulse trains, repeating spreading, hoping rates, cyclic prefixes resulting in <u>built-in periodicity</u>
- Cyclostationary processes have <u>spectral correlation</u> that can be used for <u>feature</u> <u>detection</u>

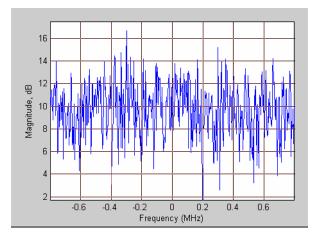

Spectral correlation fcn: $S_{x}^{\alpha}(f) = \lim_{T \to \infty} \lim_{\Delta t \to \infty} \frac{1}{\Delta t} \int_{-\Delta t/2}^{-\Delta t/2} \frac{1}{T} X_{T}(t, f + \alpha/2) X_{T}^{*}(t, f - \alpha/2) dt$

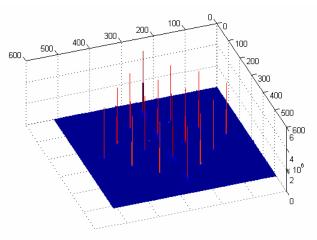
$$\begin{array}{c} x(t) \\ \hline \\ A/D \end{array} \xrightarrow{} N \text{ pt. FFT} \xrightarrow{} Correlate \\ X_T(f+a)X_T^*(f-a) \end{array} \xrightarrow{} Block \\ average \end{array} \xrightarrow{} Features: \begin{array}{c} 1. \text{ number of signals} \\ 2. \text{ modulation types} \\ 3. \text{ symbol rates} \\ 4. \text{ Interference} \end{array}$$

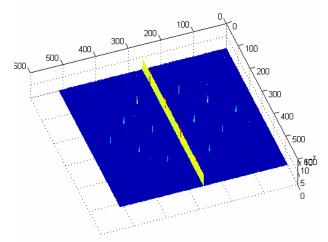

- Different types of modulated signals can have:
 - identical power spectral density
 - highly distinct spectral correlation functions
- Stationary noise and interference exhibit no spectral correlation
- Spectral components can be estimated using other spectral components of the signal if there is a spectral correlation

■ QAM modulated signal with –10dB CW pilot in 10 dB SNR


Power Spectrum Density 1024 pt FFT averaged 8 times


Spectrum Correlation Function (512x512) pt averaged 8 times


Example 2


PSD 4 FSK, SNR=10 dB

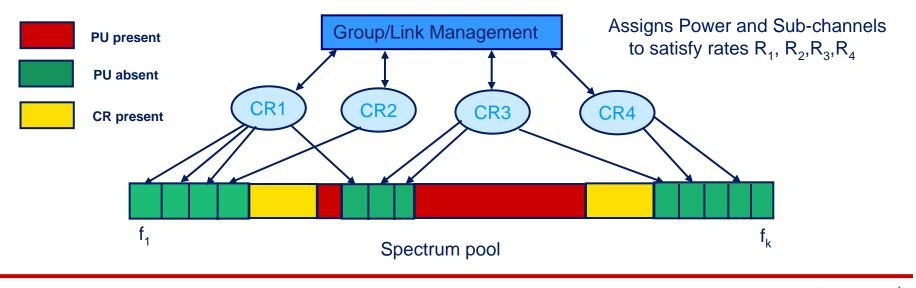
PSD 4 FSK, SNR=-20 dB

SCF 512x512 pt, avg. 8 times

SCF 512x512 pt, avg. 32 times

Spectrum Map

Local Spectrum Map created by each Cognitive User


Frequency	Bandwidth	Power level	Signal type	Time stamp
550.4 MHz	200 kHz	-100dBm	FM mod	$[t_1 \Delta T_1]$
904 MHz	10 MHz	- 65 dBm	FH, rate 1khop/s, BW=1MHz	$[t_k \Delta T_k]$
2.45 GHz	20 MHz	-80 dBm	OFDM packet, t=500usec	$[t_m \Delta T_m]$

- Detect empty channels and estimate their quality through sounding
- Combined Group Spectrum Map after Channel Sounding

	SubChannel ₁	SubChannel ₂	 SubChannel _N
CR 1	0/ h ₁₁ ²	1	 1
	1	1	 0
CR K	0/ h _{1κ} ²	1	 0 / h _{NK} ²

Channel Allocation

- Goal: Satisfy users' requested rates (QoS, Latency,)
- Policy for each Primary user band:
 - E.g. time limit on use, power level, guard bands
- Rules of sharing the available resources (time, frequency, space)
 - One user per degree of freedom for simplified decoding
- Redundant channels reservation if primary user reappears

2004-11-01 Page 12

Control Channels

- CR system decomposition into groups:
 - Introduces hierarchy
 - Short tables and limited change announcements
 - Reduces control messages
 - Spectrum availability
- Universal Control Channel
 - Group Announcements
 - New User Joining
- Group Control Channel
 - Exchange of Spectrum Maps
 - Channel Allocation
- Suitable for Centralized and Ad-Hoc mode

Issues with Control Channels

- Possible candidates for control channel:
 - Licensed Band
 - Unlicensed Band
 - Ultra Wide Band (if allowed in operating band)
 - In-band signaling
- Universal Control Channel should be self-organizing
- Limited throughput
- Strict timing and synchronization requirements
- Security

Open Questions

Spectrum Sensing:

- 1. Is the energy detection still sufficient for PU detection?
- 2. Is it necessary to detect other features?
- 3. How can we use that information?
- 4. Should we differentiate cognitive users from primary users?

Channel Allocation:

- 1. What if multiple CR networks compete for the same spectrum?
- 2. How much redundancy do we need?
- 3. Sub-optimal vs. optimal allocation algorithms?
- Control Channels:
 - 1. Is it necessary or what is the alternative way of control?
 - 2. What is the preferred candidate?

