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Abstract 
We have developed a 16-bit VLSI circuit for division 

and square-root Operations used extensively in digital sig- 
nal applications. The circuit uses the nonrestoring method 
to obtain quotient (root) bits. The quotient (root) value in 
each iterative step is kept in binary form whereas the par- 
tial remainders (radicands) are in redundant binary repre- 
sentations. The iterative core is  a redundant binary and 
binary subtraction, implemented by a carry-save adder. 
The quotient (root) bit selection logic inputs leading three 
digits of partial remainders (radicands) and can be imple- 
mented in a simple circuit. The resultant circuit in 1.2 p m  
CMOS technology has an area of 6.72 d and a speed of 
47.7 ns and 49.2 ns for rounded quotient and square-root 
outputs respectively. 

1. Introduction 

Division and square-root are important arithmetic 
operations used extensively in floating point as well as 
digital signal processors. Consequently, there has been 
extensive work on developing “fast” algorithms for these 
difficult, yet basic, operations [11[21[31[41[51[61. The 
emphasis of our project is on developing a VLSI 
implementation for medium width data common in DSP 
applications [7][8][9]. 

We have developed a 16-bit shared combinational 
hardware for computing rounded division and square-root 
operations. The circuit uses the nonrestoring method to 
obtain quotient (root) bits. The quotient (root) value in 
each iterative step is kept in binary form, the result of an 
on-the-fly redundant binary to binary conversion. The 
partial remainders (radicands) are in redundant binary 
representations. The iterative core is a redundant binary 
and binary subtraction featuring a simple implementation, 
the same complexity as a carry-save adder. It is a carry- 
propagation-free subtraction, and its speed is independent 
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of the data width of the subtrahend. The quotient (root) bit 
selection logic inputs three leading digits of partial 
remainders (radicands). The resultant modular circuit in 
1.2 p m CMOS technology has an area of 6.72 mm2 and a 
competitive speed of 47.7 ns [lo] for the division operation 
and 49.2 ns for the square-root operation. 

This paper describes our division and square-root 
algorithms in Sections 2 and 3 respectively. Section 4 
discusses the on-the-fly redundant binary to binary 
conversion required for the square-root operation. Section 
5 presents the floor plan and compact circuit layout of our 
implementation. The last section summarizes our result 
and discusses how it can be extended. 

2. Redundant Binary Division Algorithm 

2.1. Division Algorithm 

The division algorithm uses the nonrestoring division 
method. For an n-bit dividend Ro and divisor D in the 
range of [ 1,2), the quotient bits are determined as follows: 

initial step: 
40 = 1 ,  

where RI, = 0 ; 

iterative step: 
for 1 l j l n -  1 

1 
2 (Rj + Oi) 0 

- ’ Rj+l = { 2 ( R j + 0 )  0 
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where 
0 f 00 .00... 0, 
0- 11.11 ... 1 with the initial carry-in of 1, 

4j E { 1, 0, 1 } is the j th  quotient binary signed 
digit (BSD), 
( R p y .  R,! )BsD is three leading digits of the shifted R j .  
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To speed up the addition (subtraction) in updating the 
partial remainder Ri+ 1 ,  the partial remainder is in 
redundant binary representation with binary signed digits 
(BSD). The resultant iterative core is an addition of a 
redundant binary number to a binary number. Notice that 
two versions of 0’s prevent representation overflow of the 
redundant R j +  [ll]. 

2.2. Redundant Binary Addition Logic 

Redundant binary addition is carry-propagation-free, 
and its speed is independent of operands’ data width. The 
addition of a redundant binary number to a binary number 
consists of two steps: 

ai+bi = 2ci+si 
s i+ci+1 = zi 

where 

ai€ {i ,o ,  1 1 ,  
biE {0,1}, 
ci E { 0, 1 } , the intermediate carry, 

si E { o , i }  , the intermediate sum digit, 

zi E { 1, 0, 11 ,the sum digit. 

Table 1 : First Step of Redundant Binary Addition 

L I I I o I i 1 - 7 1  
I I I 

I I I o I 1 l  
I 1 I - 1  1 0 1  

Table 2: Second Step of Redundant Binary Addition 

The logic for one redundant binary and binary (RB-B) 

adder can be derived from Table 3 in which ai d u ~  , 

zi = z i z i  , and 00 (or 11), 01, 1 0  encode 0, 1, 7 
respectively: 

I r  

These two steps are summarized in Tables 1 and 2. 



d = SEL2 ( R f  Z ) + ( R f  @ R:) (Rk z) (R:  + z) 
where R'P R ; R : ,  RU P RbRL , R' RiR;  . 

Table 3: Logic of Redundant Binary Addition 

2.3. Quotient Select Logic 

Based on ( R p ; . R i )  BsD of each step, thereare four 

possible choices for the quotient digit: 1,0,0, i, 
corresponding to four cases a, b, c, d respectively. This is 
shown in Table 4. The resultant logic is as follows: 

SELl = ( R b R g i R ; )  
_ _  

Table 4: Quotient Selection Table 
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3. Square Root Algorithm 

The square root operation is similar to division except 
with a varied divisor during each iterative step: 

initial: 
40 = 1 

Q, = 01 

R ,  = R,- -1  

where R, is the operand of square root; 

iterative step: 
for l I j l n - 1  

1 f2(Ri- (Qi+2-i-2)) 

2 (Ri + Oi) 
2 (Ri + 0) 

qi = [8 9 R i + l  = { 
~ - 

(2  (Ri + ( Qi - 2-j- *) ) 1 

where Qi=Qi - ,+2-jqi , that is, Qi=qoql q2.. .$- 1. 

In order to use the RB-B adder specified in the divider, 

Qj+2-i-2 or Qi- 2-i-2 has to be in binary form. 
This is no problem because of on-the-fly conversion from 
redundant binary Qi to its binary equivalent. 

4. On-the-Fly Redundant Binary to Binary 
Conversion 

The partial redundant binary quotient (root) is 
converted to its binary equivalent 1121 at each iterative 
step. The on-the-fly conversion minimizes the conversion 
delay after the full quotient (root) is obtained at the end of 
iteration. In addition, the iterative core of the square root 
operation requires a binary partial root as the subtrahend 
for its redundant binary and binary subtraction. 

The conversion algorithm tracks the binary partial 

quotient Qi and its binary “minus one” (QF = Qi - 2-’ ) 

in step with the division iteration. The pair ( Qi + and 

QJY+ ) is updated based on the value of quotient digit 

qi + as follows: 

The initial condition is 

Let Ai = Q, , Bi = QJr , and ai’ bi, ci, di 

correspond to qi being 1 0, 0, i respectively. The logic 

for j + l  leading bits of Ai and Bi for 1 I j  S 15 can 
implemented by a pair of 16-to-1 multiplexers: 

Aie l  [ I ,  O... j-  11 

Bi-,[f,0...J-l] d i =  1 ’ 

d j #  1 
Ai [ t ,  O...j - I] = { if{ 

Ai- [ t ,  O...j- I ]  a. = 1 
B i [ t ,  O... j -  11 = { i f{  

B j -  [ t ,  O...j- 11 ai f 1 ’ 

with the initial A, [ t ,  01 and Bo [ t ,  01 being 01 and 

00 respectively. Thejth bit for Ai and Bi is produced by 
a pair of or gates: 

AiU]  = ai [j] + di 01 
Bi U] = bi [ J ]  + ci [j] . 

5. Implementation 

Our 16-it divisiodsquare root circuit has four major 
components: redundant binary adder array, quotient select 
logic (QSL) circuit, on-the-fly converter, and rounding 
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circuitry [ 131. The QSL circuit and on-the-fly converter 
are placed in the middle to minimize routing areas, thus 
splitting the layout into two symmetrical halves and saving 
20% chip area as shown in Figure 1. 

The modular layout has 17 rows in which the top 16 
rows generate pre-rounded quotient (root) bits and the 17th 
row implements the rounding operation. Each of the top 
16 rows consists of 16 redundant binary adder cells, one 
on-the-fly converter cell, and one quotient select logic cell. 
The 17th row for rounding has the same elements for 
generating the 17th quotient (root) bit. In addition, it has 
circuits for restoring quotient (root) values in case of a 
negative remainder, and an incrementer for a round-up 
operation. 

The rectangular chip in 1.2 p m CMOS has an area of 
2.8” X 2.4” = 6.72” , and a transistor count of 
19,812. The Spice simulated speed is 47.7 ns for the 
rounded division operation and 49.2 ns for the rounded 
square-root operation. Eliminating rounding circuitry 
improves the circuit speed by 20% and area by 8%. 
whereas eliminating the square-root operation results in a 
3.2% speed gain and 5% area savings. 

2 

6. Summary 

We have developed a compact and regular circuit for 
division and square-root operations for medium data- 
width operands common in DSP applications. The regular 
array structure allows easy insertion of registers for 
pipeline operations and high throughput. 
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Figure 1 : A 16-bit DhriderEquare-Root Circuit 
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