
1

CS559 – Lecture 9
JPEG, Raster Algorithms

These are course notes (not used as slides)
Written by Mike Gleicher, Sept. 2005
With some slides adapted from the notes of Stephen Chenney

© 2005 Michael L. Gleicher

Lossy Coding 2

• Suppose we can only send a fraction of the image
– Which part?

• Send half an image:
– Send the top half (not too good)
– Halve the image in size (send the low frequency half)

• Idea: re-order (transform) the image so the
important stuff is first

Perceptual Image Coding

• Idea: lose stuff in images that is least important
perceptually
– Stuff least likely to notice
– Stuff most likely to convey image

• Who knows about this stuff: The experts!
– Joint Picture Experts Group
– Idea of perceptual image coding

JPEG

• Key Ideas
– Frequency Domain (small details are less important)
– Block Transforms (works on 8x8 blocks)

• Discrete Cosine Transform (DCT)

– Control Quantization of frequency components
• More quality = use more bits
• Generally, use less bits for HF

JPEG

• Multi-stage process
intended to get
very high
compression with
controllable quality
degradation

• Start with YIQ color
– Why? Recall, it’s

the color standard
for TV

Discrete Cosine Transform

• A transformation to convert from the spatial to
frequency domain – done on 8x8 blocks

• Why? Humans have varying sensitivity to different
frequencies, so it is safe to throw some of them
away

• Basis functions:

2

Quantization

• Reduce the number of bits used to store each
coefficient by dividing by a given value
– If you have an 8 bit number (0-255) and divide it by 8,

you get a number between 0-31 (5 bits = 8 bits – 3 bits)
– Different coefficients are divided by different amounts
– Perceptual issues come in here

• Achieves the greatest compression, but also
quality loss

• “Quality” knob controls how much quantization is
done

Entropy Coding

• Standard lossless compression on quantized
coefficients
– Delta encode the DC components
– Run length encode the AC components

• Lots of zeros, so store number of zeros then next value

– Huffman code the encodings

Lossless JPEG With Prediction

• Predict what the value of the pixel will be based on
neighbors

• Record error from prediction
– Mostly error will be near zero

• Huffman encode the error stream
• Variation works really well for fax messages

Video Compression

• Much bigger problem (many images per second)

• Could code each image seperately
– Motion JPEG
– DV (need to make each image a fixed size for tape)

• Need to take advantage that different images are
similar
– Encode the Changes ?

MPEG

• Motion Picture Experts Group
– Standards organization

• MPEG-1 simple format for videos (fixed size)
• MPEG-2 general, scalable format for video
• MPEG-4 computer format (complicated, flexible)
• MPEG-7 future format

• What about MPEG-3? – it doesn’t exist (?)
– MPEG-1 Layer 3 = audio format

MPEG Concepts

• Keyframe
– Need something to start from
– “Reset” when differences get too far

• Difference encoding
– Differences are smaller/easier to encode than images

• Motion
– Some differences are groups of pixels moving around
– Block motion
– Object motion (models)

3

MPEG

Frame 1
(keyframe)

lossy
Jpeg-like
compression

Frame 1

Find motion vectors Frame 2
(keyframe)

Encode
vectors

Frame 1 (comp)
+ motion

Encode
Difference
(lossy)

Frame 2

Other Practical Tricks…

• Don’t really know what is in image
– Makes it hard to make changes

• Getting rid of noise
– Low pass filters
– Edge-preserving filtering

• “Sharpening”
– Can we actually do it? (no – adding aliasing)
– High-Pass attenuation
– Unsharp mask (subtract out low frequencies)

• Feathering
– Sharp transitions are noticeable
– Blend/Blur around edges of changes

Geometric Graphics

• Mathematical descriptions of sets of points
– Rather than sampled representations

• Ultimately, need sampled representations for
display

• Rasterization

• Usually done by low-level
– OS / Graphics Library / Hardware
– Hardware implementations counter-intuitive

• Modern hardware doesn’t work anything like what you’d expect

Drawing Points

• What is a point?
– Position – without any extent
– Can’t see it – since it has no extent, need to give it some

• Position requires co-ordinate system
– Consider these in more depth later

• How does a point relate to a sampled world?
– Points at samples?
– Pick closest sample?
– Give points finite extent and use little square model?
– Use proper sampling

Sampling a point

• Point is a spike – need to LPF
– Gives a circle w/roll-off

• Point sample this

• Or…
– Samples look in circular (kernel shaped) regions around

their position

• But, we can actually record a unique “splat” for any
individual point

Anti-Aliasing

• Anti-Aliasing is about avoiding aliasing
– once you’ve aliased, you’ve lost

• Draw in a way that is more precise
– E.g. points spread out over regions

• Not always better
– Lose contrast, might not look even if gamma is wrong,

might need to go to binary display, …

4

Line drawing

• Was really important, now, not so important
• Let us replace expensive vector displays with

cheap raster ones

• Modern hardware does it differently
– Actually, doesn’t draw lines, draws small, filled polygons

• Historically significant algorithms

Line Drawing (2)

• Consider the integer version
– (x1,y1) -> (x2,y2) are integers
– Not anti-aliased (binary decision on pixels)

• Naïve strawman version:
– Y = mx + b

For x = x1 to x2
y = mx + b
set(x,y)

• Problems:
– Too much math (floating point)
– gaps

Brezenham’s algorithm
(and variants)

• Consider only 1 octant (get others by symmetry)
– 0 >= m > = 1

• Loop over x pixels
– Guaruntees 1 per column

• For each pixel, either move up 1 or not
– If you plotted x,y then choose either x+1,y or x+1,y+1
– Trick: how to decide which one easily
– Same method works for circles (just need different test)

• Decision variable
– Implicit equation for line (d=0 means on the line)

Midpoint method

xk+1

yk

yk+1

xk, yk

d2

d1
d1 = y-yk

d2 = yk + 1 - y

If d1 < d2 pick yk

otherwise pick yk+1

If d1-d2 < 0 pick yk

^^^--- Δd

Derivation

Δ d = d1 – d2

Δ d = (y-yk) – (yk+1-y)

y = m(xk+1) + b

Δd = 2 (m (xk+1) + b) – 2 yk – 1

m = Δy /Δ x

Multiply both sides by Δx (since we know its positive)

ΔdΔx = 2Δy xk +2Δy + 2bΔx – 2Δx yk –Δx

Pk = ΔdΔx = 2Δ y xk + 2Δx yk + c

c = 2Δy + Δx(2b – 1)

(all the stuff that doesn’t depend on k)

Incremental Algorithm

• Suppose we know pk – what is pk+1 ?
• pk+1 = pk + 2Δy – 2Δx (yk+1 – yk)

– Since xk+1 = xk+1
• And yk+1 – yk is either 1 or 0, depending on pk

5

Brezenham’s Algorithm

• P_k = 2 \Delta y + x
• Y = y1

• For X = x1 to x2
– Set X,Y
– If Pk < 0
– Y += 1
– Pk += 2 Δ y – 2 Δ x
– Else: Pk += 2Δ y

Why is this cool?

• No division!
• No floating point!
• No gaps!

• Extends to circles

• But…
– Jaggies
– Lines get thinner as they approach 45 degrees
– Can’t do thick primitives

