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Abstract 
 

In this paper, logical operators are used for analyzing 
texture properties and an algorithm is presented for 
texture image classification.  Operators constructed 
from logical building blocks are convolved with texture 
images.  An optimal set of six operators are selected 
based on their texture discrimination ability.  The 
responses are then converted to standard deviation 
matrices computed over a sliding window.  Zonal 
sampling features are computed from these matrices.  
A feature selection process is applied and the new set 
of features are used for texture classification.  
Classification of texture images and a segmentation 
experiment are presented. The Euclidean distance 
classifier is found to perform best with this algorithm.  
Results show that this algorithm performs efficiently in 
classifying texture images. 
 
1. Introduction  
 
Texture classification is an image processing technique 
by which different regions of an image are identified 
based on texture properties.  This process plays an 
important role in many industrial, biomedical and 
remote sensing applications.  Early work utilized 
statistical and structural methods for texture feature 
extraction [1].  Gaussian Markov random field 
(GMRF) and Gibbs distribution texture models were 
developed and used for texture recognition [2].  Power 
spectral methods using the Fourier spectrum have also 
been used.  DCT, Walsh-Hadamard and DHT have 
been used for recognition of two dimensional binary 
patterns [3]. One of the major developments recently in 
texture segmentation has been the use of 
multiresolution and multichannel descriptions [4] of 
the texture images.   Logical operators have been used 
for Boolean analysis, minimization, spectral layered 
network decomposition, spectral translation synthesis, 
image coding, cryptography and communication.  
Logical systems  
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Partially sponsored by: NSF EIA 9977071 and NASA 
NCCW-0088 

 
 
considered in this work are Logical Hadamard 
transform, Adding and Arithmetic transforms and 
logical operators such as Equivalence, Negation and 
Conjunction. This work is a unique attempt in the 
following respects 
(a) construction of a texture feature space using 

logical operators, 
(b) the algorithm for image classification is 

computationally attractive with excellent 
performance over a wide variety of images. 

 
This paper is organized as follows. Logical operators 
are described in Section 2. In Section 3, texture 
analysis using the operators is explained and the 
algorithm for texture classification is presented. In 
Section 4 experimental results of classifying different 
types of images. Finally, Section 5 gives the 
conclusions and a few pointers on future directions. 

 
2. Logical Operators 
 
The logical operators considered here are order-2 
elementary matrices. The building blocks for defining 
these matrices are 0, 1, -1, matrices of order 1×1. 
These matrices can be formed by row-wise join or 
column wise join operations described in [5]. Some of 
the matrices are shown in Fig. 1. 
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(a) Hadamard         (b) adding 
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(c) arithmetic 
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  (d) equivalence       (e) conjunction   (f) disjunction 
 

Fig. 1. Examples of logical operators 
 



 

 

3. Texture Analysis and Classification with 
Logical Operators 
 
The operators described in Section II can be exploited 
for their characteristic to relate texture elements or 
primitives in a logical context.  Their ability to extract 
texture features and the algorithm for texture 
classification are presented below.  
 
3.1 Texture analysis 
 
The operator masks are first convolved with texture 
regions, 
 ),(),(),( vuOvuFvuG ∗=           (1) 

where F is the image function and O is one of the set of 
logical operators.  The response of the texture images 
to the 6 operators given in Eq. (1) is used to compute a 
standard deviation matrix using a sliding window. 

[ ]
2/1

2

2
),(),(

1
),(









++−++= ∑ ∑
−= −=

w

wm

w

wn

nvmuMnvmuG
W

vuSD  

                           (2) 
The size of the scanning window is 5 x 5 and it slides 
pixel by pixel.  The center pixel is assigned the 
standard deviation value.  In order to avoid loosing 
boundary information the images are padded with 
zeros on all sides.  Twelve images from the Brodatz 
album [6] with typical texture characteristics are used 
(see Fig. 2).  The operators in Fig. 1 are convolved 
with the texture samples of size 64 x 64, as per Eq. (1) 
which constitutes a filtering operation.  The standard 
deviation matrix for each operator response is 
computed as in Eq. (2), which can be seen as a 
smoothing operation.  The average l1-norm of Eq. (2) 
is computed as 
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where N1 and N2 are the size of the standard deviation 
matrix.  From these values the properties of the 
operators can be examined.  It is known that the 
Hadamard operators have good energy compaction 
properties.  It can also be verified that they yield 
maximum discrimination for coarse and fine textures 
as can be seen from the values of Eq. (3) (see Fig. 3) 
for the 4 Hadamard operators (H1-H4) for textures d28 
and d29 (shown on left and right of Fig. 2 (a)).  The 
values have been normalized, 1 represents maximum 
coarseness.  The adding and arithmetic operators 
(AD1-AD5 and AR1 to AR9) extract contrast 
properties from the textures with a value close to 1 for 
high contrast textures.  High and low contrast textures 
d21 and d38 are shown in the left and right of Fig. 
2(b), respectively.  The corresponding values are 
plotted in Fig. 3 which shows that highest separation is 

obtained with operators AD1 and AR5.  The 
conjunction and disjunction operators (CN1- CN2 and 
DN1-DN2) extract randomness information from the 
texture and have higher values close to 1 for irregular 
or random textures (d4 and d9 shown in right top and 
bottom of Fig. 2(c)), and lesser values for regular and 
periodic textures (d6 and d34 shown in left top and 
bottom of Fig. 2(c)).  As seen from the plot in Fig. 3, 
CN1 and DN1 operators yield maximum separability.  
The equivalence operators (EQ1-EQ3) perform an 
averaging operation over the textured image, and give 
a cue of the size of the texture element yielding higher 
values for smaller elements (textures d105 and d16 
shown in left top and bottom of Fig. 2(d)) and lesser 
values for larger texture structures (textures d103 and 
d74 shown in right top and bottom of Fig. 2(d)).  The 
graph in Fig. 3 shows maximum discrimination with 
the equivalence operator EQ3.  From this analysis, one 
operator from each class of logical operator that gives 
the maximum separability among textures is chosen as 
the most powerful among the rest.  The final set of six 
operators (H2, AD1, AR5, EQ3, CN1 and DN1) is 
shown in Fig. 4. 
 

   

(a) (b) 

   

(c)        (d) 

Fig. 2. Texture samples (a) coarseness, (b) contrast, (c) 
randomness, (d) texture element size 

 
3.2 Algorithm for texture classification 
 
The texture samples are convolved with the operators 
as in Eq. (1). The standard deviation matrix for each 
response is computed as in Eq. (2). Features are 
extracted by zonal-filtering using zonal masks which 
are applied to the standard deviation matrix. The zonal 
mask, also called zonal filter, is a simple slit/mask or 
an aperture. A combination of an angular slit with a 
bandlimited low-pass, band-pass or high-pass filter can 
be used for yielding good discriminating features for 
periodic or quasiperiodic textures.  SD(u,v) is the 
standard deviation matrix, where 



 

 

2
Nv1 and 11 ≤≤≤≤ Nu , N1 and N2 are the number of 

rows and columns in the matrix.  Masks are sets of 
integers that are used to extract features from the 
standard deviation matrix. 
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Fig. 3. Operator response plots 
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Fig. 4. Selected logical operators 
 

where the vertical slit mask 
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Then, ρ and θ are in polar coordinates and are defined 
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where the ring mask 
}v)(u, ,integer ,:),{( 21 ρρρ ≤≤= vuvuRm  

Circular feature: ∑
∈

=
mCvu

vuSDY
),(

4 ),( ,          (7) 

where circular mask 
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These features can be computed with different sizes of 
masks and they form a feature vector Y for samples 
from each texture class. Let the length of the feature 

vector Y be L, Ŷ  is the normalized resulting vector, i 
is the index for Y, such that i ≤ L. A combination of 
two criteria, the distance between the means of each 
feature and the measure of standard deviation are used 
to quantify the separation between classes. If M is the 
mean and σ is the standard deviation of the features in 
the training matrix, the sum of the distances of each 
feature from M and σ are computed as 

∑ −=
j
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where i is the feature index, L is the number of 
features,  j is the class index and J is the total number 
of classes.  The standard deviation value for each 
feature is computed as 
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Values computed from Eqs. (9-10) are sorted in 
ascending order and the features with the first half 
indices are selected as the best overall set of features.  
Both the parametric and non-parametric classifiers are 
used in the experiments.  

 
4. Experimental Results 
 
Nine experiments with 6 textures [6], each were 
conducted with the minimum Euclidean distance 
classifier: ( )

2

1
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And K-nearest neighbor classifier: 
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The PCCs for this experiment are shown in Table 1.  
The average number of features selected in 7.  Both 
classifiers perform closely.  The Euclidean  distance 
measure is found to be the most suitable one for this 
algorithm due to the nature of features used, the 
classifier simplicity and speed.  
Segmentation of 6 textured images is done in this 
experiment.  The original mosaic of six textile textures 
(basket, naugahyde leather, a fabric texture, corduroy, 
cotton and tanned leather) is shown in Fig. 5(a).  Each 
texture is of size 256 x 256 and the mosaic is of size 
512 x 768.  The algorithm is applied to segment this 
image using a moving window of size 8 x 8 with an 
overlap of 7 pixels.  The segmentation result is shown 
in Fig. 5(b) which shows excellent classification with 
minimal errors in the boundary.   
 

Table 1. Classification results 

Textured Image %  Correct Classification 
(PCC)  results  

Mosaic of six Brodatz 
Textures with Texture 

ID’s  

k-nearest 
neighbor 
 classifier 

Euclidean 
Distance 
Classifier  

D-94/101/36/84/103/56 93 93 
D-22/28/9/38/4/57 99 100 
D-28/20/9/38/50/57 96 99 
D-6/105/24/19/68/16 97 98 
D-77/4/16/15/24/9 94 97 
D-90/74/93/34/65/53 88 93 
D-105/79/82/52/19/78 89 91 
D-28/9/57/24/4/38 99 99 
D-103/105/12/78/79/82 90 95 
Average PCC 94 96 
 

 

 
(a) 

 
(b) 

Fig. 5. (a) Original textile composite image, (b) 
Segmented image 
 
In the experiments with Brodatz textures, texture 
samples of 64x64 size is optimal due to the wide 

range of textures involved with small to large 
structures.  In general, the sample size should be 
large enough to yield reliable features and small 
enough to produce accurate boundaries in 
segmentation problems.  Hence, 8x8 window size 
has been used in segmentation of Fig. 5(a), where 
texture structure to be characterized are small.  To 
avoid the curse of dimensionality, a feature 
selection process has been applied to select the 
optimal set of features.   
 
5. Conclusions 
 
Logical operators has been used to analyze texture 
images and shown to extract different properties from 
them useful for classification.  An algorithm for using 
the same for feature extraction and classification of 
images has been presented.  Results with textured 
images and segmentation of a mosaic image  gives 
good results which proves the efficiency of the 
algorithm.  The algorithm can be employed for 
classifying other types of images such as medical 
images and for object recognition. 
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