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Abstract

A non-linear transform, called ‘‘sign Haar transform’’ has recently been introduced. The transform is
unique and converts binary/ternary vectors into ternary spectral domain. Recursive definitions for the
calculation of sign Haar transform are developed. Essential properties of logic functions and variables in
the spectral domain of a quantized transform based on Haar functions are presented. Sign Haar transform
has the smallest computational cost of all the quantized transforms. The properties of logic functions are
listed for two different codings of incompletely specified functions.
� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The various discrete transformations have been used in analysis, synthesis and testing of digital
circuits [1,9,12]. Another areas of their applications are signal processing, especially image pro-
cessing and pattern recognition [1,15]. Spectral techniques have also been used for data trans-
mission, especially in the theory of error correcting codes and for digital filtering [1,9].

Most of the used transforms are orthogonal and provide one-to-one mapping of an input
vector onto an output spectrum. They are unique (canonical) and the inverse transform of the
output spectrum yields back the original input vector. There are at least two transforms which are
based on square-wave-like functions that are well suitable for Boolean functions: Walsh and Haar
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transforms [1,4,11–15]. The Walsh functions are global like the Fourier functions and consist of a
set of irregular rectangular waveforms with only two amplitude values þ1 and �1. Walsh func-
tions served as the underlying basis functions of new transform with restricted coefficient values
called ‘‘sign transform’’ [2]. Each but two basis functions in Haar transform consists of a square-
wave pulse located on an otherwise zero amplitude interval. Computation of fast Haar transform
requires order O(N) (N is a number of spectral coefficients) additions and subtractions, which
makes it faster than fast Walsh transform [1,5,6,10,12,13,15]. A new orthogonal transform which
assumes only þ1 and �1 values has recently been proposed and some of their properties and
applications were discussed in Ref. [6]. This transform [6] may be treated as a Walsh-like function,
it can be used to as an intermediation transformation to allow conversion between Haar and
Walsh spectra. Both Walsh and Haar spectra of Boolean functions have easy interpretation and
efficient methods of calculation of such spectra directly from reduced representation of Boolean
functions have recently been introduced [3,8,13]. Similar efficient methods of calculating sign
Walsh spectrum from reduced representations were shown in Ref. [7] and can be extended to sign
Haar spectrum.

Different quantized transforms have been known to be extremely effective both in terms of
memory requirements and processing time and hence very advantageous in the design of binary/
ternary switching circuits. More work on the application of sign Walsh transform in logic design
have been done [2,12], eventhough it has higher computational cost than sign Haar transform
[4,6,10] and the latter has very similar properties and potential applications. In this article, we
present a detailed properties of lesser known sign Haar transform. The basic definitions for this
transform have been given in Refs. [4,5], and for a related quantized transform in Ref. [6]. Besides
applications in logic design a new transform can be used when there is a need for a unique coding
of binary/ternary vectors into the special domain of the same dimensions. One of the possible
applications would be security coding in cryptographic systems using sign Haar-v Walsh-c
transform [6] and ternary communication systems with sign Haar-v transform [10]. An important
property of sign Haar transform is that the computer memory required to store functional and
spectral data is exactly the same since both of them operate on ternary values. It is in high contrast
to traditional Haar spectrum where signs together with magnitudes have to be stored in spectral
domain which then significantly increases requirements for storage space in spectral domain
versus functional when only binary/ternary are considered.

2. General definitions of quantized transforms

S-coding is frequently used for representing Boolean functions when different spectra of such
functions are calculated. The truth vector for S-coding is represented in the following way: the
true minterms (minterms for which Boolean function has logical values 1) are denoted by �1, false
minterms (minterms for which Boolean functions has logical values 0) by þ1, and do not care
minterms (minterms for which Boolean function can have arbitrary logical values 0 or 1) by 0.
Hence binary vectors formed of only fþ1;�1g represent logical values of completely specified
Boolean functions, and formed of fþ1; 0;�1g the values of incompletely specified Boolean
functions. In the continuation, to shorten the notation, functional and spectral data will be
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represented by either fþ;�g or fþ; 0;�g. The data in functional domain can be arbitrary binary/
ternary vectors or S-coded completely (binary) or incompletely (ternary) specified Boolean func-
tions. The following symbols will be used, let R1 ¼ fþ;�g, R2 ¼ fþ; 0;�g, Rn

l means n-space
Cartesian product of a set Rl ðl ¼ 1; 2Þ.

Definition 1. An n-variable S-coded completely specified Boolean function is the mapping
f1:Rn

1 ! R1:

Definition 2. An n-variable S-coded incompletely specified Boolean function is the mapping
f2:Rn

1 ! R2.

Definition 3. An invertible sign Haar transform h and its inverse transform h�1 are the mappings
h:RN

2 ! RN
2ðhÞ and h�1:RN

2ðhÞ ! RN
2 , where N ¼ 2n. In the above equations, symbol RN

2ðhÞ represents
a set with the elements from RN

2 permuted by the mapping h of all the elements of the set RN
2 .

When only completely specified Boolean functions are considered, the symbol RN
2 is replaced

with RN
1 and RN

2ðhÞ with RN
1ðhÞ where the latter represents a proper subset of set RN

2ðhÞ generated by
the h mapping of all the elements of set RN

1 . In order to obtain the sign Haar spectrum h (an
element of set RN

2ðhÞ), and its inverse (a corresponding element of the original data set RN
2 ), the

results of each fast forward or inverse Haar butterfly block are quantized first. In the above
equations, the cardinality of the original data set RN

2 and its transformed spectrum RN
2ðhÞ is equal

to 3N .

When some permutation is performed on the elements of set RN
2 the same permutation happens

to the elements in RN
2ðhÞ spectrum of the original set. Fast flow diagrams for calculation of forward

and inverse sign Haar transform h are shown for N ¼ 8 in Fig. 1(a) and (b) accordingly. The
number of operations required to perform forward sign Haar transform h for a single element of
set RN

2 and inverse sign Haar transform h�1 for a single element of set RN
2ðhÞ and for transform

Fig. 1. Butterfly diagram for (a) forward and (b) inverse sign Haar transform, n ¼ 3. ( ) the sign function, ( ) lack of

any operation, the solid lines and dotted lines represent addition and subtraction respectively.
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matrix of order N ¼ 2n is equal to 4ð2n � 1Þ. Besides calculation of sign Haar transform by using
fast flow diagrams, sign Haar spectra can be calculated directly from recursive definitions that
involve data and transform domain variables.

3. Recursive definitions of sign Haar transform

The following symbols are used: Let ~xxn ¼ fxn; xn�1; . . . ; xp; . . . ; x2; x1g, and ~xxn ¼ fxn;xn�1; . . . ;
xp; . . . ;x2;x1g be n-tuples over GF(2). The symbol xp stands for a data variable, ap represents a
sign Walsh transform variable, and xp a sign Haar transform variable, p is an integer and
16 p6 n. Let ~FF ¼ ½F0; F1; . . . ; Fj; . . . ; FN�2; FN�1
 be a ternary vector. For example, it can be the S-
coded truth vector of f : ð0; 1Þn ! ð�1; 0; 1Þ where the value of Fj ð06 j < NÞ is given by F ð~xxnÞ
when

Pn
p¼1 xp2

p�1 ¼ j. The truth vector for S-coding is defined as in Section 2. In R-coding [8], the
original logical values of 0 and 1 are kept, and do not cares are represented by the value 0.5. Let
~WWF ¼ ½w0;w1; . . . ;wj; . . . ;wN�2;wN�1
 and ~HHF ¼ ½h0; h1; . . . ; hj; . . . ; hN�2; hN�1
 be the vectors cor-
responding to sign Walsh spectrum of ~FF and sign Harr spectrum of ~FF , accordingly. The value of
wj ð06 j < NÞ is given by WF ðaÞ when

Pn
p¼1 ap2

p�1 ¼ j. The value of hj ð06 j < NÞ is given by
HF ðxÞ when

Pn
i¼1 xi2

i�1 ¼ j. Let ~OOi represent the vector of i zeros, 16 i6 n. Let the symbol �c

represent cyclic addition, the symbol �d represent dyadic addition, and the symbol ^ represent
bit-by-bit logical AND.

When the above operations are applied to two vectors ~AAl and ~BBk, 16 l < k, l and k are two
different integer numbers, they result in the vector ~CCk of the length k. Only l elements of~BBk and all
elements of ~AAl are manipulated on, remaining ðk � 1Þ elements of the resulting vector ~CCk are not
affected by the applied operation and are simply the same as the elements of the vector~BBk between
positions k and lþ 1.

Definition 4 [2]. An invertible forward sign Walsh transform w is

wð~aanÞ ¼ sign
X1
xn¼0

sign
X1
xn�1¼0

sign . . . sign
X1
x1¼0

f ð~xxnÞð
 "(

� 1Þ
Pn

p¼1
apxp

!#)
ð1Þ

The inverse sign Walsh transform is

f ð~xxnÞ ¼ sign
X1
a0¼0

sign
X1
a1¼0

sign . . . sign
X1
a1¼0

wð~aanÞð
 "(

� 1Þ
Pn

p¼1
apxp

!#)
ð2Þ

In Eqs. (1) and (2), 16 p6 n.

Definition 5 [4,5,10]. An invertible forward sign Haar transform h is:

h ~OOn �d x1

	 

¼ sign

X1
xn¼0

sign
X1
xn�1¼0

. . . sign
X1
x1¼0

ð
n""

� 1Þxnx1f ~xxn
	 
o

. . .

##
ð3Þ
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and

h ~OOn �d ~xxi �d 2
i

	 

¼ sign

X1
xn�i¼0

sign
X1

xn�i�1¼0

. . . sign
X1
x1¼0

ð
""

� 1Þxn�1 . . . f ~OOn �d ~xxi

	 
hn

�cðn� iÞ
i
�d~xxn�i

o##
ð4Þ

where 16 i < n.

The inverse transform is:

f ~xxn
	 


¼ sign ð
(

� 1Þx1h ~OO1 ^~xxn
	 


�c 1
h i

�d 2
n�1

n o

þ sign ð
(

� 1Þx2h ~OO2 ^~xxn
	 


�c 2
h i

�d 2
n�2

n o

þ 
 
 
 þ sign ð
(

� 1Þxih ~OOi ^~xxn
	 


�c i
h i

�d 2
n�i

n o

þ 
 
 
 þ sign ð
(

� 1Þxn�1h ~OOn�1 ^~xxn
	 


�c ðn
hn

� 1Þ
i
�d 2

o

þ sign
X1
x1¼0

ð
"

� 1Þxnx1h ~OOn �d x1

	 
#)
. . .

)))
ð5Þ

In Eqs. (1)–(5),

sign z ¼
�1 z < 0
0 z ¼ 0
þ1 z > 0

8<
: ð6Þ

Proof of uniqueness. Let us prove the uniqueness of sign Haar transform for a single variable and
the general case for n variables follows by induction. The output function f ðx1Þ 2 f�1; 0;þ1g
where x1 2 f0; 1g. From Eq. (3), forward sign Haar transform,

h ~OO1 �d x1

	 

¼ hðx1Þ ¼ sign

X1
x1¼0

ð
"

� 1Þx1x1f ð~xx1Þ
#
¼ sign

X1
x1¼0

ð
"

� 1Þx1x1f ðx1Þ
#

¼ sign½f ð0Þ þ ð�1Þx1f ð1Þ
 ð7Þ
From Eq. (5), inverse sign Haar transform,

f ~xx1
	 


¼ f ðx1Þ ¼ sign
X1
x1¼0

ð
"

� 1Þx1x1h ~OO1 �d x1

	 
#
¼ sign

X1
x1¼0

ð
"

� 1Þx1x1hðx1Þ
#

¼ sign hð0Þ½ þ ð � 1Þx1hð1Þ
 ð8Þ
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For the case of x1 ¼ 0, the right-hand side of Eq. (8) yields,

sign hð0Þ½ þ hð1Þ
 ¼ sign signff ð0Þ½ þ f ð1Þg þ signff ð0Þ � f ð1Þg
 ¼ f ð0Þ
The case x1 ¼ 1 is proved similarly. �

Example 1. For n ¼ 3 the definitions of forward sign Haar transform h become:

hð~OO3 �d x1Þ ¼ hð0; 0;x1Þ ¼ sign
X1
x3¼0

sign
X1
x2¼0

X1
x1¼0

ð
n""

� 1Þx3x1f ~xx3
	 
o##

and

h ~OO3 �d ~xxi �d 2
i

	 

¼ sign

X1
x3�i¼0

sign
X1

x3�i�1¼0

ð
"

� 1Þx3�i f ~OO3 �d ~xxi

	 

�c ð3

hn
� iÞ

i
�d~xx3�i

o#

for 16 i < 3.

In particular, for i ¼ 2,

h ~OO3 �d ~xx2 �d 2
2

	 

¼ hð1;x2;x1Þ ¼ sign

X1
x1¼0

ð
n

� 1Þx1f ~OO3 �d ~xx2

	 

�c 1

h i
�d~xx1

n oo

¼ sign
X1
x1¼0

ð
n

� 1Þx1f ðx2;x1; 0Þ �d~xx1
h io

¼ sign
X1
x1¼0

ðf � 1Þx1f ðx2;x1; x1Þg

For i ¼ 1,

h ~OO3 �d ~xx1 �d 2
1

	 

¼ hð0; 1;x1Þ

¼ sign
X1
x2¼0

sign
X1
x1¼0

ð
n"

� 1Þx2f ~OO3 �d ~xx1

	 

�c 2

h i
�d~xx2

n oo#

¼ sign
X1
x2¼0

sign
X1
x1¼0

ðf
"

� 1Þx2f ðx1;x2; x1Þg
#

In a similar manner definitions for inverse transform from Eq. (5) when n ¼ 3 can be derived.

4. Properties of sign Haar spectra of logic functions and variables

Sign Haar spectra for common logic functions and the major properties of the transform are
presented. There is no direct relationship between sign Haar spectra calculated for S- and R-coded
Boolean functions, what differs from other transforms used in logic design (i.e., Walsh, Haar)
[1,3,9,12]. Therefore, basic properties for logic operators have to be derived separately for both
codings.
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Table 1 shows the listing of all the 81 functions of two variables, and their corresponding sign
Haar and sign Walsh spectra. In the following presentation of the properties, let function f and
transform h be defined as in the previous section. Let a and b be ternary variables, where a,
b 2 f�1; 0; 1g. In order to illustrate better investigated properties let us introduce a sign domain
map.

Definition 6. A sign domain map is a graphical two-dimensional representation of sign Haar
spectrum and is an equivalent of a Karnaugh map in Boolean domain where spectral variables
listed in gray code order are used to indicate all the cells of the map and sign spectral coefficients’
values are entered into the cells.

Property 1. The number of cells in sign domain map of the spectrum of an n-variable Boolean
function is exactly the same as the number of minterms (cells on Karnaugh map) of such a function.

Property 2. For arbitrary ternary variables a and b:

sign½signðaþ bÞ þ signða� bÞ
 ¼ a ð9Þ

and

sign½signðaþ bÞ � signða� bÞ
 ¼ b ð10Þ

Property 3. Let function f ð~xxnÞ be a constant, such that its ternary vector ~FF has all the coefficients
equal and Fj ð06 j < 2nÞ; Fj 2 f�; 0;þg. Then,

f ~xxn
	 


¼ 0 () h ~xxn

	 

¼ 0; xi;xi 2 f0; 1g and 16 i6 n ð11Þ

f ð~xxnÞ ¼ �1 () hð~xxnÞ ¼ �
Yn�1

j¼0

ð1� xjÞ ð12Þ

Example 2. For n ¼ 3, f1ðxÞ ¼ ðþ;þ;þ;þ;þ;þ;þ;þÞ () h1ðxÞ ¼ ðþ; 0; 0; 0; 0; 0; 0; 0Þ. Kar-
naugh map of the function f1ð~xx3Þ and sign domain map of the spectrum h1ð~xx3Þ are shown in Fig.
2(a).

Property 4. When S-coded n-variable function is functionally dependent on a single Boolean variable
in affirmation, i.e.

f ð~xxnÞ ¼ f ðxn; . . . ; x1Þ ¼ xj; j 2 f1; . . . ; ng; xj 2 fþ1;�1g

sign Haar transform,

hð~xxnÞ ¼ þ1� xn�jþ1 ^ ^
n

k¼n�jþ2
xk

� �� �
ð13Þ

where xk 2 f0; 1g and the logic AND operations in brackets ( ) will yield value 1 or 0. If for some j,
k > n, by definition the expression ^n

k¼n�jþ2xk ¼ 1, otherwise the symbol xk represents the logical
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Table 1

All incompletely specified S-coded two-variable Boolean functions, their sign Haar and sign Walsh spectra

Function () Sign Haar

spectrum ()
Sign

Walsh

spectrum

Function () Sign Haar

spectrum ()
Sign

Walsh

spectrum

Function () Sign Haar

spectrum ()
Sign

Walsh

spectrum

���� �000 �000 ���0 �00� �� 0þ ���þ �� 0� ���þ
�� 0� �00þ �þ 0� �� 00 �� 00 �0� 0 �� 0þ 0� 0� 0��þ
��þ� �� 0þ �þ�� ��þ0 0� 0þ 0þ�� ��þþ 0� 00 00� 0

�0�� �0� 0 �� 0� �0� 0 �0�� �� 00 �0�þ ���� ���0

�00� �0�þ �00� �000 ���0 ���� �00þ 0��� 0��0

�0þ� ���þ �0�� �0þ 0 0��þ 00�� �0þþ 0��0 0���
�þ�� �þ�0 ��þ� �þ�0 �þ�� ��þ0 �þ�þ 00�� 0� 00

�þ 0� �þ�þ �0þ� �þ 00 00� 0 0� 0� �þ 0þ þ��� þ��0

�þþ� 00�þ 000� �þþ0 þ��þ þ0�� �þþþ þ��0 þ���

0��� �0þ 0 �þ 0þ 0��0 �0þ� �00þ 0��þ ��þ� �0�þ
0� 0� �0þþ �þ 00 0� 00 ��þ0 �þ�þ 0� 0þ 0�þ� 00�þ
0�þ� ��þþ �þ�0 0�þ0 0�þþ 0þ�0 0�þþ 0�þ0 0þ�þ
00�� �þ 00 �0þ 0 00� 0 �þ 0� ��þþ 00�þ 000� 0� 0þ
000� �þ 0þ �þþ� 0000 0000 0000 000þ þ� 0� þ��þ
00þ� 000þ 0þ 0� 00þ 0 þ� 0þ þþ�� 00þþ þ� 00 þ0� 0

0þ�� 0þ�0 0�þ� 0þ�0 0þ�� 0�þ0 0þ�þ þþ�� þ�þ0

0þ 0� 0þ�þ 00þ� 0þ 00 þþ�0 þ�þ� 0þ 0þ þ0�� þ� 00

0þþ� þþ�þ þ0þ� 0þþ0 þ0�þ þ00� 0þþþ þ0� 0 þ� 0�

þ��� �þþ0 �þþþ þ��0 �þþ� �0þþ þ��þ 00þ� 000þ
þ� 0� �þþþ �þþ0 þ� 00 00þ 0 0þ 0þ þ� 0þ þ�þ� þ0�þ
þ�þ� 00þþ 0þ 00 þ�þ0 þ�þþ þþ�0 þ�þþ þ�þ0 þþ�þ
þ0�� 0þþ0 0þþþ þ0� 0 0þþ� 00þþ þ0�þ þþþ� þ0þþ
þ00� 0þþþ 0þþ0 þ000 þþþ0 þþþþ þ00þ þ0þ� þ00þ
þ0þ� þþþþ þþþ0 þ0þ 0 þ0þþ þþ 00 þ0þþ þ0þ 0 þþ 0þ
þþ�� 0þ 00 00þ 0 þþ�0 0þ 0� 0�þþ þþ�þ þþ 0� þ�þþ
þþ 0� 0þ 0þ 0þþ� þþ 00 þþ 00 þ0þ 0 þþ 0þ þ00� þ� 0þ
þþþ� þþ 0þ þþþ� þþþ0 þ00þ þþ 0� þþþþ þ000 þ000
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inversion of the transform variable xk. The meaning of the symbol xk and the restriction on the value
of ^n

k¼n�jþ2xk for some j, when k > n is the same as above also for Properties 6–8.

Example 3. For n ¼ 3, when f2ð~xx3Þ ¼ x3; sign Haar transform is

h2ð~xx3Þ ¼ þ1 x3�3þ1 ^ ^
3

k¼3�3þ2
xk

� �� �
¼ þ1ðx1 ^ x2 ^ x3Þ ¼ x3 x2x1

Hence f2ð~xx3Þ ¼ ðþ;þ;þ;þ;�;�;�;�Þ () h2ð~xx3Þ ¼ ð0;þ; 0; 0; 0; 0; 0; 0Þ.

The function f2ð~xx3Þ and its corresponding spectrum are shown on the maps in Fig. 2(b).

Property 5. When S-coded n-variable function is functionally dependent on a single Boolean variable
in negation, i.e.,

f ð~xxnÞ ¼ f ðxn; . . . ; x1Þ ¼ xj; j 2 f1; . . . ; ng; xj 2 fþ1;�1g

sign Haar transform is

hð~xxnÞ ¼ �1� xn�jþ1 ^ ^
n

k¼n�jþ2
xk

� �� �
ð14Þ

Property 6. For S-coded n-variable Boolean function f ð~xxnÞ whose sign Haar spectrum is hð~xxnÞ, the
spectrum of the negated function is derived simply by inverting all the signs of the original spectra.
Hence, when

f ð~xxnÞ () hð~xxnÞ then f ð~xxnÞ () � hð~xxnÞ ð15Þ

Fig. 2. Karnaugh and sign domain maps for S-coded functions f1 and f2.
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Property 7. When R-coded n-variable function is functionally dependent on a single Boolean variable
in affirmation, i.e.,

f ð~xxnÞ ¼ xj where j 2 f1; 2; . . . ; ng and xj 2 f0; 1g
Its sign Haar transform,

hð~xxnÞ ¼ ^
n

k¼1
xk � xn�jþ1 ^ ^

n

k¼n�jþ2
xk

� �� �
ð16Þ

where xk 2 f0; 1g and the logical AND operation in the bracket ( ) will yield value 1 or 0.

Example 4. For n ¼ 4, when f3ð~xx4Þ ¼ f3ðx4; x3; x2; x1Þ ¼ x2 then by Eq. (11) sign Haar transform is

h3ð~xx4Þ ¼ ^
4

k¼1
xk � x3 ^ ^

4

k¼4
xk

� �� �
¼ x4 x3 x2 x1 � x4x3

Hence,

f3ð~xx4Þ ¼ ð0; 0;þ;þ; 0; 0;þ;þ; 0; 0;þ;þ; 0; 0;þ;þÞ () h3ð~xx4Þ
¼ ðþ; 0; 0; 0;�;�;�;�; 0; 0; 0; 0; 0; 0; 0; 0Þ

Property 8. When R-coded n-variable function is functionally dependent on a single Boolean variable
in negation, i.e.,

f ð~xxnÞ ¼ xj where j 2 f1; . . . ; ng and xj 2 f0; 1g

Then sign Haar transform,

hð~xxnÞ ¼ ^
n

k¼1
xk þ xn�jþ1 ^ ^

n

k¼n�jþ2
xk

� �� �
ð17Þ

5. Conclusion

The essential relationships between classical (Karnaugh maps, logic functions and their vari-
ables) and spectral (sign Haar recursive expansions, fast transforms) representations of binary and
ternary networks have been stated. It should be noticed that sign Haar transform can be applied
to both completely and incompletely specified Boolean functions. Hence, the essential properties
of sign Haar spectra of logic functions and variables shown in this article are important to fa-
cilitate computer-aided design processing for such logic networks. Similarly to Haar transform
used in logic design, sign Haar spectrum is based on local basis functions and is especially well
suited to spectral processing of weakly defined locally grouped multi-variable incompletely
specified Boolean functions [3]. In order to calculate sign Haar spectrum in an efficient way, it is
possible to modify the procedure to convert disjoint cube representation shown for sign Walsh
transform [7] to calculate sign Haar spectrum. It is also possible to modify the results presented
for efficient calculation of Haar spectrum [3,8,13,14] to sign Haar spectrum. With the use of sign
Haar spectra, the presented results may also be useful for ternary digital communication systems
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which operate on streams of ternary data that with recoding are equivalent to incompletely
specified Boolean functions. An important property of all quantized transforms is that the
computer memory required to store functional and spectral data is exactly the same since both of
them operate on ternary values. This highlights the main advantage of the quantized transforms
over the traditional spectral methods in digital logic design.
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