
Quantum Haar Wavelet Transforms
and Their Applications

Darwin Gosal∗ and Wayne Lawton†

National University of Singapore, Singapore 119260

November 5, 2001

Fourier transform has been shown to be a powerful tool in many area of
science. However, there is another class of unitary transforms, the wavelet
transforms, which are as useful as the Fourier transform. Wavelet transforms
are used to expose the multi-scale structure of a signal and very useful for
image processing and data compression. In this paper, we construct quantum
algorithms for Haar wavelet transforms and show its application in analyzing
the multi-scale structure of the dynamical system by the Logistic Map (x→
λx(1− x)), where λ takes value in the interval [0, 4).

1 Introduction

Information is stored, transmitted and processed by physical means 1. Thus,
the concept of information and computation can be formulated in the context
of a physical theory and the study of information requires experimentation.
This sentence leads to non-trivial consequences in the world of quantum
mechanics.

The field of quantum information science has undergone explosive activ-
ity over the past few years. This quantum information science has generated
three great developments in the latter part of the 20th century, they are
quantum computation, quantum cryptography, and quantum error correc-
tion. These three developments in quantum information science all pose
great challenges for both 21st century science and technology.

Quantum Computation not only fascinates physicists, it also interests
computer scientists and mathematicians. For computer scientist, quantum
∗Email: gosaldar@sps.nus.edu.sg
†Email: wlawton@math.nus.edu.sg
1As what Rolf Landauer said “Information is physical”

1

computation introduces new complexity classes that can transform some NP-
Complete problems to the Polynomial complexity.

Several quantum algorithms are known, the most famous example is
Deutsch’s algorithm for deciding whether a function is even or balanced.
One of the most remarkable quantum algorithms is Shor’s algorithm. This
algorithm basically depends on quantum Fourier transform (QFT). As we
know the Fourier transform is good for analyzing the periodicity of a func-
tion, but wavelet transform is able to analyze the multiscale structure of the
function.

It is sufficient to use some basic empirically-based principles of quantum
behavior in order to explain the basic principles of Quantum Computing and
to develop quantum algorithms. In order to formulate these principles we
need to introduce some basic concepts.

2 Quantum Mechanics

Quantum theory is a mathematical model of the physical world. To charac-
terize the model, we need to specify how it represents: states, observables,
measurement, and dynamics.

2.1 Axioms of quantum mechanics

Quantum mechanics is a mathematical framework for the development of
physical theories. On its own quantum mechanics doesn’t tell you what
laws a physical system must obey, but it does provide a mathematical and
conceptual framework for the development of such laws. Therefore, we need
some axioms to provide a connection between the physical world and the
mathematical formalism of quantum mechanics.

States Associated to any isolated physical system is a complex vector space
with inner product (that is, a Hilbert space2) known as the state space
of the system. The system is completely described by its state vec-
tor, which is a unit vector in the system’s state space. In short, a
state vector (which is a ray in a Hilbert space) can be thought of as
the mathematical representative of the physical notion of ‘state’ of the
system.

Observables An observable is a property of a physical system that in prin-
ciple can be measured.The observables of the system can be represented

2which I will elaborate more on the next subsection

2

mathematically by self-adjoint operator that act on the Hilbert space
H. An operator is a linear map taking vectors to vectors

A : |ψ〉 → A|ψ〉,A (a|ψ〉+ b|ψ〉) = aA|ψ〉+ bA|ψ〉 (1)

A is self-adjoint3 if and only if A = A†.

Measurement Quantum measurements are described by a collection {Mm}
of measurement operators. These are operators acting on the state
space of the system being measured. The index m refers to the mea-
surement outcomes that may occur in the experiment. If the state of
the quantum system is |ψ〉 immediately before the measurement then
the probability that result m occurs is given by

P (m) = 〈ψ|M†
mMm|ψ〉 (2)

and the state of the system after measurement is

Mm|ψ〉√
〈ψ|M†

mMm|ψ〉
. (3)

The measurement operators satisfy the completeness equation,

∑
m

M†
mMm = I (4)

The completeness equation expresses the fact that probabilities sum to
one.

Dynamics The evolution of a closed quantum system is described by a
unitary transformation. That is, the state |ψ〉 of the system at time
t1 is related to the state |ψ′〉 of the system at time t2 by a unitary
operator U which depends only on the times t1 and t2,

|ψ′〉 = U|ψ〉. (5)

The time evolution of the state of a closed quantum system is described
by the Schrödinger equation,

3or Hermitian

3

i~
d|ψ〉
dt

= H|ψ〉. (6)

where H is a fixed Hermitian operator knowns as the Hamiltonian of
the closed system. In the case where H is t-independent; it can be
shown that U = e−itH.

This completes the mathematical formulation of quantum mechanics.
Further reading on the foundation of quantum mechanics can be found on [8].
A very useful bibliographic guide to the foundations of quantum mechanics
and quantum information can be found on [11].

2.2 Hilbert space

In this subsection I will define Hilbert spacesH that furnishes the mathemat-
ical basis for the treatment of quantum mechanics in terms of those concepts
which are subsequently needed in quantum mechanics.

Hilbert space is a vector space over complex numbers C. In the following I
shall denote the points of Hilbert space by |φ〉, |χ〉, |ψ〉, . . ., complex numbers
by a, b, c, . . ., and positive integers by i, j, k,

These are the five Hilbert spaces axioms:

First axiom A linear vector space S, with a carrier H, over a field K with
the carrier K is an algebra S = 〈H,+,−1 ,0, K,+f ,×f , 0, 1, ·〉 such that
〈H,+,−1 ,0〉 is a commutative group, K = 〈K,+f ,×f , 0, 1〉 is a field,
and · : K × H → H is a scalar multiplication satisfying the following
axioms for any a, b ∈ K, |φ〉, |ψ〉, and |χ〉 ∈ H:

• Commutative law of addition

|ψ〉+ |φ〉 = |φ〉+ |ψ〉

• Associative law of addition

(|φ〉+ |ψ〉) + |χ〉 = |φ〉+ (|ψ〉+ |χ〉)

• Distributive law of multiplication

(a+f b)|ψ〉 = a · |ψ〉+ b · |ψ〉
a · (|φ〉+ |ψ〉) = a · |φ〉+ a · |ψ〉

4

• Associative law of multiplication

(a×f b) · |ψ〉 = a · (b · |ψ〉)

• Role of 0 and 1

0 · |ψ〉 = 0 ; 1 · |ψ〉 = |ψ〉

Second axiom A complex inner-product space H is a vector space with a
carrier H over the field of complex numbers, equipped with an inner
product (also called scalar product or Hermitian scalar product) 〈·|·〉 :
H×H → C satisfying, for any |φ〉, |ψ〉, and |χ〉 ∈ H, and any c1, c2 ∈ C,
the following properties:

• Hermitian symmetry

〈ψ|φ〉 = 〈φ|ψ〉∗

• Definite form

〈ψ|ψ〉 ≥ 0 and 〈ψ|ψ〉 = 0 if and only if |ψ〉 = 0

• Associative and distributive law

〈ψ|c1φ+ c2χ〉 = c1〈ψ|φ〉+ c2〈ψ|χ〉

The inner product introduces on H the norm ‖ψ‖H =
√
〈ψ|ψ〉 and the

distance between ψ and φ is ‖ψ − φ‖.

Third axiom There are arbitrarily many linearly independent vectors. that
is, for each k = 1, 2, . . . , we can specify k such vectors.

Fourth axiom An inner-product space H is complete. That is, if for any
sequence {|ψi〉}∞i=1 in H satisfies the Cauchy convergence criterion (for
each ε > 0, there exist an N = N(ε), such that ‖ψm − ψn‖ < ε for all
m,n ≥ N), then it is convergent. A complete inner-product space is
called a Hilbert space.

Fifth axiom H is separable. That is, there is a sequence |ψ1〉, |ψ2〉, . . . in H
which is everywhere dense in H.

5

Note:
To each continuous linear mapping f : H → C, the Riesz representation

theorem ensure that there exists a unique φf ∈ H such that f(ψ) = 〈φf |ψ〉
for any ψ ∈ H. The space of all linear mapping (called also functionals) of
a Hilbert space H forms again a Hilbert space, called dual Hilbert space (or
conjugate Hilbert space). The mapping fφ(ψ) = 〈φ|ψ〉 is a functional for any
φ ∈ H. Thus a bra-vector 〈·| can be seen as the operator that maps each
state φ into a functional 〈φ| such that 〈φ|(|ψ〉) = 〈φ|ψ〉 for every state.

A rigorous mathematical treatment for Hilbert space can be found on [9]

2.3 The density matrix

The axioms of quantum mechanics that discussed in the subsection 2.1 pro-
vide a perfectly acceptable general formulation of the quantum theory. The
trouble is that our axioms are intended to characterize the quantum behavior
of the entire universe. In practice, the observations are always limited to a
small part of a much larger quantum system. When we limit our attention
to just part of a larger system, then:

1. States are not rays.

2. Measurements are not orthogonal projections.

3. Evolution is not unitary.

We can best understand these points by considering the bipartite system
or a system that undergoes decoherence. Therefore, states that are not pure
are called mixed states.

Consider a mixed state ρ := (|ψ1〉, |ψ2〉, . . . , |ψn〉; p1, p2, . . . , pn) where∑n
i=1 pi = 1. Let A be any operator. Now let |ψ〉 in H. Then

〈A〉ψ = 〈ψ|A|ψ〉 =
N∑
j=1

〈ψ|A|ej〉〈ej|ψ〉 ≡
N∑
j=1

〈ej|ψ〉〈ψ|A|ej〉

=
N∑
j=1

〈ej|ρψA|ej〉 = Tr(ρψA) (7)

where ρψ := |ψ〉〈ψ|
Now define the mixed-state operator ρ by

ρ ≡
∑
i

pi|ψi〉〈ψi| (8)

The operator ρ has the following properties:

6

1. ρ is self-adjoint: ρ = ρ†

2. ρ is a positive, semi-definite operator: 〈ψ|ρ|ψ〉 ≥ 0 for all |ψ〉

3. Tr(ρ) = 1

It follows that ρ can be diagonalized, that the eigenvalues are all real
and non-negative, and that the eigenvalues sum up to one. In general, any
operator satisfying these three conditions is called a density matrix. Note
that a pure density matrix has the property ρ2 = ρ. Hence, the density
matrix ρ is a “generalization” of the notion of state and it represent all and
only information which can be learned by sampling the ensemble.

3 Quantum Computation and Information

Quantum computation and quantum information is the study of the informa-
tion processing tasks that can be accomplished using quantum mechanical
systems that we described earlier. Two key problems here are: how to rep-
resent information and how to manipulate quantum information.

3.1 Qubits and entanglement

The most fundamental concept of classical computation and classical infor-
mation is bit (binary digit). This is a system that can take on one of two
values, such as true and false or 0 and 1. Qubit (Quantum bit) is the quantum
analog of a bit. Just as a classical bit, it has two states.

LetH be a two-dimensional quantum system with two orthonormal states,
denoted by |0〉 and |1〉, that can be considered as forming standard basis of
H. A qubit is a quantum state

|ψ〉 = α|0〉+ β|1〉 (9)

where α, β ∈ C and |α|2 + |β|2 = 1.
One picture useful in thinking about qubits is the following representa-

tion.

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (10)

where θ takes value from 0 to π and ϕ takes value from 0 to 2π. The number
θ and ϕ define a point on the three-dimensional sphere. One can observe that
when θ = π or θ = 0, all values of ϕ yield the same state. This sphere is
often called the Bloch sphere or Poincaré sphere. Mathematically, this can

7

|0〉

|1〉

Figure 1: Bloch sphere representation of a qubit.

be seen as C2/C∗ ∼= S3/S ∼= S2, where C is a complex vector space and S is
a spherical group defined Sn−1 = {x ∈ Rn| ‖x‖2 = x · x = 1}.

The most essential property of quantum states when used to encode bits
is the possibility of coherence and superposition. This means is not that the
value of a qubit is somewhere between 0 and 1, but rather that the qubit is in
a superposition of both states. This phenomena was first shown by Thomas
Young in his double-slit experiment.

In order to implement any useful quantum algorithm we need to deal
with many qubits in one Hilbert Space, and the appropriate model is a ten-
sor product of qubits. Specifically, if we have n qubits, each with a given
computational basis in a two-dimensional Hilbert Space H, then the tensor
product is a 2n-dimensional space with a basis consisting of 2n vectors.

Let B be a set of standard basis vectors:

B = {|i〉 | i ∈ {0, 1}n} (11)

or, another notation,

B = {|i〉 | 0 ≤ i < 2n} (12)

The general qubit state of the n-qubits register is

|ψ〉 =
2n−1∑
i=0

αi|i〉 with
2n−1∑
i=0

|αi|2 = 1 (13)

n-qubits system might enable us to simultaneously represent all 2n numbers,
and calculate the value of function at all 2n integers simultaneously. Thus, the
basic strategy of quantum algorithm is to take advantage of superpositions,
which grows exponentially with the number of qubits.

An n-qubit state that is a direct product of the pure states in sub-systems,

|ψ〉 = |ψ1〉⊗|ψ2〉⊗. . .⊗|ψn〉 =

(
1∑
j=0

β1j |j〉

)
⊗

(
1∑
j=0

β2j |j〉

)
⊗. . .⊗

(
1∑
j=0

βnj |j〉

)
(14)

is said to be separable (or unentangled). Thus, a state that cannot be de-
compose into the tensor product of one-qubit states is said to be entangled
state.

8

An important example of entangled states is the Bell state or EPR pair,
i.e.

|Φ+〉 =
1√
2

(|00〉+ |11〉) (15)

This innocuous-looking state is responsible for a remarkable phenomena
called non-locality and is at the heart of EPR (Einstein-Podolsky-Rosen)
paradox. The set of Bell states (Ψ± and Φ±) is the key ingredient in quantum
teleportation and super-dense coding. A further reading on entanglement can
be found in [10], [5], and [3]

3.2 Quantum Gates

Classical computer circuits consist of wires and logic gates. In a similar way,
quantum computer have a quantum gates from which quantum computing
devices are designed.

Quantum gates on a n-qubit can be described by a 2n by 2n matrices.
Because of the normalization condition requires

∑2n−1
i=0 |αi|2 = 1, there is a

constrain for matrices that can be used as quantum gates. It turns out that
the appropriate condition is that the matrix U describing the quantum gate
must be unitary, that is U†U = I. The implication of this, is that a unitary
operation implies a reversible operation.

A quantum gate is specified by a unitary operator U : H2n → H2n .
Below are the frequently used quantum gates.

Hadamard 1√
2

[
1 1
1 −1

]

Pauli X

[
0 1
1 0

]

Pauli Y

[
0 −i
i 0

]

Pauli-Z

[
1 0
0 −1

]

Phase

[
1 0
0 i

]
π
8

[
1 0

0 e
iπ
4

]

9

Controlled-NOT


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Swap


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



Controlled-Z


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



Controlled-phase


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i



Toffoli



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0



Fredkin
(controlled-swap)



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1



10

3.3 Quantum Circuits

Quantum circuit is a collection of quantum gates acyclicly4 connected by
“quantum wires”5. There are few features allowed in classical circuits that
are not present in quantum circuits. First of all, classical circuits allow wires
to be ’joined’ together, an operation known as fanin. Secondly, the inverse
operation, fanout whereby several copies of a bit is produced, is also not
allowed in quantum circuits.

The size and the depth of a circuit refer to the number of nodes and
depth of the underlying connection graph. The circuit is to be read from the
left-to-right. It is conventional to assume that the state input to the circuit is
a computational basis state, usually the state consisting of all |0〉’s. We shall
find quantum circuits useful as models of all quantum processes, including
but not limited to computation, communication, and even quantum noise.

An interferometer experiment can be cast into a quantum network as
follow:

H H

φx

Figure 2: Interferometer circuit

The gate in the middle is the phase shift gate φ defined as |0〉 7→ |0〉 and
|1〉 7→ eiφ|1〉 , or in matrix notation,[

1 0
0 eiφ

]
(16)

It turns out that this simple circuit is the implementation of Deutsch-
Jozsa algorithm6. A natural extension of this gate, is the controlled-U gate
(U is any unitary matrix). It has been shown7 that the Hadamard gate,
phase gate, and the C-NOT, form an infinite universal set of gates8.

It is possible for a quantum circuit to simulate a classical logic circuit. A
simple concatenation of the Toffoli gate and the C-NOT gives a simplified

4which means, we don’t allow ’loops’, that is, feedback from one part of the quantum
circuit to another

5This wire does not necessarily correspond to a physical wire; it may correspond instead
to the passage of time, or perhaps by sharing a physical qubit (physical particle), or via
field interactions.

6which I will discuss in the next subsection
7Solovay-Kitaev theorem
8Phys. Rev. A 52 3457

11

quantum adder, which is a good starting point for constructing full adders,
multipliers and more elaborate arithmetic circuits.

|x1〉

|x2〉

|y〉

s
s
h
|x1〉

|x2〉

|x1x2 ⊕ y〉

|x1〉

|x2〉

|0〉

|x1〉

sum = |x1 ⊕ x2〉

carry = |x1x2〉

s
s
h
s
h

Toffoli gate Quantum adder

Another important quantum circuit is the Quantum Fourier Transforma-
tion (QFT) circuit. The Fourier transform

∑
x

f(x)|x〉 →
∑
y

(
1√
N

∑
x

e2πixy/2Nf(x)

)
|y〉 (17)

is multiplication by an N×N unitary matrix. With quantum parallelism, we
can write a Quantum Fourier Transform defined in the computational basis
as the unitary operator

|x〉 7→ 1√
N

∑
y

e2πixy/2N |y〉 (18)

A given phase φx = 2πx/2N can be encoded by a QFT. In this process
the information about φx is distributed between states of a register. An
important observation is that the QFT takes each computational basis state
to an unentangled state.

An important observation is that the QFT of x, is unentangled, and in
fact can be factorized as

(|0〉+ eiφx|1〉)(|0〉+ ei2φx|1〉) . . . (|0〉+ ei2
n−1φx|1〉) (19)

The QFT can be implemented with Hadamard gates and the controlled
phase shift in between (see figure 3).

The QFT network operating on n qubits contains n Hadamard gates H
and n(n − 1)/2 phase shifts. This remarkably simple circuit is the heart of
the ground-breaking Shor’s algorithm.

3.4 Quantum Algorithms and their complexity

Suppose we are challenged to distinguish between two different classes of
functions f which map {0, 1} → {0, 1}. We have exactly four such functions.

12

|x3〉

|x2〉

|x1〉

|x0〉

|0〉+ e2πix/24|1〉

|0〉+ e2πix/23|1〉

|0〉+ e2πix/22|1〉

|0〉+ e2πix/2|1〉

H B(π) H B(π/2)B(π) H B(π/4)B(π/2)B(π) H

H

H

H

H ss
s
s
s
s
s s s

s
s
s

Figure 3: Quantum Fourier Transformation circuit

Two constant function:

f(0) = 0 f(0) = 1

or

f(1) = 0 f(1) = 1 (20)

and two balances functions:

f(0) = 0 f(0) = 1

or

f(1) = 1 f(1) = 0 (21)

Suppose that we have a “black box” (also called “oracle”) that computes a
Boolean function. The task is to determine whether the function by the oracle
is balanced or constant, or equivalently, to determine whether f(0)⊕f(1) = 0
or 1.

In classical computation, it clear that we need to query the oracle twice to
solve the problem. We shall see that we can solve this problem with a single
query, by employing an algorithm that has the same mathematical structure
as the interferometer.

Let us take two qubits, prepare the first qubit in the state |0〉 and the
second in state |1〉. Let us follow the states along the circuit.

The input state
|ψ0〉 = |01〉 (22)

is sent through two Hadamard gates and give

|ψ1〉 =

[
|0〉+ |1〉√

2

] [
|0〉 − |1〉√

2

]
(23)

13

Measurement

|1〉

|0〉

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉

x

UfH

H H

Figure 4: Quantum network solving Deutsch’s Problem

Let Uf be the unitary mapping of |x, y〉 into |x, y⊕f(x)〉. Thus, by applying
Uf to |ψ1〉 we have

Uf :
(

1√
2

[|0〉+ |1〉]
)(

1√
2

[|0〉 − |1〉]
)
→(

1√
2

[
(−1)f(0)|0〉+ (−1)f(1)|1〉

]) (
1√
2

[|0〉 − |1〉]
)

= |ψ2〉 (24)

The final Hadamard gate on the first qubit gives us

|ψ3〉 = |f(0)⊕ f(1)〉
(

1√
2

[|0〉 − |1〉]
)

(25)

so by measuring the first qubit, we may determine f(0)⊕f(1). The quantum
circuit has given us ability to extract global information of the function,
namely f(0)⊕f(1) using only one evaluation of f(x). This example highlights
the difference between quantum parallelism and classical algorithm.

This Deutsch’s algorithm was subsequently generalized to cover “black
boxes” computing Boolean functions f : {0, 1}n 7→ {0, 1} (this algorithm is
called Deutsch-Jozsa algorithm). This quantum computation exhibits “mas-
sive quantum parallelism” There are many algorithms follow the same pat-
tern as Deutsch’s algorithm: the Hadamard transform, a unitary function
evaluation, the Hadamard transform (H-f-H sequence). We recognize it as a
generic interference pattern.

There are three classes of quantum algorithms which provide an advan-
tage over known classical algorithms. The first class is algorithms based upon
quantum Fourier transformation. The Deutsch-Jozsa algorithm and Shor’s
algorithm are example of this type of algorithm. The second class of algo-
rithms is quantum search algorithms. The third class is quantum simulation,
whereby a quantum computer is used to simulate a quantum system (just
like Feynman’s original proposal of the usage of quantum computer). We
now briefly describe Shor’s algorithm.

14

Shor’s algorithm evolved from the order finding problem, which was one
of the application of optimal phase estimation algorithm. States of the form
(19) are form by function evaluation in quantum computers. Suppose that
U is any unitary transformation on n qubits and |ψ〉 is an eigenvector of U
with eigenvalue eiφ. We do not explicitly know U or |ψ〉 or eiφ, but instead
we are given devices that perform C −U , C −U2, until C −U2n−1

. Our goal
is to obtain an n-bit estimator of φ. We start by constructing the following
network,

The phase estimation algorithm works as follow:

Inputs: A black box which performs a controlled-U j operation, for integer
j, and eigenstate |ψ〉 of U with eigenvalue eiφψ , and t = n+dlog(2+ 1

2ε
)e

qubits initialized to |0〉.

Outputs: An n-bit approximation φ̃ψ to φψ.

Runtime: O(t2) operations. Succeeds probability at least 1− ε.

Procedure: 1. |0〉|ψ〉 initial state

2. → 1√
2t

∑2t−1
j=0 |j〉|ψ〉 create superposition

3. → 1√
2t

∑2t−1
j=0 |j〉U j|ψ〉 apply black box

= 1√
2t

∑2t−1
j=0 eijφψ |j〉|ψ〉 result of black box

4. → |φ̃ψ〉|ψ〉 apply inverse Fourier transform

5. → φψ measure first register

U20
U21

U22|u〉 |u〉

|0〉+ |1〉

|0〉+ |1〉

|0〉+ |1〉

|0〉+ ei2
0φ|1〉

|0〉+ ei2
1φ|1〉

|0〉+ ei2
2φ|1〉

s
s
s

Figure 5: Phase estimation circuit

15

This algorithm can be applied to make quantum order-finding algorithm,
which is the heart of Shor’s factoring algorithm.

The quantum order-finding algorithm work as follow:

Inputs: A black-box Ux,N which performs the transformation |j〉|k〉 → |j〉|xjk mod N〉,
for x co-prime to L-bit numbers N , t = 2L + 1 + dlog(2 + 1

2ε
)e qubits

initialized to |0〉, and L qubits initialized to the state |1〉.

Outputs: The least integer r > 0 such that xr = 1(mod N).

Runtime: O(L3) operations. Succeeds with probability O(1).

Procedure: 1. |0〉|1〉 initial state

2. → 1√
2t

∑2t−1
j=0 |j〉|1〉 create superposition

3. → 1√
2t

∑2t−1
j=0 |j〉|xj mod N〉 apply Ux,N

≈ 1√
r2t

∑r−1
s=0

∑2t−1
j=0 eisj/r|j〉|ψs〉

4. → 1√
r

∑r−1
s=0 |s̃/r〉|ψs〉 apply inverse Fourier transform to first

register

5. → s̃/r measure first register

6. → r apply continued fractions algorithm

It has been shown that a factoring problem can be reduced to order-
finding problem. The Shor’s algorithm can be summarized as follow:

Inputs: A composite number N

Outputs: A non-trivial factor of N

Runtime: O(log3 N) operations. Succeeds with probability O(1).

Procedure: 1. If n is even, return the factor 2.

2. Determine whether N = ab for integers a ≥ 1 and b ≥ 2, and if
so return the factor a

3. Randomly choose x in the range 1 to N − 1. If gcd(x,N) > 1
then return the factor gcd(x,N).

4. Use order-finding subroutine to find the order r of x modulo N .

16

5. If r is even and xr/2 6= −1 (mod N) then compute gcd(xr/2−1, N)
and gcd(xr/2 +1, N), and test to see if one of these is a non-trivial
factor, returning that factor if so. Otherwise, the algorithm fails.

More of quantum algorithms can be found in [4], [13], [15], and [6]. Web
resources on Quantum information can be found in: http://www.qubit.org
and http://www.physics.nus.edu.sg/ phyohch/hyperqc2.htm.

4 Wavelet

4.1 General characteristic of wavelets

Data as a bit (binary digit) is just a mathematical representation for the
computation. But in our daily life, what we see is continuous wave. Therefore
we need to make this into a digital signal and analyse it. A wave is usually
defined as an oscillating function of time or space, such as a sinusoid.

There are three ways to transform (or analyse) this signals:

1. by Fourier transform. This method expands signals in terms of cosine
waves, which has proven to be extremely important for periodic, time-
invariant, or stationary phenomena. The practicality problem of this
method is that, it need many frequencies for a high-fidelity signal.

2. into short time Fourier transform. Short segments of the signals are
transformed separately. In each segment, the signal is expanded into
cosine wave as before. The disadvantage of this method is there are
sudden breaks between segments (“blocking effect”).

3. into wavelets. A wavelet is a “small wave” that start and stop. It has
energy concentrated in time, which useful to analyze transient, non-
stationary, or time-varying phenomena. All wavelets come from one
basic wavelet ψ(t).

A signal f(t) can be expressed as a linear decomposition by

f(t) =
∑
l

alψl(t) (26)

The series representation of f in (26) is called a wavelet series. If the expan-
sion (26) is unique, the set is called a basis for the class of functions. If the
basis is orthogonal, meaning

〈ψk(t)|ψl(t)〉 =

∫
ψk(t)ψl(t) = 0 k 6= l (27)

17

then the coefficients can be calculated by the inner product

ak = 〈f(t)|ψk(t)〉 =

∫
f(t)ψk(t)dt. (28)

For wavelet expansion, a two-parameter system is constructed such that (26)
becomes

f(t) =
∑
k

∑
j

aj,kψj,k(t) (29)

The ψj,k(t) are the wavelet expansion functions that usually form an orthogo-
nal basis. The set of expansion coefficients aj,k are called the discrete wavelet
transform (DWT) of f(t).

The wavelet expansion set is not unique, but all seem to have the following
general characteristics:

1. A wavelet system is a set of building block to construct or represent a
signal or function. It is a two-dimensional expansion set for some class
of one-(or higher) dimensional signals.

2. The wavelet expansion gives a time-frequency localization of the sig-
nal. This means most of the energy of the signal of the signal is well
represented by a few expansion coefficients.

3. The calculation of the coefficients from the signal can be done ef-
ficiently. It turns out that many wavelet transforms can be calcu-
lated with O(N) operations. More general wavelet transforms require
O(N log(N)) operations, the same as for the FFT.

4. All wavelet systems are generated from a single scaling function or
wavelet by simple binary scaling(i.e. dilation by 2j) and dyadic trans-
lation (of k/2j). The two-dimensional parameterization is achieved
from the generating wavelet ψ(t) by

ψj,k(t) = 2j/2ψ(2jt− k) j, k ∈ Z (30)

5. Almost all useful wavelet systems also satisfy the multi-resolution con-
ditions. This means that if a set of signals can be represented by a
weighted sum of (t − k), then a larger set (including the original) can
be represented by a weighted sum of ϕ(2t− k).

6. The lower resolution coefficients can be calculated from higher reso-
lution coefficients by a tree-structured algorithm called a filter bank.
Filter bank is a set of linear time-invariant operator.

18

Before going any further, we will see the connection between filter banks
and wavelets, and you will see that the high-pass filter leads to ψ(t) and the
low-pass filter leads to scaling function ϕ(t).

4.2 Filter banks

Filter bank is a set of filters. The analysis bank often has two filters, low-
pass and high-pass. They separate input signal into frequency bands. Those
sub-signals can be compressed much more efficiently than the original signal.
A filter is a linear time-invariant operator that acts on input vector x and
gives an output vector y which is the convolution of x with a fixed vector h.
The vector h contains the filter coefficients.

y(n) =
∑
k

h(k)x(n− k) = h ∗ x (convolution in the time domain) (31)

4.2.1 Low-pass Filter / Moving Average

We go forward by introducing the simplest low-pass filter. Low-pass filter
has its output at time t = n as the average of the input x(n) and the input
x(n− 1):

y(n) =
1

2
x(n) + 1

2
x(n−1) (32)

The filter coefficients are h(0) = 1
2

and h(1) = 1
2
. It is a moving average,

because the output averages the current component with the previous one.

4.2.2 High-pass Filter / Moving Difference

High-pass filter has its output at time t = n as the difference of the input
x(n) and the input x(n− 1):

y(n) = 1
2
x(n)− 1

2
x(n−1) (33)

The filter coefficients are h(0) = 1
2

and h(1) =− 1
2
. It is a moving difference.

4.3 Scaling function and wavelets

Corresponding to the low-pass filter, there is a continuous-time scaling func-
tion ϕ(t). The dilation equation for the scaling function ϕ(t) is

ϕ(t) = 2
N∑
k=0

h(k)ϕ(2t− k) (34)

19

Corresponding to the high-pass filter, there is a continuous-time scaling
function wavelet ψ(t). It is a direct equation that gives ψ(t) immediately
and explicitly from ϕ(t):

ψ(t) = 2
∑

h1(k)φ(2t− k) (35)

4.4 Haar wavelet

In our example, ϕ(t) is a box function and its dilations ϕ(2t − k) are half
boxes, then the wavelet is:

ψ(t) = 2
∑

h1(k)φ(2t− k) (36)

Explicitly, ψ(t) = 1 for 0 ≤ t < 1
2

and ψ(t) = −1 for 1
2
≤ t < 1. This is the

Haar wavelet.
Length 2 Haar wavelet can be represented as:

1√
2

[
1 1
1 −1

]
(37)

A sequence with length � 2, can be calculated faster with fast wavelet
transform (FWT). Fast wavelet transform is a tree-structured filter bank.
The algorithm of FWT can be found on the appendix9.

A more rigorous mathematical approach can be found on [16], [17], [18],
and [19]. More resource on wavelet can be found on the web:
http://www.amara.com/current/wavelet.html.

5 Quantum Haar Wavelet

Transition for “classical” wavelet transform to quantum wavelet transform
can be approached by factoring the classical operators for the transformation
into direct sums, direct products, and dot products of unitary matrices. In
doing so, we will find that permutation matrices play a vital role.

Two fundamental permutation matrices for quantum haar transform are
the perfect shuffle Π2n and the bit reversal P2n .

Description of the matrix Π2n in terms of its element Πij can be given as

Πij =

{
1 if j = 1/2 and i is even, or if j = (i− 1)/2 + 2n−1 and i is odd
0 otherwise

(38)

9fwt.m

20

As noted by Hoyer, a quantum description of Π2n can be given by

Π2n : |an−1an−2 · · · a1a0〉 7→ |a0an−1an−2 · · · a1〉 (39)

Here we can see that a swap gate Π4 is a special case of permutation matrix.
Description of the matrix P2n in terms of its element Pij can be given as

Πij =

{
1 if j is bit reversal of i
0 otherwise

(40)

A quantum description of P2n can be given by

P2n : |an−1an−2 · · · a1a0〉 7→ |a0a1 · · · an−2an−1〉 (41)

P2n can be factorized in terms of Π2i and Π2i can be factorized in term
of Π4. From previous section we know that the swap gate can be made by 2
CNOT gates. Therefore the whole permutation matrices can be implement
on the quantum computer.

Based on recursive definition of Haar matrices, we can factorize H2n as

H2n = (I2n−1 ⊗W) · · · (I2n−i ⊗W ⊕ I2n−2n−i+1) · · · (W ⊕ I2n−2)×
(Π4I2n−4) · · · (Π2iI2n−2i) · · · (Π2n−1I2n−1)Π2n (42)

where W is the Hadamard matrix.
More on the Quantum wavelet transform can be found on [1] and [2].

6 Logistic Mapping

Chaotic dynamics was made popular by the computer experiments of Robert
May and Mitchell Feigenbaum on a mapping known as the logistic map.
The remarkable feature of the logistic map is in the simplicity of its form
(quadratic) and the complexity of its dynamics. It is the simplest model
that shows chaos. Through logistic map Feigenbaum number was discovered.
It is the limit of the ratio between one bifurcation and the next, in logistic
mapping; the same number turns up in various chaotic systems, it is about
4.669.

The logistic map is the simplest model in population dynamics that incor-
porates the effects of both birth and death rates. It is given by the formula:

xn+1 = f(xn) = λ · xn · (1− xn) (43)

where the function f is called the logistic mapping and the parameter λ
models the effective growth rate. The population size, (xn) at the nth year, is

21

defined relative to the maximum population size the ecosystem can sustain
and is therefore a number between 0 and 1. The parameter λ is also restricted
between 0 and 4 to keep the system bounded and therefore the model will
make physical sense.

The logistic equation gives the rule for determining the relative population
xn+1 at the (n+1)th year in terms of the population in the nth year. To get a
physical understanding of the terms in the the logistic equation, we can think
of the λ ·xn term as a positive feedback term in the sense that as xn increases
so does the value of b xn. This is same as saying that the population size in
the next year (xn+1) is determined by the product of the previous population
size xn and the rate λ at which the population grows. Similarly, the term
(1 − xn) can be thought of as a negative feedback, since increasing xn will
decrease (1 − xn) and therefore (1 − xn) can be thought of as population
decline due to over population and scarce resources. Logistic mapping is the
simplest one dimensional, nonlinear (x squared term), single parameter λ
model that shows an amazing variety of dynamical response.

The graph corresponding to the logistic function y = λ · x · (1 − x) is a
parabola which passes through the points (0,0) and (1,0) independent of the
choice of the parameter λ. The maxima of the parabola, which is always
located at x = 0.5, is 0.25 · λ. There is a nice graphical visualization of the
iteration process of logistic map via what is called the graphical iteration
plot which shows how the iterates x0, x1, x2, . . . can be obtained graphically.

It is clear that for values of λ between [0,1], if we start iterating the
equation with any value of x the value of x will settle down to 0. This can
be understood from the fact that the the logistic equation is a product of
three numbers, namely, λ, xn and (1− xn) which are all between [0,1], x at
the next time step must always be smaller than what is at the current time
step. The point zero is called the fixed point of the system and is stable for
λ = [0, 1].

For values of λ between (1,3) the iterates instead of being attracted to
zero, get attracted to a different fixed point. A fixed point is a point which
when fed back into the map gives back the same point. Mathematically, this
is expressed by the condition x = λ · x · (1− x). The long term behavior of
the logistic equation when λ ≥ 3, show that the system settles down to a
period ≥ 2 limit cycle. Figure 6 shows that the initial x attracted to a single
non-zero fixed point.

The existence of n period limit cycle is established by real solutions to

Figure 6: Iteration with x0 = 0.2, and λ = 2.8

22

the equation x = fn(x), provided the solutions lie between 0 and 1.
On further increasing λ the period 2 limit cycle becomes unstable (at

about λ = 3.5), and we get a period 4 cycle (see figure 7 and 8). The
rate at which this doubling occurs increases, and by λ = 3.56 there is a
period 8 cycle, by λ = 3.567 there is a 16-cycle. This continues infinitely,
but happens so quickly that by λ = 3.58 it has finished. At this point the
mapping becomes chaotic. There are more period doubling cascades to come
though. At λ = 3.835 there is a period 3 cycle, doubling to 6, 12, 24 etc as λ
is increased very slightly. There is a period 5 attractor at λ = 3.739, which
again forms a period doubling cascade (5, 10, 20, 40,...). The simple logistic
mapping produces this extremely complex mixture of chaos and order. This
period doubling is called bifurcation.

The behavior of the logistic mapping can be described graphically by a
bifurcation diagram. Figure 9 is a graph which plots the value of λ across,
against the attractors of the sequence vertically. The single branch at the
beginning represents the steady state, which branches into two. This is the
period 2 cycle. Now we can graphically see the period doubling cascade, as
the branches each divide into two, until there is chaos. Amidst the chaos,
new branches spring up, and then double themselves - these are the new
period doubling cascades.

The source code to make the iteration plot10 can be found on the appendix
One of the possible application is to study the chaotic behavior of the logistic
mapping when λ is a critical value

7 Applications

Logistic mapping exhibit an interesting structure around the critical λ (3.57 <
λ < 3.58). A fourier transform of the logistic mapping cannot tell much
about the multi-level structure of the plot. The “self-similarity” on the lo-
gistic mapping is best studied using wavelet transform.

On our simulation, we vary the parameter λ to see several different struc-
ture. The program run.m will generate:

1. Logistic mapping for specific λ (using logistic.m)

10iteration.m

Figure 7: Iteration with x0 = 0.5, and λ = 3.2

23

Figure 8: Iteration with x0 = 0.4, and λ = 3.52

Figure 9: Bifurcation diagram

2. Haar transformed of the logistic mapping (using haar.m)

3. The average energy distribution across different resolution on linear
scale (using energy.m)

4. The average energy distribution across different resolution on logarith-
mic (dB) scale.

The fixed parameter that we use are:

• n = 10→ N = 2n = 1024. We have 1024 data point.

• L = 10→ 2L = 1024. We iterate f 1024 times.

Here we present the plots with ten different λ.

7.1 Logistic

1. λ = 1

24

Figure 10: Logistic

Figure 11: Haar transformed

Figure 12: Linear scale

Figure 13: Logaritmic scale

25

2. λ = 2.8

Figure 14: Logistic

Figure 15: Haar transformed

Figure 16: Linear scale

26

Figure 17: Logaritmic scale

27

3. λ = 3.1

Figure 18: Logistic

Figure 19: Haar transformed

Figure 20: Linear scale

28

Figure 21: Logaritmic scale

29

4. λ = 3.54

Figure 22: Logistic

Figure 23: Haar transformed

Figure 24: Linear scale

30

Figure 25: Logaritmic scale

31

5. λ = 3.57

Figure 26: Logistic

Figure 27: Haar transformed

Figure 28: Linear scale

32

Figure 29: Logaritmic scale

33

6. λ = 3.575

Figure 30: Logistic

Figure 31: Haar transformed

Figure 32: Linear scale

34

Figure 33: Logaritmic scale

35

7. λ = 3.5925721

Figure 34: Logistic

Figure 35: Haar transformed

Figure 36: Linear scale

36

Figure 37: Logaritmic scale

37

8. λ = 3.6785735

Figure 38: Logistic

Figure 39: Haar transformed

Figure 40: Linear scale

38

Figure 41: Logaritmic scale

39

9. λ = 3.7

Figure 42: Logistic

Figure 43: Haar transformed

Figure 44: Linear scale

40

Figure 45: Logaritmic scale

41

10. λ = 4

Figure 46: Logistic

Figure 47: Haar transformed

Figure 48: Linear scale

42

Figure 49: Logaritmic scale

43

To proceed to a further analysis, we choose one λ (λ = 3.57) and lengthen
the number of points to 212 = 4096. Since the haar transform that we have
is combination of different scales and the average energy of coarser scale is
much higher than finer level, we need to plot different scale separately.

7.2 Multi-Resolution

Figure 50: First scale

Figure 51: Second scale

Figure 52: Third scale

44

Figure 53: Fourth scale

Figure 54: Fifth scale

Figure 55: Sixth scale

Figure 56: Seventh scale

Figure 57: Eighth scale

Figure 58: Ninth scale

Figure 59: 10th scale

Figure 60: 11th scale

45

The best representation of these multi-resolution haar transform is by
stack them one after another, and make an image representation of it. The
brightness is related to the activity in that region (the mod square of the
haar transformed signal).

Figure 61: Image representation of multi-resolution Haar transform

The structure of the logistic map around critical lambda are interesting.
But in the “sea of chaos” there are λ that give a nice structure. For example
the “island of period three” can be found at λ = 3.835. As we can see
that the number of points is grow exponentially when we go down to the
finer scale, and as λ is bigger 3.57 we need more iteration to get a better
resolution. Therefore, to study the structure at these region, we need a
powerful computer to do the computation.

At this situation quantum computer can give a better algorithm to solve
the problem. Before going any further, we will explain how quantum me-
chanic do the computation.

Assume that we have a system with 16 energy states, which the probabil-
ity to measure one of the energy state is proportional to energy of the state.
The real energy distribution of the system (see figure 62) is unknown to us.

Therefore we need to do an experiment to find out the statistical distri-
bution of the energy. The act of measuring the system will collapse the wave
function of the system into one of its energy states. Here we have two sets
of data from 100 measurements (figure 63 and 64) and two sets of data from
1000 measurements (figure 65 and 66). Here we can see that by hundred
measurements we can get a good estimation of the energy distribution.

In the context of our simulation, this simulated histogram can be used
to the level of activity across different scale, since the energy distribution is
related to the haar transformed signal.

Other application of wavelet transforms in the field of science can be
found on [12].

8 Conclusion

Quantum Haar transform implementation on quantum computer enable us to
analyze fine scale structure with a high resolution, which our current classical

Figure 62: The real energy distribution

46

Figure 63: First set of experiment with 100 times measurement

Figure 64: Second set of experiment with 100 times measurement

computer takes enormous computational resource to do it.

9 Acknowledgment

I wish to thank my supervisor, Assoc. Prof. Wayne Lawton for giving me
such a broad UROPS topic, and for his guidance throughout the whole year.
I am grateful to A/P Lawton for introducing me to “new” mathematics
fields. There are also others that have contributed and helped me directly
in my project. In particular, I would like to thanks Dr. Kuldip Singh and
A/P Kwek LC (NIE) for teaching me the essence of quantum mechanics,
Mr. Christian Lee for helping me on making the bifurcation diagram, and
Mr. Teo Kai Meng for helping me “hunting for bugs” in my programs..

Then there those assistance help me, without which this paper will not
take on its shape. Here I express my gratitude to Mr. Daniel Kuan Li Oi
(Oxford), Mr. Lim Kim Yong and Mr. Alexander Ling for helping me learn-
ing LATEX, and then to Mr. You Sean Chung, Mr. Liang Yeong Chern and
Mr. Chang Kelken for read proof some of my draft. I would like to express my
gratitude to Dr. Chan Onn, Prof. Artur K. Ekert (Oxford) and Prof. Sandu
Popescu (Bristol) for their encouragement and support. Many thanks to
Open Source community that make “GNU Octave”, “GNU/Linux”, and
“TEX” available freely, without which I will have to buy MatLab and had a
hard-time to type in Microsoft Word.

And last but not least, I would like to thank all my friends, especially
Adele Lim Tzu-Lin, that have accompany me for meals and have given me
constant encouragements.

Figure 65: Third set of experiment with 1000 times measurement

47

Figure 66: Fourth set of experiment with 1000 times measurement

48

Appendix

A M-files source-code:

A.1 logistic.m

function y = logistic(lambda,L,x)

% function y = logistic(lambda,L,x)

%

% Darwin Gosal 2 June 2001

%

% Inputs:

% x = sampled values over [0,1]

% L = integer >= 0

% lambda = parameter in [0,4]

%?
% Ouputs:

% y = f^N(x) where N = 2^L

%

N = 2^L;

y = x;

for j = 1:N

y = lambda*y.*(1-y);

end

temp=sqrt(sum(y.^2));

y = y/temp;

figure(1)

xlabel(’x’)

ylabel(’y’)

title(’{\ity} = {\itf}^{N}({\itx})’)

plot(x,y)

grid

xlabel(’x’)

ylabel(’y’)

A.2 haar.m

function [ha] = haar(a)

%

49

% function [ha] = haar(a)

%

% Darwin Gosal 7 June 2001

%

% Inputs:

% a = row array of length N=2^L

% L = integer >= 0

%

% Ouputs:

% ha = Haar transform of a

% low-frequencies/course scale on left

%

N = size(a,2);

L = log(N)/log(2);

ha = a;

for j = L:-1:1

M = 2^j;

e = ha(1:2:M);

o = ha(2:2:M);

ha(1:M) = (1/sqrt(2))*[o+e o-e];

end

A.3 haar.m

function E = energy(ha)

%

% function E = energy(ha)

%

% Darwin Gosal 8 June 2001

%

% Inputs:

% ha = the signal after Haar transform

%

% Ouputs:

% E = energy level distribution across different level

%

k = log2(max(size(ha)))-1;

for i=1:k

50

E(i)=0;

for j=2^i+1:2^(i+1)

E(i) = E(i) + ha(j)^2;

end

E(i)=E(i)/2^i;

end

Et = sum(E);

E = E/Et;

A.4 run.m

function [y, ha, E] = run(n,lambda,L)

%

% function run(n,lambda,L)

%

% Darwin Gosal 8 June 2001

%

% Inputs:

% n = the power of sample size N (N=2^n)

% L = number of iterations integer >= 0

% lambda = the variable of the logistic mapptinf

%

% Ouputs:

% It will make:

% y = which is the logistic mapping to the corresponding paramaters

% ha = which is the haar transform or y

% E = energy distribution of the mapping.

%

x = 0:1/(2^n-1):1;

y = logistic(lambda,L,x);

ha = haar(y);

figure(2);

title(’Haar transform of the signal’);

plot(5:2^n,ha(5:2^n));

E = energy(ha);

figure(3);

title(’Energy distribution on dB scale’);

plot(log10(E));

51

title(’Energy distribution on linear scale’);

figure(4);

plot(E);

A.5 mkimg.m

function img = mkimg(ha,l)

%

% function img = mkimg(ha,l)

%

% Darwin Gosal 11 June 2001

%

% Inputs:

% ha = the haar transform that going to be displayed as image

% l = number of pixels per level

%

n = log2(size(ha,2));

for i=1:n-1

c=2^(n-i-1);

for j = 2^i+1:2^(i+1)

k=j-2^i-1;

img(i,k*c+1:(k+1)*c)=ha(j);

end

end

temp=img;

for i=1:n-1

for j=l*(i-1)+1:l*i

img(j,:)=temp(i,:);

end

end

A.6 simulate.m

function B = simulate(n,s)

52

% function B = simulate(n,s);

%?
% Darwin Gosal 10 June 2001

%

% Inputs:

% n = number of possible energy state

% s = number of points (degree of precision)

%

% Output:

% B = Energy distribution

A = rand(1,n);

A = A/sum(A);

A = round(A*s);

A(n)=A(n)+s-sum(A);

C = cumsum(A);A

B = ones(1,C(1));

for i=1:n-1

for m=C(i)+1:C(i+1)

B(m)=i+1;

end

end

size(B)

hist(B,n)

A.7 iteration.m

function iteration(x0,a);

% function iteration(x0,lambda);

% Darwin Gosal 12 June 2001

% x0 = starting point

% lambda = growth rate

%

X = 0:1/(2^10-1):1;

for i=1:2^10

F(i) = a*X(i)*(1-X(i));

G(i) = X(i);

end

53

clear x;

for i=0:2:100

if i==0

x(i+1)=x0;

y(i+1)=a*x(i+1)*(1-x(i+1));

x(i+2)=y(i+1);

y(i+2)=y(i+1);

else

x(i+1)=y(i-1);

y(i+1)=a*x(i+1)*(1-x(i+1));

x(i+2)=y(i+1);

y(i+2)=y(i+1);

endif

end

plot(x,y)

hold

plot(X’,F)

plot(X’,G)

A.8 fwt.m

function h = fwt(m,l)

% function h = fwt(m,l)

%

% Dariwn Gosal, June 6, 2001

%

% Inputs:

% m = input size

% l = level

%

% Output:

% h = l level haar decomposition

if(nargin != 2)

54

error("fwt:invalid number of arguments");

endif

n=log2(m);

if(l > n)

error("fwt: 2nd parameter must be less the the log2 of the first parameter");

endif

h=eye(m);

for i=1:l

B=[1 1];

C=[1 -1];

D=[]; E=[];

k=m/2^i;

for j=1:k

D=blkdiag(D,B);

E=blkdiag(E,C);

end

F=(1/sqrt(2))*[D zeros(k,m-2*k); E zeros(k,m-2*k);

zeros(m-2*k,2*k) eye(m-2*k)];

h = F*h;

end

55

References

[1] Andreas Klappenecker, Wavelets and Wavelet Packets on Quantum
Computers. quant-ph/9909014

[2] Amir Fijany and Colin P. Williams, Quantum Wavelet Transforms: Fast
Algorithms and Complete Circuits. quant-ph/9809004

[3] Michael A. Nielsen and Isaac L. Chuang, Quantum computation and
quantum information. Cambridge University Press, 2000.

[4] Arthur O. Pittenger, An introduction to quantum computing algo-
rithms. Birkhauser, 2000.

[5] Dirk Bouwmeester, Artur K. Ekert, and Anton Zeilinger, The physics of
quantum information : quantum cryptography, quantum teleportation,
quantum computation. New York, Springer, 2000.

[6] Jozef Gruska, Quantum computing. London, McGraw-Hill, 1999.

[7] Gennady P. Berman (et al.), Introduction to quantum computers. World
Scientific, 1998.

[8] Chris J. Isham, Lectures on quantum theory : mathematical and struc-
tural foundations. Imperial College Press, London, 1995.

[9] John von Neumann, Mathematical Foundations of Quantum Mechanics.
Princeton University Press, 1983.

[10] Macchiavello C., Palma G.M., Zeilinger A., Quantum Computation and
Quantum Information Theory. World Scientific, 2000.

[11] Cabello A., Bibliographic guide to the foundations of quantum mechan-
ics and quantum information. quant-ph/0012089

[12] Dremin I.M., Ivanov O.V., Nechitailo V.A., Wavelets and Their Use.
hep-ph/0101182

[13] Richard Jozsa, Quantum Algorithms and the Fourier Transform. quant-
ph/9707033

[14] John Preskill, The Future of Quantum Information Science. A talk at
the NSF Workshop on Quantum Information Science, 28 October 1999.

[15] Ekert A., Hayden P., and Inamori H., Basic Concepts in Quantum Com-
putation. quant-ph/0011013

56

[16] Gilbert Strang and Truong Nguyen, Wavelets and Filter Banks.
Wellesley-Cambridge Press, 1996.

[17] Burrus C.S., Gopinath R.A., Guo H., Introduction to Wavelets and
Wavelet Transforms: A Primer. Prentice-Hall, 1998.

[18] Charles K. Chui, An Introduction to Wavelets. Academic Press, 1992.

[19] Chan A.K. and Liu S.J., Wavelet Toolware: Software for Wavelet Train-
ing. Academic Press, 1998.

57

