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Abstract

A concept of paired Haar transform (PHT) for representation and efficient optimization of systems of
incompletely Boolean functions has recently been introduced. In this article, a method to calculate PHT for
incompletely specified switching functions through shared binary decision diagrams (SBDDs) is presented.
The algorithm converts switching functions in the form of SBDDs into their paired Haar spectra and can
operate on functions with many variables.
� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Discrete Haar transform is the simplest example of wavelet expansion and attracts much at-
tention in engineering practice for its peculiar properties [2,3,7–18,27–32].

The advantages of computational and memory requirements of the Haar transform make it of
a big interest to VLSI designers. For example, the authors of [21,22] present a set of CAD tools to
perform a switch-level fault detection and diagnosis of physical faults for practical MOS digital
circuits using a reduced Haar spectrum analysis. In their system, the unnormalized reduced Haar
binary spectrum was used as means not only for diagnosis digital MOS IC’s as a tool external to
the circuit, but also as a possibility for a self-test strategy. The use of this set of CAD tools allowed
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to derive strategies for testing MOS circuits when memory states were encountered as a conse-
quence of some fault types. Testing through spectra analysis is to look for a determined input/
output behavior for some input sequence but not observing the output values directly but rather
their spectrum, and more precisely some selected coefficients. This has a potential advantage that
the amount of information in which to look for some error is severely diminished at the expense of
computing the spectrum coefficients, something that is a routine computation and in some cases
could be worth to do it in hardware as ‘‘built-in test’’. The advantage to use Haar functions in-
stead of Walsh functions in CAD systems based on spectral methods for some classes of Boolean
functions was shown in [17,18,32]. For example, the analysis in Ref. [17] shows that the spectral
complexity of conjunction and disjunction increases with the number of variables exponentially
for the Walsh functions and only linearly for the Haar functions. The circuit of spectral multi-
functional logical module [9,18] to generate arbitrary Boolean functions consists of a generator of
basis functions, an adder, a multiplier, and the memory content. Such a behavior of the module is
useful in real time adaptive control systems [18,32]. Karpovsky [17] noticed that the size of the
memory block can be optimized only when the Haar basis is used. It is due to the fact that
the number of non-vanishing Haar coefficients is reduced with input permutation of variables –
the situation which does not apply to Walsh basis. It should be noted that the realization of a
permutation requires no special hardware [17]. Another advantage of the Haar spectrum in this
application is the smallest number of required arithmetic operations as there are many zero entries
in the Haar transform matrix and the number of non-vanishing Haar coefficients is reduced.

In many practical problems of logic design and machine learning, weakly specified Boolean
functions are frequently encountered [5,19,20]. These functions are efficiently represented by the
arrays of ON and OFF terms, since a majority of their functional domain are do not cares. The
local property of the Haar transform makes it of interest in those applications in computer-aided
design systems where there are Boolean functions of many variables that have most of their ON-
minterms grouped locally. Such weakly specified and local functions can be extremely well
described by few spectral coefficients from Haar transform while the application of Walsh
transform, which is a global transform, would be quite cumbersome in such cases, since the locally
grouped minterms would be spread throughout the Walsh spectrum. In most engineering design
problems, incompletely specified functions have to be dealt with. The don’t care sets derived from
circuit structures represent an additional degree of freedom and their effective utilization often
results in highly economical circuits. To better deal with the mentioned cases, the concept of
paired Haar transform (PHT) was introduced for incompletely specified switching functions [11].
Intended applications of PHT concern functions with large number of variables. In PHT, all the
information about true and do not care minterms is kept separately, by what it is available in
different stages of CAD process. Useful properties and applications of paired Haar spectra in logic
design, for example, minimization of mixed polarity Reed–Muller expansion, generation of quasi-
optimal free binary decision diagrams (FBDDs) and multiplexer synthesis for incompletely
specified Boolean functions, have been demonstrated in Refs. [4,10–13]. A unified entropy ap-
proach operating on paired Haar spectrum for their heuristic optimization with effective utili-
zation of the don’t care sets for incompletely specified Boolean functions have been developed in
[4]. For FBDD and ordered binary decision diagram (OBDD) minimization, there is no need to
generate an initial BDD with an arbitrary variable ordering followed by improving the variable
ordering with local search or simulated annealing in two steps. The algorithm for the FBDD
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minimization can be used for multiplexer universal logic module network synthesis in tree type
realization by treating each vertex as a set of control variables with multiple children. The ex-
tension of the FBDD minimization algorithm to multiplexer synthesis permits mixed control
variables within each level if it leads to early termination of more paths with constants or single
variables.

In view of the above applications for PHT, it is necessary to provide efficient calculation
methods for PHT through reduced representations of switching functions such as disjoint cubes
[13] or decision diagrams [4,9,23]. In this article, we extend the method presented in [25,26] to
multi-output switching functions that are represented by shared binary decision diagrams
(SBDDs) having a separate root node for each output [23]. We use this method to calculate PHT
by taking advantages of peculiar properties of PHT [9,12].

2. Basic concepts

2.1. Switching functions

Let B ¼ f0; 1g. The mapping f : Bn ! B is an n-variable switching function. If the output of f
for a combination of logic values for input variables is not specified, then f is an incompletely
specified switching function. Thus, an n-variable incompletely specified switching function is the
mapping f : Bn ! B [ f�g, where � denotes a non-specified value (do not care).

Definition 1 ([7,10]). A pair of functions ðfON; fDCÞ is assigned to each incompletely specified
switching function f. fON is defined as a function obtained from f by replacing all the do not care
outputs of f by 0. fDC is obtained by replacing all the true outputs by 0 and do not care outputs
by 1.

2.2. Binary decision diagrams

Binary decision diagrams (BDDs) are a data structure convenient to represent switching
functions of a large number of variables [23]. BDDs are derived by the reduction of binary de-
cision trees (BDTs).

Definition 2. BDT representing a switching function f is a rooted acyclic diagram D ¼ ðV ;EÞ with
the edge set E and the node set V consisting of the root node, non-terminal nodes, and constant
nodes. A variable xi is assigned to each non-terminal node v 2 V and is called the decision variable
for v. All the nodes assigned to the same variable xi form the ith level in the BDT. The constant
nodes represent the values of f.

BDTs for switching functions of a given number of variables can be derived by the recursive
application of the Shannon decomposition rule f ¼ xif0 
 xif1, where f0 ¼ f ðxi ¼ 0Þ and
f1 ¼ f ðxi ¼ 1Þ to all the variables in f. In a BDT, the values of constant nodes are logic values 0
and 1. Multi-terminal BDTs (MTBDTs) are defined by allowing integers or complex numbers as
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the values of constant nodes [6]. Multi-terminal BDDs (MTBDDs) are derived by the reduction of
MTBDTs [6].

Multiple-output switching functions are represented by shared BDDs (SBDDs) or shared
MTBDDs [23] having a separate root node for each output. Thus, SBDDs are obtained by
sharing isomorphic subtrees in BDDs for outputs of f, considered as separate particular switching
functions.

Example 1. Consider a two-output incompletely specified switching function f ¼ f1 f0 given by
the truth-vectors

F1 ¼ ½�; 1; 1; 1; 0; 1; 1; 1; 0; 0; 1; 1; 1; 1; 1; 1�T;
F0 ¼ ½0; �; 0; 0; �; �; 0; 0; 1; 1; 1; 0; 0; 0; 1; 1�T:

Thus, fON and fDC associated to this function are given by the vectors

FON1
¼ ½0; 1; 1; 1; 0; 1; 1; 1; 0; 0; 1; 1; 1; 1; 1; 1�T;

FDC1
¼ ½1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0�T;

FON0
¼ ½0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 0; 0; 0; 1; 1�T;

FDC0
¼ ½0; 1; 0; 0; 1; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0�T:

Example 2. Fig. 1 shows BDT for the function f1 given by the truth-vector F1 in Example 1. Fig. 2
shows SBDD for f in this example.

As shown in the above example, a SBDDs with two root nodes can be used to represent the
functions fON, and fDC associated to an incompletely specified switching function f. A SBDD with
m pairs of the root nodes can be used to represent fON and fDC functions assigned to an m-output
switching function f.

Fig. 1. BDT for f1 in Example 1.

16 M. Stankovi�cc et al. / Computers and Electrical Engineering 29 (2003) 13–24



3. Discrete Haar transform

Discrete Haar transform is defined in terms of the discrete Haar functions, which are conve-
niently represented as rows of an ð2n  2nÞ, n 2 N , matrix TðnÞ denoted as the Haar matrix
[16,17,29,32].

In this paper, we consider the non-normalized Haar transform defined as follows.

Definition 3. Discrete Haar functions of order n represented by ð2n  2nÞ matrix TðnÞ, in the se-
quency ordering are given by the following recurrence relation:

TðnÞ ¼ Tðn� 1Þ � ½1 1�
Iðn�1Þ � ½1 � 1�

� �
;

where � denotes the Kronecker product,

Tð1Þ ¼ 1 1
1 �1

� �
;

and Iq is the identity matrix of order q.

Definition 4. For a switching function f represented by the truth-vector FðnÞ ¼ f ð0Þ; . . . ;½
f ð2n � 1Þ�T, the Haar spectrum Yf ðnÞ ¼ ½Y ð0Þ; . . . ; Y ð2n � 1Þ�T is given by:

Yf ðnÞ ¼ TðnÞFðnÞ; ð1Þ
FðnÞ ¼ TðnÞ�1

Yf ðnÞ; ð2Þ

where TðnÞ is the Haar matrix in the corresponding ordering and T�1ðnÞ is its inverse over the
complex field C. The inverse is equal to the TTðnÞ, where TT denotes the transpose of T.

Fig. 2. SBDD for f in Example 1.
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3.1. Paired Haar transform

Definition 5 ([7,10]). A PHT for an incompletely specified n-variable switching function f is a
mapping v: ðfON; fDCÞ ! ðRON;RDCÞ, where RON ¼ TFON, and RDC ¼ TFDC. The pair ðRON;RDCÞ
is the PHT-spectrum for f.

Example 3. PHT-spectrum for f in Example 1 is given by the vectors

ðRON1
;RDC1

Þ1 ¼ ½ð12; 1Þ; ð0; 1Þ; ð0; 1Þ; ð�2; 0Þ; ð�1; 1Þ; ð�1; 0Þ; ð�2; 0Þ;
ð0; 0Þ; ð�1; 1Þ; ð0; 0Þ; ð�1; 0Þ; ð0; 0Þ; ð0; 0Þ; ð0; 0Þ; ð0; 0Þ; ð0; 0Þ�T;

ðRON0
;RDC0

Þ1 ¼ ½ð5; 3Þ; ð�5; 3Þ; ð0;�1Þ; ð1; 0Þ; ð0; 1Þ; ð0; 2Þ; ð1; 0Þ; ð�2; 0Þ; ð0;�1Þ;
ð0; 0Þ; ð0; 0Þ; ð0; 0Þ; ð0; 0Þ; ð1; 0Þ; ð0; 0Þ; ð0; 0Þ�T:

Fig. 3 shows SBDD for the PHT-spectrum for the multiple-output function f in Example 1.
Definition of PHT proved useful in solving some problems in logic design, as for example,

minimization of mixed polarity Reed–Muller expressions, generation of quasi-optimal FBDDs,
and multiplexer synthesis [3,10,11].

4. Calculation of PHT through SBDD

Calculation procedure for PHT-spectrum is derived as a modification of the procedure for
calculation of the Haar spectrum of integer-valued or complex-valued functions in Ref. [25], see
also Ref. [26]. The PHT-spectrum is calculated by processing the nodes of SBDD. The PHT-
spectrum is stored at the SBDD of f in the 2 bytes fields assigned to each node.

Fig. 3. SBDD for PHT-spectrum for f in Example 1.
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In a BDD, each node is related to two subtrees. These two subtrees are rooted at the nodes to
which point the outgoing edges of the considered node. In the matrix notation, these subtrees
represent some subvectors in the truth-vector for f.

A discussion of the structure of the Haar matrix and properties of the Haar transform, permits
derivation of some recurrence relations useful in calculation of the Haar spectrum [25,26]. These
relations are performed at each node in the MTBDD or BDD by starting from the nodes assigned
to the variable xn. The inputs are the values of constant nodes. These relations reduce calculations
to the operations over first elements in the subvectors represented by the subtrees related to the
processed node. The values calculated by processing the node are stored in a 2 bytes field. The left
part of this field is the value of a Haar transform coefficient. The other part is the input in the
processing of the nodes at the upper level in the DD. In this way, the Haar spectrum is stored in
the fields assigned to the nodes of the MTBDD or BDD representing f whose transform is cal-
culated. We extend this method to SBDDs, and use it to calculate the PHT-spectra of incom-
pletely specified multiple-output switching functions.

It is assumed that in the SBDD for a given function f ðx1; . . . ; xnÞ, the variable x1 is assigned to
the root node. The other variables are assigned to the levels in the SBDD in the increasing order.
Each node in the SBDD is represented by the following data structure

struct node ¼ record
low,high: pointer to node;
index: 1..n+1;
left, right: int;
id: integer;

end;

Fig. 4 shows the procedure CalcTransform used to calculate the PHT-spectrum. It calls a
procedure CalcNode that processes the nodes in the SBDDs. Therefore, the calculation procedure
for PHT-spectrum consists of the following steps:

1. Generate SBDD for functions FON and FDC.
2. Apply the procedure CalcTransform to the nodes in the SBDD.
3. Read the spectrum from the fields assigned to the nodes in the SBDD and prepare the output

file containing the spectrum.

The PHT spectrum is read by using standard procedures for traversing a DT. Inorder traversal
and level order traversal procedure are used to read PHT spectrum in natural and sequency or-
dering, respectively [24]. Inorder traversal is illustrated in Fig. 5 for reading the PHT-spectrum for
n ¼ 3.

The method permits to read particular spectral coefficients independently of other coefficients,
the feature that is important in many applications of the Haar spectra [3,4,10,12,17,21,22].

Since the algorithm for calculation of PHT-spectrum consists of processing of nodes in the
SBDDs, its complexity in terms of both space and time is proportional to OðsÞ, where s is the size
of the SBDD. The space overhead reduces to the 2 byte field assigned to each node.
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Example 4. Fig. 3 shows SBDD for functions fON and fDC assigned to f in Example 1. The result
of the processing nodes is shown in the fields assigned to the nodes. We descend the SBDD and
read the PHT-spectrum for f. Table 1 explains the calculations performed at the nodes of SBDD.

5. Experimental results

Table 2 shows complexity of SBDDs for some mcnc benchmark functions and CPU-times for
calculation of the PHT. The number of inputs (i), outputs (o), and size (s) of SBDDs are shown.
Calculation time is given in milliseconds. Calculations are performed on a 133 MHz Pentium PC

Fig. 5. Inorder traversal of a BDT.

Fig. 4. Procedure for calculation of PHT-spectrum.
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with 32 Mbytes of RAM. In these experiments, we used SBDD package developed by us.
However, is it written by an analogy to the existing DDs packages by using the recommendations
for programming of DDs in Refs. [1,14]. As it is noted above, the complexity of the algorithm is
proportional to the size of the SBDD for a given f. This is the explanation why the calculation

Table 1

Calculations at the nodes in SBDD

Node Field

Left Right

a 2 3þ 6 ¼ 12 2 ð�1Þ � ð�2Þ ¼ 0

b 8 0þ 5 ¼ 5 8 0� 5 ¼ �5

c 1þ 8 0 ¼ 1 1� 8 0 ¼ 1

d 3þ 8 0 ¼ 3 3� 8 0 ¼ 3

e 2þ 4 1 ¼ 6 2� 4 1 ¼ �2

f 3þ 2 ¼ 5 3� 2 ¼ 1

g 1þ 4 0 ¼ 1 1� 4 0 ¼ 1

h 1þ 2 ¼ 3 1� 2 ¼ �1

i 1þ 2 1 ¼ 3 1� 2 1 ¼ �1

j 2 0þ 2 1 ¼ 2 2 0� 2 1 ¼ �2

k 2 1þ 1 ¼ 3 2 1� 1 ¼ 1

l 1þ 2 0 ¼ 1 1� 2 0 ¼ 1

m 1þ 2 0 ¼ 1 1� 2 0 ¼ 1

n 2 1þ 2 0 ¼ 2 2 1� 2 0 ¼ 2

o 0þ 1 ¼ 1 0� 1 ¼ �1

p 1þ 0 ¼ 1 1� 0 ¼ 1

Table 2

Complexity of f and CPU-times

f i o s d t (ms) t-cubes (ms)

9sym 9 1 33 145 0.05 10

5xp1 7 10 88 75 0.14 20

alu4 14 8 1352 1043 2.42 70

sao2 10 4 154 96 0.22 20

apex4 9 19 1021 523 1.8 40

bw 5 28 138 106 0.19 30

clip 9 5 254 176 0.37 20

con1 7 2 18 11 0.02 30

misex1 8 7 47 32 0.07 30

misex3 14 14 1301 1641 2.29 130

misex3c 14 14 1275 2630 2.15 140

xor5 5 1 9 16 0.02 20

rd53 5 3 23 32 0.03 20

rd84 8 4 59 256 0.08 20

sqrt8 8 4 42 40 0.05 20

t481 16 1 32 887 0.05 80

table3 14 14 941 179 1.54 20
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times are large for relatively small benchmark functions in terms of the number of inputs and
outputs, however, having SBDDs of a large size.

For a comparison, the column denoted by t–cubes shows the time for calculation of the PHT-
spectrum through the disjoint cube representations taken from [13]. The number of disjoint cubes
for each function is given in the column (d). These results are given for calculations performed on
a HP Apollo Series 735 workstation.

6. Closing remarks

The proposed algorithm permits efficient calculation of PHT-spectra for the functions fON and
fDC assigned to an m-output n-variable switching function f and represented by a SBDD with m
pairs of root nodes. Then, PHT-spectrum for f is calculated by processing the nodes in the SBDD.
The result is stored in a 2 byte field assigned to each node. Thus, the PHT-spectrum is represented
in the thus modified SBDD for f.

The procedure permits efficient calculation of PHT-spectrum for incompletely specified multi-
output switching functions with large number of variables and large number of outputs. Memory
requirements and time complexity of the algorithm approximate the size of SBDD for f.

The ability to calculate only some spectral coefficients made possible by this research is very
important, since there are many application of the Haar spectra in digital logic design for which
the values of only selected spectral coefficients are needed [3,4,10,17,21,22].
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