
*Copyright © 2001 by the Consortium for Computing in Small Colleges.  Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing in Small Colleges.  To copy otherwise, or to republish, requires a
fee and/or specific permission.  

290

A WAVELETS INTRODUCTION*

STUDENT PAPER

Mark Fontenot
McNeese State University

P.O. Box 92340
Lake Charles, LA 70609
fontmark@earthlink.net

INTRODUCTION

Today’s society is one of data transmission.  Data is being transmitted between nearly
everyone in nearly all societies.  Methods include electronic format such as e-mail and the
Internet, broadcast dissemination such as television and radio, and even non-technological
means such as postal mail.  Transmitting information in electronic format has been a topic of
great discussion for many years.  Many parts of the world have experienced some electronic
transmission, be it from the days of the 1200 baud modem or the OC3 connections of major
corporations.  But as the bandwidth of data transmission lines has increased, so has the demand
for it.

It can be argued that as bandwidth increases over time, the demand on it will increase at
least at the same rate if not faster.  Therefore, a need exists for some more efficient means of
data transfer.  One way to improve the transfer of data is to compress it before it is sent and
then decompress it on the other end of the transmission.  This is obviously not a new idea.  It
has been around for years, and many methods have been developed for this function.
However, the degree of compression and the amount of data-loss are of much concern.  This
would indicate the need for a  method combining a high compression ratio with a low (or even
zero) amount of data-loss.

Wavelets are one answer to this need.  Wavelets are mathematical functions that satisfy
certain properties and can be used to transform one function representation into another.
Transforms like this have been around for many years.  However, choosing the appropriate
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wavelet transform for a particular problem can provide a high compression ratio with no data
loss. Wavelet transforms have applications to image compression as well as a variety of other
applications.

EXAMPLE WITH HAAR WAVELET

We will now perform a Haar wavelet transform on a sample data set, but later we will
examine just a bit more theory.  Consider the following string of numbers.  For example, they
could be the first row of an 8 x 8 pixel image. They could also be the functional values of a
discrete signal. There is nothing significant about these particular numbers as they are simply
chosen to avoid fractions in the calculations. 

12 20 16 28 32 32 22 14

We will employ the process of averaging and differencing on this sample data. This
process of averaging and differencing will occur three times due to the fact of there being eight
elements and 8 = 23.  The formula for this operation will be f(x) = (a+b)/2.  We will take the
8 numbers and group  them into pairs of two adjacent numbers.  Pair one will be (12 20), pair
two will be (16 28), and so on.  First we will take the averages of the numbers in each one of
these pairs and place the four averages at the beginning of a new row.  Then we will subtract
the two numbers and divide by two.  These numbers will be placed on the same row after the
averages.  The first four numbers in the second row are the averages and the last four are the
differences (referred to as the detail elements). This process is continued on the remaining
averages utill there is only one average left. Detail elements are carried down from row to row
and the new detail elements are added in front of the old ones.  Here are the 3 steps to arrive
at the transformed row (the bottom row).

12 20 16 28 32 32 22 14

16 22 32 18 -4 -6 0 4

19 25 -3 7 -4 -6 0 4

22 -3 -3 7 -4 -6 0 4

In the bottom row, we now have only one average but we have seven detail elements.
We can now choose some ξ to serve as a threshold.  Any detail element that has an absolute
value less than or equal to this threshold will be replaced with 0 (zero). The detail element with
the smallest absolute value (greater than 0) is –3.  If we choose ξ = 3, then our new row would
be:

22 0 0 7 -4 -6 0 4

One nice thing about this transform is that it is easily reversible because it is simply
arithmetic.  In performing the inverse operation on this transformed row, we get:

18 26 16 28 29 29 11 19

Notice that some of the elements of the original string reappear, but some are obviously
not the same.  Of course these are sample data, and it seems that there is quite a bit of data loss
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Figure 1.  Example of 1-level Haar Wavelet Transform.  Processed in Matlab

involved here.  This may be acceptable though.  Now if we were to extend this process to a
matrix, we would perform the above transform on each row and then each column of the matrix.
This is equivalent to performing averaging and differencing on each row then performing the
operations on each row of the transpose of the row-transformed matrix.  If we were to perform
these calculations on an 8 x 8 matrix, P, there would exist exactly one average element and 63
detail elements. This transformed matrix, M,  would be called the Haar transform of P. (Note:
The above method does not conserve the energy of the signal.  Multiplying each average and
difference by the square root of two will conserve energy.  However, it is still possible to
reverse this method to get the original signal values.)  

After performing the Haar transform and then setting all detail elements less than or equal
to the threshold to zero, very often a sparse matrix might occur.  A sparse matrix is one that has
a large number of zero-elements.  It is obvious that a sparse matrix can take up considerably
less amount of space (depending on the number of entries equal to zero) than the original matrix
in which there were very few zero elements.  Therefore this process (transform) could greatly
reduce the amount of space needed to store and/or transmit an image or any other type of
information that it could be applied to.

It should be noted however that in some cases the compression standard used requires
lossless compression.  This means that there is absolutely no data loss throughout the
compression and decompression cycle.  Lossless compression is employed in file compression

formats such as the common zip format.  Lossless compression is also quite important when
compressing any medical image.  Image reconstruction must be exact.  This requirement is
mostly a legal issue though.  But many other applications do not require this amount of
information retention.  A great deal of data could be lost through the compression of an image,
and the human eye would not be able to recognize any difference. Examine figure 1.  If the
pictures were not adjacent and resized, it would be very difficult to tell that one of them is a
compressed image, and the other is the original.



CCSC: South Central Conference

293

A TOUCH OF LINEAR ALGEBRA

If we consider the same string of numbers as we did above, we can use matrix
multiplication to arrive at the same transformed vector.  Our original string of numbers now
defined as a vector is:

[ ]v = 12 20 16 28 32 32 22 14

To calculate the four averages, we will need n/2 wavelet functions where n is the
number of elements in v.  They are in the form:

[ ]W1
1 = 1

2
1

2 0 0 0, , , ,...,

[ ]W2
1 = 0 0 1

2
1

2 0 0 0, , , , , ,...,

:

:

[ ]WN/2
1 = 0 0 0 1

2
1

2, ,..., , ,

To transform v, we will use through .  Thus to get the average (a1) of the firstW1
1 W4

1

two elements of v, we multiply it by .  To get the second average (a2), v is multiplied byW1
1

, and so on until we have all the averages for our vector v. Generally,W2
1

, for p = 1, 2, . . ., N/2.a p p
1v W= ×

To calculate the detail elements of our image, the process is quite similar. The detail
functions are:

[ ]D1
1 = −1

2
1

2 0 0 0, , , ,...,

[ ]D2
1 = −0 0 1

2
1

2 0 0 0, , , , , ,...,

:

:

[ ]D N/2
1 = −0 0 0 1

2
1

2, ,..., , ,

In the same manner as the average elements, the first detail element is calculated by
multiplying v by , and so forth in the same manner.  Generally,D1

1
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, for p=1, 2, . . ., N/2.d p = ×v Dp
1

If we place all the W’s and D’s in the columns of an N x N matrix P, then all that is
needed to perform the first level of the Haar transform is to multiply v by P. Note: This will not
produce a vector that has only one average element with n - 1 detail elements (only a 1st level
transform). It produces n/2 averages and n/2 differences. 

APPLICATION OF WAVELETS

There are currently many applications where wavelets are used.  Take, for instance, the
United States Federal Bureau of Investigation’s (FBI) collection of fingerprints.  Currently, it
around 50 million sets of fingerprints.  It is estimated that 5,000 new submissions are made each
day to this already enormous set.  Each fingerprint is digitally scanned at a resolution of 512
pixels per inch. Each pixel will house one of a possible 256 shades of gray.  Therefore, one
fingerprint translates to about 700,000 pixels.  Roughly 0.6 Mbytes of space is needed to store
this digitized image.  So, a pair of hands with a total of 10 fingers requires about 6 Mbytes of
storage space.  

It is estimated that digitizing the entire fingerprint library of the FBI would consume about
200 terabytes of space.  Using the estimation of 5000 new submissions per day would result
in an increase of 30 Gbytes per day.  It is obviously reasonable to think that some kind of
compression is needed.  The FBI has adopted a standard of compression that employs wavelet
compression.  Currently, the FBI is able to achieve a compression ration of about 26:1.  That
would be a reduction from 30 Gbytes to less than 1.5 Gbytes of storage space required. 

Wavelets are also useful in the arena of denoising noisy data.  The idea is to use a
averaging filter to obtain averages and detail elements.  Then a thresholding procedure is applied
which is similar to the above discussed process.  Some threshold is chosen and all detail
elements less than that threshold are set to zero.  The inverse transform is then performed to
retrieve the less noisy signal.  Using wavelets in this context is quite useful because the wavelet
transform retains all the important features while discarding the un-useful noise.

A company named Summus (http://www.summus.com) is currently involved in producing
a plug-in for Netscape Navigator and Internet Explorer.  The name of this plug-in is Wavelet
Image Viewer.  This plug-in is used in a method called progressive image transmission.  What
happens is that when an image is requested, a wavelet encoded copy is sent to the requestor.
The overall average and larger detail coefficients are sent and then the smaller detail coefficients
are sent.  Eventually all the detail coefficients are sent resulting in the original image being
displayed.  The beauty lies in the fact that when the user is satisfied with the quality, the retrieval
of more detail coefficients can be halted.

CONCLUSION

This paper has only touched the very tip of an enormous iceberg.  Mathematicians have
spent countless hours working out the gory details of the Haar transform as well as many other
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wavelet transforms.  The author is by no means a mathematician and is interested more in the
application and implementation of wavelets than the deep theory behind them.  Numerous
papers have been written on the subject of wavelets and there will definitely be many more in
the future.  However, one thing is for sure, wavelets will be incorporated into more and more
applications and continue to emerge as the method of choice for many uses.
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