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Abstract

This paper is a brief survey of basic definitions of the Haar wavelet transform. Different generalizations
of this transform are also presented. Sign version of the transform is shown. Efficient symbolic calculation
of Haar spectrum is discussed. Some applications of Haar wavelet transform are also mentioned.
� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Haar functions have been used from 1910 when they were introduced by the Hungarian
mathematician Alfred Haar [26]. The Haar transform is one of the earliest examples of what is
known now as a compact, dyadic, orthonormal wavelet transform [7,33]. The Haar function,
being an odd rectangular pulse pair, is the simplest and oldest orthonormal wavelet with compact
support.

In the meantime, several definitions of the Haar functions and various generalizations have
been published and used. They were intended to adapt this concept to some practical applications,
as well as to extend its application to different classes of signals. Thanks to their useful features
and possibility to provide a �local� analysis of signals, the Haar functions appear very attractive
in many applications as for example, image coding, edge extraction, and binary logic design
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[7,13–15,17,28,33,43]. The sample applies to many related concepts as the SHT [25], or the Watari
transform [29,51] and the real multiple-valued Haar transform [53]. These transforms have been
applied, for example, to spectral techniques for multiple-valued logic [29,53], etc. A quantized
version of the Haar transform was recently developed [22,36].

This paper is an attempt to bring together these concepts published in the period of 90 years
and by the authors in different parts of the World, and offer an unified basis for a further work in
the area.

Due to space limitations, faced with the variety of definitions of the Haar and related functions,
we first discuss definitions of the basic Haar functions. Then we present the most extensive and the
most recent generalizations, since they involve as particular cases many other published and used
definitions. However, references to these other results, or at least sources where they can be traced,
are provided.

For applications of the Haar transform in logic design, efficient ways of calculating the Haar
spectrum from reduced forms of Boolean functions are needed. Recently, such methods were
introduced for calculation of the Haar spectrum from disjoint cubes [19,20], and different types of
decision diagrams [15,16,27,42].

Finally, applications of the Haar transform in different fields are briefly discussed.

2. Haar functions

In Ref. [26], Alfred Haar has defined a complete orthogonal system of functions in Lp½0; 1�,
p 2 ½1;1� taking values in the set f0;

ffiffiffiffi
2i

p
g, i 2 N0. This system reported now as the Haar func-

tions, has property that each function continuous on ½0; 1� can be represented by an uniformly
convergent series in terms of elements of this system.

Definition 1. The Haar functions can be defined as follows:

harð0; hÞ ¼ 1; 06 h6 1;

harð1; hÞ ¼
1; 06 h < 1=2;

�1; 1=26 h < 1;

�

harð2; hÞ ¼

ffiffiffi
2

p
; 06 h < 1=4;

�
ffiffiffi
2

p
; 1=46 h < 1=2;

0; 1=26 h6 1:

8><>:
harð3; hÞ ¼

0; 06 h < 1=2;ffiffiffi
2

p
; 1=26 h < 3=4;

�
ffiffiffi
2

p
; 3=46 h6 1;

8<:
..
.

harð2p þ n; hÞ ¼

ffiffiffiffiffi
2p

p
; n=2p

6 h < ðn þ 1=2Þ=2p;

�
ffiffiffiffiffi
2p

p
; ðn þ 1=2Þ=2p

6 h < ðn þ 1Þ2p;

0; 0 < h < n
2p and ðnþ1Þ

2p < h < 1;

8><>:
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p ¼ 1; . . . ; n ¼ 0; . . . ; 2p � 1:

There are some other definitions of the Haar functions in the literature. However, they mu-
tually differ with respect to the values of Haar functions at the points of discontinuity. In his
original definition, Haar defined

harðk; 0Þ ¼ lim
h!0;h>0

harðk; hÞ;

harðk; 1Þ ¼ lim
h!1;h<0

harðk; hÞ;

and at the points of discontinuity within the interior (0,1) of the interval [0,1]

harðk; hÞ ¼ 1
2
ðharðk; h � 0Þ þ harðk; h þ 0ÞÞ:

Instead of that, some authors use

harðk; hÞ ¼ harðk; h þ 0Þ;

where in the engineering practice it is usually assumed that the Haar function takes zero value at
the points of the discontinuity.

Often, the two parametric notations for the Haar functions harði; j; hÞ or H ðjÞ
i ðhÞ are used, where

H ð0Þ
0 ðhÞ ¼ harð0; hÞ;

H ðjþ1Þ
i ðhÞ ¼ harð2i�1 þ j; hÞ; i 2 N0; j ¼ 1; . . . ; 2i:

The parameter i is called the power of the Haar function and denotes a subset of Haar functions
with the same number of zero crossings on the interval of the length 1=2i. Table 1 gives the
grouping for the first 16 Haar functions with respect to i. Such ordering can be compared to the
frequency ordering of trigonometric functions or the sequency ordering of Walsh functions
[29,33]. Parameter j is denoted as the order of the Haar function. It determines the place of each
function within the ith subset.

In two parametric notations, the following definition is possible.

Table 1

Sequency groupings of the first 16 Haar functions

Haar functions Sequency

harð0; hÞ 1

harð1; hÞ 2

harð2; hÞ, harð3; hÞ 3

harð4; hÞ, harð5; hÞ 4

harð6; hÞ, harð7; hÞ
harð8; hÞ, harð9; hÞ 5

harð10; hÞ, harð11; hÞ
harð12; hÞ, harð13; hÞ
harð14; hÞ, harð15; hÞ
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Definition 2. The Haar functions are defined by

harð0; 0; hÞ ¼ 1; 06 h6 1;

harði; j; hÞ ¼

ffiffiffiffi
2i

p
; j�1

2i 6 h < j�1=2
2i ;

�
ffiffiffiffi
2i

p
; j�1=2

2i 6 h < j
2i ;

0; otherwise

8<: i ¼ 0; 1; 2; . . . ; j ¼ 1; . . . ; 2i:

2.1. Properties of Haar functions

From their definition, it is obvious that the Haar functions are orthogonal functions. Therefore,Z 1

0

harðm; hÞharðn; hÞdh ¼ 1; n ¼ m;
0; n 6¼ m:

�
The proof of completeness for the system of Haar functions is given by Haar himself [26].

Uljanov [49] have proved that if zero is assumed for the values for Haar functions in the points
of the discontinuity, as in Definition 2, then uniform convergence of series in terms of the Haar
functions is missing. In that way, the basic motive for introduction of the Haar functions in
mathematical analysis, i.e., for uniform approximation in Lp [0,1], is not preserved. However,
other properties of Haar functions, which make them applicable in engineering practice, and
resulting advantages in numerical computations, make this pragmatic assumption justified and
acceptable.

An outstanding property of the Haar functions is that except harð0; hÞ, the ith Haar function
can be obtained by the restriction of the ði � 1Þth function to the half of the interval where it is
different from zero, by multiplication with

ffiffiffi
2

p
and by scaling over the interval [0,1]. That property

caused renewed considerable interest in the Haar functions, since it closely relates them to the
wavelet theory. In this setting, the first two Haar functions are called the global functions, while
all the others are denoted as the local functions.

3. Discrete Haar functions

Discrete Haar functions can be defined as functions determined by sampling the Haar functions
at 2n points [3]. Alternatively, they can be considered independently as a particular set of functions
in the Hilbert space of functions on the finite dyadic groups G2n of order 2n defined by the analogy
to the Haar functions [29]. Recall that the dyadic group of order 2n is the direct product of n cyclic
groups of order 2 C2 ¼ ðf0; 1g;�Þ, where � denotes the addition modulo 2.

Discrete Haar functions are conveniently represented as rows of an ð2n � 2nÞ, n 2 N , matrix
denoted as the Haar matrix. The Haar matrices are considered in the natural and sequency or-
dering which differ in the ordering of rows.

Definition 3. Discrete Haar functions of order n represented by ð2n � 2nÞ matrix HsðnÞ, in the
sequency ordering are given by the following recurrence relation:
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HsðnÞ ¼
Hsðn � 1Þ � 1 1½ �

2
ðn�2Þ

2 I2 � I2n�2 � 1 �1½ �

� 	
;

where

Hsð1Þ ¼
1 1
1 �1

� 	
;

and Iq is the identity matrix of order q.
The Haar matrix in the ordering corresponding to the natural or Hadamard ordering of the

Walsh matrix [29,46], can be derived in the following way. The bit-reverse procedure is applied to
the binary expressions of the indices of rows in the sequency ordered Haar matrix. Then, the
indices are ordered in the increasing order of the values of their decimal equivalents within each
subset. Such procedure is denoted as the zonal bit-reversal procedure.

Another definition of the Haar matrix HsðnÞ can be given by using the generalized Kronecker
product [46,52] defined as follows.

Definition 4. (Generalized Kronecker product). Denote by fAg the set of p unitary matrices Ai, i ¼
0; . . . ; p � 1 of order q and by fBg the set of q unitary matrices Bi, i ¼ 0; . . . ; q � 1 of order p.

The generalized Kronecker product fAg � fBg is the square ðpq � pqÞ matrix C ¼ ½cij�, where
cij ¼ Cupþw;u0pþw0 ¼ Aw

uu0B
u0
ww0 ;

where Aw
uu0 is the uu0th element of Aw 2 fAg, Bu

ww0 is the ww0th element of Bu0 2 fBg, where uu0 and
ww0 are determined by the relations

i ¼ up þ w; j ¼ u0p þ w0

u; u0 ¼ 0; . . . ; q � 1; w;w0 ¼ 0; . . . ; p � 1:

With this definition, the sequency ordered Haar functions are defined by

HsðnÞ ¼ fHsð1Þ;
ffiffiffi
2

p
I2; . . . ;

ffiffiffi
2

p
I2g � fHsðn � 1Þ;Hsðn � 1Þg:

Example 1. For p ¼ 4, q ¼ 2, Hsð3Þ ¼ fHsð1Þ;
ffiffiffi
2

p
I2;

ffiffiffi
2

p
I2;

ffiffiffi
2

p
I2g � fHsð2Þ;Hsð2Þg.

Definition of the generalized Kronecker product is important, since for different choices of fAg
and fBg and by using permutation matrices, a family of discrete transforms with the same fast
calculation algorithms can be defined. It is denoted as the identical computation (IC) family of
discrete transforms, whose particular examples are DFT, Walsh and Haar transform [46].

For example, the Walsh transform is defined for fAg ¼ ½F2; . . . ;F2�. For the so-called slant
transforms [25], SHT and slant Walsh (SWHT) transform, the recursive definition is as previously
given except for a supplementary rotation of rows 1 and 2n�1 by the rotation matrix

F2ðhnÞ ¼
sinhn coshn

coshn � sinhn

� 	
;

where hn < p=2 is given by coshn ¼ 2n�1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð22n � 1Þ=3

p
:
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Similar as for the Walsh functions, the discrete Haar functions can be defined as the solutions
of corresponding differential equations in terms of the Gibbs–Haar derivatives [44]. The same
applies to the generalized Haar functions considered in Section 6.1. A further generalization of
these results is given in Ref. [40].

Thanks to their recursive structure, the Haar functions in different orderings can be generated
by using some suitably defined shift and copy procedures [32]. In this setting, they are particular
members of the broad family of the so-called bridge functions [32,55]. Many other discrete
functions derived by the combination of the Walsh and Haar functions, or as their suitable
modifications, belong to the same family. They are used in definition of the corresponding
transforms, see for example Refs. [23,33,45,53,55,56].

3.1. Non-normalized discrete Haar functions

For some applications, as spectral analysis of switching functions, it is more convenient to work
with the non-normalized system of Haar functions, which in this case takes the values 0, 1, �1.
The Haar functions are piecewise constant on subintervals of the length 1=2i. Thus, the interval
[0,1] can be split into 2m equal subintervals and the corresponding element from the set of natural
numbers N can be assigned to each of them. With these assumptions, the non-normalized Haar
functions are defined as follows [29].

Definition 5. Non-normalized Haar functions of order n are

H ð0
0 ðhÞ ¼ 1;

H ðqÞ
j ðhÞ ¼

1; h 2 ½ð2q � 2Þ2y ; ð2q � 1Þ2yÞ;
�1; h 2 ½ð2q � 1Þ2y ; 2q2yÞ;
0; at other points in ½0; 2mÞ:

8<:
y ¼ m� i � 1; i ¼ 0; . . . ;m � 1; q ¼ 1; . . . ; 2i:

The non-normalized Haar functions are also considered in both natural and sequency ordering
[29]. In applications of non-normalized Haar functions in switching theory and logic design, see
for example Refs. [8,12–20,27–30,37,38,48,57], it is convenient to represent the discrete Haar
functions in terms of switching variables as is shown in the following example.

Example 2. For n ¼ 3, the relationships between discrete Haar functions and switching variables
ordered in the descending value of indices can be expressed as follows:

1
ð1� 2x1Þ
ð1� 2x2Þx1
ð1� 2x2Þx1
ð1� 2x3Þx2x1
ð1� 2x3Þx2x1
ð1� 2x3Þx2x1
ð1� 2x3Þx2x1

1 1 1 1 1 1 1 1
1 1 1 1 �1 �1 �1 �1
1 1 �1 �1 0 0 0 0
0 0 0 0 1 1 �1 �1
1 �1 0 0 0 0 0 0
0 0 1 �1 0 0 0 0
0 0 0 0 1 �1 0 0
0 0 0 0 0 0 1 �1

266666666664

377777777775

f ð0Þ
f ð1Þ
f ð2Þ
f ð3Þ
f ð4Þ
f ð5Þ
f ð6Þ
f ð7Þ

266666666664

377777777775
¼

Sf ð0Þ
Sf ð1Þ
Sf ð2Þ
Sf ð3Þ
Sf ð4Þ
Sf ð5Þ
Sf ð6Þ
Sf ð7Þ

266666666664

377777777775
�
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In this case, we can consider the fixed-polarity Haar expressions, in the same way as the fixed-
polarity Reed–Muller [11], arithmetic [18,21], and Walsh [12] expressions have been considered.

Example 3. For n ¼ 3, the use of the negative literal for x3, i.e., the permutation x3 and x3, results
into a permutation of columns in Hð3Þ as ð0; 1; 2; 3; 4; 5; 6; 7Þ ! ð4; 5; 6; 7; 0; 1; 2; 3Þ.

A class of differently ordered discrete Haar functions with the order of columns of HðnÞ de-
termined by a permutation of bits in the binary representation of the argument x ¼ ðx1; . . . ; xnÞ,
x 2 f0; . . . 2n � 1g, xi 2 f0; 1g in harðw; xÞ is considered in Ref. [30].

Example 4. For n ¼ 3, the permutation r0 ¼
123
321

� �
of bits in x ¼ ðx3; x2; x1Þ results in the per-

mutation of columns of Hð3Þ as ð0; 1; 2; 3; 4; 5; 6; 7Þ ! ð0; 4; 2; 6; 1; 5; 3; 7Þ.

In this class of discrete Haar functions, the total of n! different orderings of Haar functions is
considered, compared to 2n orderings in fixed-polarity Haar expressions. These sets of orderings
are disjoint, since, for example, in bits permutations, harðw; 0Þ is always at the first position in the
set of Haar functions.

It should be noted that for a given function f, each manipulation with arguments, as different
polarity of literals, and permutation of bits in binary representations, corresponds to a permu-
tation of elements in the vector of functional values for f. Since, the Haar transform is a wavelets
like transform, permutation of functional values produces different number of non-zero coeffi-
cients in the Haar expressions for a given f. That property is exploited in Ref. [29] to minimize the
cost of hardware in spectral synthesis by using Haar expressions. A method for minimization of
the number of non-zero Haar coefficients for multiple-output switching functions by the total
autocorrelation functions is proposed there. The method allows the total of 2n! possible permu-
tations of functional values and guarantees the maximum number of pairs of equal functional
values for the input vectors x ¼ ðx1; . . . ; xnÞ which differ in the value of xn.

4. Discrete Haar transform

Discrete Haar functions are kernel of the discrete Haar transform [3,29,30,33,45,46,50,56,57].

Definition 6. For f on G2n represented by the truth-vector FðnÞ ¼ ½f ð0Þ; . . . ; f ð2n � 1Þ�T, the Haar
spectrum Yf ðnÞ ¼ ½Y ð0Þ; . . . ; Y ð2n � 1Þ�T is given by:

Yf ðnÞ ¼ HðnÞFðnÞ;
FðnÞ ¼ HðnÞ�1

Yf ðnÞ;

where HðnÞ is the Haar matrix in the corresponding ordering and HðnÞ�1
is its inverse over C. For

non-normalized Haar matrix, the inverse HðnÞ�1
is equal to HTðnÞ when signs of the coefficients

are only considered, where HT denotes the transpose of H.

The normalized and non-normalized Haar transform differ in the appearance of the factor of
normalization [29,46]. Definition of the same form applies to any other set of Haar, generalized

R.S. Stankovi�cc, B.J. Falkowski / Computers and Electrical Engineering 29 (2003) 25–44 31



Haar and related functions if they are represented as the rows of a matrix of the corresponding
order [33,46].

The Haar matrix HðnÞ can be factorized in a product of n sparse matrices permitting definition
of FFT-like algorithms for computation of the Haar spectrum. These algorithms are denoted as
the Fast Haar Transforms (FHTs), [30,33,46]. Different factorizations produce different FHTs
with their properties adapted to some particular implementation technologies.

Example 5. Fig. 1 shows Cooley–Tukey FHT algorithm with bit-reverse reordering of input data
for calculation of the Haar spectrum for n ¼ 3. The Haar spectral coefficients are represented by
symbols Sf ðiÞ, 06 i6 7.

4.1. Decision diagrams based techniques for discrete Haar spectra

In spite of great theoretical interest in applications of the discrete Haar transform in switching
theory and logic design [29,30,46,57], exponential complexity of FHT in terms of both space and
time was a restrictive factor for wider practical applications of the Haar transform. Another
reason is that up to recently, there has been no efficient method to calculate Haar spectrum di-
rectly from reduced representations of switching functions, such as cubes, and compact repre-
sentations of large functions, as Decision Diagrams, and vice versa. A number of recent articles
consider these important issues [15,16,19,20,27,41,42,47].

Paper [47] used digital circuit output probability and its interaction with Walsh spectral co-
efficients to calculate the Haar spectrum. In Refs. [19,20], the method to calculate Haar spectral
coefficients from an array of disjoint cubes for systems of incompletely specified Boolean func-
tions is presented.

Investigation of mutual relationships between ordered binary decision diagrams (OBDDs) and
the Haar spectrum was done in Refs. [15,16]. A method to calculate Haar spectrum of switching
functions from OBDDs has been presented there. The decomposition of the Haar spectrum in
terms of cofactors of Boolean functions, has also been introduced in Refs. [15,16]. Based on the
above decomposition, another method to synthesize OBDD directly from the Haar spectrum has
been presented in Ref. [16]. A method to synthesize free binary decision diagram in quasi-optimal
ordering form the Haar spectrum is shown in Ref. [8].

Calculation of the Haar spectrum for integer-valued functions defined on finite dyadic groups
of large orders was solved in Ref. [42]. Advantages of this method are due to the peculiar

Fig. 1. FFT for the Haar transform for n ¼ 3.
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properties of the Haar functions in natural ordering. However, the presented algorithm applies
also to the calculation of the Haar spectrum in sequency ordering. Both normalized and non-
normalized Haar spectra may be determined in both orderings after a simple rearrangement in the
above algorithm.

As shown in Ref. [41], thanks to the recursive structure of the Haar matrix in Definition 3, the
calculation of the Haar spectrum of a given function f can be performed through the multi-ter-
minal binary decision diagrams (MTBDD) [9,10].

The method is derived from the following considerations. It should be noted that FHT consists
of n steps, each step corresponding to a variable xi in f. However, in the ith step, the processing is
restricted to the subset of first 2i output data from the ði � 1Þth step. The other data remain
unprocessed and are simply sifted to the output of the algorithm. In these DD methods, it is
assumed that a given function f is represented depending on its range by a MTBDD. Then, in each
node of DD the basic FHT operation is performed over the co-factors f0 and f1 of f with respect
to the variable assigned to the processed node. These co-factors are represented by subdiagrams
rooted at the nodes pointed by the outgoing edges of the processed node. However, the mentioned
property of the Haar transform, permits to restrict the calculation to the first values of the co-
factors. This feature provides the efficiency of the implementation of FHT over DDs. The result of
calculation at each node is stored in two fields assigned to each non-terminal node. The first field
is used in further calculations, and the other field shows a particular Haar coefficient. The method
will be illustrated by the following example.

Example 6. Fig. 2 shows calculation of the Haar transform over MTBDTs for n ¼ 3. In this figure,
Hð1Þ denotes that at each node the calculations are performed as specified in the basic Haar matrix.

From this consideration, it follows that the Haar spectrum for a given function f can be cal-
culated by using the following recurrence relations applied at the nodes and cross points in the
MTBDD by starting from the constant nodes

QðN ; kÞ ¼ QðN0; k � 1ÞbþþQðN1; k � 1Þ}
ffiffiffiffiffiffiffiffiffi
2n�k

p b��QðN0; k � 1Þ b��QðN1; k � 1Þ
� �

;

Fig. 2. Calculation of the Haar transform for n ¼ 3 through MTBDTðf Þ.
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QðN ; 0Þ ¼ vN ; if N is the terminal node;

where } denotes concatenation of vectors, k is the node level, vN is the value of the terminal node
N, n is the number of variables and bþþ, b�� and b�� are applied only for first elements in vectors and
they denote addition, subtraction and multiplication, respectively.

Finally, the Haar spectrum is determined by:

Yf ðnÞ ¼ Qðroot; nÞ:
The method will be illustrated by the following example taken from Ref. [41].

Example 7. Fig. 3 shows MTBDT for a function f on the finite dyadic group of order 23 given by
the vector F ¼ ½1; 1; 2; 0; 2; 0; 2; 0�T.

The Haar spectrum of this function is calculated through the MTBDD as follows:

Qðc; 1Þ ¼ ð½2�bþþ½0�Þ}2b��ð½2� b��½0�Þ ¼ ½ 2 4 �T

Qðc0; 1Þ ¼ ð½1�bþþ½1�Þ}2b��ð½1� b��½1�Þ ¼ ½ 2 0 �T

Qðb; 2Þ ¼
2

0

� 	bþþ 2

4

� 	� �
}

ffiffiffi
2

p b�� 2

0

� 	 b�� 2

4

� 	� �
¼ ½4; 0; 0; 4�T

Qðb0; 2Þ ¼
2

4

� 	bþþ 2

4

� 	� �
}

ffiffiffi
2

p b�� 2

4

� 	 b�� 2

4

� 	� �
¼ ½4; 4; 0; 4�T

Fig. 3. MTBDT for f in Example 7.
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Qða; 3Þ ¼

4

0

0

4

26664
37775bþþ

4

4

0

4

26664
37775

0BBB@
1CCCA}

4

0

0

4

26664
37775 b��

4

4

0

4

26664
37775

0BBB@
1CCCA

¼ ½8; 0; 0; 4; 0; 4; 0; 4�T

Another recent work on the calculation of non-normalized Haar spectra through decision
diagrams is presented in Ref. [27]. This paper introduces a new data structure called the Haar
spectral diagram (HSD) useful for representation of the Haar spectrum of Boolean functions.
The natural ordering of Haar functions is used to represent the Haar transform matrix in terms
of the Kronecker product providing a natural decision diagram based representation. The re-
sulting graph is a point decomposition of the Haar spectrum using ‘‘0-element’’ edge val-
ues. For incompletely specified functions, the Haar spectrum represented as HSDs require
no more nodes that the reduced OBDD for the same function, and for completely specified
functions, the HSD is shown to be isomorphic to the reduced OBDD. The latter result is im-
portant, since it shows that by operating on the Haar spectrum no more storage is required
that for the original function domain with all the information that the Haar spectral domain
provides.

5. Sign Haar transform

Referring to the steps in fast calculation algorithm for the Haar transform, the sign Haar
transform was introduced [22] by the analogy to the sign transform derived from the fast Walsh
transform [2]. Besides calculation of forward and inverse sign Haar transform by using fast flow
diagrams, such transforms can be calculated directly from recursive definitions that involves data
and transform domain variables [22,24,36]. Many properties of sign Haar spectrum are similar to
those of sign Walsh spectrum. The computational advantages of the Haar versus Walsh spectrum
can be still extended to their corresponding sign transforms. It is therefore advantageous from the
computational point of view to use sign Haar transform where sign Walsh transform have been
used, i.e., for switching function decomposition and testing of logic circuits [2]. Besides applica-
tions in logic design, a new transform can be used when there is a need for a unique coding of
binary/ternary vectors into the spectral domain of the same dimensions. One possible application
is security coding in communication systems.

The following symbols are used in sign Haar transform definition and related discussions.
Let

xn ¼ ½xn; xn�1; . . . ; xi; . . . ; x2; x1�; wn ¼ ½wn;wn�1; . . . ;wi; . . . ;w2;w1�;

be n-tuples over the Galois field GF(2). The symbol xi stands for a data variable, and wi for a
transform domain variable; i is an integer and 16 i6 n. Let

F ¼ ½F0; F1; . . . ; Fi; . . . ; F2n�2; F2n�1�
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be a ternary vector of symbols 0, þ1, and �1, where the value of Fu ð06 u6 2n�1Þ is given by F ðxnÞ
whenXn

i¼1

xi2
i ¼ u:

Let

HF ¼ ½h0; h1; . . . ; hi; . . . ; h2n�2; h2n�1�;

be the vector corresponding to the sign Haar transform of F. The value of hu ð06 u6 2n � 1Þ is
given by HF ðwÞ whenXn

i¼1

wi2
i ¼ u:

Let Oi represents the vector of i zeros, 16 i6 n:
Let the symbols �c, �d, and ^ represent cyclic addition, dyadic addition, and bit-by-bit logic

AND, respectively. When the above operations are applied to two vectors Al and Bv, 16 l6 v;
where l and v are two different integer numbers, they result in the vector Cv of the length v. Only l
elements of Bv and all elements of Al are manipulated, the remaining ðv � lÞ elements of the re-
sulting vector Cv are not affected by the applied operation and are simply the same as elements of
the vector Bv between positions v and l þ 1.

We define

sign z ¼
�1; z < 0;

0; z ¼ 0;

þ1; z > 0:

8><>:
Definition 7. Forward sign Haar transform h is [22]

hðOn �d w1Þ ¼ sign
X1
xn¼0

sign
X1

xn�1¼0

� � � sign
X1
x1¼0

ðf
""

� 1Þxnw1f ðxnÞg � � �
##

:

For 16 i6 n.

hðOn �d wi �d 2
iÞ ¼ sign

X1
xn�i¼0

sign
X1

xn�i�1¼0

. . . sign
X1
x1¼0

ð
n""

� 1Þxn�1

� f f½ðOn �d wiÞ �c ðn � iÞ� �d xn�ig
o
� � �
##

:

Thus defined transform is an invertible transform.
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Definition 8. The inverse sign Haar transform is defined by [22]

f ðxnÞ ¼ sign ð
(

� 1Þx1h ½ðO1 ^ xnÞ �c 1� �d 2
n�1

" #
þ sign ð

(
� 1Þx2h ½ðO2 ^ xnÞ �c 2� �d 2

n�2
" #

þ � � � þ sign ð
(

� 1Þxih ½ðOi ^ xnÞ �c i� �d 2
n�if g

þ � � � þ sign ð
(

� 1Þxn�1h ½ðOn�1 ^ xnÞ �c ðnf � 1Þ� �d 2g

þ sign
X1
w1¼0

ð
"

� 1Þxnw1hðOn �d w1Þ
#)

� � �
)))

:

Properties of the sign Haar spectra of Boolean functions were studied in Refs. [22,24]. An
application of the sign Haar transform in ternary communication systems was considered in Ref.
[36].

6. Generalizations

6.1. Haar functions on p-adic groups

The complex Haar functions defined in Ref. [35], can be considered as the extension of the non-
normalized Haar functions to groups of order 4n. Generalized Haar functions defined in Ref. [1],
are a generalization of the Haar functions to any p-adic group. They are considered in different
orderings related to the generalized translation operator derived from the associated group of
permutations. In the sequency ordering, such generalized Haar functions can be also defined as
follows.

Definition 9. Generalized Haar function M ðp;qÞ
r;s ðxÞ on p-adic groups are [29]:

M ðp;1Þ
0;0 ðxÞ ¼ 1; 8x;

M ðp;qÞ
r;s ðxÞ ¼ e2prix

ðsÞ=p; ½ðq � 1Þpm�s; qpm�sÞ;
0; otherwise

�
where xðsÞ is the sth coordinate in the p-adic expansion for x.

6.2. Zhang–Moraga Haar-type functions

Haar-type discrete functions and corresponding transforms are recently defined in RN where R
is a commutative ring with unity [54].

Assume that the Fourier transform with respect to the group characters of the underlying group
G of R exists in RN .
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Definition 10. Kernel functions of a Haar-type transform are [54]:

HF 1
0;0ðnÞ ¼ 1

HF t
rs;s
ðnÞ ¼ w�qrsns

Ns ; if z;
0; otherwise;

�

z ¼ ðt � 1Þ
Ym�1

i¼s

Ni 6 n < t
Ym�1

i¼s

Ni;

where w is the primitive qth root of unity in R and q is the exponent of G, and rs ¼
1; 2; . . .Ng � 1; s ¼ 0; 1; . . . ;m � 1, t ¼ 1; 2; . . . ;

Qm�1
i¼s Ni, and

Qm�1
i¼s Ni ¼ 1 if s ¼ 0, while n ¼

Rm�1
s¼0 ns

Qm�1
i¼sþ1 Ni and

Qm�1
i¼sþ1 Ni ¼ 1 if s ¼ m � 1.

According to the equations in the above definition, we may get the Haar transform and Watari
transform [51] in the complex number field, Haar number theoretic transform in the integer
number ring modulo M, and Haar polynomial transform in the polynomial ring modulo MðzÞ
[54].

For p-adic additive group ðf0; 1; . . . ; p � 1gm;�Þ of order 2m, where � denotes addition modulo
p, the kernel functions of the Haar-type transform may be expressed in the matrix form as follows:

HF ¼ T0T1 � � �Tm�1;

where

Ts ¼ diagfApsþ1 ; Ipsþ1 ; . . . ; Ipsþ1g; s ¼ 0; 1; . . . ;m � 1;

where Ipsþ1 stands for ðpsþ1 � psþ1Þ identity matrix

Apsþ1 ¼
Ips � r00 r01 � � � r0p�1½ �
Ips � r10 r11 � � � r1p�1

' (
Ips � rp�10 rp�11 � � � rp�1p�1½ �

24 35;
where

r00 r01 � � � r0p�1

r10 r11 � � � r1p�1

..

.

rp�10 rp�11 � � � rp�1p�1

26664
37775 ¼

w0 w0 � � � w0

w0 w1 � � � wp�1

..

.

w0 wp�1 � � � w1

2664
3775;

and w is a primitive root of unity in R and � stands for the Kronecker matrix product.
Now, let the matrix

Q ¼

r00 r01 � � � r0p�1

r10 r11 � � � r1p�1

..

.

rp�10 rp�11 � � � rp�1p�1

26664
37775
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be another ðp � pÞ orthogonal matrix in R. By using these formulas we can get some new �Haar-
type� transforms. For example, if the matrix Q is a ðp � pÞ discrete cosine transform matrix [46]

1 1 � � � 1

cos p
2p cos 3p

2p � � � cos ð2p�1Þp
2p

cos 2p
2p cos 6p

2p � � � cos 2ð2p�1Þp
2p

..

.

cos ðp�1Þp
2p cos 3ðp�1Þp

2p � � � cos ðp�1Þð2p�1Þp
2p

266666664

377777775;

a new Haar-type transform called �Haar-type cosine transform� it obtained in the complex number
field. Its kernel functions may be expressed by

HC1
0;0ðnÞ ¼ 1;

HCq
r;sðnÞ ¼

cos nsþ1=2
p=p ; if z;

0; otherwise;

�
z ¼ ðq � 1Þpm�s

6 n < qpm�s;

where n ¼ 0; 1; . . . ; pm�1; r ¼ 1; 2; . . . ; p � 1; s ¼ 0; 1; . . . ;m� 1; q ¼ 1; 2; . . . ; ps, ns 2 f0; 1; . . . ;
p � 1g, and n ¼

Pm�1
s¼0 nspm�1�s.

The corresponding transform is defined as in Definition 10 by using these matrices as follows.

C1
0;0 ¼

1

N

XN�1

n¼0

f ðnÞ;

Cq
r;s ¼ p�mþs

Xm�1

s¼0

f ðnÞHCq
r;sðnÞ:

The following is its inverse transform

f ðnÞ ¼ C1
0;0 þ 2

Xm�1

s¼0

Xp�1

r¼1

Xps

q¼1

Cq
r;sHCq

r;sðnÞ:

If matrix Q is the ðp � pÞ discrete Hartley transform matrix [46]

1 1 � � � 1

cas
�

2p
p

�
cas

�
4p
p

�
� � � cas

�
2ðp�1Þp

p

�
cas

�
4p
p

�
cas

�
8p
p

�
� � � cas

�
4ðp�1Þp

p

�
..
.

cas
�

2ðp�1Þp
p

�
cas

�
4ðp�1Þp

2p

�
� � � cas

�
2ðp�1Þðp�1Þp

p

�

26666666664

37777777775
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where cas ¼ cosa þ sina, we get a Haar-type Hartley transform in the complex number field. Its
kernel functions are denoted by

RH 1
0;0ðnÞ ¼ 1;

RHq
r;sðnÞ ¼

cas
�

2pns
p

�
; if z;

0; otherwise:

(

z ¼ ðq � 1Þpm�s
6 n < qpm�s:

As is noted in Ref. [54], the above given definitions of the Haar-type matrix may be generalized
to mr-adic additive groups to get mr-adic Haar-type transforms in various discrete function
spaces.

7. Applications of the Haar transform

Due to its low computing requirements, the Haar transform has been mainly used for pattern
recognition and image processing [7,33,52,57]. Hence, two dimensional signal and image pro-
cessing is an area of efficient applications of Haar transforms due to their wavelet-like structure.
In this area, it is usually reported that the simplest possible orthogonal wavelet system is gen-
erated from the Haar scaling function and wavelet. Moreover, wavelets are considered as a
generalization of the Haar functions and transforms [3,6,50]. Such a transform is also well suited
in communication technology for data coding, multiplexing and digital filtering [30,39,57]. For
example, application of non-normalized Haar transform in a sequency division multiplex system
is described in Ref. [55]. Bandwidth economy for multiplexed digital channels based on Haar
transform is presented in [30]. For real time applications, hardware-based fast Haar chips have
been developed [5,57]. In Ref. [4], different generalizations of Haar functions and transform
are used in digital speech processing with applications in voice controlled computing devices and
robotics. The control system based on Haar spectrum for military airplane is also discussed in Ref.
[30]. The applications of Haar transform in control and communications are presented in Refs.
[55,56]. In Ref. [34], different forms of Haar functions are used in approximate calculations of
analytic functions. A brief discussion of various other applications, where the use of Haar
and Walsh functions offers some advantages compared to the Fourier transform, is given in Ref.
[57].

The advantages of computational and memory requirements of the Haar transform make it of
a considerable interest to VLSI designers as well. For example, the authors of Refs. [37,38],
presented a set of CAD tools to perform a switch-level fault detection and diagnosis of physical
faults for practical MOS digital circuits using a reduced Haar spectrum analysis. In their system,
the non-normalized Haar spectrum was used as a mean not only for diagnosing digital MOS ICs
as a tool external to the circuit, but also as a possibility for a self-test strategy. The use of this set
of CAD tools allowed the derivation of strategies for testing MOS circuits when memory states
were encountered as a consequence of some type of faults. The advantage of using Haar functions
instead of Walsh functions in CAD system based on spectra methods for some classes of Boolean
functions was shown in Refs. [29,57].
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For example, the analysis in Ref. [29] shows that the spectral complexity of conjunction and
disjunction increases with the number of variables, exponentially for the Walsh functions and only
linearly for the Haar functions. The circuit of the spectral multiplication logic module based on
Haar functions was also developed [29,30]. It consists of a generator of basis functions, an adder,
a multiplier, and the memory to store spectral coefficients. The module can be reprogrammed by
changing dynamically its memory content. Such a behaviour of the module is useful in real-time
adaptive control systems [30,57]. Karpovsky [29] noticed that the size of the memory block can be
optimized only when the Harr basis is used. It is due to the fact that the number of non-vanishing
Harr coefficients is reduced with input permutation of variables – the situation that does not exists
for the Walsh basis. It should be noted that the realization of a permutation requires no special
hardware [29]. Another advantage of the Harr spectrum in this and similar applications is the
smallest number of required arithmetic operations.

In Ref. [48], a method for probabilistically determining the equivalence of two switching
functions through Harr spectral coefficients has been developed. The method is reported as an
alternative for equivalence checking of function that are difficult to represent completely and is
based on BDDs and HDSs [27].

As is noted in Ref. [31], different generalization of spectral methods, including Haar functions,
are intended to provide a unified theory for uniform consideration of different tasks in digital
signal processing and related areas. Such theories are useful researches in both signal processing
and applied mathematics. They bring new methods and tools for solving practical tasks to en-
gineers, and trace and determine versatile and actual directions of research for mathematicians.

8. Closing remarks

This paper shows different generalizations and applications of Haar functions and transforms.
Some recent developments and state-of-the art in Haar transforms are presented. The references
are based not only on better known English language items, but also on lesser known entries from
different Eastern European countries and China. The authors believe that this survey can be useful
to researchers working in different disciplines where the Haar transform and closely related dis-
crete wavelet transforms have been used.

References

[1] Aizenberg NN, Rudko VP, Sisuev EV. Haar functions and discrete mappings. Tehn Kibernetika 1975;6:86–94 (in

Russian).

[2] Besslich PhW, Trachtenberg LA. The sign transform: an invertible non-linear transform with quantized

coefficients. In: Moraga C, editor. Theory and application of spectral techniques. University Dortmund Press;

October 1988.

[3] Beauchamp KG. Applications of Walsh and related functions with an introduction to sequency theory. New York:

Academic Press; 1984.

[4] Boiko LL. Generalized Fourier–Haar transform on finite Abelian groups. In: Yaroslavsky LP, editor. Digital

signal processing and applications. Moscow: Nauka; 1981. p. 12–22 (in Russian).

R.S. Stankovi�cc, B.J. Falkowski / Computers and Electrical Engineering 29 (2003) 25–44 41



[5] Buron AM, Michell JA, Sloana M. Single chip fast Haar transform at megahertz rates. In: Moraga C, editor.

Theory and application of spectral techniques. University Dortmund Press; October 1988, p. 8–17.

[6] Burrus CS, Gophinat RA, Guo H. Introduction to wavelets and wavelet transforms. Englewood Cliffs: Prentice

Hall; 1988.

[7] Castleman KR. Digital image processing. Englewood Cliffs: Prentice-Hall; 1996.

[8] Chang CH, Falkowski BJ. Generation of quasi-optimal FBDDs through paired Haar spectra. Proc IEEE Int Symp

Circ Syst (31st ISCAS), vol. VI. Monterey, CA, USA, June 1998. p. 167–70.

[9] Clarke EM, Fujita M, Zhao X. Multi-terminal decision diagrams and hybrid decision diagrams. In: Sasao T,

Fujita M, editors. Representations of discrete functions. Dordretcht: Kluwer Academic Publishers; 1996.

p. 93–108.

[10] Clarke EM, Fujita M, Heinle W. Hybrid spectral transform diagrams. Proc IEEE Int Conf Inform, Commun

Signal Process (1st ISICS), vol. 1. Singapore, September 1997. p. 251–5.

[11] Davio P, Deschamps JP, Thayse A. Discrete and switching functions. New York: George and McGraw Hill; 1978.

[12] Falkowski BJ. Properties and ways of calculation of multi-polarity generalized Walsh transforms. IEEE Trans Circ

Syst 1994;41(6):380–91.

[13] Falkowski BJ. Mutual relations between arithmetic and Harr functions. Proc IEEE Int Symp Circ Syst (31st

ISCAS), vol. V. Monterey, CA, USA, June 1998. p. 138–41.

[14] Falkowski BJ, Chang CH. A novel paired Haar transform: algorithms and interpretations in Boolean domain. Proc

IEEE Midwest Symp Circ Syst (36th MWSCAS), Detroit, MI, USA, August 1993. p. 1101–4.

[15] Falkowski BJ, Chang CH. Efficient algorithm for forward and inverse transformations between Haar spectrum and

binary decision diagrams. Proc 13th Int Phoenix Conf Comput Commun, Phoenix, AZ, USA, April 1994. p. 497–

503.

[16] Falkowski BJ, Chang CH. Forward and inverse transformations between Haar spectra and ordered binary decision

diagrams of Boolean functions. IEEE Trans Comput 1997;46(11):1272–9.

[17] Falkowski BJ, Chang CH. Properties and applications of paired Haar transform. Proc IEEE Int Conf Inform,

Commun Signal Process (1st ICICS), vol. 1, Singapore, September 1997. p. 48–51.

[18] Falkowski BJ, Chang CH. Properties and methods of calcualting generalized arithmetic and adding transforms.

IEE Proc Circ Dev Syst 1997;144(5):249–58.

[19] Falkowski BJ, Chang CH. Calculation of paired Haar spectra for systems of incompletely specified Boolean

functions. Proc IEEE Int Symp Circ Syst (31st ISCAS), vol. VI. Monterey, CA, USA, June 1998. p. 171–4.

[20] Falkowski BJ, Chang CH. Paired Haar spectra computation through operations on disjoint cubes. IEE Proc Circ

Dev Syst 1999;146(3):117–23.

[21] Falkowski BJ, Perkowski MA. A family of all essential radix-2 addition/subtraction multi-polarity transforms:

algorithms and interpretations in Boolean domain. Proc IEEE Int Symp Circ Syst (23rd ISCAS), New Orleans,

LA, USA, May 1990. p. 1596–9.

[22] Falkowski BJ, Rahardja S. Sign Haar transform. Proc IEEE Int Symp Circ Syst (27th ISCAS), London, UK, May

1994. p. 161–4.

[23] Falkowski BJ, Rahardja S. Walsh-like functions and their relations. IEE Proc Vision, Image Signal Process

1996;143(5):279–84.

[24] Falkowski BJ, Rahardja S. Properties of Boolean functions in spectral domain of sign Haar transform. Proc IEEE

Int Conf Inform, Commun Signal Process (1st ICICS), vol. 1. Singapore, September 1997. p. 64–8.

[25] Fino RJ, Algazi VR. Slant Haar transform. IEE Proc 1974;62:653–4.

[26] Haar A. Zur theorie der orthogonalen Funktionsysteme. Math Annal 1910;69:331–71.

[27] Hansen JP, Sekine M. Decision diagrams based techniques for the Haar wavelet transform. Proc IEEE Int Conf

Inform, Commun Signal Process (1st ICICS), vol. 1. Singapore, September 1997. p. 59–63.

[28] Hurst SL. The Haar transform in digital network synthesis. Proc 11th Int Symp Multiple-valued Logic. 1981,

p. 10–8.

[29] Karpovsky MG. Finite orthogonal series in the design of digital devices. New York: Wiley; 1976.

[30] Kulesza W. Systems of spectral analysis of digital data. Warsaw: WKL; 1984 (in Polish).

[31] Labunets VG. Algebraic theory of signals and systems (Digital signal processing). Krasnojarsk: Krasnojarsk

University Press; 1984 (in Russian).

42 R.S. Stankovi�cc, B.J. Falkowski / Computers and Electrical Engineering 29 (2003) 25–44



[32] Li ZH, Zhang QS. Introduction to bridge functions. IEEE Trans Electromagn Compat 1983;25(4):459–64.

[33] Moharir PS. Pattern recognition transforms. New York: Wiley; 1992.

[34] Ohnita M. Approximation of analytic functions by Haar functions. IEICE Trans 1985;105(5):101–8.

[35] Rao KR, Narasimhan MA, Revuluri K. A family of discrete Haar transforms. Comput Electr Engng 1985;2:367–

88.

[36] Rahardja S, Falkowski BJ. Application of sign Haar transform in ternary communication system. Int J Electron

1995;79(5):551–9.

[37] Ruiz G, Michell JA, Buron A. Fault detection and diagnosis for MOS circuits from Haar and Walsh spectrum

analysis: on the fault coverage of Haar reduced analysis. In: Moraga C, editor. Theory and application of spectral

techniques. University Dortmund Press; October 1988, p. 97–106.

[38] Ruiz G, Michell JA, Buron A. Switch-level fault detection and diagnosis environment for MOS digital circuits

using spectral techniques. IEE Proc Part E 1992;139(4):293–307.

[39] Shore JE. On the applications of Haar functions. IEEE Trans Commun 1973;22:206–16.

[40] Stankovi�cc MS, Aizenberg NN. Generalized discrete Gibbs derivatives and related linear equations. In: Butzer PL,

Stankovi�cc RS, editors. Theory and applications of Gibbs derivatives, Mathemati�ccki Institut, Beograd, 1990.
[41] Stankovi�cc M, Jankovi�cc D, Stankovi�cc RS. Efficient algorithm for Haar spectrum calculation. Sci Rev 1996;21–

22:171–82.

[42] Stankovi�cc M, Jankovi�cc D, Stankovi�cc RS. Efficient algorithm for Haar spectrum calculation. Proc IEEE Int Conf

Inform, Commun Signal Process (1st ICICS), vol. 4. Singapore, September 1997. p. 6–10.

[43] Stankovi�cc RS, Falkowski BJ. Haar functions and transforms and their generalizations. Proc IEEE Int Conf

Inform, Commun Signal Processing (1st ICICS), vol. 4. Singapore, September 1997. p. 1–5.

[44] Stankovi�cc RS, Stoji�cc MR. A note on the discrete generalized Haar derivative. Automatika 1987;28(3–4):117–22.

[45] Stankovi�cc RS, Stoji�cc MR, Stankovi�cc MS. Recent developments in abstract harmonic analysis with applications in

signal processing. Nauka and Faculty of Electronics, Ni�ss, Belgrade, 1996.
[46] Stoji�cc MR, Stankovi�cc MS, Stankovi�cc RS. Discrete transforms in application. 2nd ed. Belgrade: Nauka; 1993 (in

Serbian).

[47] Thornton MA. Modified Haar transform calculation using digital circuit output probabilities. Proc IEEE Int Conf

Inform, Commun Signal Process (1 ICICS), vol. 1. Singapore, September 1997. p. 52–8.

[48] Thornton MA, Drechsler R, G€uunther W. Probabilistic equivalence checking using partial Haar spectral diagrams.

Proc 4th Int Workshop Appl Reed–Muller Exp Circ Des, Victoria, Canada, August 1999. p. 123–32.

[49] Uljanov PL. On series for Haar system. Math Sb 1964;3:356–91 (in Russian).

[50] Vetterli M, Kova�ccevi�cc J. Wavelets and subband coding. Upper Sadle River: Prentice-Hall; 1995.

[51] Watari C. Generalization of Haar functions. Tohoku Math J 1956;8:286–90.

[52] Yaroslavsky LP. Digital picture processing: an introduction. Berlin: Springer; 1979.

[53] Zhang GL. Two complete orthogonal sets of real multiple-valued functions. Proc 14th Int Symp Multiple-Valued

Logic, Canada, 1984. p. 12–8.

[54] Zhang GL, Moraga C. Orthogonal transforms on finite discrete Abelian groups. Ref. [45], p. 293–304.

[55] Zhang QS, Zhang YG. Theory and applications of bridge functions. Beijing: Defense Industry Publisher; 1992 (in

Mandarin).

[56] Zhang QS. New methods of signal information transfer. Beijing: Aeronautics and Astronautics Publishers; 1989 (in

Mandarin).

[57] Zalmanzon LA. Fourier, Walsh, and Haar transforms and their applications in control, communication and other

fields. Moscow: Nauka; 1989 (in Russian).

Radomir S. Stankovi�cc received B.E., degree in Electronic Engineering from Faculty of Electronics, University of Ni�ss in 1976, and

M.Sc., and Ph.D. degrees in Applied Mathematics from Faculty of Electrical Engineering, University of Belgrade, in 1984, and 1986,

respectively.

He was with High School of Electrotechnic, Ni�ss, from 1976 to 1987. From 1987 to date he is with Faculty of Electronic, Ni�ss.

Presently, he is a Professor teaching logic design. He was a Visiting Researcher at Kyushu Institute of Technology, Iizuka, Fukuoka,

Japan, and at Tampere Int. Center for Signal Processing (TICSP), Tampere University of Technology, Tampere, Finland, for a couple

of months in 1997, and 1999. He was a Visiting Professor at TICSP in 2000.

R.S. Stankovi�cc, B.J. Falkowski / Computers and Electrical Engineering 29 (2003) 25–44 43



His research interests include switching theory and multiple-valued logic, signal processing and spectral techniques. He served as the

Co-editor and Editor of two editorials and the author of a couple of monographs in spectral techniques.

Bogdan J. Falkowski received the M.S.E.E. degree from the Technical University of Warsaw, Poland, and the Ph.D. degree from

Portland State University, Oregon, USA. His industrial experience includes research and development positions at several companies

from 1978 to 1986. He then joined the Electrical Engineering Department at Portland State University. Currently he is an Associate

Professor with the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, which he joined in

1992. His research interests include VLSI systems and design, synthesis and optimization of switching circuits, multiple-valued systems,

testing, design of algorithms, design automation, digital signal and image processing. He has published three book chapters and over

150 articles in the refereed journals and conferences. Dr. Falkowski is a Senior Member of IEEE and a Member of IEEE Computer

Society and IEEE Circuits and Systems Society. He is a member of Eta Kappa Nu and Pi Beta Upsilon.

44 R.S. Stankovi�cc, B.J. Falkowski / Computers and Electrical Engineering 29 (2003) 25–44


	The Haar wavelet transform: its status and achievements
	Introduction
	Haar functions
	Properties of Haar functions

	Discrete Haar functions
	Non-normalized discrete Haar functions

	Discrete Haar transform
	Decision diagrams based techniques for discrete Haar spectra

	Sign Haar transform
	Generalizations
	Haar functions on p-adic groups
	Zhang-Moraga Haar-type functions

	Applications of the Haar transform
	Closing remarks
	References


