
1. INTRODUCTION

In many applications of computer engineering and science, where logic
functions need to be analyzed or synthesized, it is useful to transform such
functions to the corresponding spectral domain that provides various new
insights into solving some important problems. The most popular
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transforms used in the design of logic networks are Walsh, Haar,
Chrestenson, Reed-Muller and arithmetic transforms [1, 6, 16-20, 24-26, 28,
29, 31-36]. The renewed interest in applications of spectral methods in logic
synthesis is caused by their excellent testability design and the development
of efficient methods of calculating different spectra from reduced
representations of logic functions in the form of arrays of cubes or decision
diagrams [6, 16, 17, 19, 20, 28, 29, 31-34]. A lot of research work was also
done on reduction of decision diagrams using various techniques combining
frequently logic and its Walsh spectral domain such as shifting using
spectral linear transformations with variable reordering techniques [22, 31]
and even more general spectral autocorrelation approach [21, 31].  These
recent developments have an enormous influence on the practical
application of spectral methods in binary and multiple-valued logic design.
Most practical logic functions can now be represented and transformed
using representations that do not grow exponentially. 

The most popular ternary transform is Reed-Muller transform over GF(3)
[15]. It operates on ternary logic functions and provides 3n ternary spectra
for a given ternary function. Another family of invertible nonlinear
transforms, which uniquely map ternary logic functions into ternary
transform space, are sign transforms. The first transform under the name of
‘sign transform’ was based on Walsh functions [1, 17-20, 31, 33-35, 37] and
is known as Sign Walsh transform [2, 5]. An efficient method to calculate
sign Walsh spectra from disjoint cube representation of logic functions
was shown in [7]. Another sign transform based on Haar functions and
called Sign Haar transform has been developed [9]. The common feature
of sign transforms is that in all the definitions the sign function is used as
the quantizer. It has been found that sign transforms play a similar role in
the design of ternary output digital systems [2, 5, 34] as the Reed-Muller
transform does for the design of ESOPs [1, 28, 29, 33-35]. The
fundamental advantage of sign transforms as well as ternary Reed-Muller
transform over other transforms in different algebra used in ternary logic
design is that the memory required to store functional and spectral data is
exactly the same since both of them operate on ternary values. It is in
stark contrast to traditional (Walsh, Haar, Chrestenson, arithmetic)
spectra of logic functions where signs together with magnitudes have to
be stored in the spectral domain. 

In this paper, a new transform called Sign Hadamard-Haar transform is
developed. This novel transform is based on the combination of Hadamard
and Haar butterfly diagrams together with operation of the quantizer. The
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basis functions of new transform are based on rationalized Hadamard-Haar
functions [27] and therefore this new quantized transform is called ‘Sign
Hadamard-Haar transform’. The new sign transform is unique, non-linear
and invertible and has all the advantages of known Sign Haar [9] and Sign
Walsh transforms [2, 5, 34]. It should be noticed that Sign Walsh [2, 5, 34]
and Sign Haar [8] transforms have been used in logic function
decomposition and testing of logical circuits so similar applications can be
expected for the new transforms as well.

In this article, we present detailed properties of new Sign Hadamard-
Haar transform. The basic definitions for this transform have been given
here. Besides applications in ternary logic design, a new Hadamard-Haar
transform can be used when there is a need for a unique coding of ternary
vectors into the special domain of the same dimensions. In this article, we
are showing one such application in the form of ternary communication
system and compare computational advantages of our new transform over
known Sign Walsh transform. Another area in which our new transform
could be used is development of cryptographic functions that need to be
immune to input transformations [30]. Much of this work involves the
study of properties of Boolean functions. They should not be linear or
affine, nor even close to linear or affine. There should be a balance of
zeros and ones, and no correlation between different combinations of
bits. The output bits should behave independently when any single input
bit is complemented. Additionally, in the last years differential power
analysis of cryptosystems has attracted much attention. It tries to recover
secret keys by monitoring power signals cryptographic devices. Since in
the usual doubling and addition scheme it can easily be detected whether
an addition and a doubling or a doubling alone takes place, the binary
representation can be guessed. But if +1 and -1 are used, a potential
attacker can gain less information [4]. The recent idea to represent
balanced binary representations which yield good results with
substitutions which yield representations of smaller weights was based on
elliptic curves also using digits 0, +1, and -1 [3, 4, 23]. Hence one of the
possible applications of our new transform would be security coding in
cryptographic systems with Sign Hadamard-γ Haar-χ transform which
means application of Hadamard and Haar butterfly diagrams in fast Sign
Hadamard-Haar transformation γ and χ times, respectively and for γ = 1
and χ = n - 1 it is simply Sign Hadamard-Haar transform of size n.

Different quantized transforms have been known to be extremely
effective both in terms of memory requirements and processing time and
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hence very advantageous in the design of ternary logic vectors. There exists
many methods to calculate well known ternary Reed-Muller transform such
as direct matrix calculation, fast transform calculation, Gray code ordered
fast transform calculation, column and row method calculation that are
given here for comparison purpose with our new transform [7, 11, 13].
However even the two fastest methods based on row and column to
calculate ternary Reed-Muller transform require increasing number of
ternary addition and multiplication over GF(3), what is not necessary for
new transform as we apply sign transform at each level of butterfly diagram
and the sign operation is simpler than the GF(3) operations. An important
property of Sign Hadamard-Haar transform is that during its calculation it
does not require any ternary multiplication and addition that is necessary for
the ternary Reed-Muller transform over GF(3) even though the computer
memory required to store functional and spectral data is exactly the same for
both transforms since both of them operate on ternary values. It is in high
contrast to rationalized Hadamard-Haar spectrum [27] where signs together
with magnitudes have to be stored in spectral domain that increases
significantly requirements for storage space in spectral domain versus
functional when only ternary data are considered.

The structure of this article is as follows. For comparison purpose,
Section 2 covers basic definitions of ternary Reed-Muller and Sign Walsh
transform as well as introduces novel Sign Hadamard-Haar transform.
Section 3 discusses basic properties of logic functions in Sign Hadamard-
Haar spectra, while Section 4 discusses calculation of the new transform
through matrix multiplication. Section 5 shows computational advantages of
our new transform over Sign Walsh and ternary Reed-Muller transform in
terms of calculations required to compute corresponding transforms.
Application of Sign Hadamard-Haar transform in ternary communication
system and its advantage over Sign Walsh transform is discussed in Section
6 while Section 7 concludes the paper.

2. DEFINITIONS OF TERNARY REED-MULLER, SIGN WALSH
AND SIGN HADAMARD-HAAR TRANSFORMS

Definition 1 The ternary Reed-Muller transform is defined by the following
equations [15]:

For n=1, where n is the number of variables, 
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and for arbitrary n, 

(1)

(2)

where represents Kronecker product applied n-1 times to either the
matrix TRM1 or TRM1

-1 with additions and multiplications over GF(3). Table
1 shows the addition and multiplication operations over GF(3).

TABLE 1
Addition and multiplication rules over GF(3).

In contrary to Reed-Muller transform over GF(3), two types of coding
are used for logic functions when different spectra of such functions are
calculated. The truth vector for S-coding is represented in the following
way: the true minterms (minterms for which Boolean function has logical
values 1) are denoted by -1, false minterms (minterms for which Boolean
function has arbitrary logical values 1) by +1, and do not care (DC)
minterms (minterms for which Boolean function can have arbitrary logical
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values 0 or 1) by 0. Hence binary vectors formed of only {+1,-1} represent
logical values of completely specified Boolean functions, and formed of
{+1, 0, -1} the values of incompletely specified Boolean functions. In the
continuation, to shorten the notation, functional and spectral data will be
represented by either {+,-} or {+, 0, -}. The data in functional domain can
be arbitrary binary/ternary vectors or S-coded completely (binary) or
incompletely (ternary) specified Boolean functions. The following symbols
will be used, let R1 = {+,-}, R2 = {+, 0, -}, Rl

n means n-space Cartesian
product of a set Rl (l = 1, 2). In the R-coding the truth vector is represented
by its original values: 0 for false minterms and 1 for true minterms. The DC
minterms are represented by 0.5.

Definition 2 An n-variable S-coded completely specified Boolean function
is the mapping m1 : R1

n → R1.

Definition 3 An n-variable S-coded incompletely specified Boolean function
is the mapping m2 : R1

n → R2.

Definition 4 An invertible Sign Hadamard-Haar transform hh and its
inverse transform hh-1 are the mappings hh: R2

N → R2
N

(hh) and hh-1: R2
N

(hh) →
R2

N , where N = 2n.

In the above equations, symbol R2
N

(hh) represents a set with the
elements from R2

N permuted by the mapping hh of all the elements of the
set R2

N.  When only completely specified Boolean functions are
considered, the symbol R2

N is replaced with R1
N and R2

N
(hh) with R1

N
(hh) where

the latter represents a proper subset of set R2
N

(hh) generated by the hh
mapping of all the elements of set R1

N . In order to obtain Sign Hadamard-
Haar spectrum hh (an element of set  R2

N
(hh)) ,  and i ts  inverse (a

corresponding element of the original data set R2
N ), the results of each

fast forward or inverse Hadamard-Haar butterfly block are quantized
first. In the above equations, the cardinality of the original data set R2

N

and its  transformed spectrum R2
N

(hh) is  equal to 3N.  When some
permutation is performed on the elements of set R2

N the same permutation
happens to the elements in R2

N
(hh) spectrum of the original set.

The following symbols are used: Let and
be n-tuples over GF(2). The symbol xp stands for a

data variable, αp represents a Sign Walsh transform variable, and ωp a Sign
Hadamard-Haar transform variable, p is an integer and 1 ≤ p ≤ n. Let
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be a ternary vector. For example, it can be the S-
coded truth vector of f : (0, 1)n  → (-1, 0, 1) where the value of  Fj (1 ≤ j < N)
is given by when . 

Let be the

vector corresponding to Sign Walsh spectrum of and Sign Hadamard-Haar 

spectrum of , accordingly. The value of wj (0 ≤ j < N) is given by 

when . The value of hhj (0 ≤ j < N) is given by 

when . Let represent the vector of i zeros, 1 ≤ i < n. Let 

the symbol represent cyclic addition, the symbol represent dyadic 
addition, and the symbol represent bit-by-bit logical AND.

When the above operations are applied to two vectors and , 1 ≤
l < k, l and k are two different integer numbers, they result in the vector

of the length k. Only l elements of and all elements of are
manipulated on, remaining (k-1) elements of the resulting vector are
not affected by the applied operation and are simply the same as the
elements of the vector between positions k and l + 1.

Definition 5 An invertible forward sign Walsh transform w is defined as [2, 5]:

(3)

The inverse sign Walsh transform is:

(4)

In eqns. 3-4, 1 ≤ p ≤ n.

Definition 6 An invertible forward Sign Hadamard-Haar transform hh is:

PROPERTIES OF LOGIC FUNCTIONS IN SPECTRAL DOMAIN 191



(5)
and

(6)
where 

The inverse Sign Hadamard-Haar transform is 

(7)

where
In eqn. 7,

In eqns. 3-7,

(8)
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Proof of uniqueness Let us prove uniqueness of Sign Hadamard-Haar
transform for a single variable and the general case for n variables follows
by induction. The output function . From eqn.
5, forward Sign Hadamard-Haar transform,

(9)

From eqn. 7, inverse Sign Hadamard-Haar transform,

(10)

For the case of x1 = 0, the right-hand side of eqn. 10 yields 

The case x1 = 1 is proved similarly.

Example 1 For n = 3 the definitions of forward Sign Hadamard-Haar trans-
form hh become:

and for 1 ≤ i < n-1

In a similar manner definitions for inverse transform from eqn. 6 when
n = 3 can be derived.

Example 2 Consider the logic function given by . The
elements of its corresponding Sign Hadamard-Haar spectrum could be
calculated from as follows:
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In the similar manner the other elements of can be calculated
and the final Sign Hadamard-Haar spectrum is 

The elements of can be calculated from the spectrum too.
Using eqn. 6, when n = 3, the first and the last minterms in the truth vector
are obtained as follows:

The other elements of could be calculated in a similar way.
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3. PROPERTIES OF SIGN HADAMARD-HAAR SPECTRA
OF LOGIC FUNCTIONS AND VARIABLES

Sign Hadamard-Haar spectra for common logic functions and the major
properties of the transform are presented. There is no direct relationship
between Sign Hadamard-Haar spectra calculated for S and R coded logic
functions except some special cases for selected logic functions described
by Properties 4, 5, 7, 8 in this Section what differs from other transforms
used in logic design (i.e., Walsh, Haar, arithmetic). Therefore, basic
properties for logic operators have to be derived separately for both codings.

In the following presentation of the properties, let logic function f and its
corresponding Sign Hadamard-Haar transform hh be defined as in the previous
section. Let p and q be ternary variables, where . In order to
illustrate better investigated properties let us show a sign domain map.

Definition 7 A sign domain map is a graphical two-dimensional
representation of Sign Hadamard-Haar spectrum and is an equivalent of a
Karnaugh map in logic domain where spectral variables listed in Gray code
order are used to indicate all the cells of the map and sign spectral
coefficients’ values are entered into the cells.

Property 1 The number of cells in sign domain map of the spectrum of an
n-variable logic function is exactly the same as the number of the minterms
(cells on Karnaugh map) of such a function.

Property 2 For arbitrary ternary variables p and q:

(11)
and

(12)

Property 3 Let function be a constant, such that its ternary vector 
has all the coefficients equal and . Then,

(13)

(14)
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Example 3 For n = 3, .
Karnaugh map of the function and sign domain map of the spectrum
are shown in Figure 1(a).

Property 4 When S-coded n-variable function is dependent on a single logic
variable in affirmation, , then its Sign
Hadamard-Haar transform is

(15)

where and the logic AND operations in bracket ( ) will yield value
1 or 0. The symbol represents the logical inversion of the transform
variable ωk. 

Example 4 For n = 3, when , Sign Hadamard-Haar transform is 

Hence

The function and its corresponding spectrum are shown in Figure 1(b).

Example 5 For n = 3, when , Sign Hadamard-Haar transform is 

Hence 

The function and its corresponding spectrum are shown in Figure 1(c).

Property 5 When S-coded n-variable function is dependent on a single logic
variable in negation, , then its Sign
Hadamard-Haar transform is 

(16)
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Property 6 For S-coded n-variable function whose Sign Hadamard-
Haar spectrum is , the spectrum of the negated function is derived
simply by inverting all the signs of the original spectra. Hence when 

(17)

From eqn. 17 the negated spectrum is obtained by inverting the signs of
coefficients.

FIGURE 1
Karnaugh and sign domain maps for S-coded functions, f1, f2 and f3.

Property 7 When R-coded n-variable function is dependent on a single logic
variable in affirmation, , then its
Sign Hadamard-Haar transform is

(18)
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Example 6 For n = 4, when , then by eqn. 18 Sign Hadamard-Haar
transform is 

Hence,

Property 8 When R-coded n-variable function is dependent on a single logic
variable in negation, , then its
Sign Hadamard-Haar transform is

(19)

4. CALCULATION OF SIGN HADAMARD-HAAR TRANSFORM
BY MATRIX APPROACH

Sign Hadamard-Haar transform may be evaluated using a matrix
approach. It is also possible to evaluate a single spectral coefficient of Sign
Hadamard-Haar transform without need to calculate the whole spectrum.

Definition 8 Let Tn and Tn
-1 be 2n × 2n forward and inverse Sign Hadamard-

Haar transform matrices. Then

(20)

Definition 9 Let be a 1 × 2n row vector and let 

be a 2n × 1 column vector. The vector product A*B
is a 1 × 2n row vector with the elements derived from component-wise
multiplication:

(21)
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Definition 10 Let be a 1 × 2n row vector where entries are .
The sign modulo function is a scalar where the elements in are summed in
pairs in the form of a binary tree summation, and the tree is evaluated from the bot-
tom up. 

Property 9 Let
define the ternary vector and its Sign Hadamard-Haar spectra coefficients. 

Then, .

Example 7 Let n = 3, and the ternary vector . From
Definition 10

By Property 9 and Definition 10

In the similar manner the other elements of are calculated and the
final Sign Hadamard-Haar spectrum is .

5. COMPARISON OF COMPUTATIONS OF SIGN HADAMARD-HAAR,
SIGN WALSH AND TERNARY REED-MULLER TRANSFORMS

In this  sect ion,  the computat ional  advantages of  new Sign
Hadamard-Haar transform over known Sign Walsh transform and
ternary Reed-Muller transform over GF(3) are discussed, but all these
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transforms have the same computer memory requirements for storage of
data .  The computat ional  costs  mean the number of  addi t ions,
subtractions and multiplications required for the generation of forward
and inverse transforms.

Fast flow diagrams for calculation of forward and inverse Sign
Hadamard-Haar transforms hh are shown for N = 8 in Figure 2(a) and (b)
where (•) represents the sign function, the solid lines and dotted lines
represent addition and subtraction, respectively. The total number of
operations (additions and subtractions) required to perform forward fast
Sign Hadamard-Haar transform hh for a single element of set {+1, 0, -1}N

and inverse Sign Hadamard-Haar transform hh-1 for a single element of set
{+1, 0, -1}N

(hh) and for transform matrix of order N = 2n is equal to 3 × 2n+1 -8.
The computational cost of Sign Walsh transform is 2n2n [2, 5]. Fast

flow diagrams for calculation of forward and inverse Sign Walsh
transform hh are shown for N = 8 in Figure 3(a) and (b). It is obvious
from Figure 2 and Figure 3 that the computational costs of Sign
Hadamard-Haar transform are less than the computational costs of Sign
Walsh transform. Table 3 shows that the computational costs of Sign
Walsh transform increase considerably when compared with Sign
Hadamard-Haar transform for higher n. 

There are many methods to calculate ternary Reed-Muller transform such
as direct matrix calculation, fast transform calculation based on Kronecker
product, Gray code ordered fast transform calculation, column and row
method calculation [8, 13, 15]. The number of ternary additions and
multiplications required to calculate a particular polarity coefficient vector
using Green’s fast method are n3n and 4n3n-1, respectively [15]. While the
column polarity matrix method and row polarity matrix method are more
advantageous than Green methods in the number of ternary additions and
multiplications that need to be calculated, Table 3 and Table 4 show the
numbers of ternary additions and multiplications required to calculate a
particular polarity coefficient vector using these methods, respectively. It
should be noticed that even the most efficient methods to calculate ternary
Reed-Muller form require calculation of the whole polarity matrix in order
to find the best expansion as well as multiplications over GF(3) and their
number of additions operations is much higher than the corresponding
number of only operations (additions or subtractions) for both sign
transforms who do not have any polarity. Table 2 and Table 3 show that the
computational costs of operations to calculate Sign Hadamard-Haar
transform are less than the numbers of ternary additions required for ternary
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Reed-Muller transform using even the best methods while the
multiplications are not required in the calculation of Sign Hadamard-Haar
transform. Moreover, the sign operation used in the new transform is much
simpler than the GF(3) operations used in the ternary Reed-Muller transform.

FIGURE 2
Butterfly diagram for (a) forward and (b) inverse Sign Hadamard-Haar transform, n = 3.

FIGURE 3
Butterfly diagram for (a) forward and (b) inverse Sign Walsh transform, n = 3.
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TABLE 2
Comparison of computational costs.

TABLE 3
Comparison of computational costs involved in deriving a whole polarity ternary Reed-Muller
matrix (additions).
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TABLE 4
Comparison of computational costs involved in deriving a whole polarity ternary Reed-Muller
matrix (multiplications).

6. APPLICATION OF SIGN HADAMARD-HAAR IN TERNARY
COMMUNICATION SYSTEM

In the previous Sections it has been shown that Sign Hadamard-Haar
transform similarly to well know Sign Walsh transform exhibit non-linear
properties. Though non-linear, these transforms are unique and invertible.
With intrinsic coding property, these transforms reveal possible application
in secured communication systems [12]. In this Section, the application of
Sign Hadamard–Haar as the sequence for ternary communication system
will be considered. For comparison the well known Sign Walsh transform
will also be used in the same application. In such a system, the incoming
binary/ternary data is first encoded by performing Sign Hadamard-Haar
transform on it. The digital modulation technique responsible for carrying
information in Sign Hadamard-Haar spectra is Ternary Amplitude
Frequency Shift Keying (TAFSK) [12, 14]. In this signaling, a ternary +1 is
transmitted by a Radio Frequency (RF) pulse of carrier cosω1t, a ternary -1
is transmitted by an RF pulse of carrier cosω2t, and a 0 corresponds to no RF
pulse. The technique combines Binary Amplitude Shift Keying and Binary
Frequency Shift Keying for the ternary case. The Power Spectral Density
(PSD) of the resultant signaling is given by

(22)
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where

Proof Let Sign Hadamard-Haar transform of binary/ternary data streams
be represented by

where p(t) represents a full rectangular pulse which repeats every T0

seconds, and it is assumed that ak is equally likely to be +1, 0 or -1, i.e.
. Furthermore

wi th  The  PSD o f  

ON-OFF signaling [14] is 

where Rm is the coefficient of the time-autocorrelation function of the
signaling and . Therefore the PSD of A1(t) is A1(ω) = A0(ω), with

and

Since

and using
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then

Since and therefore . Using the
frequency shifting property and since

the proof of eqn. 22 is complete.
For ω2 > ω1, if ω2 - ω1 = 2ω0 then the transmission bandwidth of TAFSK

signaling is 4 f0 (where f0 = 1/T is the clock frequency).
A new recursive transform can be developed based on Sign Hadamard-

Haar transform. As an example, Sign Hadamard-Haar transform can be
applied twice onto a ternary truth column vector such that a new
transform space is developed. The overall transform is named as Sign
Hadamard-Haar-2 transform. In general, there together 3N different Sign
Hadamard-Haar transform spaces, denoted as Sign Hadamard-Haar-q
transforms with 1 ≤ q ≤ 3N, where when q = 1, the transform yields the
original Sign Hadamard-Haar transform. For comparison purpose, Sign
Walsh-q transform can be defined similarly.

Figure 4 shows the block diagram of a TASFK transmitter. The
continuous streams of binary/ternary data are converted to parallel words of
length N by means of a serial-parallel converter. Sign Hadamard-Haar-q
transform is applied to each word before converting back to the format of
serial data. The output signal V of the parallel-serial converter controls the
output frequency of the voltage-controlled oscillator, and both outputs are
fed together into the mixer. The output of the mixer is TAFSK signaling.
The output of the oscillator is mathematically given by 

(23)

where and V0 is an arbitrary amplitude. If fm = f0, then the
resultant transmission bandwidth will be 4f0, and fc + f0 = f2, fc - f0 = f1.

Figure 5 shows a block diagram of a TAFSK receiver. The incoming
noisy RF signal is bandpass filtered centered at frequency fc. The bandpass
filters centered at f2 and f1 are matched to the two RF pulses corresponding
to ternary logic of -1 and +1, accordingly. The outputs of the two matched
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filters are detected by two envelope detectors. The envelope detector is
sampled at t = T0 to make the ternary decision of -1 or 0 and 1 or 0 by
negative and positive threshold devices, respectively. The output of summer
is ternary, which is fed to a serial-parallel-serial converter, an inverse Sign
Hadamard-Haar-q transform block and a parallel-serial converter to extract
the original message.

The proposed non-coherent system is the simplest implementation of a
ternary communication system. Other possibilities include the complicated
M-ARY communication systems [12]. The addition of a Sign Hadamard-
Haar transform provides security in the digital communication system. The
level of security is easily adjustable by controlling q, which corresponds to
Sign Hadamard-Haar-q transform applied q times. If q is varied for each
word transformed in a manner transparent to a friendly receiver, the level of
security in the communication system will be further enhanced. It is obvious
that Sign Hadamard-Haar transform provides security to information data,
however another possibility to increase the security of the digital
communication system is the use of Sign Hadamard-γ -Haar-χ transform
described in the introduction. Though the latter transform is more
computationally expensive, it can be also in the form of Sign Hadamardγ -
Haar-χ−q, transform and it provides better security properties by its design
and is suitable for cryptographic systems.

FIGURE 4
Block diagram of TAFSK transmitter.

206 FALKOWSKI AND YAN



The application of Sign Hadamard-Haar transform in a ternary
communication system has been considered. Such application may be used
by other quantized transforms as well. When the well known Sign Walsh
transform is applied to the ternary communication system, Sign Hadamard-
Haar-q transform will be replaced by Sign Walsh-q transform in the Figure 4
and Figure 5. Table 5 shows some results about computational costs of two
systems where Sign Hadamard-Haar-q transform and Sign Walsh-q
transform are implemented respectively. From Table 5, it is obvious that the
system based on Sign Hadamard-Haar-q transform is much more efficient
than the one based Sign Walsh-q transform due to much smaller number of
computations especially for higher q and n.

TABLE 5
Comparison of computational costs in ternary communication system.
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FIGURE 5
Block diagram of TAFSK receiver.

7. CONCLUSION

A novel non-linear transform called ‘Sign Hadamard-Haar transform’ has
been introduced. It has been shown that the transform exhibits a non-linear
property. Essentially, it transforms ternary data into ternary spectrum.
Though non-linear, the transform is unique, and hence invertible. Recursive
definition of the transform has been given. The procedures of obtaining the
transform by recursive definition is increasingly cumbersome with the
increase of the transform order N = 2n. Fortunately, a fast butterfly signal-
flow graph has been derived to facilitate the calculation of the transform in a
very efficient way. Sign Hadamard-Haar transform can also be calculated
using matrix approach that allows to calculate only some selected spectral
coefficients. Such an approach is useful in many applications of spectral
techniques such as testing or decomposition [17-20, 31, 33, 34]. Formulae
to calculate Sign Hadamard-Haar spectra of logic functions and variables in
two types of coding have also been developed.

Besides being extremely fast when compared with other ternary
transforms, this transform exhibits another major advantage in the computer
memory requirements necessary to store the calculated ternary spectrum. It
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requires exactly the same storage as the size of the original ternary data
since only three different symbols have to be coded in the memory that is
also property of ternary Reed-Muller transform and other quantized
transforms. When the fast flow diagram is directly implemented in software
there is no need to keep the original data and each consecutive butterfly
requires geometrically smaller number of operations on the transformed
data. Each time only 2n ternary data has to be stored in the memory.

Sign Hadamard-Haar transform is just another representative of a family
of quantized transforms based on the usage of sign function as the quantizer.
In fact, with its unique and isomorphic properties, new sign transform can
be derived using Sign Haar, Sign Walsh and Sign Hadamard-Haar transform
as the three main bases so that a new transform space of similar ternary
values is developed. As an example, one may develop a new recursive sign
transform with just Sign Hadamard-γ -Haar-χ transform as the basis where
γ and χ show the number of butterflies in Hadamard and Haar part of the
transform. By simply applying Sign Hadamard-γ -Haar-χ transform twice
onto a ternary truth column vector such that a new transform space is
developed, and name the overall transform as Sign Hadamard-γ -Haar-χ -2
transform. In general, if n is the number of variables of the ternary function,
there are altogether 3n different Sign Hadamard-γ -Haar-χ transform spaces,
denoted as Sign Hadamard-γ -Haar-χ transform-q transforms with 1 ≤ q ≤ 3n

which is well suited to security coding in cryptographic systems and ternary
communication systems, where when q = 1, γ = 1, and χ = n -1, the
transform yields the original Sign Hadamard-Haar transform of size n.

There exist many generalizations of discrete transforms based on Walsh,
Haar and Chrestenson functions [1, 17-19, 24-28, 31, 33-35, 37]. In the
simplest generalization, the base functions are different linear combinations of
Haar and Walsh functions. It is always possible to derive basic Walsh and Haar
transform from their generalization. Hence it would be advantageous to
develop the theory of generalized sign transforms where the known transforms,
Sign Haar and Sign Walsh transforms together with Sign Hadamard-Haar
transform would be just special cases of some generalized sign transform and
some initial research in this aspect has been done in [10]. Development of a
theory for generalized sign transforms together with investigations of basic
properties of such transforms are topics of current research investigations of
the authors. Considering a generalized sign transform as a Fourier-like or
Chrestenson-like transform on a suitably defined algebraic structure offers a
direct way for a generalization of the theory of such a transform from ternary
logic functions to higher-level multiple-valued logic functions.
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