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e Transform Coding
®




Transform Coding

e Why transform Coding?

Purpose of transformation is to convert the data into
a form where compression is easier. This
transformation will transform the pixels which are
correlated into a representation where they are
decorrelated. The new values are usually smaller
on average than the original values. The net effect
IS to reduce the redundancy of representation.

e For lossy compression, the transform
coefficients can now be quantized according to
their statistical properties, producing a much
compressed representation of the original
Image data.




Transform Coding Block Diagram

e Transmitter

Segment into ; Forward Quantization
n*n Blocks Transform and Coder ‘

e Receiver

Combine n*n Inverse J
<= <= <=
Blocks Transform Decoder




How Transform Coders Work

e Divide the image into 1x2 blocks
Typical transforms are 8x8 or 16x16

T | P i i




Joint Probability Distribution

e Observe the Joint Probability Distribution
or the Joint Histogram.

Probability




Pixel Correlation in Image[Amar]

e Rotate 45° clockwise

cos45”  sin4%v’

—sin45"  cos45’
Source Image: Amar

Pair of pixels Pair of pixels [after ratation]

I I I I I I
100 180 200 250 300 350

Before Rotation After Rotation




Pixel Correlation Map in [Amar]

-- coordinate distribution

Upper:
Before Rotation

Lower:
After Rotation

Notice the
variance of Y, Is
smaller than the
variance of X..

Compression:

apply entropy
coderonY,
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Pixel Correlation in Image[Lenna]

e Let’s look at another example

Y, cos45’  sin45’ || X,
Y, —sin45" cos45” | X,

Y
Source Image: Lenna

Pair of pixels [before rotation] Pair of pixels [after rotation]

I I I I I I
100 180 200 250 300 350
1

Before Rotation After Rotation




Pixel Correlation Map in [Lenna]

-- coordinate distribution

e Upper:
Before Rotation

e Lower:
After Rotation

e Notice the CTTET T e vE
variance of Y, IS oo
smaller than the |
variance of X..

e Compression:

apply entropy
coderonY,
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Rotation Matrix

e Rotated 45 degrees clockwise

Y_{Yl}_AX_{coM? sin45°}[xl}_ J2/2 \2)2 {Xl}
Y, | =sind5 cos45 | X, | | —+2/2 V2/2| X,

e Rotation matrix A

A{cos45° sin45°}:{ﬁ/2 I/z} 2{1 1}

—sin45° cos45 | [—+2/2 +f2/2 11
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Orthogonal/orthonormal Matrix

e Rotation matrix is orthogonal.

The dot product of a row
with itself is nonzero.

The dot product of different
rows is 0.

e Futhermore, the rotation
matrix Is orthonormal.

The dot product of a row
with itself is 1.

J2[1 1

e Example: A= —

#12



Reconstruct the Image

e Goal: recover X from Y.
e SinceY = AX, so X =Aly

e Because the inverse of an orthonormal matrix
IS its transpose, we have A1l=AT

e SO, Y =A1X=ATX
e \We have inverse matrix

A1=AT={

cos45” —sin4b’ B
sin45°  cos4%5’
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Energy Compaction

el

Rotation matrix [A] compacted the energy into Y.
Energy IS the Varlance (http://davidmlane.com/hyperstat/A16252.html)

N
5% = ﬁz (X — ) ° where « is the mean

Given: X:@them:/xx:ﬁ{l 1}{4}@{9}{6'%4}

2 1-1 1|5 2 |1 0.707

The total variance of X equals to that of Y. It is 41.

Transformation makes Y, (0.707) very small.
If we discard min{X}, we have error 42/41 =0.39
If we discard min{Y}, we have error 0.7072/41 =0.012
Conclusion: we are more confident to discard min{Y}.
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ldea of Transform Coding

e Transform the input pixels X;,X,X,,...,X,_; INtO
coefficients Y,,Y4,...,Y, , (real values)

The coefficients have the property that most of
them are near zero.

Most of the “energy” is compacted into a few
coefficients.

e Scalar quantize the coefficient
This is bit allocation.

Important coefficients should have more
guantization levels.

e Entropy encode the quantization symbols.
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Forward transform (1D)

e Get the sequence Y from the sequence X.

e Each element of Y Is a linear combination of
elements in X.

n-1
Y, =) a;;X j=01---n-1
i=0 ;
Basis
- Vectoers

The element of the matrix are also called the weight of the linear transform,
and they should be independent of the data (except for the KLT transform).
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Choosing the Weights of the Basis
Vector

e The general guideline to determine the values
of A is to make Y, large, while remaining
Y., Y1 t0 be small.

e The value of the coefficient will be large if

weights a; reinforce the corresponding data
items X This requires the weights and the
data values to have similar signs. The
converse Is also true: Y; will be small if the
weights and the data values to have dissimilar
signs.
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Extracting Features of Data

e Thus, the basis vectors should extract distinct
features of the data vectors and must be
iIndependent orthogonal). Note the pattern of
distribution of +1 and -1 in the matrix. They
are intended to pick up the low and high
“frequency” components of data.

e Normally, the coefficients decrease in the
order of Yq,Yq,...,Y 1

e S0, Y Is more amenable to compression than
X Y = AX
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Energy Preserving (1D)

Another consideration to choose rotation matrix iIs to conserve

enerqgy.
For example, we have orthogonal matrix

(1 1 1 1]
1 1 -1 -1
A: X =
1 -1 -1 1

1 -1 1 -1 2

Energy before rotation: 42+62+52+22=81
Energy after rotation: 17%+3%+(-5)?+12=324

Energy changed!

Solution: scale W by scale factor. The scaling does not change the fact
that most of the energy is concentrated at the low frequency components.
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Energy Preserving, Formal Proof

e The sum of the squares
of the transformed
seguence Is the same
as the sum of the
sguares of the original
sequence.

e Most of the energy are
concentrated in the low
frequency coefficients.

Energy

nivf =YTY
i=1

= (AX)' (AX)

= XTATAX

= XT(ATA)X
Orthonormal

Matrix;
See page #12
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Why we are interested in the
orthonormal matrix?

e Normally, itis
computationally difficult 1
to get the inverse matrix. “%

e The inverse of the
transformation matrix is
simply its transpose.

AL1=AT

1
1
1
1
1
1
1

1

I 1
N T e = = T S =
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Two Dimensional Transform

e From input Image |, we get D.
e Given Transform matrix A

1 1 1 1] 41 7
111 1 -1 -1 6
= D=
211 -1 -1 1 5

8
4
1 -1 1 -1 2| 4
e 2D transformation goes as:

1 1 1 14 7 6 9] [1 1 1 17 [2275 -275 075 -3.75]
1 1 -1 -1 1 1 -1 -1 | 175 325 -025 -175
1 -1 -1 1 1 -1 -1 1| |025 -325 025 -225
1 -1 1 -1 1 -1 1 -1] |[125 -125 075 175

8 6
4 6
4 9
e Notice the energy compaction.

.

A=

6
3
7
5
d

Y= AXAT =1 1
2 2
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Two Dimensional Transform

e Because transformation matrix is
orthonormal, AT = A™

e So, we have
Forward transform

Y = AXA™ = AXA'

Backward transform
X = AYA=A"YA
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Linear Separable transform

e Two dimensional transform is simplified as two

iterations of one-dimensional transform.
N-1N-1

Zzaklxl Ja| j

=0 j=0

e Column-wise transform and row-wise transform.

NxN block
of transform
coefficients

AxA"

>

NxN block
of pixels

N

column-wise row-wise
N-transform N-transform
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Transform and Filtering

e Consider the orthonormal
transform. A 1 1}

-1 1

If A Is used to transform a vector of 2 identical
elements x = [x,X]T, the transformed sequence will «/2xoy
Indicating the “low frequency” or the “average”

value isv2x and the “high frequency” component is

O because the signal value do not vary.

If x =[3,1]" or [3,-1]", the output sequence will be 2y
and 2272y respectively. Now, the high frequency
component has positive value and it is bigger for
[3,-1]",indicating a much large variation. Thus, the
two coefficients behave like output of a “low-pass”

and a “high-pass’ filters, respectively.
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Transform and Functional
Approximation

e Transform is a kind of function approximation.
e Image is a data set. Any data set is a function.

e Transform is to approximate the image function
by a combination of simpler, well defined
“waveforms” (basis functions).

e Not all basis sets are equal in terms of
compression.

e DCT and Wavelets are computationally easier
than Fourier.
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Comparison of various transforms

arhunen Loeve transform (1948/1960)
Haar transform (1910)
Walsh-Hadamard transform(1923)

Slant transform (Enomoto, Shibata, 1971)
l Discrete CosineTransform (DCT)
; (Ahmet, Natarajan, Rao, 1974)
1

Comparison of 1-d
basis functions for

block size N=§

e The KLT is optimal in the sense of decorrelating and energy-packing.

e Walsh-Hadamard Transform is especially easy for implementation.
basis functions are either -1 or +1, only add/sub is necessary.
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Two-Dimensional Basis Matrix

e The outer product of two vectors V, and V, Is

defined as V,'V,. For example,
ad ae af

' a

b bd be bf

C cd ce cf

e For a matrix A of size n*n, the outer product of
ith row and jth column is defined as

I ] I Aodjo Qo

ai,laj,o ai,laj,l

[aj,o aj,l oo aj,n—l]:

_ai,n—laj,o Qi 191

i,n-1
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Outer Product

e We have: 2
%[1 A 1/1 1

e For example, if A_\/EF 1}
1 -1

2
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Outer Product (2)

e We have shown earlier that X = A'YA
e Consider X to be a 2*2 matrix:

{Xoo XOl}:E{l 1}{)’00 %1}{1 1}
X0 Xi 2|11 1]y Y1 -1

Yoo+ Yo Yot yn}{l 1 }
yOO o Y1o yOl _ Y11 1 -1

_yOO T Yot Yoot Y Yoot Yio— Yo~ y11}
Yoo = Yot Yor = Yun Yoo = Yo~ Yoo+ Yu

1 11+ 1 1+ 1—1+ 1 -1
=5 YOoll le_l 1 y011 1 y11_1 1

= Yool0 T Yoi&o1 T Y100 T Y1105
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Basis Matrix

e The quantities ay. a4, a4, a,; are called the
basis matrices in 2-D space.

e In general, the outer products of a n*n
orntonormal matrix form a basis matrix set in 2
dimension. The quantity <, Is called the DC
coefficient (note all the elements for the DC
coeeficient are 1, indicating an average
operation), and other coefficients have
alternating values and are called AC
coefficients.
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Fast Cosine Transform

e 2D 8X8 basis functions
of the DCT:

e The horizontal frequency
of the basis functions
Increases from left to
right and the vertical
frequency of the basis
functions increases from
top to bottom.
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Amplitude distribution of the DCT
coefficients

e Histograms for 8x8 DCT
coefficient amplitudes
measured for natural
Images

DC coefficient is typically
uniformly distributed.

The distribution of the AC
coefficients have a
Laplacian distribution
with zero-mean.
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Discrete Cosine Transform (DCT)

e Conventional image data have
reasonably high inter-element correlation.

e DCT avoids the generation of the

spurious spectral components which Is a
problem with DFT and has a fast

Implementation which avoids complex
algebra.
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One-dimensional DCT

e The basis

iIdea Is to decompose the image into

a set of “waveforms”, each with a particular
“special” frequency.

e To human
impercept
Image can

eyes, high spatial frequencies are
ble and a good approximation of the
be created by keeping only the

lower frequencies.

Consider t

ne one-dimensional case first. The 8

arbitrary grayscale values (with range 0 to 255,

shown int
128 (as Is

ne next slide) are level shifted by
done by JPEG).
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One-dimensional DCT

An example of 1-D DCT decomposition

(b)
150
100
50
»S(u) 0
K -50
E -100
- -150

Before DCT (image data) After DCT u(coefficients

1

-

1

AmpLitude
Ampljtude
AmpLitude
AmpEtude

-
-

Amplitude
AmpEtude
Ampljtude
Amplitude

1
U=6 u=3

The 8 basis functions for 1-D DCT
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One-dimensional DCT

e The waveforms cam be denoted as
w(f)=cos(fg),with0<d<z with frequencies f =
0,1, ..., 7. Each wave is sampled at 8 points

7 3n Sr Txn 9r 1z 137 157 -
0= 1615 16 16 16 1g L0 form a basis vector.

e The eight basis vector constitutes a matrix A:

1 1 1 1 1 1 1 1
0.981
0.924
0.831
0.707
0.556
0.383
-0.195
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Figure 4.17: Calculating A One-Dimensional DCT.



One-dimensional DCT

e The output of the DCT transform Is:

S(u)=Al1)]

where A Is the 8*8 transformation matrix
defined in the previous slide, and [(x) Is
the Input signal.

e S(u) are called the coefficients for the
DCT transform for input signal I(x).
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One-dimensional FDCT and IDCT with N=8
Sample points

e The 1-D DCT In JPEG Is defined as:
cos[(2X+1)u”] foru=0,1,..7

Where (u is frequency)
e I(X) Is the 1-D sample
e S(u) is the 1-D DCT coefficient

e And ﬂ
C(u)y=< 2

1 foru>0

foru=0
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One-dimensional FDCT and IDCT with N
Sample points

e The 1-D DCT In JPEG iIs defined as:

FD& Ly = [2 c:(u)i1 (%) cos[(zx;\ll)“”] foru=12, N-1

IDCT 1
| (X) = ZC(u)S(u) cos[(

)“”]frx 0,1,.N-1

Where (u is frequency)
e I(X) is the 1-D sample
e S(u) is the 1-D DCT coefficient and

J2

—_— foru=0
Clu)y=4 2

1 foru>0
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One-dimensional FDCT and IDCT

e As an example, let 1(x)=[12,10,8,10,12,10,8,11]

S(u) = All(x)] =[28.6375,0.5712,0.4619,1.757,3.182,-1.729,0.191,—-0.309].

e If we now apply IDCT, we will get back I1(x).
We can quantize the coefficient S(u) and still
obtain a very good approximation of 1(x).

e For example,
IDCT (28.6,0.6,0.5,1.8,3.2,-1.8,0.2,-0.3)

= (12.0254,10.0233,7.96054,9.93097,12.0164,9.9932,7.99354,10.9989)
e While

IDCT (28,0,0,2,3,-2,0,0)
= (11.236 ,9.6244 ,7.6628 ,9.573 ,12.347 ,10.014 ,8.053 ,10.684 )
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Two-dimensional FDCT and IDCT for 8X8
block

e The 2-D DCT In JPEG Is defined as:

FDCT
S(v.u) = C(v) C(u)z z Iy, x)cos[( y + 1)V7z] cos[ (2X;L|—61)U7z']

IDCT C C +1 2X+1
1y =3 ;V)Z 1) 5 v,uy cos[ 2 y16)v”] os X;S)“”]

v=0

Where
e I(y,X) Is the 2-D sample
e S(v,u) is the 2-D DCT coefficient
e And J2 J2

Ne — - forv=0
cuy=12 foru=0 cW)=12

1 foru>0 1 forv>0
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Fast Cosine Transform

e 2D 8X8 basis functions
of the DCT:

e The horizontal frequency
of the basis functions
Increases from left to
right and the vertical
frequency of the basis
functions increases from
top to bottom.
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Two-dimensional FDCT for NXM block

FDCT
2 C(v)Cu)yE W 2y +1 2x +1
S(V,U) = ;") g”;) 210y, x) cos[ {2 M)V”] cos[ ¢ X;N)””]

foru=0,1,..., N-1 and v=0,1,..., M -1

Where I(y,Xx) is the 2-D sample, S(v,u) is the 2-D DCT
coefficient and

Q foru=0 i Q forv=0
Clu)=4 2

1 foru> 0 1 forv>0
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Separable Function

e The 2-D FDCT is a separable function because we can express
the formula as

S(v,u) = C(V)Z{f c )Z 1(y, %) COS'(2X+1)U7T]}° [(2y+1)7zu]

foru=0,1,..N1 andv=0,1,..M-1

This means that we can compute a 2-D FDCT by first computing a row-wise
1-D FDCT and taking the output and perform on it a column-wise 1-D FDCT

transform. This is possible, as we explained earlier, because the basis
matrices are orthonormal.
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Two-dimensional IDCT for NXM block

1(y,X)= JW Z Z_‘,C(U) Cv) S(v, U)COS'(ZyZE)V”] OSfZX;Nl)u”]

v=0 u=0

for x=0,1,..., N-1land y=0,1,..., M-L

This function is again separable and the computation can be done in
two steps: a row-wise 1-D IDCT followed by a column-wise 1-D IDCT.
A straightforward algorithm to compute both FDCT and IDCT will need
( for a block of NXN pixels) an order of O(N3) multiplication/ addition
operations. After the ground-breaking discovery of O(N logN) algorithm
for Fast Fourier Transform, several researchers proposed efficient
algorithms for DCT computation.
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JPEG Introduction - The background

JPEG stands for Joint Photographic Expert Group

A standard image compression method is needed to
enable interoperability of equipment from different
manufacturer

It is the first international digital image compression
standard for continuous-tone images (grayscale or
color)

The history of JPEG — the selection process
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JPEG Introduction — what’s the objective?

“very good” or “excellent” compression rate,
reconstructed image quality, transmission rate

be applicable to practically any kind of continuous-
tone digital source image

good complexity

have the following modes of operations:
sequential encoding
progressive encoding
lossless encoding
hierarchical encoding

#49



JPEG Architecture Standard

reconstructed
image data

Source compressed
- » encoder -
image data image data

decoder

Image compression system

. encoder
Source descriptor . symbols compressed
Encoder p statistical y .| entropy Press

Image data model encoder image data
model

A

model entropy
tables coding tables

The basic parts of an JPEG encoder
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JPEG Overview (cont.)

JPEG has the following Operation Modes:
s Sequential DCT-based mode

= Progressive DCT-based mode

= Sequential lossless mode

= Hierarchical mode

JPEG entropy coding supports:
= Huffman encoding
= Arithmetic encoding
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JPEG Baseline System

JPEG Baseline system is composed of:
= Sequential DCT-based mode
= Huffman coding

8x8 blocks DCT-based encoder

statistical entropy compressec
model encoder image data

quantizer

Source

_ table table
image data specification specification

The basic architecture of JPEG Baseline system
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The Baseline System

ﬁC coefficient

The DCT coefficient values can be regarded as the relative amounts of
the 2-D spatial frequencies contained in the 8x8 block

the upper-left corner coefficient is called the DC coefficient, which is a
measure of the average of the energy of the block

Other coefficients are called AC coefficients, coefficients correspond
to high frequencies tend to be zero or near zero for most natural

#53



Quantization Tables in DCT

e Human eyes are less sensitive to high
frequencies.

e We use different quantization value for
different frequencies.
Higher frequency, bigger quantization value.
Lower frequency, smaller quantization value.

e Each DCT coefficient corresponds to a certain
frequency.

e High-level HVS is much more sensitive to the
variations in the achromatic channel than in
the chromatic channels.
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The Baseline System — Quantization

e Why gquantization? .

to achieve further compression by representing DCT
coefficients with no greater precision than is necessary to
achieve the desired image quality

e Generally, the “high frequency coefficients” has larger guantization
values

e Quantization makes most coefficients to be zero, it makes the
compression system efficient, but it's the main source that make the
system “lossy” and introduces distortion in the reconstructed image.

e The quantization step-size parameters for JPEG are given by two
Quantization Matrices, each element of the matrix being an integer

of size between 1 to 255. The DCT coeeficients are divided by the
corresponding quantization parameters and rounded to nearest
integer.
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F(u, v))
Q(u,v)

F'(u,v) = Round(———=

F(u,v): original DCT coefficient
F'(u,v): DCT coefficient after quantization
Q(u,v): quantization value

There are two quantization tables: one for the luminance
component and the other for the Chrominance component. JPEG
standard does not prescribe the values of the table; it is left upto
the user, but they recommend the following two tables under
normal circumstances. These tables have been created by
analysing data of human perception and a lot of trial and error.
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Quantization Tables in DCT

e S0, we have two quantization tables.

Measured for an “average” person.
Higher frequency, bigger quantization value.
Lower frequency, smaller quantization value.

16

11

10

16

24

40

51

61

17

18

24

47

99

99

99

99

12

12

14

19

26

58

60

55

18

21

26

66

99

99

99

99

14

13

16

24

40

57

69

56

24

26

56

99

99

99

99

99

14

17

22

29

51

87

80

62

47

66

99

99

99

99

99

99

18

22

37

56

68

109

103

7

99

99

99

99

99

99

99

99

24

35

55

64

81

104

113

92

99

99

99

99

99

99

99

99

49

64

78

87

103

121

120

99

99

99

99

99

99

99

99

72

92

95

98

112

100

103

99

99

99

99

99

99

99

99

Luminance quantization table

Chrominance quantization table
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Two-dimensional DCT

e The image samples are shifted from unsigned integer with range
[0, 2 N1] to signed integers with range [- 2 N1, 2 N-1-1]. Thus
samples in the range 0-255 are converted in the range -128 to
127 and those in the range 0 to 4095 are converted in the range -
2048 to 2047. This zero-shift done for JPEG to reduce the
internal precision requirements in the DCT calculations.

e How to interpret the DCT coefficients?

The DCT coefficient values can be regarded as the relative amounts
of the 2-D spatial frequencies contained in the 8x8 block.

F(0,0) is called DC coefficient, which is a measure of the average of
the energy of the block.

Other coefficients are called AC coefficients, coefficients correspond
to high frequencies tend to be zero or near zero for most images.

e The energy is concentrated in the upper-left corner.
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Baseline System - DC coefficient coding

e After quantization step, the DC coefficient are encoded separately
by using differential encoding. The DC difference sequence is
constituted by concatenating the DC coefficient of the first block
followed by the difference values of DC coefficients of the

succeeding blocks. The average values of the succeeding blocks
are usually correlated.

quantized DC DC difference
—coeffictents——> DPCM >

L

\ Differential pulse code modulation
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Baseline System - AC coefficient coding

e AC coefficients are arranged into a zig-zag sequence. This Is
because most of the significant coefficients are located in the
upper left corner of the matrix. The high frequency components
are mostly 0’s and can be efficiently coded by run-length
enCOding_ Horizontal frequency .
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An Example (Ref:T. Acharya, P. Tsai,”JPEG 2000
Standard for Image Compression), Wiley-lterscience,
2005

The 8X8 Image Data Block
110 110118 118 121 126 131 131
108 111 125 122 120 125 134 135

106 119 129 127 125 127 138 144
110 126 130 133 133 131 141 148
115116 119 120 122 125 137 139
115106 99 110 107 116 130 127
11091 82 10199 104 120 118
10376 70 95 92 91 107 106
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The 8 x 8 Data Block After Level Shifting

-18 -18 -10 -10 -7 -2 3 3
-20 -17 -3 -6 -8 -3 6 7
-22 -9 1 -1 -3 -1 10 16
-18 -2 2 5 5 3 13 20
-3 -12 -9 -8 -6 -3 9 11
-13 -22 -29 -18 -21 -12 2 .1
—-18 37 —-46 -27 29 -24 -8 -10
-25 -52 -58 -33 -36 -37 -21 -22

DCT Coefficients of the Above 8 x 8 Block

-89.00 -63.47 18.21 —6.85 750 1345 -7.00 0.3 }
7414 -290 -19.93 -21.04 -17.88 -10.81 829 526 1
—6365 310 508 1482 1012 933 131 -062 |
373 285 667 899 -3.38 154 104 -062
250 057 -446 052  3.00 —2.89 -032 1.33 }
752 -1.80 -0.63 —0.10 041 -321 -274 —207
-340 043 081 028 -040 -019 -058 -1.09 }
-2.26 —0.88 173 023 -021 -012 123 161 |

Results of DCT Coefficients Quantized by Luminance Quantization Matrix -

-6 -6 2 0 0 000
6 0 -1 -1 -1 0 0 0
-5 0 0 1 0 0 0 0
0 0 0 0 o0 0 0O
0 0 0 o0 0 0 0O
0o 0o o0 o 0 0 0 0
0 0 0 O 0 0 0O
0 o 0 0 0 0 00

After the DC coefficient is differentially encoded, the AC coefficients are or- |
dered in the zig-zag sequence and the sequence is subsequently broken into




Baseline System - Statistical modeling

e Statistical modeling translate the inputs
to a sequence of “symbols” for Huffman
coding to use

e Statistical modeling on DC coefficients:
Category: different size (SSSS)

Magnitude: amplitude of difference
(additional bits)
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Coding the DC coeeficients

SSS.S DPCM difference Additional bits
(binary)

0,1
00,01,10,11
000,...,011,100,...,111
0000,...,0111,1000,...,1111

tables.jpg

The prediction errors are classified into 16 categories in modulo 216- Category

C contains the range of integers [-(2°-1), + (2°-1)] excluding the numbers in the
range [-(2¢1-1), + (2¢1-1)] which falls in the previous category. The category
umber is encoded using either a fixed code (SSSS), unary code (0, 10, 110, ...)

0t _a variable length Huffman code.
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Coding the DC/AC coefficients

If the magnitude of the error is positive, it is encoded using ‘category’
number of bits with a leading ‘1’. If it is negative, I's complement of
the positive number is used. Thus, if error is -6 and if the Huffman
code for category 3 is 1110, it will get a code (1110001). The JPEG
Standard recommends Huffman two codes for the category
numbers: one for Luminance DC and the other for Chrominance DC
( See Salomon, p.289; it is also described in Annex K ( Table k.3
and K.4 of the Standard)

e Statistical modeling on AC coefficients:
Run-length: RUN-SIZE=16*RRRR+SSSS
Amplitude: amplitude of difference (additional bits)
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The AC coefficients contains just a few nonzero numbers, with runs of
zeros followed by a long run of trailing zeros. For each nonzero
number, two numbers are generated: 1)16*RRRR which gives the
number of consecutive zeros preceding the nonzero coefficient being
encoded, 2)SSSS gives the category corresponding to number of bits
required to encode the AC coefficient using variable length Huffman
code. This is specified in the form of a table (see next slide). The
second attribute of the AC coefficient is its amplitude which is
encoded exactly the same way as the DC values. Note the code (0,0)
is reserved for EOB ( signifying that the remaining AC coefficients are
just a single trailing run of 0’s). The code (15,0) is reserved for a
maximum run of 16 zeros. If it is more than 16, it is broken down into
runs of 16 plus possibly a single run less than 16. JPEG recommends
two tables for Huffman codes for AC coefficients, Tables K5 and K6
for luminance and Chrominance values.
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8888

L * * * *

0 123456789101112131415

0 | EOB 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D OE OF
1 N/A 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
2 | N/A 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
3 | N/A 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
4 | N/A 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
5 | N/A 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
6 | N/A 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
7 | NFA 7172 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F
RRRR 8 | N/A 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
9 | N/A 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
10 | N/A A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
11 N/A B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
12 | N/A C1C2C3C4C5C6C7C8 C9 CACBCCCDCECF
13 | N/A D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
14 | N/A E1E2E3E4 E5 E6 E7 E8 E9 EA EB ECED EE EF
15 | ZRL F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

Not used in sequential

N/A  Not applicable for sequential mode

tables.jpg

mode including baseline with 8 bit input

Z
)

et et et et
u'th_O\OOO\]O\thN'—,

Huffman AC statistical model .
run-length/amplitude combinations

AC coefficients

-1,1
-3,-2,2.3
-71,..,~4,4,..7
-15,...,-8,8,....15
-31,...,-16,16,...,31
-63,...,-32,32,...,63
-127,...,-64,64,...,127
-255,...,~128,128,.... 255
-311,...,-256,256,...,511
-1023,...,-512,512,...,1023
~2047,...,-1024,1024,...,2047
-4095,...,-2048,2048,....4095
-8191,...,-4096,4096.....8191
-16383,...,-8192,8192,...,16383
~32767,...,~16384,16384,... 32767

tables.jpg

OO OO0 O0 CO OO0 OO SO 0O

o0 oo 0O o

*

Precision

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12%

Huffman coding of AC coefficients
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Example (Contd.)

Let us finish our example. The DC coeeficient is -6 has a code 0
1110001. The AC coeeficients will be encoded as:

(0,3)(-6), (0,3)(6), (0,3)(-5), (1,2)(2), (1,1)(-1), (5,1)(-1),(2,1)(-1),
(0,1)(1),(0,0). The Table K.5 gives the codes

1010, 00, 100, 1100, 11011, 11100 and 11110101 for the pairs of
symbols (0,0), (0,1), (0,3), (1,1), (1,2), (2,1) and (5,1),
respectively. The variable length code for AC coefficients 1, -1, 2,
-5,6and -6 are 1, 0, 10, 010,110 and 001, respectively. Thus
JPEG will give a compressed representation of the example
Image using only 55 bits as:

1110001 100001 100110 100010 1101110 11000 11110100
111000 001 1010

The uncompressed representation would have required 512 bits!
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Example to illustrate encoding/decoding

194 179 180
192 181 182
1%3 175 188
182 187 183
189 187 180
153 152 170
183 120 175
177 178 170

Original
8x8 block

Reconstructed
8x8 block

185 184 177 184
135 182 182 187
190 181 185 187
185 183 183 182
186 18% 179 182
189 190 177 186
185 184 175 186
178 176 173 183

scaling
and inverse
DCT

(15321 0111-1010110-
2-10000001-1-10-120
oo0o0O0QCOODOO0ODOCO0O0QO0OL1LODOD
0O000D0 -1 -1 ECB)

run-level-

coding

Mean of block 185

(0,2} (0,1) {1,1)} (0,1} (0,1)
{0,-1} {1,1} (1,1) (0,1} {1,-3}
{0,2y (0,-1) (&,1) (O,-1} {(0,-
1y {(1,-1} (14,1} {9,-1} (0,-1}
{EQB}

transmission

Mean of block: 185

(o,3) (0,1} (1,1} {0,1) (0,1}

(0,-1) (1,1} (1,1) {0,1} (1,-3}
(0,2 (0,-1) (&,1) (0,-1} (0O,-
1) (1,-1) {(14,1) {(%,-1) {0,-1)
(EQB)

run-level-
decoding

(ig53 1 0111-1010110-:

-Z—IUBDDUDI—I—lﬂ—IDI
oooao Oo0o0O0COQDODO1IO0OO0OOD
oooao -1 -1 EOB)

inverse
zig-zag-
scan
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JPEG Progressive Model

e Why progressive model?
Quick transmission
Image built up in a coarse-to-fine passes
e First stage: encode a rough but recognizable version of the image
e Later stage(s): the image refined by successive scans till get the
final image
e Two ways to do this:
Spectral selection — send DC, AC coefficients separately

Successive approximation — send the most significant bits first
and then the least significant bits

#70



JPEG Lossless Model

Sample values Descriptors

DPCM >
®

N\

Differential pulse code modulation

Predictors for lossless coding
selection value  prediction strategy
0 no prediction
A
B
C
A+B-C
A+(B-C)/2
B+(A-C)/2
(A+B)/2
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JPEG Hierarchical Model

e Hierarchical model is an alternative of progressive
model (pyramid)

e Steps:

filter and down-sample the original images by the desired
number of multiplies of 2 in each dimension

Encode the reduced-size image using one of the above
coding model

Use the up-sampled image as a prediction of the origin at
this resolution, encode the difference

Repeat till the full resolution image has been encode
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The Effect of Segmentation

e The image samples are grouped into 8x8 blocks. 2-D DCT is
applied on each 8x8 blocks.

Because of blocking, the spatial frequencies in the image and the
spatial frequencies of the cosine basis functions are not precisely
equivalent. According to Fourier's theorem, all the harmonics of
the fundamental frequencies must be present In the basis
functions to be precise. Nonetheless, the relationship between
the DCT frequency and the spatial frequency is a close
approximation if we take into account the sensitivity of human eye
for detecting contrast in frequency.

The segmentation also introduces what is called the “blocking
artifacts”. This becomes very pronounced if the DC coefficients
from block to block vary considerably. These artifacts appear as
edges in the image, and abrupt edges imply high frequency. The
effect can be minimized if the non-zero AC coefficients are kept.
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Some other transforms

e Discrete Fourier Transform (DFT)

e Haar Transform

e Karhunen Loeve Transform (KLT)

e Walsh-Hadamard Transform (WHT)
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Discrete Fourier Transform (DFT)

e Well-known for its connection to spectral
analysis and filtering.

e Extensive study done on its fast
iImplementation (O(Nlog,N) for N-point DFT).

e Has the disadvantage of storage and
manipulation of complex quantities and

creation of spurious spectral components due
to the assumed periodicity of image blocks.
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Haar Transform

Very fast transform. = =B o

The easiest wavelet
transform.

Useful in edge =] = B &=
detection, image PURoy) VL) GUbelny)  wuie)
coding, and image N E B- B-

analysis problems. i ll -

) PPoo(r.y)  Upo.))  Ydoi(xy)  Yéiix.y)
Energy Compaction
IS fair, not the best + + I B- n-

Comp_l‘eSSiOH SRar)  PRa)  Ddholny)  Phiem)
algorithms.

Moay) YLy PYailey) YY)

2D basis function of Haar transform
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Karhunen Loeve Transform (KLT)

e Karhunen Loeve Transform (KLT) yields
decorrelated transform coefficients.

e Basis functions are eigenvectors of the
covariance matrix of the input signal.

e KLT achieves optimum energy concentration.

e Disadvantages:
KLT dependent on signal statistics
KLT not separable for image blocks

Transform matrix cannot be factored into sparse
matrices
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Walsh-Hadamard Transform (WHT)

e Although far from
optimum in an
energy packing
sense for typical
Imagery, its simple
Implementation A:%
(basis functions are
either -1 or +1) has
made it widely
popular.

Transformation matrix:
1

1
1
1
1
1
1
1
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Walsh-Hadamard Transform (WHT)

e Walsh-Hadamard transform requires
adds and subtracts

e Use of high speed signal processing has
reduced its use due to Improvements
with DCT.
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Transform Coding: Summary

Purpose of transform
de-correlation
energy concentration
KLT is optimum, but signal dependent and, hence,
without a fast algorithm
DCT reduces blocking artifacts appeared in DFT

Threshold coding + zig-zag-scan + 8x8 block size is
widely used today

JPEG, MPEG, ITU-T H.263.
Fast algorithm for scaled 8-DCT

5 multiplications, 29 additions

Audio Coding
MP3 = MPEG 1- Layer 3 uses DCT
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