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Abstract. This paper presents algorithm to find minimal Fixed Polarity Reed-Muller expressions, two-
level fixed polarity AND-EXOR canonical representations, for incompletely specified Boolean functions
that based on information measures on decision trees. We study the Free Reed-Muller Tree as acceptable
representation and manipulation structure to find minimal Fixed Polarity Reed-Muller expressions. In
contrast to previously published methods, the algorithm can handle incompletely specified Boolean
functions up to one thousand variables for reasonable time.
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INTRODUCTION

AND-EXOR representations are functional outside the area of logic design. They can be of
use in image processing, coding and recognition problems (see, for example, [14]). They have
been also utilized as efficient data structures for logical forms manipulation in Computer-Aided
Design (CAD) systems, being a base of automatic theorem provers and logic programming
languages like Prolog. The above reasons have recently caused an increased interest in solution
classical but yet unsolved problems of finding minimal AND-EXOR representations. In this
paper we attract attention to the problem of searching for minimal Fixed Polarity Reed-Muller
(FPRM) expressions, two-level fixed polarity AND-EXOR canonical representations, for
incompletely specified Boolean functions.

* This work was partially supported from Fund of Fundamental Researches (BELARUS). The partially support from
the Institute of Computer Science, Technical University of Szczecin (POLAND), is acknowledged.



Two contrasting approaches are used for minimization of incompletely specified Boolean
functions.

The first one is based on over-defining the unspecified values of the function. Exhaustive
search for minimal expression proposed by D.Green [7] in which all possible values assigning to
the points where the function is not specified. L.McKenzie et al. paper [10] presents a branch and
bound search where complexity is double exponential in the number of variables.

The algorithm to find minimal AND-EXOR representation of incompletely specified Boolean
functions was presented by M.Perkowski and M.Chrznowska-Jaske [12]. The further
improvement of the algorithm was proposed by C.Chang and B.Falkowski [1] for fixed polarity
multiple-output functions, hence this method required very large computation expenses when the
Boolean functions are weakly specified. The sparse interpolation method for minimization of
incompletely specified Boolean functions was considered by Z.Zilic and Z.Vranesic [21].

The another approach for minimization of incompletely specified Boolean functions is based
on principle “don’t care about don’t care”. A.Zakrevskij has proposed algorithms to find a
minimal Positive Polarity Reed-Muller expressions for weakly specified function [19] and for
system of weakly specified Boolean functions [20]. The algorithm for one Boolean function is
based on tree search along the extended matrix formed from the truth table. The algorithms for a
system of weakly specified Boolean functions are grounded on a theory of linear vector spaces,
operate with a basis of nil-space.

Research group headed by V.Shmerko and S.Yanushkevich has developed some classes of so
called Staircase algorithms: for minimization of incompletely specified multiple-valued logic
functions [5,8,9,16] that generalized algorithm proposed by A.Zakrevskij.

We present an algorithm for finding minimal FPRM expressions for incompletely specified
Boolean functions that based on converting given function in the form of truth table to special
data structure − decision tree. The core of proposed algorithm is principle “don’t care about
don’t care”. Decision trees and in general case decision diagrams can extensively used in many
application of decision making systems, such as pattern recognition, decision support systems
and etc. for such reasons:

- make possible to represent hierarchical logical and probability model of investigated
process;

- allow to use characteristics of mixed nature: qualitative as well as quantitative.
Traditionally decision trees and diagrams are observed in logic design as logical model

without any qualitative characteristics. This paper presents algorithms based on information
estimations that allow to extent usual knowledge of decision trees and diagrams [2,3,13,18].

We show that proposed algorithm for FPRM minimization is fast in contrast to previously
published works. We succeeded in minimizing incompletely specified functions up to one
thousand variables in acceptable time. Experimental results are given to show the efficiency of
information measures.

The paper is organized as follows. Section 1 presents terminology. Section 2 outlines
background of investigation and presents strategy of FPRM minimization based on conversion
truth table to decision tree. Section 3 outlines the minimization algorithm InfoFPRM that based
on information measures. Section 4 presents extended experimental results and Section 5
concludes the paper.

1. TERMINOLOGY

f = f (x1, x2, …, xn) Boolean function of n variables x1, x2, …, xn

X = {x1, x2, …, xn} Set of variables of Boolean function f
uj = {α1, α2, …, αn} Combination of variables values x1, x2, …, xn

U = {u1, u2, …, uK} Set of combinations uj - domain of Boolean function f
F = {0, 1} Set of function values - range of Boolean function f
D = {U, F} Truth table
Φ = {Π, V } Decision tree with nodes set Π and vertex set V



2. BACKGROUND

The basic task to be solved in this paper can be formulated as follows. Given an incompletely
specified Boolean function f of n variables in the form of truth table D = {U, F}, where U -
domain of logic function f, F - range of logic function f. Can one find an minimal FRPM
expression for given incompletely specified Boolean function through conversion truth table to

decision tree, which correspond to FPRM expression.
Example 1. Boolean function f which is specified for K = 6
combinations of variables values is given in Table 1.

Let give some essential definitions and prepositions
which are important for the understanding the paper.
Definition 1. Decision Tree (DT) over X is directed acyclic
graph Φ = {Π, V } with nodes set Π and vertex set V. Each
node π ∈ Π is labeled with possible expansion on variable
xj ∈ X called arbitrary variable. Each node has exactly one
incoming vertex and two outcoming vertexes, which
correspond decomposition step of Boolean function on two

subfunctions - flow and fhigh. Terminal vertex is labeled with leaves value and has no successors,
nonterminal vertex is labeled with v and has exactly two successors denoted by low and high.

According to T.Sasao classification [15] we consider Reed-Muller Tree, such decision tree
have nodes which correspond two types of expansions − positive Davio and negative Davio. The
rules of positive Davio and negative Davio expansions for arbitrary variable xj are presented in
Table 2.
Example 2. Reed-Muller Tree for the function from Table 1 is given in Fig. 1.
Definition 2. Free Reed-Muller Tree (FRMT) is decision tree where each variable is
encountered at most once in the decision tree from the root node to terminal vertex.

Free Binary Decision Trees and Diagrams have been studied by J.Gergov and C.Meinel [6].
Example 3. Fig. 2 presents a FRMT for the function given in Table 1.

Let represent Fixed Polarity Reed-Muller (FPRM) expression as follows:

f (x1, ..., xn) = c0 ⊕ c1⋅ x
p
1 ⊕ ... ⊕ cn⋅ x

p
n ⊕ cn+1⋅ x

p
1⋅ x

p
2 ⊕ ... ⊕ c2

n
-1⋅ x

p
1⋅ x

p
2⋅ ...⋅ x

p
n,

where ci = {0, 1} are the coefficients of FPRM expression and x
p
i = {xi, xi}, where p are called

polarity of variable xi. FPRM expression is canonical representation of Boolean function f if the
polarity of each variable is fixed. The choice of polarity largely influences the size of the
resulting FPRM expression, as is shown by the following example (the size of FPRM
expressions are estimated by number of terms CT and literals CL ).

Table 1. A truth table for
incompletely specified Boolean
function f.

U x1 x2 x3 x4 x5 f
u1 0 0 0 0 1 1
u2 0 1 0 0 0 0
u3 0 1 0 1 1 0
u4 1 1 0 1 1 1
u5 1 0 1 1 1 1
u6 1 1 1 1 1 1

Table 2. Positive Davio and negative Davio expansions.

positive Davio expansion negative Davio expansion
Short description
of expansion

pD nD

Expansion rule fv = flow ⊕ xj fhigh,
flow = f (x1, ..., xj-1, 0, xj+1, ..., xn)

fhigh = f (x1, ..., xj-1, 0, xj+1, ..., xn) ⊕
f (x1, ..., xj-1, 1, xj+1, ..., xn)

fv = flow ⊕ xj fhigh,
flow = f (x1, ..., xj-1, 1, xj+1, ..., xn)

fhigh = f (x1, ..., xj-1, 0, xj+1, ..., xn) ⊕
f (x1, ..., xj-1, 1, xj+1, ..., xn)

Graphical
presentation of
expansion

pD
xj0

fhighflow

fv

nD

xj1

fhighflow

fv



Example 4. Two possible FPRM expressions for the function given by Table 1 be:

f = x1⋅x4 ⊕ x5 (CT = 2, CL = 3) and f = 1 ⊕x3⋅x2 ⊕x3⋅x1⋅x2 (CT = 3, CL = 5)
Where exist closer relation between considered forms - FRMT and FPRM expression. We

now investigate this relation that directly outlines methods for construction of minimal FPRM
expression.

Construction of FRMT is carried directly by the truth table decomposition according positive
Davio and negative Davio expansions (see Table 3), which are recursively applied for given
function in the form of truth table. In the Table 4 we have closer look at the correspondence of
notations in FRMT and FPRM.

Using FRMT it is possible to represent Boolean functions efficiently than only have other
types of decision trees, for example Positive Davio Tree representation. But as well-known that
decision tree/diagram representation are very sensitive to the variable ordering (see, for example,
[11]). The size of decision tree/diagram and consequently the size of the corresponding
expression is very sensitive to the variable ordering and the choice of the type of expansion for
tree nodes (see, for instance, [4]).

Table 3. Truth table decomposition rules.

positive Davio expansion negative Davio expansion

pD
x30

U x1 x2 x3 x4 x5 f
u1 0 0 0 0 1 1
u2 0 1 0 0 0 0
u3 0 1 0 1 1 0
u4 1 1 0 1 1 1
u5 1 0 1 1 1 1
u6 1 1 1 1 1 1

U0 x1 x2 x4 x5 flow

u1 0 0 0 1 1
u2 0 1 0 0 0
u3 0 1 1 1 0
u4 1 1 1 1 1

U1 x1 x2 x4 x5 fhigh

u5 1 0 1 1 0
u6 1 1 1 1 0

nD

x31

U x1 x2 x3 x4 x5 f
u1 0 0 0 0 1 1
u2 0 1 0 0 0 0
u3 0 1 0 1 1 0
u4 1 1 0 1 1 1
u5 1 0 1 1 1 1
u6 1 1 1 1 1 1

U1 x1 x2 x4 x5 fhigh

u1 0 0 0 1 0
u2 0 1 0 0 1
u3 0 1 1 1 1
u4 1 1 1 1 0

U0 x1 x2 x4 x5 flow

u5 1 0 1 1 1
u6 1 1 1 1 1

x31

pD

nD pD

pD nD1

0 1

0

0 1

0 x1

x3

0

x2

x2

0 1

Fig.2. An example of Free Reed-Muller
Tree.
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Fig.1. An example of Reed-Muller Tree.



Thus, in proposed algorithm we consider the following tasks, that will be solved by
information approach:

1. How can we determine a variable ordering for an FRMT representing a given Boolean
function f such that the number of terms in the corresponding FPRM expression is
minimized?

2. How can we determine a type of expansion for arbitrary variable during FRMT
construction such that the number of terms in the corresponding FPRM expression is
minimized?

3. MINIMIZATION ALGORITHM

We propose an algorithm to find minimal Fixed Polarity Reed-Muller expression via Free
Reed-Muller Tree construction. The algorithm called InfoFPRM (Information minimizer of Fixed
Polarity Reed-Muller expressions) is described in Fig.3.

We used information estimations for variable ordering and selection of expansion type for
arbitrary variable, presented in [13]. Information estimations are based on non-probabilistic
notations of Shannon entropy, so called functional entropy, proposed by D.Simovici [17]. The
using of the functional entropy provides the calculation profit, for example, we do not need to
use division.

Let briefly outline estimations that used in minimization algorithm. The Boolean function
given by truth table can be described by the number of combinations of variables values
k | xj=a and k | f

xj
=
=

b
a

. Where k | xj=0 = k1 means that variable xj takes value xj = 0 k1 times; k | f
xj

=
=

0
1

means number of combinations for the case (xj = 1) ∧ (f = 0).
Example 5. A Boolean function f from Table 1 is defined by number of combination of variables
values k | x3=0 = 4, k | x3=1 = 2, k | f

x3
=
=

0
0

= 2, k | f
x3

=
=

1
0

= 2, k | f
x3

=
=

0
1

= 0, and k | f
x3

=
=

0
0

= 2.

The information measure for positive Davio expansion:

H
pD ( xj ) = k | xj=0 log2 k | xj=0 + k | xj=1 log2 k | xj=1 - k | f

xj
=
=

0
0

log2 k | f
xj

=
=

0
0
- k | f

xj
=
=

1
0

log2 k | f
xj

=
=

1
0
. (1)

The information measure for negative Davio expansion:

H
nD ( xj ) = k | xj=0 log2 k | xj=0 + k | xj=1 log2 k | xj=1 - k | f

xj
=
=

0
1

log2 k | f
xj

=
=

0
1
- k | f

xj
=
=

1
1

log2 k | f
xj

=
=

1
1
. (2)

Example 6. For a given Boolean function (Table 1) let calculate information measures for
positive Davio and negative Davio expansions for variable x3.
H

pD ( x3 ) = 4 log2 4 + 2 log2 2 - 2 log2 2 - 2 log2 2 = 8 + 2 - 2 - 2 = 6 bit.

H
nD ( x3 ) = 4 log2 4 + 2 log2 2 - 0 log2 0 - 2 log2 2 = 8 + 2 - 0 - 2 = 8 bit.

The principle of minimum entropy are used for variable ordering:

Table 4. Close relation between Free Reed-Muller Tree and Fixed Polarity Reed-Muller
expression.

Free Reed-Muller Tree Fixed Polarity Reed-Muller expression
< the root π0 of the tree> ⇔ < given Boolean function f >
< the node πi of the tree> ⇔ < the variable xi of Boolean function f >
< the vertex v of the tree> ⇔ < subfunction fv >
< type of expansion of the node πi {pD, nD}> ⇔ < polarity p of variable xi >
< the path in the tree> ⇔ < the term of Boolean function f >
< the leaf value of the tree> ⇔ < the coefficient cl >



xj = arg min (HpD ( xj ) ∪ H
nD ( xj )). (3)

The minimum of information measures for positive Davio and negative Davio expansions for
a given arbitrary variable is described as follows:

p = min (HpD ( xj ), HnD ( xj )). (4)

Example 7. Consider the first minimization step of incompletely specified Boolean function f
given in Table 1. Information measures for positive Davio and negative Davio expansions are
presented in Table 5. According (3) and (4) variable x5 with negative Davio expansion is chosen.

4. EXPERIMENTAL RESULTS

The experiments were conducted with the program implementation of InfoFPRM algorithm -
on Pentium 100 Mhz (RAM 48 Mb), programming language C++ under OS Windows 95.
Boolean functions were random generated and processed with n and K varying to one thousand
(truth table density is equal 50%).

We applied our method to 100 patterns of random functions and calculate the average of
number of terms and literals. The random functions were generated using standard C++ library.

/* (input) f = f (x1, x2, ..., xn): U → {0, 1}: {0, 1}n→ {0, 1}*/
/*(output) fprm: Fixed Polarity Reed - Muller expression, Free Reed - Muller Tree */
InfoFPRM( U ) {

if ( ∀u ∈ U: f = const ) { fprm←const; }
else {

for(∀ xi ∈ x1, x2, ..., xn) {
Calculate information measures for positive Davio expansion (pD node)
HpD(xi) = Calculate_pD_Entropy( f, xi ); /* see (1) */
Calculate information measures for negative Davio expansion (nD node)
HnD(xi) = Calculate_nD_Entropy( f, xi ); /* see (2) */

}
Choose variable xj for construction of tree node
xj = ChooseVariable (HpD, HnD ); /* see (3) */
Choose expansion type of arbitrary variable xj for construction of tree node
p = ChooseExpansionType(HpD, HnD ); /* see (4) */

/*p = 0 - positive Davio expansion */
/*p = 1 - negative Davio expansion */

U0 ← U| xj = p; /* the subfunction on xj = p */
fprm0 ← InfoFPRM ( U0 ); /*recursively construct nodes for subfunction U0 */

U1← U| xj = 1 - p; /* the subfunction on xj = 1 - p */
f1 ← fprm0 ⊕ f; /* compute f1 */
fprm1← InfoFPRM ( U1 ); /*recursively construct nodes for subfunction U1 */

fprm ← fprm ⊕ xj
p⋅fprm;

return fprm;
}

}

Fig. 3. Algorithm of FPRM minimization based on information estimations for variable ordering
and polarity selection.



The differences of number of terms, literals and
time for Staircase and InfoFPRM algorithms are
given in Table 6 and Table 7.

The results of minimization by Staircase
algorithm [5], programs EXORCISM-MV-2 and
ESPRESSO [16], and InfoFPRM algorithm have
been compared on incompletely specified Machine
Learning benchmarks in Table 6.

Statistical Properties
Taking advantage of our algorithm, we

examined statistical properties of minimized functions. We investigated the relation between this
method performance and the truth table density, which is the rate of ones in the truth table. We
applied our method to the weighted random functions with 20 variables, 20 specified
combinations and ranging from 0% to 100% in density. Fig. 4 shows that the behavior of terms
and literals number in minimized FPRM expression is the same as functional information:

I ( f ) = K log2 K - k | f=0 log2 k | f=0 - k | f=1 log2 k | f=1. (5)

The number of terms is not symmetric and peeks at about 60% the number of literals are
symmetric with a center at 50%, which is like functional information. This result suggests that
the number of literals is better as a measure of the complexity of Boolean functions than is the
number of terms, which fully correspond to S.Minato [10].

Table 5. Information measures (in bits)
for positive and negative Davio
expansions.

 H
pD ( xj ) H

nD ( xj )

x1 7.51 4.75
x2 8 6
x3 6 8
x4 10 5.25
x5 11.61 3.61

Table 6. Staircase algorithm [8] on random generated incompletely specified Boolean functions
(truth table density is equal 50%).

K = n 100 200 300 400 500
CT 21 46 59 87 108
CL 65 167 252 369 480

Time* 0.13 1.67 5.72 19.56 49.56
*Power Challenge 4-processors, OS Linux

Table 7. InfoFPRM algorithm on random generated incompletely specified Boolean functions
(truth table density is equal 50%).

K = n 100 200 300 400 500 600 700 800
CT 19 43 68 86 116 144 173 204
CL 60 140 233 323 413 517 615 718

Time& 0.23 1.65 2.98 6.15 12.2 23.4 35.6 69.4
&Pentium 100Mhz processor, OS Windows 95



5. CONCLUSIONS

The paper presents algorithm to find minimal Fixed Polarity Reed-Muller expression for
given incompletely specified Boolean function in the form of truth table through construction of
Free Reed-Muller Tree. Information measures are used for variable ordering and expansion type
selection.

Note that suggested algorithm is designed to deal with any Boolean functions of n variables −
it means that algorithm allow to minimize completely specified functions. Further investigation
will carry out in the field of development effective algorithms for FPRM minimization of system
of Boolean functions.
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