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Abstract 
 
The main aim of this thesis is to evaluate the performance of image segmentation and texture 
analysis algorithms on synthetic and real images. As a part of this study, two popular texture 

benchmarks called MeasTex and VisTex have been used. A new scene analysis benchmark, 
called PANN database, has been generated as a part of this study for the evaluation of image 
analysis tools on natural object recognition tasks. The thesis demonstrates the considerable 

variability in an image understanding system performance based on different choices of image 
segmentation and texture analysis algorithms used. Hence, it is proposed that optimising each 
image analysis tool in a chain of processes is not enough for deriving optimal performances. 

The effect of a preceding process on its successor is both important and significant. So for 
example, how well we segment images, can have a dramatic impact on the quality of texture 
features we extract from such regions and subsequently this impacts our object recognition 

ability. This thesis includes results of exhaustive experimentation with four image segmentation 
algorithms, five texture analysis algorithms, and two classifiers, to demonstrate this variability. 
The thesis also discusses the similarity and differences in performances highlighting different 

patterns of mistakes made by different combinations. In addition to being a comparative study, 
it also shows results on object recognition in natural scene images. A complete system starting 
from image acquisition to generating ground truth data and classifying it is described for the 

analysis of natural scenes. 
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 Chapter 1 
 

Introduction 
 
The most beautiful thing we can experience is the mysterious. It is the source of all true art and science. 
He to whom this emotion is a stranger, who can no longer pause to wonder and stand rapt in awe, is as 
good as dead: his eyes are closed. 

 
(Albert Einstein) 

 
When someone suggested thousands of years ago that  “a picture speaks a thousand words”, 

probably the idea of computing was limited to basic number crunching. In the modern age, the 
above adage still has significance to computing with images. In computer vision and image 
processing research, we aim to derive better tools that give us different perspectives on the same 

image allowing us to understand not only its content, but its meaning, and significance. Image 
processing can not compete with the human eye in terms of accuracy but it can outperform it 
easily on observational consistency, and ability to carry out detailed mathematical operations. 

Also on simple or structured tasks, computing solutions can be reliable, consistent and cheap. 
With time, image processing research has broadened from basic pixel based low-level 
operations to high-level analysis that now includes the use of artificially intelligent techniques 

for image interpretation and understanding. These new technologies are being developed to gain 
a better semantic understanding of images based on the relationship between its components, its 
context, its history if it is a part of a sequence, and a priori knowledge gained from a range of 

sources. 
 
1.1 Problem definition 

Image understanding is one of the key areas of research where the main objective is to 
understand the components of an image and interpret its semantic meaning. Image component 
recognition is the basic building block of most image processing based research that involves 

image understanding. What comprises an image must be first identified before we can analyse 
the image any further. In some applications, the recognition of image objects may be enough in 
itself. For example, in medical images, the identification of a tumour is enough and no further 

processing is needed. On the other hand, in some cases we need to identify image objects as a 
basis of a more detailed understanding of the image. For example, consider the problem of 
archiving video clips automatically on the basis of their content or context. In such cases the 

image object recognition only acts as a basis of a more detailed analysis of context or content 
relationship. Also, in some applications the knowledge of object category may be defined in 
term of their properties. For example, in the case of content based image retrieval, it is the 

content that defines the object category.  
 
In the majority of image analysis applications, object recognition in images is a fundamental 

step. Such research can be easily categorised as those dealing with well-defined objects and 
those dealing with natural objects. Well-defined objects are mostly found in research dealing 
with industrial applications of machine vision and automated target recognition. Natural objects 

are found mostly in research dealing with remote sensing and scene analysis. In this thesis, we 
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are primarily interested in natural scene analysis, and in particular, the recognition of natural 
objects in images showing natural scenes. The recognition of natural objects in such images is 
not a trivial task and a number of other researchers have addressed this area. Natural objects 

have considerable variability that makes their identification difficult. In addition, because of this 
variability, some features such as shape, that are useful for analysing structured objects, are now 
of only limited use for scene analysis. Also natural objects are found in the real world that can 

not be structured as a laboratory environment. As a result of this, the effect of environmental 
conditions is a key factor in the quality of images that we can obtain. Finally, natural objects 
have a fractal nature, and a very large amount of visual information, which is difficult to capture 

in entirety using a digital camera. 
 
Scene analysis research is one of the foundations of the development of autonomous systems 

that are able to think and act for themselves. The word “autonomous” brings to us thoughts of 
robots that can autonomously carry out the tasks that we do otherwise. Vision for them, is 
obviously a key sensor, and the analysis of natural scenes important for such systems to 

navigate and interact within an environment. However, these applications, though exciting as 
they are, tend to obscure equally important scene analysis applications that have nothing to do 
with mobile platforms such as robots. For example, scene analysis can be used for monitoring 

outdoor environments using a CCTV type camera. It can also be used for vehicle navigation, 
weather monitoring, detection of land mines, and a range of other civil applications. We are not 
restricted to the use of such technology to land only. Scene analysis has also been successfully 

used for underwater and space exploration. In addition, there is a range of military applications 
that benefit from scene analysis. Examples include surveillance, autonomous navigation, and 
weapons technology. In most of these applications, the recognition of natural objects is a goal in 

itself before some action can be triggered.  
 
1.2 Building a chain 
The analysis of natural objects is a complex task and involves a range of image processing steps 
before a final result is obtained. We can discuss these steps as follows. The first step in such 
analysis is the acquisition of natural images. For research purposes, these can be used from 

existing archives. These archives have been generated with different applications in mind. For 
real applications however, we might require the processing of a stream of video images rather 
than the analysis of single images from an archive. The same basic process of analysis applies to 

the video stream, however, the tools used can be quite different. In video analysis for 
applications that demand close to real-time requirements, tools that satisfy these requirements 
are to be preferred. In image acquisition, quite often we are not at liberty to choose the image 

resolution and camera settings as these are either already preset or only limited changes can be 
made. Image processing is a highly computationally intensive task and therefore there is a trade-
off between image resolution and the speed of processing. In some cases we can take images of 

very high resolution but then eliminate areas that are not to be processed, thereby keeping a high 
resolution but still processing a smaller number of pixels. For example, once again consider the 
medical imaging problem. We can digitise an x-ray with a very high resolution, and devise 

methods to crop out information that is of no relevance in finding the tumour. In other 
applications, similar focus of attention technique can be used to process less number of pixels 
that would otherwise need processing. However, in scene analysis applications where we may 
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need to analyse the complete image, this is not mostly possible. Hence the image resolution 
must be carefully chosen and the speed of processing should be an important consideration 
throughout the development of a system. 

 
Acquired images will not necessarily meet our criteria of good quality and will need some form 
of enhancement. Natural images are highly dependent on the quality of outdoor sunlight. The 

properties of an object surface such as texture is, in turn, dependent on such conditions. 
Generating a database of natural images, as we have done in this thesis, is by no means an easy 
task. At one end of our requirements, we need such a database to contain a diverse range of 

images that reflect real conditions as best as possible. At the same time on the end of the scale, 
these differences also need to be minimised, otherwise the whole database might become a 
collection of outliers. An attempt has been made in this study to keep an appropriate balance 

between these two requirements. As the second stage image enhancement is important for 
improving the quality of images such that image objects can be better identified. In most studies 
this would be an important preprocessing step. The images can be blurred or sharpened 

depending on how they look originally. However, enhancement is a very subjective process and 
needs to be optimised on a per image basis. In a study dealing with comparing texture analysis, 
such as ours, we are not sure how image enhancement affects texture measures and is avoided 

for most part on our data.  
 
As the third step, images need to be segmented to identify their key components. An image 

consists of a number of natural objects defined by distinct regions. The image background in 
itself is a distinct region. These regions are defined by their boundaries that separate them from 
other regions. Image segmentation aims to identify these boundaries and identifies which pixel 

comes from which region. At this stage, for the image segmentation process it is not important 
to know which region belongs to which object. Each region is separated from others on the basis 
of some criteria of homogeneity within the region. The region definitions aim to maximise pixel 

differences across regions but at the same time minimise such differences within them. The 
process of image segmentation is a very difficult one. One of the primary reasons for this is the 
nature of objects imaged. These objects often do not have very well defined boundaries in 

images. As a result of poor lighting, the grey level differences between an object and its 
background are poorly contrasted making it difficult for a segmentation algorithm to generate an 
accurate boundary. At the same time, limited information on true boundaries makes it nearly 

impossible to evaluate these segmentation algorithms in isolation. In such difficult 
circumstances, it is to be expected that segmentation errors will be made. The result of such 
errors will be the imprecise definition of regions in images. Pixels will be wrongly assigned to a 

different region or object affecting its statistical distribution. There are two major problems with 
segmentation: under-segmentation and over-segmentation. If by default we presume that totally 
accurate segmentation for natural images is hard to achieve in practice, we need to minimise the 

under- or over-segmentation as much as possible. In the case of under-segmentation, full 
segmentation has not been achieved, i.e. there are two or more regions that appear as one. In the 
case of over-segmentation, a region that would be ideally present as one part is now split into 

two or more parts. These problems, though important, are not easy to resolve. As with 
enhancement, ideally segmentation should be optimised on a per image basis. However, with 
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limited measures for natural images on how well we are segmenting, this is hard to achieve and 
often the parameters are set for the complete batch process when analysing images. 
 

As the fourth step, some ground truth data needs to be generated. In other words, we need to 
determine the identity of regions. Each region must come from one class or category. For 
example, in natural images, these classes can be trees, grass, clouds, sky, etc. One image can 

contain multiple regions from the same class. Also, not all classes are present in one image. 
Each region will be used in the next step to derive some characteristic features of that region. 
Each measurement from a region is called a sample or pattern. We need to establish the class 

identity of each pattern before performing any classification. Regions can be labelled using an 
interactive tool that allows the user to tag regions with class identity. The class identity can be 
an abbreviation such as T for trees, S for sky and so on, or simply sequential numbers such as 1, 

2, …, etc. The generation of ground truth data, though seemingly obvious, is not too trivial 
either. Fortunately, for the purposes of this study a purpose made tool exists that allows this task 
to be performed easily. At the end of the analysis, we are able to label each region in every 

image with a class tag. 
 
As the fifth step, we need to define salient characteristics of the regions that are now labelled. 

For example, if we have one hundred regions of class ‘trees’, then we can derive a number of 
features from these regions that now define what a tree looks like. In future if a new tree region 
appears in a previously unseen image, by deriving the same measurements from this new region 

we could easily identify its class as tree based on feature matching. Characteristic features form 
the basis of most pattern recognition studies. They must be easily calculable and should be 
discriminatory across different classes. In addition, they should be easily interpreted in terms of 

their visual significance. A number of different studies have used different distinguishing 
features as discussed in the next chapter. The analysis of texture is of special importance in most 
studies as most natural objects have different surface properties and these can be used as 

primary means of distinguishing them. The use of different texture analysis algorithms yields 
different number and type of measures. These can be used on their own or combined together. 
The final metric of performance ability is the overall recognition accuracy defined as the 

proportion of samples that the system recognises correctly. All of the preceding steps except 
generating ground truth data are geared towards improving this ability.  
 

As the final step, we need to test how well we can use the features so generated for developing a 
system that would classify natural objects. If the objective is to develop a system for 
commercial rather than research use, we would generate three separate sets of data. The first 

data set will be training data that will teach a classifier to recognise natural objects on the basis 
of samples given to it. A classifier can be thought of as the computer brain that remembers 
samples given to it. These samples are called the training data. The classifier has the task of 

recognising new unseen data that it has not seen before. This ability to identify new samples can 
be based on either generating from training data either mathematical boundary between data 
distributions as in the case of linear classifiers and neural networks, or on the basis of matching 

individual feature values as in nearest neighbour classifiers. How the classifiers are trained 
depends on application requirements. In some cases we may wish to bias the system towards 
better performance on certain categories or certain error measures. The performance of the 
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classifier data on data it already knows is not a good indicator of how well it will perform in the 
real world. Hence, a second data set called validation set can be used to test the true 
performance of the system under experimental conditions. Finally, if the system is deemed as 

satisfactory, it can be used for on-line applications where test data input feeds into the system. 
For laboratory based tests, often we have one complete set of data. Splitting it into a training 
and validation set does not lead to an exhaustive test of the system performance. Hence, in 

literature different cross-validation and bootstrapping techniques have been proposed. One of 
the most commonly used methods, also used here is of hold-one-out or leave-one-out. One 
sample can be taken for testing and all others used for training. This is done N times for N 

samples and the recognition results are averaged. This result is a much better reflection of the 
true performance of the system with the data available. Since it is never possible to have data for 
all possible conditions, one can only give a better representation of classifier performance in the 

real world by developing image database as similar to what the system is likely to encounter in 
the real world. The output of a classifier is an overall recognition rate and a confusion matrix 
that shows where the mistakes or misclassifications have been made. If different mistakes are 

weighted differently, the confusion matrix can be multiplied by a risk or cost matrix to give a 
final result showing how good or poor the system is. 
 
1.3 Hypothesis 
The above description details for us the various processes that form a chain. The input to this 
chain or pipeline are the images and the output is their content recognition. For each process, we 

have a variety of options. For example, for image enhancement, segmentation, texture analysis 
and classification we can choose one or more tools. The aim is to get the best output from this 
chain in terms of the best recognition performance. Now let us state the following hypothesis: 
 
“The optimisation of this chain is not simply a matter of using the best known algorithms for 
each step. Their combined effect is one of the most important things to consider when 
developing natural object recognition schemes”.  

 

As a part of this thesis, we take the above statement as a central theme. We aim to demonstrate 
through exhaustive experimental analysis that using different segmentation techniques on 
natural images followed by different texture extraction methods yield very different data. There 

is a considerable variability in our recognition performance depending on which data we use. 
The overall scheme is shown in Figure 1.1. Here we show that different recognition rates 
R1...R20 will be obtained for different combinations of four segmentation methods followed by 

five texture analysis methods. It is common sense that different results will be obtained if we are 
to use different tools. As different image segmentation methods yield different region 
definitions, it is obvious that texture calculations from these will be invariably affected. 

However, the magnitude of variability in terms of different combinations of algorithms in 
succession has not been fully examined in scene analysis research.  Due to the lack of such 
information, little optimisation is performed for making the chain output better. In this work we 

show that if we use the same feature extraction method but use different segmentation schemes 
to generate regions, significantly different results are obtained. The differences depend on the 
segmentation and texture algorithms chosen. Also there is a considerable difference between the 

worst and the best combination. 
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Figure 1.1  Comparison of recognition performances of different combinations of image segmentation and 
texture analysis methods. 

 
In order to select good feature extraction methods, we have chosen some of the most popular 

methods used by several other researchers as shown in Figure 1.1. To verify their ability to 
recognise texture well, we demonstrate their ability on two synthetic benchmarks. The good 
results on these benchmarks show that these methods are capable of recognising different 

textures quite well and these can be used without hesitation for our scene analysis problem. 
Obviously it has not been possible to use all good methods of texture analysis or even 
segmentation. However, we feel that we are able to lend considerable support to our stated 

hypothesis based on our results. The main contribution of the work is this realisation of the 
importance of chain optimisation in image processing for scene analysis and the role played by 
different process combinations in this optimisation process. Only when we realise that we have 

a problem with traditional ways of approaching the development of object recognition schemes 
in natural scenes, that we can then begin to address it. 
 
1.4 Thesis structure 

The thesis is laid out as follows. In Chapter 2 we review the literature. We have reviewed 
research in the area of texture analysis, image segmentation and natural scene analysis. One of 

the key aims of literature review is to learn from others’ experience and to make us better aware 
of what other research has taken place in similar areas. Also, the knowledge gained from this 
review allows us to select the most appropriate texture analysis and image segmentation 

algorithms for this study as well as texture benchmarks that have been used here. The review 
also puts our study in proper context and perspective. Only by investigating the results of other 
studies, we can measure our success and contribution. 

 
In Chapter 3 we provide a detailed methodology of how we aim to build our image processing 
chain. In this thesis we have conducted experiments with synthetic benchmarks called MeasTex 

and VisTex. In this chapter we detail their properties and give example images. We also briefly 
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review other texture benchmarks that have not been used. One of the main outputs of this 
research has been the development of PANN Scene Analysis Benchmark that contains 448 
natural images for scene analysis experiments. The characteristics of this benchmark data have 

been highlighted. For texture benchmark experiments, we do not need to segment images. 
However segmentation and ground truth data generation is necessary for the scene analysis 
benchmark. Flowcharts showing these are detailed in this chapter along with a detailed 

discussion of individual steps showing examples. 
 
In Chapter 4 we describe the algorithms used for image enhancement, segmentation, texture 

analysis and classification. These algorithms are presented to show in more detail the processes 
that are applied to images before final results are obtained. These algorithms can be, with some 
additional reading, easily programmed. We also provide references from where some of the 

code has been used. The majority of the texture analysis and segmentation code has been written 
as a part of this project. Most other software code has been developed within our laboratory as  
a part of other projects.  

 
In Chapter 5, we show the results obtained on the two texture benchmarks MeasTex and 
VisTex. The results have been presented on using the five texture extraction methods and for 

data from their combined set on texture recognition. For increasing the amount of data available, 
each image in MeasTex data has been subdivided into 16 parts and VisTex images into 4 parts. 
The performances of linear and nearest neighbour classifier are compared. The detailed results 

including confusion matrices for these results are shown in the appendices. 
 
In Chapter 6 we detail the experimental layout for the next two chapters on analysing scene 

analysis benchmark. The benchmark contains eight different objects whose data distributions 
are highly overlapping. We devise a two step strategy for recognising such data. Colour 
information can be used to separate out vegetation data (trees, grass and leaves) from natural 

object data (sky, clouds, bricks, pebbles and road). Separate classifiers are trained and tested on 
these two different data sets. This scheme is computationally simpler and better suited for our 
analysis than a multistage classification strategy that is also explained in this chapter. 

 
In Chapter 7 we detail the results of detailed experiments with vegetation data containing three 
classes namely trees, grass and leaves. A total of 20 data sets based on different combinations 

have been analysed. For each data set, linear classification results are compared with the nearest 
neighbour classification results. The results are compared on how well the two classifiers 
recognise individual classes as well as the overall classification ability. A detailed analysis of 

classifier mistakes and patterns of such mistakes across different data sets is also shown. The 
results are first discussed grouping five feature methods applied on regions generated from the 
same segmentation method. At the end of the chapter, results on the same texture method but 

now for four segmentation methods that generates different region descriptions are grouped 
together and the results are discussed. Finally, we summarise the results of the overall analysis 
and note the best segmentation method performance and texture method performance. These 

final results are used to give support to our earlier hypothesis by measuring the standard 
deviation across different performances and noting the vast difference between the worst and 
the best performances. 
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Chapter 8 is laid out exactly the same as chapter 7. Here we analyse the natural data using the 
two classifiers which has five classes namely sky, clouds, bricks, pebbles and road. The results 

have been produced using leave-one-out cross validation throughout the thesis.  
 
In Chapter 9 we provide the conclusions for this thesis. As a part of this chapter we discuss the 

importance of our results to scene analysis research. We also suggest how our results can be 
further improved. Since the purpose of this study was to rigorously compare results on different 
feature sets, it has not been possible to improve data in any form before subjecting it to analysis. 

It is suggested that results can be further improved if we are to use outlier removal, better 
feature selection, colour and non-linear classifiers such as neural networks. We also 
demonstrate, showing results that principal components obtained from the various feature sets 

are easier to classify using the nearest neighbour classifier and yield some of the best results. 
The chapter concludes with a final summary. 



 24 

Chapter 2 
 
Literature Review 

 
The field of scene analysis is a diverse and highly active research area. In this research work we 
address two important issues. We identify the relative advantages of using specific 

combinations of image segmentation and texture extraction algorithms for scene analysis; and 
we develop a robust methodology for scene analysis based on appropriate tools of image object 
recognition. For the first part, this work is related to a range of research studies published on 

image segmentation, texture analysis, performance comparison of image processing tools in 
these areas, and classification systems. For the second part, the literature available more broadly 
in the area of scene analysis is relevant where the performance of scene analysis systems can be 

compared. In this chapter we touch upon those studies that are of relevance to our work. These 
studies only form a small subset of literature that is available in the above mentioned areas. 
Every year, Azriel Rosenfeld from the University of Maryland publishes an extensive 

bibliography of published work for that year in the area of computer vision (see [184] for the 
recent survey). This chapter has been structured as follows. We review studies on image 
segmentation first, followed by research focussing on texture analysis, and classification in 

image analysis. Scene analysis study review forms the last part of this chapter.  
 

2.1 Image segmentation studies 
Image segmentation is one of the primary steps in image analysis for object identification. The 
main aim is to recognise homogeneous regions within an image as distinct and belonging to 
different objects. Segmentation stage does not worry about the identity of the objects. They can 

be labelled later. The segmentation process can be based on finding the maximum homogeneity 
in grey levels within the regions identified.  
 

There are several issues related to image segmentation that require detailed review. One of the 
common problems encountered in image segmentation is choosing a suitable approach for 
isolating different objects from the background. The segmentation doesn’t perform well if the 

grey levels of different objects are quite similar. Image enhancement techniques seek to improve 
the visual appearance of an image. They emphasize the salient features of the original image and 
simplify the task of image segmentation. The type of operator chosen has a direct impact on the 

quality of the resultant image. It is expected that an ideal operator will enhance the boundary 
differences between the objects and their background making the image segmentation task 
easier. Issues related to segmentation involve choosing good segmentation algorithms, 

measuring their performance, and understanding their impact on the scene analysis system. 
 
2.2.1 Segmentation techniques  

We review primarily those studies that are based on finding object regions in grey-level images. 
We also mention couple of studies that deal with colour segmentation to highlight how this has 
been used for outdoor scene analysis. Image segmentation has been approached from a wide 

variety of perspectives[165]. Our summary is presented for histogram thresholding, edge based 
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segmentation, tree/graph based approaches, region growing, clustering, probabilistic or 
Bayesian approaches, neural networks for segmentation, and other approaches. 
 
Histogram Thresholding 

Ohlander[151] proposed a thresholding technique that is very useful on segmenting outdoor 

colour images. This is based on constructing colour and hue histograms. The picture is 
thresholded at its most clearly separated peak. The process iterates for each segmented part of 
the image until no separate peaks are found in any of the histograms. The criterion to separate 

peaks was based on the ratio of peak maximum to peak minimum to be greater than or equal to 
two. Textured areas were separated from uniform regions by using a Sobel operator marking 
regions that contain large edge activity (more than 25 edge pixels in a 9x9 pixel window). These 

were called “busy” areas. The original area was not to segment inside these busy areas based on 
thresholding but sometimes it is necessary to do so as in the case of segmenting skylines. 
 

Cheriet et al.[41] presented a general recursive approach for image segmentation by extending 
Otsu’s method[157]. This approach has been implemented in the area of document images, 
specifically for segmenting bank cheques. This approach segments the brightest homogeneous 

object from a given image at each recursion, leaving the darkest homogeneous object. This 
method is developed without any constraints on the number of objects in the digital image. The 
method is based on discriminant analysis. The thresholding operation is regarded as the 

partitioning of pixels of an image into two classes: object and background. For each iteration, 
the histogram of the image is drawn and the largest peak is separated from the rest of the image. 
The process is continued till there are no more peaks left in the histogram. Similar to Otsu’s 

method, the proposed method only performs well on the images with two classes. Using the 
method iteratively one can segment more than two objects. This technique also facilitates the 
process of information extraction from document images and preserves the topological 

properties of the extracted information that is used for further recognition. In this study, a set of 
human visual criterion was defined, where each criterion was given a weight. The system was 
trained on 220 bank cheques and 505 different cheques were used for testing the performance. 

Results of the performance analysis indicate that the percentage recognition rate varied between 
93%-100% for different sets of test samples. The authors concluded that the method gives good 
results when the target object is the darkest object in a given image. However, when the target 

object is not darkest the method fails to segment properly.  
 
In a number of applications, histogram thresholding is not possible simply because the 

histogram may be unimodal. In some cases the images may be of such quality that any 
preprocessing may not improve the contrast between objects sufficiently and hence one may not 
achieve two or more peaks in the histogram for selecting thresholds for segmentation. Unimodal 

distributions are typically obtained when the image consists of mostly of a large background 
area with small, but significant regions. This often happens in medical imaging applications. 
Similarly in aerial scenes with many different objects, the histogram may only have one peak 

because of the vast range of intensities for each object and an overlap between these. Bhanu and 
Faugeras[17] propose a gradient relaxation algorithm for solving the above problem and 
compare it to non-linear probabilistic relaxation algorithm proposed by Rosenfeld[183]. The 

process is based on assigning each pixel an initial probability of occurrence and then using 



 26 

gradient relaxation based on compatibility function that taken into account the relationship 
between a pixel and its eight neighbours. The relaxation process is iterative where pixel values 
are changed so that the histogram is no longer unimodal and thresholds can be easily detected. 

Compared to Rosenfeld’s method, the authors claim that this technique provides a better control 
by defining parameters that are under user control. The user can therefore control the degree of 
smoothing at each iteration as well as the initial assignment of probabilities. An extension of the 

gradient relaxation approach for image segmentation is presented in Bhanu and Parvin[18]. This 
new segmentation technique is based on recursive split and merge and has a number of 
advantages. The method avoids any heuristics and arbitrary measures for partitioning the image. 

Hence it does not require a robust merging step in order to remove boundary artefacts. In 
addition, the method does not require detailed peak location and selection procedure.  
 

Li et al. [130] propose that the use of two dimensional histograms of an image is more useful for 
finding thresholds for segmentation rather than just using grey level information in one 
dimension. In 2D histograms, the information on point pixels as well as the local grey level 

average of their neighbourhood is used. The authors show that the application of Fisher linear 
discriminant to the histogram results in an optimal projection where the data clusters are better 
defined and hence easier to separate by choosing appropriate thresholds. The experimental 

results show that the proposed technique has the same computational demands as of one 
dimensional techniques but gives better segmentation results. 
 
Edge based segmentation 

Ahuja et al.[4] describe how pixel neighbourhood elements can be used for image segmentation. 

For each, its neighbours are first identified in a window of fixed size. A vector of these 
neighbours as individual grey values or vector of average grey levels in windows of size 1x1, 
3x3 and 5x5 is determined. The paper uses both vector representations. The aim is to identify a 

weight matrix that multiplied with these vectors will yield a discriminant value that allows the 
classification of pixel in one of the two classes. Two different sets of experiments were 
performed on FLIR images. The first experiment is performed on 10 images. In the first 

experiment, two choices of feature vectors are chosen for every pixel. The images were of size 
64x64 pixels containing a single tank each. The segmentation was done using the super-slice 
algorithm. The features were averaged over different sized windows (3x3 pixels and 5x5 pixels) 

and classification was performed using Fisher’s linear decision rule. In the second experiment, a 
separate set of 25 images was chosen with light objects on dark background. Ten images were 
used for training and 12 points were chosen from the background and 12 from the interior of the 

object for each image. All of these samples were then used to train the classifiers. Testing was 
done on the remaining set of 15 images with some added noise. The authors stated that, for the 
noisy data, using the pixel grey level as the only feature, the results obtained were better than 

those obtained by pixel grey level properties. The authors proposed that the error rate for noisy 
images seems to depend primarily on number of features used. The authors concluded that the 
results suggest that the grey-levels of the pixel and its neighbours are a good set of features to 

use in pixel classification.  
 
Prager[177] proposed a set of algorithms used to perform segmentation of natural scenes 

through boundary analysis. The goal of the algorithm is to locate the boundaries of an object 
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correctly in a scene. First, pre-processing of the images is done to clean up the raw data by 
smoothing and noise-removal. Second, the edge representation is generated. Differentiation is 
done to find the edge-strength at each point in the image. Suppression is then done to remove 

multiple edges formed by spatial differentiation of boundaries. Third, the edges are joined into 
line segments and features are computed. The features include length, contrast, frequency, 
mean, variance and location of each line segment. Fourth, post-processing is done to remove 

unwanted line segments and to build confidence for each of the remaining segments. The output 
of the system is a set of line segments with a list of attributes, such as length and confidence. 
The authors concluded that advantages of this approach are twofold. Firstly, the effects of each 

stage are well defined. Secondly, any stage can be omitted or replaced by a more sophisticated 
variant if desired. 
 

Perkins[167] uses an edge based technique for image segmentation. It is acknowledged that 
edge based segmentation has not been very successful because of small gaps that allow merging 
of dissimilar regions. In order to avoid these problems, the paper proposes an expansion-

contraction technique in which edge regions are expanded to close gaps and then contracted 
after the separate regions have been labelled. The size of expansion is controlled such that small 
regions are not engulfed by this process. The process involves the use of Sobel filter for 

producing edge strengths and directions at every point. The edges are thinned and the result is 
automatically thresholded leaving only ridges. The ridges separate regions of different intensity 
but there may be small gaps. Segmentation is performed by expanding active edge regions, 

labelling the segmented uniform intensity regions, and then contracting edge regions. The 
results are shown for landscape pictures and for pictures of electronic circuits. 
 

Chan et al.[33] developed a new adaptive thresholding algorithm for image segmentation using 
variational theory. The method is a heuristic algorithm, which consists of seven steps. First, 
image smoothing is done using an average filter. Grey-level gradient magnitude is then derived 

from it. A thresholding and thinning algorithm is applied to the gradient magnitude to find the 
object boundary points. The image is then sampled at the boundary points as the local 
thresholds. The sampled local thresholds interpolate the threshold surface. Then the image is 

segmented by the threshold surface. Noise is then removed from the segmented image by a 
variational method. The method is performed iteratively to segment an image. The iteration 
process is stopped using an error or iteration time threshold. The authors presented the results 

on an image with 16 objects and simulated background and also on some handwriting images. 
The results were found to be more satisfactory when there are a large number of objects in the 
image as they yield a better thresholding surface. The method is demonstrated successfully on 

segmenting images for an OCR application. 
 
Tree/graph based approaches 

Cho and Meer[42] proposed a new approach for segmentation, which is derived from the 
consensus of a set of different segmentation outputs on one input image. Instead of statistics 

characterising the spatial structure of the local neighbourhood of a pixel, for every pair of 
adjacent pixels their collected statistics are used for determining local homogeneity. Several 
initial segmentations are derived from the same input image by changing the probabilistic 

component of the hierarchical Region Adjancecy Graph (RAG) pyramid based technique. From 
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the ensemble of these initial segmentations, for every adjacent pixel pair a co-occurrence 
probability is derived, which captures global information (about the image) at the local level 
(pixel level). The final segmentation of the input image is obtained by processing the co-

occurrence probability field with the same RAG pyramid technique. The pixel pairs with high 
co-occurrence probability are then grouped together based on the consensus about local 
homogeneity. This technique can also be used to extract the high confidence homogeneous 

regions from the co-occurrence probability field. Bayesian networks were then used to extract 
features from images. The features extracted were variance of the width of the region, ratio of 
average width to length and the average grey level. Then post-processing of over-segmented 

images is done based upon a priori information about the sought features. The RAG of the final 
segmentation provides the spatial relationship between regions and can used for further 
interactive analysis of the image. This segmentation method is completely unsupervised. 

Experiments were performed on an aerial image, and images of boat, pentagon, and house. 
 
Yeung et al.[229] proposed the technique of segmentation of video by clustering and graph 

analysis. The method is also extended to the Scene Transition Graph (STG) representation for 
the analysis of temporal structures extracted from a video. First, a video is taken and then 
similar shots are recognised to reduce the amount of information to be processed. Then 

dissimilarity between two shots is defined based upon the dissimilarity indices for all image 
pairs in the two shots. Then automatic segmentation of scenes and story units is done. The 
images are segmented based on the presentation of the featured video sequence along the 

timeline and the visual contents. The video shots are then clustered together based upon visual 
similarities of image contents and the temporal dynamics shown in the visual contents within 
individual shots (termed as time-constrained clustering). Then an STG is drawn and analysed. 

An STG is then used to represent compactly the structures of shots and the temporal flow of the 
story of videos. Some new attributes are defined from STG representation for the further 
analysis. It is assumed that two consecutive scenes in a video presentation do not share 

significant similarities in visual qualities. Cluster labels are given to shots in different scenes. 
The experiment was performed on a sequence of shots to extract story units. The video was 
successfully decomposed into a hierarchy of story units, each of which consisted of clusters of 

similar shots. The methodology also provided the mean of non-linear access to a featured 
program which in turn facilitated browsing of video contents. 
 
Region growing 

A range of image segmentation algorithms are based on region growing. We review some 

relevant studies that have used region-growing algorithms. Region growing algorithms take one 
or more pixels, called seeds, and grow the regions around them based upon a certain 
homogeneity criteria. If the adjoining pixels are similar to the seed, they are merged with them 

within a single region. The process continues until all the pixels in the image are assigned to one 
or more regions.  
 

Chang and Li[34] proposed a region-growing framework for image segmentation. This process 
is guided by regional feature analysis and no parameter tuning or a priori knowledge about the 
image is required. The algorithm is known as Fast Adaptive Segmentation (FAS) algorithm. The 

image is first divided into many small primitive regions that are assumed to be homogeneous. 
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These primitive regions are then merged to form larger regions until no more merges are 
possible. Two regions are merged if they pass the homogeneity test and also if the value of the 
edge connecting them is weak. The focus of this study is on investigating how different merge 

criteria affect the quality of segmentation and the processing time. The experiments designed to 
evaluate the merge criteria are based on four important aspects of segmentation output: region 
mergeability, boundary accuracy, merge rejections, and number of iterations required. In these 

experiments, 300 images of size 50x50 pixels were used. Each image had two equal sized 
regions that share a simple straight 50-unit boundary. The data was randomly generated for the 
two regions from a pair of normal distributions having different means and variances. The best 

results using the fast merge method gives the correct classification rate of 86% (with less than 5 
regions in the image). The authors concluded that the algorithm automatically computes 
segmentation thresholds based on local feature analysis. The algorithm is robust and produces 

high quality segmentation on a wide range of textured and grey scale images. This framework 
can also be easily adapted to different image applications by substituting the suitable features. 
The main limitation of this algorithm is however the limited applicability of the adaptive 

homogeneity test on very small regions and order dependency of its segmentation results. 
 
For region growing, seeds can be automatically or manually selected. Their automated selection 

can be based on finding pixels that are of interest, e.g. the brightest pixel in an infra-red image 
can serve as a seed pixel. They can also be determined from the peaks found in an image 
histogram. On the other hand, seeds can also be selected manually for every object present in 

the image. Adams and Bischof[1] studied the effectiveness of seeded region growing approach 
for image segmentation of greyscale images where the seeds are manually selected. The method 
is employed to segment an image into different regions using a set of seeds. Each seeded region 

is a connected component comprising of one or more points and is represented by a set S. The 
set of immediate neighbours bordering the pixel is calculated. The neighbours are then 
examined and if they intersect any region from set S, then a measure δ (difference between a 

pixel and the intersected region) is computed. If the neighbours intersect more than one region, 
then the set is taken as that region for which difference measure δ is maximum. The new state of 
regions for the set then constitutes input to the next iteration. This process continues until all of 

the image pixels have been assimilated into regions. Hence, for each iteration the pixel that is 
most similar to a region that it borders is appended to that region. The SRG algorithm is 
inherently dependent on the order of processing image pixels. One implication of this algorithm 

is that raster order processing and anti-raster order processing do not lead to the same 
tessellation. The algorithm was applied on images with different types of objects in them. The 
authors concluded that the method has the advantage that it is fairly robust, quick, and 

parameter free except for its dependency on the order of pixel processing.   
 
Mehnert and Jackway[141] improved the above seeded region-growing algorithm by making it 

independent of the pixel order of processing and making it more parallel. Their study presents a 
novel technique for Improved Seeded Region Growing (ISRG). ISRG algorithm retains the 
advantages of Seeded Region Growing (SRG) such as fast execution, robust segmentation and 

no parameters to tune. The algorithm is also pixel order independent. If more than one pixel in 
the neighbourhood have same minimum similarity measure value, then all of them are 
processed in parallel. No pixel can be labelled and no region can be updated until all other 
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pixels with the same priority have been examined. If a pixel cannot be labelled, because it is 
equally likely belong to two or more adjacent regions, then it is labelled as ‘tied’ and takes no 
part in the region growing process. After all of the pixels in the image have been labelled, the 

pixels labelled 'tied' are independently re-examined to see whether or not the ties can be 
resolved. To resolve the ties an additional assignment criterion is imposed, such as assigning a 
tied pixel to the largest neighbouring region or to the neighbouring region with the largest mean. 

This is a post-processing step. The algorithm in this study was tested on the image of man made 
objects such as a car, an aeroplane, and buildings. The authors concluded that ISRG algorithm 
produces consistent segmentation because it is not dependent on the order of pixel processing. 

Parallel processing ensures that the pixels with the same priority are processed in the same 
manner simultaneously.  
 

Basu[12] developed general sets of semantics for region detection to describe a number of 
image models using them. The semantic set is established empirically based on simple and 
intuitive properties of a region. It can be extended to include new semantics without altering the 

conceptual and computational framework of the method. In case of region detection, each pixel 
of a digitised image is chosen as a primitive. An ideal region is obtained from a group of pixels 
of the given image by approximating the grey-level values of these pixels with a linear or 

quadratic approximation scheme. A set of attributes is calculated for each pixel of the group 
belonging to the given image as well as for the each pixel of the ideal region. In particular, four 
attributes: contrast, total variation, global average grey-level value, and representative grey-

level value are used. Distance between the group of pixels and the ideal region is obtained as a 
numerical measure of dissimilarity between them. Pixel assignment to regions is decided 
according to the distance measure. The authors concluded that there is a noticeable 

improvement in these results when semantic information is added. There is no optimal set of 
attributes that can be used for all of the images. Any image has to be tested with a number of 
different attribute value combinations in order to obtain the best possible segmentation results. 

This scheme is found suitable for the class of problems in which fine structural detail of an 
image is not needed. The author demonstrated better results as a consequence of using semantic 
information than other known segmentation methods on natural objects. 

 
Beaulieu and Goldberg[14] proposed a hierarchical stepwise optimisation algorithm for region 
merging which is based on stepwise optimisation and produces a hierarchical decomposition of 

the image. The algorithm starts with an initial image partition into a number of regions. At each 
iteration, two segments are merged provided they minimise a criterion of merging a segment to 
another. In this stepwise optimisation, the algorithm searches the whole image context before 

merging two segments and finds the optimal pair of segments. This means that the most similar 
segments are merged first. The algorithm gradually merges the segments and produces a 
sequence of partitions. The sequence of partitions reflects the hierarchical structure of the 

image. This is also termed as agglomerative clustering. The authors concluded that the results 
obtained from the final grouping of the algorithm are far better than the conventional non-
hierarchical methods such as k-means clustering. The advantage of this algorithm over non-

hierarchical methods is that there is no need to specify the seed points. 
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In some studies, edge or gradient information has been used in combination with region 
growing for image segmentation. Gambotto[72] proposed an algorithm that combines the region 
growing and edge detection methods for segmenting the images. The method is iterative and 

uses both of these approaches in parallel. The algorithm starts with an initial set of seeds located 
inside the true boundary of the region. The pixels that are adjacent to the region are iteratively 
merged with it if they satisfy a similarity criterion. A second criterion uses the average gradient 

over the region boundary to stop the growth. The last stage refines the segmentation. The 
analysis is based on cooperation between the region growing algorithm and the contour 
detection algorithm. Since, the growing process is performed by adding segments to a region, 

some pixels which belong to the next region and to the previous region, may be misclassified. A 
nearest neighbour rule is then used to locally reclassify these pixels.  The algorithm was tested 
on a number of x-ray images. The authors concluded that the method uses both the statistical 

model of the region and the average gradient computed over its boundary. The system behaves 
similar to the snake class of algorithms but it can also be used to segment closed regions having 
unknown and complex shapes.  
 
Hojjatoleslami and Kittler[100] proposed a new region growing approach for image 
segmentation which uses gradient information to specify the boundary of a region. The method 

has the capability of finding the boundary of a relatively bright/dark region in a textured 
background. The method relies on a measure of contrast of the region that represents the 
variation of the region grey-level as a function of its evolving boundary during segmentation. 

This helps to identify the best external boundary of the region. The application of a reverse test 
using a gradient measure then yields the highest gradient boundary for the region being grown. 
The unique feature of the approach is that in each step at most one candidate pixel will exhibit 

the required properties to join the region. The growing process is directional so that the pixels 
join the grown region according to a ranking list and the discontinuity measurements are tested 
pixel by pixel. The authors have performed a number of experiments on synthetic and real 

images. The authors concluded that the results are more reliable and consistent than 
conventional thresholding methods. The algorithm is also insensitive to a reasonable amount of 
noise. The main advantage of the algorithm is that no a priori knowledge is needed about the 

regions. 
 
Lu and Xu[132] proposed a region growing technique for texture segmentation, in which a two-

dimensional autoregressive model is used for texture representation. In this technique an 
artificial neural-network is adopted to implement the parameter estimation process for the 
autoregressive model and to compute the local texture properties of regions during the 

segmentation process. The segmentation procedure consists of two stages, namely the initial 
stage and the refining stage. At the initial stage, the image is partitioned into disjoint blocks or 
regions in the form of windows of a fixed size. The block is considered as a part of the internal 

area if it has the same texture class as its four neighbouring blocks in the horizontal and vertical 
direction. Otherwise, it is considered as undetermined. At the refining stage, all initial blocks 
are extended in parallel. Each undetermined block is divided into sub-blocks with equal size. 

Each sub-block is then compared with its neighbouring blocks by using the local information 
obtained by the neural network. The process terminates when each pixel in the image is 
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assigned to one of the initial regions.  The algorithm was tested on 38 different textures from the 
Brodatz album. The algorithm provided accurate segmentation with less computational time. 
 

He and Chen[96] propose a resonance algorithm for image segmentation that is not much 
different from seeded region growing algorithm. It is stressed that the resonance based 
segmentation algorithm is much more robust to illumination changes than conventional 

algorithms that work directly on grey scale images. The basic idea of resonance is based on the 
distribution of energy from a source to other elements in the system. This can be illustrated by 
considering each pixel in the image as a mass connected to a platform by a spring. The image 

contains several such mass-spring pairs that can be considered as immersed in water. When an 
external force acts on one such pair, there is a certain amount of displacement. If the external 
force matches the natural frequency of the mass, then the mass will resonate and the vibrations 

will spread to other mass-spring pairs that will oscilla te as a result. The effect will only, 
however, last within a circle of certain radius and become weaker as we move away from the 
source. It is proposed that a seed based segmentation algorithm based on the above theory 

should be used only on feature images rather than original grey level images. The experiments 
are performed on Brodatz texture images of size 512x512 pixels. The grey level average is 
extracted within windows of size 8x8 and a feature image is generated. Since averaging is 

illumination dependent, it is expected that the true ability of the algorithm can be experimentally 
determined using such a feature. The results show better performance of the resonance 
algorithm compared to fuzzy c-means and histogram analysis segmentation methods. 

 
Singh and Al-Mansoori[194] compared region growing and gradient based techniques for 
detecting regions of interest in digital mammograms. These regions of interest form the basis of 

applying shape and texture techniques for detecting cancerous masses. The study also proposes 
a two stage method where gradient based techniques are applied followed by region growing 
method which yields less number of regions for analysis. First, histogram equalization and 

fuzzy enhancement techniques improve the quality of image. Their utility is then compared 
using three quantitative measures. After the enhancement step, the images are then subjected to 
region growing or gradient operations (masking) for segmentation purpose. The segmented 

image is then analysed for estimating the regions of interest and the results are compared against 
previously known diagnosis of the radiologist. The authors concluded that the region growing 
segmentation gives lesser number of regions for the analysis as compared to gradient based 

techniques without compromising on quality. 
 
Clustering 

Image segmentation can be performed effectively by clustering image pixels. Cluster analysis 
allows the partitioning of data into meaningful subgroups and it can be applied for image 

segmentation or classification purposes. Clustering analysis either requires the user to provide 
the seeds for the regions to be segmented or uses non-parametric methods for finding the salient 
regions without the need for seed points. Clustering is commonly used in a range of applications  

such as image segmentation and unsupervised learning [108]. A number of issues related to 
clustering are worth studying including how many clusters are the best and how to determine 
the validity of clusters. In a number of segmentation techniques, such as fuzzy c-means 

clustering, the number of clusters present in the image has to be specified in advance. Several 
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techniques that do not require such initialisation have been proposed in literature (see [164] for 
a discussion on the limitations of traditional clustering techniques and description of non-
parameteric clustering that does not need prior initialisation). 

 
Kurita[123] developed an efficient agglomerative clustering algorithm for region growing. This 
algorithm is a typical example of hierarchical clustering. The algorithm starts with an initial 

partition of a given image into N segments and sequentially reduces the number of segments by 
merging the best pairs of segments among all possible pairs in terms of a given criterion. The 
merging process is repeated until the required number of segments is obtained. The algorithm 

uses sorted linked lists to maintain neighbouring relations of segments and also a heap structure 
to store dissimilarities of all possible pairs of segments. A set of experiments was performed on 
a monochrome image and some range images of size 128x128 pixels. The number of regions 

turned out to be around 100 and the computational time was about 6 seconds. In case of range 
images each planar region is correctly classified into one segment but the curved regions were 
classified into several patches. The authors concluded that the algorithm makes the stepwise 

optimisation approach for region growing. 
 
Frigui and Krishnapuram[64] have addressed three major issues associated with conventional 

partitional clustering. The issues addressed are sensitivity to initialisation, difficulty in 
determining the number of clusters and sensitivity to noise and outliers. Their proposed method 
Robust Competitive Agglomeration (RCA) starts with a large number of clusters to reduce the 

sensitivity to initialisation and determines the actual number of clusters by a process of 
competitive agglomeration. This method combines the advantages of hierarchical and partitional 
clustering techniques. To overcome the sensitivity to outliers, concepts from robust statistics are 

incorporated. Overlapping clusters are handled with the use of fuzzy membership. To handle 
doubtful regions, and to reduce the sensitivity to initialisation, the algorithm uses finite 
rejection. The agglomerative property makes it relatively insensitive to initialisation and local 

minima effects.  The algorithm was tested on noisy data sets with synthetic ellipsoidal clusters 
and linear clusters, and a number of real range images. The results proved that RCA can provide 
robust estimates of the prototype parameters even when the clusters vary significantly in size 

and shape, and the data is noise contaminated. 
 
Pauwels et al.[164] investigated non-parametric clustering for image segmentation. They 

propose a robust and versatile method that is able to handle unbalanced and highly irregular 
clusters using intermediate level processing. First, a density image is constructed by convolving 
the image data with a Gaussian density kernel. The nearest neighbours for each pixel are 

determined in a neighbourhood. The neighbourhood considered is one percent of the total 
number of pixels in the image. After convolution, candidate clusters are identified using 
gradient ascent and each point is linked to the point of highest density among its neighbours 

(including possibly itself). These process results in an overestimation of the number of clusters, 
carving up the data set into a collection of relatively small clumps centred around local maxima. 
A hierarchical family of derived clusters is constructed by using the data density to 

systematically merge neighbouring clumps. The order of merging is established by comparing 
the density values at neighbouring maxima with respect to density at the saddle -point (which is 
defined as the point of maximal density among the boundary points). The measures of cluster 
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validity for a given cluster is then quantified by two mathematically defined indices: isolation 
and connectivity. Using this clustering algorithm, it becomes possible to extract image regions 
that are salient and semantically meaningful. The authors concluded that the algorithms 

produced a smooth version of the inverse equalisation algorithm without destroying any 
information in the image. The method can be used on greyscale images such as natural scenes, 
faces, handwritings etc. The method is analysed on a number of synthetic and real images. The 

regions segmented were found homogeneous and the objects were easily identified from the 
image background. One of the advantages of the algorithm is that it automatically determines 
the number of objects from the image (or the number of optimal clusters) and therefore no a 

priori knowledge about the number of objects is needed.  
 
Ohm and Ma[154] proposed a feature based cluster segmentation method for image sequences. 

The algorithm analyses specific features from the image sequence and checks their reliability 
and evidence locally for images in order to build segments that are probably part of one object.  
The segmentation procedure is basically a clustering procedure, which takes into account 

different features such as colour and motion. The approach is similar to vector quantisation. 
Different weights are applied to different features according to their reliability. The pixel- 
feature vector is then compared to a set of cluster-feature vectors and hence classified to a 

feature class to generate clusters. The set of cluster feature vectors is updated for each image in 
the sequence, which is also used for the segmentation of the next image. The labels associated 
with different clusters remain identical for different images of a same scene. After a scene 

change, the whole process is started with a completely new set of feature vectors, which are 
computed, from the first frame after the change and hence the whole sequence is segmented. 
The algorithm was performed on a sequence of flower garden images. In all of the frames the 

segmentation and tracking was done automatically. The authors concluded that the algorithm is 
a hybrid combination of a block-recursive and a pixel-recursive technique and produces a dense 
vector field. The algorithm also has the capability to set flexible weights for different feature 

components automatically. 
 
Ng[149] describes an extension to the conventional k-means algorithms by modifying the 

splitting rule in order to control the number of cluster members. By adding suitable constraints 
into the mathematical program formulation, the author developed an approach that allows the 
use of k-means paradigm to efficiently cluster data sets with a fixed number of elements in each 

cluster. The main objective of this algorithm is the minimisation of an objective function usually 
taken as a function of deviations calculated for all patterns from their respective cluster centres. 
This algorithm minimises the objective function through a scheme that starts with an arbitrary 

initial cluster membership in an iterative manner to obtain better clustering results. Distributed 
pruning technique is used to reduce the number of clusters in the parallel manner. The results 
show that as the amount of pruning increases, as the data between partitions becomes more 

skewed i.e., the similarity between a sample and its membership in two or more clusters 
increases. The algorithm was used on a Print Circuit Board (PCB) insertion problem. 
 

The comparison of various clustering techniques and studying their behaviour is important. It is 
important that an optimal clustering technique is able to choose the correct number of clusters. 
Dubes and Jain[56] detail comparisons on three classes of clustering techniques. A total of eight 
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programs are compared on minimised squared error based clustering, hierarchical clustering and 
graph theoretic clustering. Important issues related to the use of clustering programs such as 
user options, computational cost, input and outputs, and comparing programs that yield different 

outputs have been considered. They propose that different clustering algorithms can be 
compared on the basis of four factors: manner in which the next clustering is chosen or updated; 
criterion for creating new clusters; criterion for deleting and merging clusters; and the 

initialisation procedure. Approaches based on ranking clustering programs on the basis of their 
performance on a standard data set with performance criterion such as minimising squared error 
are criticised. One way of categorising such program is to cluster their performances. A set of 

nine criterion are defined for comparing clustering programs based on the manner in which 
clusters are formed, structure of data, and the sensitivity of the clustering technique to changes 
in data that do not essentially alter its nature. The different clustering programs are compared on 

the basis of these criteria using handwritten character data and a similarity matrix for these 
methods is shown. 
 

The validity of clusters is important to study. Yarman-Vural and Ataman[227] critique several 
areas of clustering methodology including the definition of clusters, determination of the 
number of clusters, heurtistic partitional clustering algorithms and the effect of noise on 

determining accurate clusters. Cluster validity criteria including maximum likelihood 
information criteria and sum of squared errors is discussed. The first criteria is found to be 
better when the number of clusters changes. This paper also proposes a method of improving 

conventional clustering algorithms so that they display better performances with noise 
contaminated data. The ISODATA algorithm is modified to show its improved performance on 
up to 20% noise contamination in an artificial Gaussian mixture data set. Similar good 

performances are achieved on image analysis applications. Dubes[57] investigates the utility of 
Davies and Bouldin index for cluster validity and compares it with the proposed improved 
Hubert statistic. Results on a Monte Carlo study are reported by varying parameters such as 

dimensionality, number of patterns, sampling window, and number and spread of clusters. The 
new index is found to perform much superior as it shows more consistent performance when the 
above parameters are varied. 

 
Zahid et al.[231] proposed a new heuristic method for fuzzy cluster-validity. Its principle is 
based on the evaluation of fuzzy separation and fuzzy compactness of clusters. The main 

attempt of the study is to analyse the natural structure present in the data set. This evaluation, 
which measures the quality of fuzzy clustering, assigns a real number to the outputs of the used 
fuzzy clustering algorithm. Two kinds of outputs are considered. For each output, a combination 

of fuzzy separation and fuzzy compactness criterion is evaluated. Maximising the resulting 
criteria results in good clustering. This maximum value allows in identifying the right number 
of clusters. The first function calculates a fuzzy separation and fuzzy compactness ratio by 

considering geometrical properties and membership degrees of the data. The second function 
evaluates this ratio by using only the properties of membership degree. The aim of classification 
phase is to generate a well-defined fuzzy c-partition that is as close as possible to the natural 

structure of the data. Four numerical examples were used by the authors to illustrate the use of 
the proposed algorithm as a validity function. The obtained results indicate that the proposed 
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method provides better answers than other cluster-validity functions especially with overlapping 
fuzzy clusters.  
 
Probablistic and Bayesian approaches 

Haddon and Boyce[77] use co-occurrence based approach to image segmentation making use of 

region and boundary information in parallel for improved performance on a sequence of images. 
The authors examined image segmentation by unifying region and boundary information using 
co-occurrence matrices. The co-occurrence matrices were used to generate the feature space. 

The analysis was performed in the context of an ensemble of images. Based on the location of 
the intensities of each pixel and its neighbours in the co-occurrence matrix, initial segmentation 
is done. Each pixel is then associated with a tuple, which specifies whether it belongs to a given 

region or if it is a boundary pixel. This tentative segmentation was then refined by relaxation 
labelling that ensures local consistency of pixel labelling during segmentation by minimising 
the entropy of local neighbourhoods (see [84,103] for details on relaxation labelling for 2D and 

3D images). If a pixel does not belong to the boundary, then it is assigned to one of the regions. 
This classification is entirely uni-dimensional in the co-occurrence direction and contains no 
explicit local consistency. The consistency for regions and boundary was obtained assuming 

that boundaries are not wider than one pixel. The algorithm was applied to synthetic images and 
infrared images of natural scenes. The authors find that segmentation worked reasonably well 
for most of the areas in the images while the majority of real edges and boundaries were 

correctly located. The algorithm was applied on a series of infrared greyscale images taken by a 
low flying aircraft. The authors conclude that the technique is robust and performs well even in 
poor imaging conditions. The algorithm is less effective if the clusters in the co-occurrence 

space have substantial overlap due to the imposition of local consistency. Since the techniques 
use global information in a local context, it was possible to adapt it to varying image 
characteristics i.e. variation in colour and texture. The difference between the co-occurrence 

matrices generated by a sequence of images is negligible if the image content and conditions do 
not change significantly.   
 

A further extension of the above methodology is provided by Haddon and colleagues in their 
later study, Haddon and Boyce[78]. They suggest two intrinsically similar techniques for image 
segmentation and edge detection based on co-occurrence matrices. The first technique defines 

transforms that enhance the difference between typical and atypical image features. The second 
technique uses the location of region distributions in an edge co-occurrence matrix and defines 
the location of corresponding boundary distributions.  The techniques are analysed by labelling 

the matrices. The labelled matrix can be used to segment the regions of an image and to 
simultaneously detect prominent regions. The image segmentation and edge detection is done at 
the same time. The operator used to generate the edge co-occurrence matrix effectively 

generates a lookup position within the labelled matrix. The operator is convolved with the 
neighbourhood of a pixel and this pixel is then replaced by the label of the co-occurrence matrix 
at the lookup position. This process is repeated using the same operator for a variety of operator 

orientations. Correlation techniques and conjugate iteration schemes are used to determine the 
location and the extent of the distributions in the co-occurrence matrix. The algorithm is applied 
to FLIR imagery and multispectral data. The majority of components in the algorithm are 
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performed in parallel. The results are significantly improved as compared to the previous 
algorithm where segmentation and edge detection were performed simultaneously. 
 

Haddon and Boyce[79] used co-occurrence method to segment a sequence of FLIR images into 
its major regional components. These regions are subjected to texture classification. The co-
occurrence matrices are temporally smoothed to ensure consistency of segmentation in the 

sequence. The edge co-occurrence matrices are decomposed using discrete Hermite functions 
because their underlying structure is Guassian due to the Guassian noise present in the images. 
If this structure is removed, what is left is the texture structure of the image. Neural networks 

(MLP) are then used to classify the images using the coefficients of the Hermite functions. Co-
occurrence matrix is a multidimensional histogram, in which each element (i k), is the frequency 
with which two events i and j co-occur with specific relationship to each other. Edge co-

occurrence matrices emphasize the intensity difference between two pixels. The authors of this 
paper used the canny edge operator to form the matrices. A sequence of 300 FLIR images from 
a low flying aircraft approaching a bridge are obtained and classified. These images are first 

segmented using co-occurrence matrices into their major regions and using temporally 
smoothed averaged matrices. Then a co-occurrence matrix is formed for every major region. 
The matrices are decomposed using orthogonal Hermite functions. The higher order functions 

describe the texture of the region and form the input vector of 121 features. Every third data 
sample was taken to form the validation set. Training and validation sets are disjoint. MLP 
networks were trained until validation error started to increase (over-train). Additionally, 

principal component analysis was used to extract the most descriptive of those 121 features. 
Very good results have been obtained with both a single layer network (architecture 25x10x5) 
with 96.9% training and 98.3% validation accuracy and a two layer network (architecture 

25x5x8x5) with 94.8% training and 88.7% validation recognition accuracy. The major regions 
classified were grass, trees, sky, river reflecting trees and river reflecting sky. The major 
problems are the reflecting classes. PCA results were not as good as with the use of the full 121 

features. The techniques described in this paper seem to be robust with noise. Overall, 93.4% of 
image area was correctly classified. 
 

Haddon et al.[80] developed an algorithm for automatic segmentation and classification of 
images using a co-occurrence based approach using Hermite functions. The basic approach 
consists of four steps: segmentation, texture analysis, initial classification and labelling and 

spatio-temporal classification. In the segmentation phase, the key regions are separated from 
each other and from the remainder of the scene using co-occurrence matrices and edge detection 
simultaneously. The texture classification of segmented regions is performed using discrete 

Hermite functions. The co-occurrence matrices are decomposed for the calculation of features 
of segmented regions. The result of texture analysis is a low order feature vector that describes 
the texture of a segmented region. The features that contain information on discriminating 

between classes are selected and used as inputs to a multi-layer neural network classifier.  Local 
consistency of interpretation is achieved in regions both spatially within an image and 
temporally within a sequence of images. A relaxation labelling approach is used to associate 

pixels belonging to particular coefficients. The compatibility coefficients take into account the 
current image and its predecessor in a sequence of images and results of relaxation labelling are 
applied to the previous image for classification. The authors evaluated the results on a sequence 
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of FLIR (Forward Looking InfraRed) images taken from a low flying aircraft and also 
performed snow profile analysis. The authors found that the algorithm is generally applicable to 
a wide range of imaging applications. 

 
Haddon and Boyce[81] presented a method of ensuring consistency of interpretation in terms of 
the classification of segmented images, both spatially within an image and temporally through a 

sequence of FLIR images taken from a low-flying aircraft. It is important to maintain 
consistency with time in video analysis. Inconsistencies in segmentation between frames of a 
sequence are unacceptable in autonomous vehicle navigation applications. The image is first 

segmented using a co-occurrence based technique. After the image is segmented, the regions are 
classified based on texture. Co-occurrence matrices are also used for describing the texture of 
each region. The co-occurrence matrices are then decomposed using discrete Hermite functions. 

Features selected by using the linear discriminant analysis and principal components analysis 
were fed into an MLP neural network for classification. In enforcing spatio-temporal 
consistency, the output values of the neural network are taken into consideration. Two or more 

roughly equal outputs indicate that both outputs are considered equally likely. Consistency is 
enforced only when there is insufficient evidence of a region class. Consistency is enforced by 
using relaxation labelling, however, instead of using it in its classical way (looking at the image 

pixel by pixel), the authors treat a region as a single entity with both spatial and temporal 
neighbours. Adjacent regions, both spatially and temporally, are considered as neighbours. 
These neighbours influence the probability that a region belongs to a particular class if the result 

of the neural network is insufficient. These techniques were applied to a 12 second 300 frame 
sequence of infrared images. Five classes, trees, grass, sky, river reflecting trees and river 
reflecting sky are considered. The authors find very good results after the initial classification 

(first frame) regions. Regions that have equal membership in all classes were left as white. After 
consistency enforcement, all regions are classified, and only a few misclassification errors are 
found. 

 
Comer and Delp[45] proposed a new algorithm for the segmentation of textured images using a 
multiresolution Bayesian approach. This algorithm uses a Multiresolution Gaussian Auto-

Regressive (MGAR) model for the pyramid representation of the observed image. This 
algorithm effectively uses larger neighbourhoods to perform the segmentation than the single 
resolution algorithms. The observed data, which is a multiresolution representation of the 

observed image, is obtained using Gaussian pyramid decomposition. The nodes in a binary tree 
then index the data and an MGAR model is used. Value of a random variable is then predicted 
as a linear combination of the values of the random variables at previous nodes. A Gaussian 

pyramid representation of the image is generated. A multiscale Markov Random Field model is 
then used for the class label pyramid. The optimisation criterion is then used for the image 
segmentation. This criterion minimises the expected value of the number of misclassified nodes 

in the multiresolution lattice. Expected Maximisation (EM) algorithm is finally used for 
parameter estimation. This method also assigns a cost to an incorrect segmentation based on the 
number of incorrectly classified pixels in the segmentation. The algorithm was applied to two 

different images where three pyramid levels were considered, i.e. the original image was 
examined at three different resolutions. The algorithm performed well on both the images 
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segmenting them into regions of homogeneous textures. The algorithm was found successful in 
segmenting the image better than the EM and Multiresolution Posterior Marginal techniques.  
 
Neural networks segmentaton 

Campbell et al.[31] proposed a automatic segmentation and classification method for outdoor 

images using neural networks. First, the images are segmented using Self-Organising Feature 
Maps (SOFM) based on texture and colour information of the objects. SOFMs used consisted of 
64x64 nodes for best segmentation. A set of 28 features is then extracted from each region. The 

features include: average colour, position, size, rotation, texture (Gabor filters) and, shape 
(using principal components). Classification is then performed using a Multi Layer Perceptron 
with 28 input nodes and 11 output nodes. The training is performed on 7000 regions and testing 

is done on a independent set of 3000 samples. Over 80% regions were classified correctly using 
Learning Vector Quantisation and 91.9% regions were classified correctly using the Multi Layer 
Perceptron. 

 
Papamarkos et al.[160] have developed the procedure of image segmentation using self 
organising maps. The use of these neural network paradigms is considered equivalent to 

multithresholding where the output of the network defines a number of homogeneous clusters. 
One of the interesting note from this paper is the technique used for finding the optimal number 
of thresholds or in other words the number of segmented regions. Considering that grey level 

distributions within the region are Gaussian, it is suggested that the linear combination of 
probability density functions for individual regions should match the overall density of the 
global histogram of the original image. For different number of segmented regions, we can find 

which result minimises the error. 
 
Other approaches 

Medioni and Yasumoto[140] proposed using  fractal dimension method for image segmentation. 

The authors computed the fractal dimension of textures in frequency domain by approximating 
the log power spectrum by a straight line. The difference of the logarithm of the expected values 
of the two dipole-statistics yields a single texture feature. This procedure approximates the 

fractal dimension, which relates to the expected statistics of the grey-level difference versus the 
statistics of distance vector. The main drawback of this method is that segmentation based on 
single feature extracted from images is not always possible.  
 
Pentland[166] addressed the problem of fractal based description of natural scenes. The authors 
addressed the following problems: (i) Representing natural shapes such as mountains, trees, and 

clouds, and (ii) Computing such description from image data. It has been observed that many 
natural objects such as leaves, snowflakes, etc. have a fractal nature. This makes it impossible to 
measure them accurately in an image. For example, measuring the length of a coastline, no 

matter what the size of the measuring tool is selected, all the curves smaller than the size of the 
measuring tool will be missed. Standard notions of length and area do not produce consistent 
measurement for many natural shapes: the basic metric properties of these shapes vary as a 

function of the fractal dimension. Fractal dimension, therefore, is a necessary part of any 
consistent description of such shapes. This means that fractals have to be used in the 
measurement of such shapes. The characterisation of image texture by means of a fractal surface 
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model makes it impossible to describe image in a manner that is stable over transformation of 
scale and linear transforms of intensity. The authors demonstrate how natural images can be 
segmented using this method. It is suggested that in this manner the segmentation is more stable 

in scaling the images down rather than using thresholding techniques on image intensity. 
Additionally, comparison with correlation techniques and co-occurrence techniques has been 
made using a mosaic of 8 natural textures constructed by Laws[127]. On these textures, the 

authors demonstrate that the fractal methodology yields better results than known segmentation 
algorithms. 
 

Xu et al.[225] present a segmentation algorithm that is based on partitioning the image into 
arbitrarily shaped connected regions to minimise the sum of grey level variations over all 
partitioned regions under the constraints that each partitioned region has a specified number of 

pixels and that two adjacent regions have significant differences in average of grey levels. A 
minimum spanning tree has been used to construct these partitions and as such the segmentation 
problem reduces to tree partitioning problem. The effect of various noise contamination on the 

segmentation results is evaluated on the basis of how the noise affects the tree representation 
and tree partitioning. 
 

In some studies, topological maps have been used as a structural method for image 
segmentation. Brequelaire and Brun[23] proposed a novel technique for image segmentation 
using topological maps and inter-pixel representation. The authors describe a data structure that 

allows the system to store and process regions of any size or form. It is called a model of 
discrete maps which helps in efficient computation of parameters required by the segmentation 
algorithm. There are two aspects in a segmented image representation: the geometrical aspect 

that describes the shape of regions, and the topological aspect that describes neighbourhoods 
and inclusions of regions. A topological map is defined as a partition of an oriented surface in a 
finite set of points.  A discrete map is based on both geometric and topological levels of 

representation co-operating together.  The discrete map data structure is then used to design 
segmentation algorithms. In the study the authors have described a recursive split and merge 
algorithm for segmentation using discrete data structure. In the first step, segmentation is done 

and in the second step refinement is done recursively to improve the quality of segmentation. 
The results are provided for a test image of Lena and images for various iterations are shown.  
 

Ojala and Pietikäinen[156] presented an unsupervised texture segmentation method using 
feature distributions. The proposed algorithm uses distributions of local binary patterns and 
pattern contrasts for measuring the similarity of adjacent image regions during the segmentation 

process. Texture information is measured with a method based on local binary patterns and 
contrast (LBP/C). The segmentation method consists of three phases: hierarchical splitting, 
agglomerative merging and pixel-wise classification. First, hierarchical splitting is used to 

divide the image into regions of roughly uniform texture. Then, agglomerative merging is 
performed to merge similar adjacent regions until a stopping criterion is met. A pixel-wise 
classification is then performed to improve the localisation. The authors use a non-parametric 

likelihood test as a pseudo-metric for comparing feature distributions. The authors tested the 
method on four texture mosaics and two greyscale images of natural scenes. The method 
performed very well in these experiments. The authors concluded that the method is not 
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sensitive to the selection of parameter values and does not require any a priori knowledge about 
the number of textures or regions in the image. The method can also be easily generalised to 
utilise other texture features, multiscale information or colour features. 

 
Yoshimura and Oe[230] proposed a segmentation algorithm for texture images using genetic 
algorithms that automatically determines the optimum number of segmentation areas. The 

authors divide the original image into many small rectangular regions and extract texture 
features from the data using two-dimensional autoregressive model, and other features such as 
fractal dimension, mean, and variance. The authors use three types of evolutionary segmentation 

methods. The first method uses Genetic algorithms (GA), the second method uses GA's and Self 
Organising Maps (SOM), the third method uses GA's and SOM considering the optimum 
number of segmentation areas in an image. Various experiments were performed on a set of 

simulated images with 3 or 4 different real textures. The authors found that the third method 
performed the best and the algorithms were visually accurate as compared to other conventional 
techniques. The first method produced good results but it is necessary to specify the number of 

regions beforehand. The second method selected the number of regions automatically, and the 
third method finds optimum number of regions with homogeneous texture. The authors 
concluded that the methods are effective for the segmentation of images that contain similar 

texture fields. 
 
Perner[169] presents a methodology for a case based reasoning image segmentation system. The 

image segmentation is performed by looking up a case base for similar cases and using the 
segmentation parameters associated with the matched case. Hence, images are first matched for 
similarity on the basis of features such as image moments. Similarity is determined on the basis 

of measure proposed by Tversky[210] for non image information and a weighted similarity 
measure for image data. If ideal segmentation parameters are known for reference images, by 
matching new images to these reference images, the same segmentation parameters can be used. 

The system is shown to perform well on brain CT segmentation. 
 
2.1.2 Segmentation evaluation 
Kitchen and Rosenfeld[118] discuss the various issues related to under- and over-segmentation 
of images. The problems are blamed on the fact that context information is not used in  
segmentation algorithms. For example, a difference in brightness that is not significant in some 

contexts (such as in fluctuation in a textured background) may well be significant in other 
backgrounds (such as part of a low contrast border of an object with its surrounding). Under-
segmentation is considered as a much more serious problem as it is easier to recover true 

segments through a merging process after over-segmentation rather than trying to split a 
heterogeneous region. In some situations, segmentation evaluation is based on how well the 
segmented image corresponds to the ground truth segmentation in terms of pixel by pixel 

differences. In most scene analysis applications, these differences need to be minimised and 
hence the segmentation criteria are rather harsh in terms of penalising algorithms severely if 
they do not segment accurately. However, in some applications of segmentation, such as in 

medical imaging, it may be enough that the segmented region overlaps with the true region (e.g. 
if the segmented region of interest overlaps with the true region, e.g. a tumour, then the 
segmentation can be classed as successful). Hence segmentation can be considered acceptable 
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even if it only partially detects the true borders or region. For measures on how to evaluate 
segmentation in such cases, refer to [113]. 
 

The evaluation of image segmentation programs is an important field of study. The evaluation 
can be categorised as supervised or unsupervised based on whether a priori information is 
available or not. A number of different approaches have been adopted. Some qualitative 

guidelines have been developed in Haralick and Shapiro[89]. Quantitative techniques of 
evaluation have been used by several authors. Weszka and Rosenfeld[224] used a busyness 
measure and classification error as performance criteria. Lavine and Nazif[126] defined a set of 

parameters for unsupervised segmentation including region uniformity, region contrast, line 
contrast and line connectivity. Sahoo et al.[186] used the uniformity criterion of Lavine and 
Nazif and a shape measure computed from the gradient values and the selected threshold value. 

In the case of supervised segmentation, errors are measured using a reference. The differences 
between the reference and segmentation output are measured to determine how well the 
segmentation algorithm performs. The simplest measure for supervised segmentation is 

probability of error as shown in Yang et al.[226]. This criteria can be used for finding optimal 
threshold values. This error can be decomposed into an under-merging or over-merging 
error[126]. This error measure may not however give full information on the quality of 

segmentation. Yasnoff et al.[228] have in addition proposed the pixel distance error for 
measuring segmentation performance in which the positions of misclassified pixels are taken 
into account. Two error measures, the percentage area misclassified and pixel distance error are 

used.  
 
Another approach to measuring the quality of segmentation is based on the differences in the 

values of features computed from an ideally segmented image and an actual segmented image. 
These can be any object features, e.g. shape features such as eccentricity, or their texture, etc. 
This approach has been detailed by Zhang[232]and Zhang and Gerbrands[233]. Yang et al.[226] 

use shape features including area, circularity, orientation and elongation of segmented objects 
for the comparison of three segmentation methods. The under-merging, over-merging and 
ultimate measures of accuracy criteria are evaluated for comparing the algorithms considered. 

Wang et al.[218] compares several approaches for texture image segmentation. The techniques 
used are k-means, fuzzy k-means, fuzzy Adaptive Resonance Theory (ART2) and fuzzy 
Kohonen Self Organising Feature Mapping (SOFM). In their tests five features including 

energy, entropy, correlation, inertia, and homogeneity are used. After segmenting the images, 
features are extracted using Spatial Grey Level Dependence Method (SGDLM). The method is 
developed by Wang et al. [217]. This method is used because it is 3 times faster than SGLDM 

method developed by Haralick. The co-occurrence features are calculated in four directions of 
0, 45, 90 and 135 degrees with respect to the horizontal axis. These features are selected 
because of: (i) strong within class variance; (ii) strong between class separation; and (iii) low 

sensitivity to small sample size. Experiments were performed on 2 images with different 
textures of size 150x360 pixels and 100x100 pixels. The experiments showed some limitations 
of k-means algorithm such as its slow processing ability and unstability. Clustering errors were 

reduced by SOFM. Another advantage of SOFM algorithm is that the size of the neighbourhood 
was automatically adjusted due to its self-organising nature. The numerical results showed that 
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the fuzzy approaches are better than conventional k-means algorithms and SOFM provides the 
best approach for texture image segmentation. 
 

Hoover et al. [101,102] proposed a methodology for evaluating range image segmentation 
techniques. The authors have also created a framework for the comparison of range image 
segmentation techniques. Experiments were performed on the data acquired through laser range 

finder or a triangulation technique. Images are segmented using any popular method that is to be 
evaluated. The authors have developed a tool for a human operator to create ground truth 
segmentation. The operator assigns three different labels to the regions. The labels are shadow 

pixels, noise pixels and cross edge pixels. Then machine segmentation is compared to the 
ground truth. Every region in the ground truth and machine segmented images is mapped as one 
of the five possibilities: correct detection, over-segmentation, under-segmentation, missed and 

noise. The first three categories apply to mappings of regions between the ground truth and 
machine segmented images. A missed classification applies to a region in the ground truth 
image and noise classification applies to a region in the machine segmented image.  

 
2.1.3 Comparative studies and reviews  
Haralick and Shapiro[89] state that: “As there is no theory of clustering, there is no theory of 

image segmentation”, (p. 100). They categorise segmentation algorithms as: measurement space 
guided spatial clustering, single linkage region growing schemes, spatial clustering clustering 
schemes, single linkage region growing schemes, hybrid linkage region growing schemes, 

centroid linkage region growing schemes, and split and merge schemes. The paper details the 
basics of these schemes with examples. 
 

Similarly. Fu and Mui[65] state that: “Almost all image segmentation techniques proposed so 
far are ad hoc in nature. There are no general algorithms that will work for all images”, (p. 4). 
Their survey categorises image segmentation studies as follows: feature thresholding or 

clustering, edge detection techniques, and region extraction techniques. The authors recommend 
that one of the fruitful areas of further investigation lie in combining spatial and semantic 
information with edge detection and thresholding or clustering techniques to perform image 

segmentation. A number of review studies on image segmentation are available including 
[65,88,89,158,186,196]. 
 

2.2 Texture analysis studies 
The analysis of image texture is extremely important. Its study primarily as surface property of 
objects requires a detailed understanding of object properties and imaging optics (see Jähne and 

Hauβecker[107] on a treatment of some important topics in this context such as radiation, 
illumination, radiometry, solid state imaging, imaging optics and calibration of imaging 
systems). It also requires us to understand how humans discriminate between different textures 

and how best to model our algorithms to do a task as good. Undoubtedly, texture analysis has a 
wide range of applications. These include: (a) classifying images based on texture; (b) 
segmenting an input image into regions of homogeneous texture; (c) determining surface-shape 

on the basis of texture gradient; (c) synthesising natural looking textures for graphics 
applications; and (d) image retrieval from a database based on texture similarity. Before one 
analyses an image for texture, one must ask the question: Is there any texture in the image? Karu 
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et al.[116] have addressed this issue. Their work deals with the determining whether a given 
image has any texture in it for analysis. Most standard definitions of texture treat it as a measure 
of coarseness in an image. Images that have no texture can be classified as noise images, and 

images containing distinguishable objects that are too large to be termed texture. Hence, for an 
image to contain texture, it should be between these two extremes. Statistical texture analysis 
methods based on grey level properties are less useful in identifying texture than structural 

methods that are based on textural primitives and their placement rules. It can be reasonably 
assumed that each image has some texture at some scale. A simple measure of texture 
coarseness is based on first computing the local extrema of image function along rows and 

columns The density of these extrema can then be used as a measure of coarseness of texture. 
The coarseness at a pixel location can be determined by doing this computation within a small 
neighbourhood.  

 
Ahuja and Rosenfeld[5] provide an overview of the structural and statistical approaches to 
texture analysis. Statistical models have been classed as time-series models or random field 

models. Structural models are based on primitives and their placement rules. In the following 
section, we describe in brief a range of texture techniques that have been proposed by various 
researchers. Their comparison appears in the next section. Finally, we discuss studies that are 

related to finding texture similarity and salience. 
 
2.2.1 Texture techniques 
A number of studies have developed their own techniques for texture analysis. We categorise 
them here as geometric and topological approaches, second or higher statistics based 
approaches, texture with masks and logical operators, texture with stochastic models or random 

walk, texture based on gradient information, texture based on spectral filters, and other methods.  
 
Geometric and topological approaches 

Kundu and Chaudhuri[122] propose the use of fuzzy geometric features for texture 
classification. In their approach, first a set of 2D local membership value extrema is detected for 

the image. These are used as seed regions and grown till they do not touch other seed regions. 
The resulting regions are called regions of influence. A number of features are then calculated 
from these including fuzzy area, perimeter, compactness, height, and width, that form the basis 

of texture classification. On a total of 16 images taken from Brodatz album of size 128x128 
pixels, a recognition rate of 90% correct classification was obtained. 
 

Chen et al.[36] and Chen[37] propose a very interesting use of binary stacks for characterising 
texture. The SGF method is based on generating L different binary images from the original 
image that has a total of L grey scales, each time using slightly higher threshold for 

segmentation. A collection of these resulting images is called the binary stack corresponding to 
the original image. For each binary image, all 1-valued pixels are grouped into connected 
regions. The same is done for all 0-valued pixels. For each of the connected regions, a measure 

of irregularity or circularity, defined as slightly different, are computed. These measures are 
then weighted on the basis of the total size of connected components. For each binary image, 
the following four characteristics are computed: the number of 1-connected regions, the number 

of 0-connected regions, and the two weighted irregularity measures for these connected regions. 
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For each of these four characteristics, four features can be derived as follows: max value, 
average value, sample mean and sample standard deviation, yielding a total of 16 features. 
These features are used for texture classification. The studies compares the classification ability 

of these features against co-occurrence matrix approach, Fourier features and Statistical Feature 
Matrix (SFM) features on the complete set of Brodatz images (all 112 Brodatz images). The 
results are generated using the leave-one-out nearest neighbour classifier. On the complete data, 

the recognition performances were found as follows: SGF (85.6%), SFM (72.8%), Co-
occurrence matrices (64.6%) and Fourier features (32.7%). 
 

The idea of using binary stacks has been recently used by Garcia et al.[73]. The features are 
computed on binary images using 1D Boolean model. The splitting of images into binary stack 
is different here compared to the study by Chen et al.[36]. Rather than using 256 threshold 

planes for slicing, the authors consider various ways in which this information can be reduced. 
Bit slicing method is used in this study that generates different planes depending on the different 
bits. Hence a total of 8 planes are generated per image corresponding to each pixel bit. The 

boolean model is defined by the origin and distribution of line segments that can be defined as 
continuous pixel strings of the same value. The locations are defined as the left most end and 
are defined by marking probabilities. The distribution of line segments themselves is defined by 

a discrete distribution function. These probabilities are parameters of the boolean model. The 
procedure uses four Hilbert scannings to obtain the pixel strings. In order to compare texture, 
the distance between two boolean models with different marking distributions and discrete 

distribution functions is defined. The experimental results are generated on 30 texture database 
and different bit slicing methods are compared on the basis of the results obtained. Binary 
planes are considered for classification on their own and in pairs. Quantisation with equalisation 

scheme with a sum of similarities based classifier gives the best result of 97.2% correct on 360 
test images of size 128x128 pixels. 
 

Pietikänen et al.[175] investigate the efficiency of distribution based classification and their 
proposed feature set in rotation-inavariant texture classification. This study also investigates the 
effect of using small windows of size 32x32 pixels compared to 64x64 windows on texture 

analysis. Texture measures based on center-symmetric autocorrelation, rotational invariant 
binary patterns and grey-level differences are used in the experiments. A number of features 
based on local pixel neighbourhood are derived that measure covariance (SCOV) and symmetric 

autocorrelation (SAC) defined as the ratio of symmetric covariance and local neighbourhood 
standard deviation. If the grey levels are replaced by their ranks in the original image, the 
ranked symmetric autocorrelation measure (SRAC) can be obtained. In addition, three local 

variance measures are calculated. Also, local binary patterns are obtained by thresholding the 
pixel neighbourhood on the basis of centre pixel value. The output is multiplied by a binomial 
function and the resultant matrix is summed into a single value that acts as a feature. This is 

called Local Binary Pattern (LBP). Finally, using the grey level differences a probability 
distribution is defined from which the absolute grey level differences in all four directions are 
accumulated as a feature. The authors use a k-nearest neighbour classifier on 15 Brodatz 

images. The performance of the features is evaluated as single features and in pairs. The results 
show that better performances are achieved with larger window size. Some interesting 
conclusions are drawn on how the various features perform on rotated images.  
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Second or higher order statistics 

Haralick et al.[86] proposed the novel technique for texture image classification. This study is 
concerned with the task of developing a set of features for classifying or categorising pictorial 
data. Texture is chosen as the most suitable feature to represent images. Texture contains 

important information about the structural arrangement of units and their relationship to the 
surrounding environment. This discriminatory information can be used to classify images. The 
authors present a general procedure for extracting textural properties of blocks of image data. 

These features are calculated in the spatial domain and it is assumed that the texture information 
in an image I is contained in the overall or “average” spatial relationship that the grey-tones in 
the image have with one another. A set of grey-tone spatial-dependence probability-distribution 

matrices is computed and a set of 14 textural features, which can be extracted from each of these 
matrices, is suggested. The matrices are constructed by assuming that every pixel, except the 
peripheral ones, have eight nearest neighbours (horizontally, vertically and diagonally at 45 

degrees). It is also assumed that the texture-context information is adequately specified by the 
matrix of relative frequencies. Some of these textural feature measures, obtained from the 
matrices relate to specific textural characteristics of the image such as homogeneity, contrast 

and the presence of organised structure within the image. Other measures characterise the 
complexity of the grey-tone transitions, which occur in the image. The usefulness of textural 
features for categorising images has been tested on three sets of images. In the first instance, 

photomicrographs of sandstones that are important in the petroleum industry were categorised. 
The data set was consisted of 243 images divided into five classes. The set was divided into 
training and test data. A set of 8 variables comprising the mean and variance of the textural 

features obtained from the matrices was used for classification. The classification result yielded 
89% accuracy. In the second instance, a set of aerial photographs was classified using the min-
max decision rule. The data set consisted of 170 images divided into 8 categories. Four grey-

tone spatial dependencies and 11 textural features were used in the classification that resulted in 
82.3% correct classification. In the third instance, a set of satellite images was classified. The 
624 samples in the data set were divided into training and test sets of equal sizes. The mean and 

variance of the four textural features and eight spectral features was used for classification. The 
result was 83.5% correct classification as opposed to the 74-77% correct classification obtained 
by using spectral features. Since this seminal study, the features suggested by Haralick et al. 

have been used in most of texture studies. The theoretical and visual significance of these 
measures is given by Baraldi and Parmigianni[11]. 
 

Weszka and Rosenfeld[222] proposed an application of co-occurrence matrices based texture 
analysis to materials inspection. The study proposes texture methods that are used to assess 
material surface quality in order to distinguish between poor and acceptable quality samples. 

For these purposes, 12 digital photographs of the material surfaces are used. Within an image, a 
small window of pixels is used for calculating texture features. Texture measures used include 
Fourier power spectra and co-occurrence matrices. For co-occurrence matrices, four measures 

are calculated in four principal directions. These include angular second moment, entropy, 
contrast and correlation. In addition, for each feature, the mean, standard deviation, maximum, 
minimum, and range of these three statistics were also computed and used as features. The aim 

of the study was to find which set of features provides the best classification that tallies with the 
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human expert. The authors found that the best results were obtained for the three co-occurrence 
based features, namely entropy, standard deviation of entropy, and maximum of correlation. It 
was also concluded that the judged quality of surface texture did not correspond with the 

obvious visual property of the material.  
 
Davis et al.[49] and Davis et al.[50] describe generalised co-occurrence matrices for texture 

discrimination. These do not describe texture directly but rather describe the spatial arrangement 
of local image features such as edges and lines. The description of Generalised Co-occurrence 
Matrices (GCM) is based on three attributes: image feature prototype, spatial predicate and 

prototype attribute. The prototype is regarded as the structural definition of the image features 
of interest. For example, the prototype edge-pixel can be defined as an ordered triple with three 
attributes (location, orientation and contrast). Spatial predicate is a mapping from image feature 

pairs into {true, false} category. The authors compare three prototypes, namely pixel intensity, 
edge pixel, and extended edge. For each of the three categories, their spatial predicates are 
defined. The following features are extracted from GCM: contrast, uniformity, entropy, and 

correlation. In their first study, classification experiments are performed on 30 texture samples. 
They find that compared to the co-occurrence matrix approach, their method performs much 
better (an average of 60 percent versus 43 percent for single features, and 68 percent versus 43 

percent for pairs of features). In their latter study, three separate experiments are performed 
based on two classification schemes of nearest neighbour classifier, linear discriminant analysis, 
and the computation of inter-class distances using Bhattacharya method. 128 images of natural 

texture containing 64x64 pixels each are used for experiments. For the nearest neighbour 
analysis, feature pairings of size 2 are used and for the linear classifier all features are used. The 
best nearest neighbour result of 61% correct is obtained using the contrast and entropy pair of 

features on edge-pixel prototype and for the linear classifier the best result of 77% correct is 
obtained for pixel intensity prototype. 
 

More recently, an interesting method of improving the quality of co-occurrence matrix features 
has been proposed by Walker et al.[215]. They classify the features proposed by Haralick and 
colleagues as being weighted on either the matrix element’s value or its spatial location. For 

example, energy and entropy measures are weighted on the basis of value, and inverse 
difference moment, shade, intertia, promonenance, correlation and variance are weighted on the 
basis of spatial location. The authors propose that it is best to suppress those elements of the 

matrix that yield little to the discrimination ability. Hence, on the basis of Bhattacharya distance 
calculation, one can find which elements are the most discriminatory. A discrimination matrix 
containing these weights can be multiplied with the original matrix to yield a better 

representation of values that are discriminatory. From these value one can either compute 
traditional measures or features as weighted sum of elements. Based on new calculations, the 
authors find that on six out of eight measures much better performances are observed on a cell 

nuclei classification task with some improvements as much as 70% greater accuracy. 
 
Kovalev and Petrou[119] proposed a novel method for object recognition and matching based 

on quantitative estimation of relations between elementary image structures. This technique is 
based on automatic search of features that characterise a certain object class using a training set 
consisting of both positive and negative examples. Multidimensional co-occurrence matrices of 
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order 10 on each axis are used for the description and representation of these image structures. 
The features obtained are rotation and reflection invariant. Instead of comparing the elements of 
the matrices directly, the authors proposed the extraction of some features out of the matrix by 

considering all possible pairs of non-zero matrix elements and taking their ratio. Thus, only 
features that separate the positive and negative examples into two linearly separable classes are 
considered. All reliable features depending upon the reliability coefficient are then used for the 

classification. The co-occurrence matrix of a given unknown image is constructed and the 
corresponding features are computed. A positive vote is counted every time a feature of the test 
image has a value within the acceptable range and a negative vote is counted for every feature 

that takes a value outside the acceptable range. The total number of votes indicates the 
confidence with which the object was classified. The experiments were first performed on 18 
CT scans of the brain out of which 8 were negative samples and 10 were positive samples.  The 

results proved that all 8 normal images were correctly recognised while 9 out of 10 positive 
samples were correctly classified. Leave-one-out testing method was used for the validation of 
the quality of results. The authors concluded that not all-basic structures of a certain type are 

equally important for object recognition. The authors proposed the use of only those structures 
that distinguish one object from another is important.  
 

Al-Janobi[6] presented a new texture analysis method called Cross Diagonal Texture Matrix 
(CDTM). This method incorporates the properties of grey level co-occurrence matrices and 
texture spectrum methods that are both explained. The proposed method is based on 

characterising the texture information of an image by separating the eight neighbouring pixels 
around a central pixel in a neighbourhood of 3x3 pixels. The eight elements in the texture unit 
are divided into two groups: the Diagonal Texture Unit (DTU) and Cross Texture Unit (CTU). 

The members of each unit have a value of either 0, 1 or 2 depending on whether the pixel in that 
position is less, equal or greater than the central pixel. These two units are combined into a 
CDTM by taking CTU as x-axis and DTU as y axis of the matrix. From these units the 

Haralick’s features are extracted for texture information. This method has the advantage that the 
grey level of the image has no effect on the size of the matrix. In addition, the computational 
complexity is reduced because of the reduced size of the matrix. Nine images from the Brodatz 

album have been used for the evaluation of this method. Because of limited number of images, 
each image is divided into 25 sub-images. Classification is performed using Bayes classifier and 
the following features are compared: 13 co-occurrence features from the original images, 13 

texture features from CDTM, and 8 texture spectrum features. The results from CDTM are 
found to be the best (7.3% error) compared to 18.4% error with co-occurrence matrices and 
31.9% with texture spectrum. 

 
Statistics of order greater than two have also been applied for texture analysis. Murino et 
al.[145] propose a novel texture classifications scheme that is based on using Higher Order 

Statistics (HOS) for defining discriminatory features. One of the advantages of using these 
parameters is that they are insensitive to additive Gaussian noise, especially third order 
statistical parameters. The authors define HOS functions and their properties for texture 

classification. Cumulants, defined as higher order combination of moments, are used as 
features. The authors analyse the performance of these features on leave-one-out classification 
of images superimposed by Gaussian and exponential noise with different signal to noise ratio. 
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They find that near perfect classification is possible for zero noise and robust behaviour is 
shown towards additive noise. 
 

In 1981, Julesz[112] wrote a seminal paper on textons. His experiments with identical second-
order statistics revealed that pre-attentive texture discrimination system can not globally process 
third- and higher-order statistics. The discrimination is a result of a few local conspicuous 

features called textons whose first order characteristics have perceptual significance. These are 
based on iso-second-order textures. The textons are invariant to positional and scaling 
transformations. These symmetries of textons can not be broken by pre-attentive and peripheral 

vision. The analysis of textons is now a well-developed area in texture analysis and several 
studies have used them for classifying and modelling texture (see Pratt[178] for a description of 
texture fields defined by Julesz).  

 
Gagalowicz[70] investigates the models for texture fields for modelling human vision. The 
model is based on second-order statistics as proposed originally by Julesz in 1962. The authors 

design a new tool to synthesise stochastic texture fields and propose a new conjecture for the 
visual discrimination of texture fields. The notion of second order statistics, proposed by Julesz, 
is replaced by the notion of second order spatial averages and the concept of locality.  

 
Texture with masks and logical operators 

Unser[211] developed local linear transforms for texture measurement. He proposed simple and 
small convolution masks in combination with the computation of the local variance using a 
moving window in the image. Instead of using different filters, he proposed using four 2x2 

Hadamard masks. The first of these masks has equal elements and measures the magnitude. The 
other three masks have two elements equal to 1 and other two elements equal to –1 which are 
used to approximate the derivatives in horizontal, vertical and diagonal directions.  

 
Manian et al.[136] present a new algorithm for texture classification based on logical operators. 
Operators built from logical building blocks are convolved with texture images. The logical 

operators are based on order-2 elementary matrices whose building blocks are symbols 0, 1, -1, 
and matrices of order 1x1. These low order matrices can be operated on by using the following 
operators: row-wise join, and column-wise join. The study selects a total of six operators on the 

basis of their best performance. The six operator masks are first convolved with the texture 
regions and the response is used to compute a standard deviation matrix using a sliding window.  
Features are next computed by zonal-filtering using zonal-masks that are applied to the standard 

deviation matrix. The following features are obtained: horizontal slit feature, vertical slit 
feature, ring feature, circular feature, and sector feature. These features are normalised and a 
feature selection scheme based on distances between feature means and measure of standard 

deviation is used to find the best features for classification. Bayes classifier, Euclidean classifier 
and nearest neighbour classifier have been used. A total of 39 textures from the Brodatz album 
are used in the classification study. On majority of the images, the Euclidean and nearest 

neighbour classifiers perform the best showing between 90 and 100% accuracy. On mosaic of 
six Brodatz textures, the average results on comparisons of this technique are as follows: 
Logical operators (93%), co-occurrence matrix method (70%), Fourier power spectrum method 
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(59%), tree-structured wavelet transform method (61%), Law’s texture features (61%) and 
Gabor features (63%). 
 
Texture with stochastic models or random walk  

Faugeras and Pratt[61] describe decorrelation methods of texture feature extraction. An array of 

independent identically distributed random variables is passed through a linear or nonlinear 
spatial operator to produce a stochastic texture array. By controlling the generating probability 
density and the spatial operator, texture fields of specific statistical properties can be created. 

Texture features generated on texture fields using co-occurrence matrices are criticised because 
of large dimensionality of the feature space and accuracy limitation in characterising low 
contrast texture. It is also concluded that the probability density of the whitened field and spatial 

autocorrelation function are incomplete descriptors of the stochastic process generating the 
texture. The authors develop a methodology of extracting autocorrelation of the texture field 
plus the first four moments of the first-order amplitude histogram of its decorrelated field. 

Laplacian and Sobel operators are used in place of whitening operator to generate the 
decorrelated field. The Brodatz texture features are evaluated on images of size 64x64 pixels on 
the basis of Bhattacharya distance as a figure of merit.   

 
Weschler and Kidode[220] and Weschler and Citron[221] detail the use of random walk 
methods for texture classification. A probabilistic planar random walk model is defined. It is 

characterised by a particle moving in unit steps in one of the four directions parallel to the x- 
and y-axis if one assumes four neighbour connectivity. The random walk is fully specified if we 
define the probabilities of leaving a given pixel for any of its four neighbours. If the random 

walk is performed over some window A, then the absorbing barrier of this can be defined as 
those pixels in A which have at least one neighbour outside of A. The pixels belonging to the 
absorbing barrier are called mesh points M. This barrier is composed of four disjoint subsets in 

directions above, right, below and left. Gradient difference magnitude between absorption 
distributions of these subsets forms the basis of texture features. In the first study, 14 texture 
images from the Brodatz album have been used for classification using leave-one-out procedure 

with nearest neighbour classifier. The results are as good as 86% correct. In the second study, 
the authors test these features on 32 Brodatz images and find a classification accuracy of 89.7% 
correct.  

 
Ahuja and Rosenfeld[5] detail mosaic models for texture that use random pattern generation 
processes in a plane to provide image structure. Two classes of mosaic models are discussed 

with examples including cell structure and coverage models. The cell structure model is 
generated by tessellating a planar region into cells and independently assigning one of m colours 
to each cell according to a fixed set of probabilities. The tessellation process determines the 

amount of randomness and a set of different mosaics can be created that are categorised as 
checkerboard model, hexagonal model, triangular model, Poisson line model, occupancy model 
and Delaunay model. Coverage models are obtained by a random arrangement of a set of 

geometric figures (bombs) in a plane. For each mosaic, its geometrical properties and its texture 
features can be computed. Given a digital image, it can be mapped to see how well it fits in with 
a particular mosaic generated by a model. A number of measures for finding this match are 
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proposed. By fitting mosaic models to real textures, real textures can be discriminated and 
modelled at the same time.  
 

Modestino et al.[144] illustrate the various problems associated with using different traditional 
methods of texture analysis. They illustrate images that will have different texture but similar 
power spectra, run length values or autocorrelation features. They present an alternative method 

of texture extraction in the form of 2-D random fields. This approach makes use of the co-
occurrence matrix, but instead of extracting features from them similar to Haralick’s method, 
they perform maximum likelihood hypothesis testing of the co-occurrence matrix. The proposed 

approach is tested on a few of the Brodatz images. 
 
Texture based on gradient information 

Hong et al.[99] propose an edge based procedure for extracting primitives from texture. The 
technique is used to group region boundaries by joining facing pairs of edge points. The 

algorithm locates edges by applying an edge detection operator followed by thresholding to 
eliminate weak edges, and nonmaximum suppression to eliminate redundant responses to a 
single boundary. This achieves a cleaned edge map of potential boundary points that enclose 

regions. The regions so extracted are primitives from which the following characteristics can be 
measured: area, perimeter, dispersedness, elongatedness, eccentricity, direction of major axis, 
and the average grey level. The method is evaluated on a pilot study in which a few texture 

samples taken from Brodatz album and terrain images are classified on the basis of the above 
features. All features perform well on classification except for eccentricity and orientation. 
 

Chou[44] shows a simple techniques for classifying image pixels as belonging to one of the 
three categories: shaped feature point, smooth feature point, and textured feature point. The 
decomposition is based on a set of simple fuzzy rules operating on the edge strength 

information. This decomposition can be very useful if we wish to decompose the image into 
three separate images and operate on them individually.  
 
Texture based on spectral filters 

Jernigan and D’Astous[111] proposed an entropy measure of the normalised power spectrum 
within regions in the spatial frequency representation of an image as a texture feature. For 
highly structured spatial distributions, we will get a low value of this measure, and more random 

distributions will give a high value. By treating the image spectrum within a region as a 
probability distribution, an entropy measure is obtained that reflects the distribution of spectral 
components. For discrimination between two textures, an entropy vector is obtained from 

different parts of the texture. The distance between entropy vectors of two regions shows the 
dissimilarity between them. The paper also introduces a frequency normalisation scheme that 
achieves a degree of size-invariance for frequency domain entropy measure. 

 
Bovik et al.[22] model texture as irradiance patterns that are distinguished on the basis of high 
concentration of localised spatial frequencies. Textured images are encoded into multiple 

narrow spatial and orientation channels. The output of each channel is a complex modulated 
subimage whose instantaneous amplitude and phase envelopes describe the spatial support of 
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the frequencies and/or orientations to which the channel is tuned. 2D Gabor filters discussed in 
detail as the chosen channel filters that can be used for texture discrimination and segmentation. 
 

He and Wang[93] proposed a new set of texture measures derived from the texture spectrum of 
an image. The authors stated that a texture image is considered as a set of small units, known as 
texture units, which characterise the local texture information for a pixel and its neighbourhood.  

Texture spectrum is termed as the frequency distribution of all the texture units. Based on 
texture spectrum, various features are extracted from a texture image. The features extracted 
include: black-white symmetry, geometric symmetry, degree of direction, orientational features, 

and central symmetry. These features extract textural information of an image with a complete 
set of texture characteristics in all eight directions instead of using only the row texture 
spectrum as used in other studies. The authors performed two sets of experiments to prove the 

validity of the method. In the first experiment, four oriental features, one central-symmetry 
feature, and one directionality feature were used to discriminate between six different textures 
from the Brodatz album. The textures were discriminated successfully by using these measures. 

In the second experiment, the performance of texture spectrum method was compared with the 
co-occurrence matrices on SAR images. Only three features, namely black-white symmetry, 
geometric symmetry, and degree of direction, were used as compared to five of Haralick’s 

texture measures. The proposed method performed significantly better than Haralick’s 
measures. 
     

He and Wang[94] extended the previous study by proposing unsupervised texture classification 
using texture spectrum. In this case again the same features are extracted from a texture image. 
A clustering algorithm is then used for unsupervised classification.  The user provides the 

number of clusters and a certain threshold, which is then used iteratively to form best clusters. 
The main aim of this method is to use texture spectrum alone as the texture measure of the 
image. The method was evaluated on the same set of six images from the Brodatz album. The 

recognition rate of 98% was achieved in discriminating the six textures. The authors show that 
the algorithm requires only few initial parameters. So it can be easily used in practice for 
processing a large amount of data without supervision. 

 
He and Wang[95] proposed an application of the texture spectrum method for edge detection.  
Texture spectrum method is a statistical approach for texture analysis, where the local texture 

for a given pixel and its neighbourhood is characterised by the corresponding texture unit, and 
an image can be characterised by its texture spectrum. Texture spectrum is the occurrence 
frequency of all the texture units in an image. In this study texture spectrum features are 

combined with traditional edge detection operators i.e. when applying a traditional edge 
detection operator over an image, the grey-level of each element of the operator is replaced by 
the texture spectrum calculated over a neighbourhood. The authors used images from the 

Brodatz album and calculated texture spectrum for 30x30 pixel moving windows. Edges were 
then detected using Roberts edge detection operator. The results were then made visible by 
stretching the grey-levels of the image between 0 and 255. Better results were obtained using 

this method than using edge detection operators on their own. 
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Chen and Chen[39] detail the traditional Gabor filter originally proposed by Gabor[69] and 
propose a modified version that works at different image resolutions. The traditional Gabor 
filter is applied to an image for extracting texture by convolving them. The procedure involves 

taking the Fourier transform of the image and the Gabor function, taking the convolution, and 
then taking an inverse transform. By this process, different frequency subbands are highlighted 
depending on the Gabor filter parameters and the resultant image can be analysed for detecting 

features that describe texture properties corresponding to different frequencies. In the case of 
multi-resolution Gabor filters, low-pass filter is applied as the finest resolution (level 0), the 
next high-pass filter at level 1 by subsampling the image, and so on. At each step, the Gabor 

filter is convolved in four separate directions, and in the resultant image, the authors compute 
mean and variance as texture features. The system is 58% faster in terms of computational time 
compared to calculating the same features on standard Gabor filter implementation. In their 

experiments, nine test images of size 512x512 pixels are further subdivided into a total of nine 
parts giving a total of 81 subimages. The single nearest neighbour classification with leave-one-
out cross validation shows that both the multiresolution and traditional Gabor filters achieve the 

same accuracy of 98.8%. The main advantage of the multiresolution method is its faster 
computational speed. 
 

Haley and Manjunath[83] describe a method of rotation invariant texture discrimination based 
on Gabor filters. The paper develops a 2D Gabor wavelet polar representation and a 
multiresolution family of these wavelets is used to compute microfeatures. These microfeatures 

characterise the spatially located amplitude, frequency and the directional behaviour of texture. 
In addition, macrofeatures are derived from the estimated selected parameters of the 
micromodel. A rotation invariant set of macrofeatures is used for classification. The results are 

presented for recognising textures at various rotations. Classification accuracy of 96.8% is 
achieved on a total of 624 sample images. The complete Brodatz album has also been analysed 
and a classification accuracy of 80.4% on 872 sample images is reported. 

 
Other methods 

Mitchell et al.[143] proposed the use of the number of grey level extrema per unit as a texture 
feature. Directional backlash smoothing is applied to eliminate minor local extrema, i.e. only 
succeeding maxima and minima which exceed a certain difference threshold are counted. These 

extrema are counted for two threshold values, and the texture feature is computed by dividing 
the difference of the numbers of extrema by the difference of the threshold values. This 
procedure is followed for a certain direction using a moving window. A space-filling curve that 

combines horizontal and vertical scanning directions is used at the end to find texture of an 
image. The authors adapted a method to avoid transitions due to the concatenation of the line or 
column segments from the moving window. Various experiments were performed on images 

and the results proved to be well suited to compute the texture of images with both isotropic and 
non-isotropic texture. 
 

Often, texture methods have been devised based on our understanding of how human vision 
works. Tamura et al.[204] proposed textural features corresponding to the visual perception. 
These are based on six basic textural properties, i.e. coarseness, contrast, directionality, line-

likeliness, regularity, and roughness. The paper describes the psychological experiments on 
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basic textural properties and discusses the results to assess the corresponding computational 
measures derived from the psychological specifications. A total of 48 human subjects are 
presented with a total of 16 Brodatz images in pairs and for each pair the subjects are asked to 

make decisions on six specifications, i.e. to choose the coarser, the higher in contrast, the more 
directional, the more line-like, the more regular, and the rougher pattern of each pair. For each 
specification, the pairs are rank ordered. A correlation matrix is derived across these six 

specifications. There appears to be a strong correlation between coarseness, contrast and 
roughness. Also the correlation between line likeness and directionality is high. The authors 
used basic definitions of the six textural properties, either proposed by other research, or defined 

by the authors themselves, and modify the texture feature calculations such that the results show 
similar correlation as achieved in the psychological experiment. Best results are achieved for 
coarseness, contrast and directionality. On others, more work is needed.  

 
Similarly, Kruizinga and Petkov[120] propose a non-linear model for texture analysis based on 
the neurophysiological studies on how the visual cortex of monkeys works. The model has been 

inspired by the recent discovery of an orientation-selective neuron in the visual cortex of 
monkeys called the grating cell.  These cells respond vigorously to a grating of bars of 
appropriate orientation, position and periodicity. The model consists of two stages. In the first 

stage, the responses of so-called grating subunits are computed as the input to the responses of 
centre-on and centre-off simple cells with symmetrical receptive fields. The unit is activated by 
a set of three bars with appropriate periodicity, orientation, and position. In the second stage, the 

responses of the grating subunits of a given preferred orientation and periodicity within a certain 
area are added together to compute the response of the grating cell. The texture feature operators 
are based on grating cell responses that are obtained on the application of grating operators with 

eight preferred orientations and three preferred periodicities. This yields a 24 dimensional 
texture vector. The results of using these for classification of images have been compared in this 
study with Gabor features and co-occurrence matrix features using Fisher linear discriminant 

analysis. The authors find that on average the relative distance between the feature vector 
clusters obtained with the grating cell operator was twice as large as the relative distance 
between the clusters obtained with Gabor-energy operator, and about three times as large as the 

distance between the clusters resulting from the co-occurrence matrix operator. 
 
Tomita et al.[207] introduce a structural analysis system for describing natural textures.  The 

system has three objectives. First, to learn textures, second to classify an unknown texture, and 
third to reconstruct texture. For this purpose, the images are preprocessed by first computing the 
edge value and edge direction that are then used for nonmaximal suppression. In the resultant 

images, texture elements are defined as regions of homogeneous properties. For each region, the 
features brightness, area, size, elongatedness, and curvature are extracted. It is assumed that if 
there are some clusters in the distribution of the properties of elements, then they represent 

different kinds of elements which can be defined by recursive thresholding of property 
histograms. On the x-axis of such a histogram, we have the property and the y-axis is the 
frequency of that property. For a total of N classes, the system computes the mean and standard 

deviation of property p of elements in a given class, the density of elements in that class, and 
adjacency probability between the given class and others for defining texture. Brodatz images 
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are used for classification. A total of 16 textures are divided into 4x4 subimages of 64x64 pixels 
each. The test results show accuracy of recognition lying between 58% correct to 100% correct. 
 

Picard et al.[171] apply two powerful recognition algorithms, principal components analysis and 
autoregressive models, to the entire Brodatz database. The data is derived from Brodatz album 
that is formed by cropping nine 128x128 pixel subimages from the centre of 111 different 

original 8 bit 512x512 images resulting in a total of 999 different images. It is acknowledged 
that excellent performances obtained on small subsets will not translate to the whole database. 
The principal components technique has been made shift invariant for the purposes of this study 

by discarding phase information. The features include 99 projection coefficients onto a set of 
eigenfunctions. The eigenfunctions are from a pooled covariance matrix of a randomly chosen 
set of 100 images. The autoregressive model is characterised by five parameters at each level of 

resolution.  At any one level, the model is shift invariant. A simple classifier based on 
Mahalanobis distance is used. The results show that the 15 autoregressive model features obtain 
a best performance of over 90% accuracy whereas the 20 principal components achieve a best 

recognition of less that 80%.  
 
Ng et al.[148] demonstrate how composite features can give better results than individual 

features. Composite feature vectors are defined by concatenating two feature vectors. A 
composite Euclidean distance between features from two class distributions using composite 
features is defined. Also an extended nearest neighbour rule can be used instead for allocating 

test samples to the winning class. The decision using the extended rule is based on highest 
collective confidence across all features. The authors generate composite feature vectors from 
the following features: Fourier and Walsh transform features, grey level functions from first 

order and second order histograms, and statistical geometric features from binary image stacks 
such as the number of connected regions and irregularities. The feature combination is tested on 
the entire Brodatz album of 112 images with 16 samples taken from each image. The authors 

introduce a new measure of recognition success called total number of perfect classes, where a 
perfect class is defined as the one whose all samples are correctly classified. It is shown that the 
combination of features with weak correlation results in the best performance. The best 

recognition rate of 90.2% is obtained with 71 perfect classes. 
 
Kaplan[115] proposed an extended fractal analysis approach to texture classification and 

segmentation. The author states that features from methods such as Gabor transforms provide a 
compact description of the harmonics in texture using local linear transforms. These techniques 
succeed in classifying a variety of textures but fail to distinguish a variety of natural textures 

that do not show any periodic nature. As natural textures do not contain any detectable quasi-
periodic structure, other alternatives are needed. This paper proposes a method based on 
Brownian motion model characterised by Hurst parameter. This study compares the 

classification results based on Gabor features and fractal features. For analysis, Vistex and 
Brodatz images have been used. The study concludes that multi-scale Hurst parameters allow 
better texture discrimination than traditional methods and the performance using 10 such 

features was as high as that obtained using 48 Gabor features (on average Hurst result of 85.6% 
compared to 89.4% for Gabor features for one of the experiments and in another 86.2% and 
87.6% respectively). 
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2.2.2 Comparative studies and reviews 
A range of texture techniques based on the spatial or spectral domain has been used in literature. 
Early psychological studies suggested that human vision utilises statistical moments of 

distributions of grey level values for texture recognition. This led to the development of 
methods exploiting second order image statistics such as co-occurrence matrices. 
Neurophysiological studies have, at the same time, supported the view that human vision 

involves Fourier like decomposition of the visual stimuli into spatial frequency components 
representation of texture in the form of either the energy of the output of a bank of filters tuned 
to different spatial frequency bands, or to power spectrum itself. The following studies compare 

texture methods that are based on its analysis in the spatial or spectral domain. 
 
Some basis of comparison is however needed. Texture feature evaluation methods describe how 

the texture between two images can be compared. Faugeras and Pratt[61] define the most 
popular methods. The three key methods include synthesis, classification, and figure of merit. In 
the case of synthesis method, an artificial texture field is created on the basis of texture feature 

parameters that are obtained from the original field and some error functional is them performed 
on the original and reconstructed fields. The basic philosophy is that reconstruction error should 
be small for good texture measures. In classification methods, it involves the prediction of the 

classification error of independently categorised texture fields. In the third method of synthesis, 
some functional distance measures between texture classes is developed in terms of feature 
parameters such that a large distance implies low classification error and vice-versa. 

 
Compared to one and another, each evaluation method has its own merits. The synthesis method 
gives high evaluation to information preserving textures but such measures are likely to be 

complicated (e.g. based on two-dimensional histograms). At the same time, non-information 
preserving measures may be adequate for image segmentation and classification. Theoretically, 
the use of classification error is an appealing measure as it can be utilised for parameter 

optimisation. Unfortunately, however, it is very difficult to establish the relationship between 
classification error and feature value. Also, the disadvantage is that a large amount of data needs 
to be analysed and the results depend on the integrity of data. Another difficulty lies with the 

classification error not being a function only of the features but also of the choice of the 
classifier. The figure of merit approach has the advantage that it does not depend on any 
classification scheme, and in addition, error is bounded by the figure of merit for some 

classif iers. 
 
Weszka et al.[223] compared texture measures for terrain classification. The features used for 

comparison include those categorised into four sets as Fourier power spectrum, second order 
grey level statistics, grey level difference statistics, and grey level run length statistics. The 
authors compute a total of 64 features for 9 classes using 54 aerial images. The authors have 

used a simple Fisher linear discriminant technique. The authors find that when a single feature 
is used, the classification results are better than chance but not very good. Much better results 
are obtained when two features are used in combination for each of the four sets. A total of 120 

feature pairings are thus tested. They find that the best pair performs a recognition accuracy of 
75% correct. For feature pairs they find that those based on difference statistics seems to have 
done significantly better that Fourier features, which perform significantly better than second 
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order statistics and run length. The best feature pairings are identified in this paper. Next, the 
authors equalise some of the previously used features with respect to size and orientation. The 
features are calculated for four sizes and four directions. Once more feature pairs perform better 

than single features on classifying texture. Compared to unequalised features, the results on 
second order grey level statistics feature set are vastly improved giving the best recognition of 
80% correct.  In addition to these analyses on synthetic images, the authors also discuss the 

main study related to the classification of terrain samples taken from satellite images. A total of 
60 windows of size 64x64 pixels are used for calculating features. Seven sets of 16 features 
each, equalised in size and orientation sensitivity, are used. As before the same scheme of 

classification using single and paired features is used and a number of important conclusions are 
drawn. The recognition accuracy lies between 75% correct for single features and 93% correct 
for the best pair. One of the key conclusions of this work is that the statistical features capture 

better the essence of texture than Fourier features. Also, grey level statistics gave better results 
for larger sizes and distances than statistics based on single grey levels.  This is because at larger 
distances, single grey levels are relatively uncorrelated so that the data becomes noisy, whereas 

the averages remain correlated, since they arise from adjacent neighbourhoods. 
 
In 1977, Parikh published a comparative study of cloud classification [162]. The study was 

designed to compare the utility of infrared vs. visible features, texture vs. spectral features, 
linear vs. quadratic classification, and the difference between hierarchical vs. single stage 
decision logic. The study was based on satellite images where clouds were specified as of type 

low (86 samples), mix (87 samples), cirrus (46 samples) or cumulonimbus (24 samples) classes. 
Two studies were conducted. First study contained the classification of all classes and the 
second study only the classification of the first three classes. The study used a total of 45 

spectral features including mean, standard deviation, and features based on cumulative 
frequencies. The textural features computed are based on those proposed by Weszka et al.[223]. 
These features measure factors such as the amount of total variation within the cloud sample 

and the overall homogeneity of the sample data. A joint probability distribution of the difference 
in grey levels separated in direction θ and distance ρ can be generated. On the basis of this, four 
texture measures are computed: mean, contrast, angular second moment and entropy. In 

addition, features that are independent of direction are also included. Mean, standard deviation, 
minimum, maximum and range are measured in all four directions for ρ = 1, 2, 4, 8. For a 
maximum likelihood based classifier using Fisher distances, 91% classification accuracy is 

achieved on the four class problem and 98% success on the three class problem on the training 
set. The author concludes that the spectral features are by far the most important and the textural 
features add little to the recognition performance. Also, it is concluded that the classifiers tested 

are similar in performance. However, this is contrary to research published in subsequent years 
and this result might well be because of a small data set.  
 

Conners and Harlow[46] compare four different texture algorithms including Spatial Grey Level 
Dependence Method (SGLDM) or co-occurrence matrices, Grey Level Run Length Method 
(GLRLM), Grey Level Difference Method (GLDM) and Power Spectral Method (PSM). The 

evaluation method used here differs from other studies as it does not compare recognition 
performances across different methods. Instead, what is examined is the amount of texture 
context information contained by these algorithms. First analysis is performed on Markov 
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generated textures. The second analysis extends this to textures generated by translation 
stationary random fields of order two which generates a broader class of textures. The following 
texture features are used. For SGLDM method, second order probability density function is 

considered in the 0, 45, 90, 135 degrees direction. The knowledge of distribution in directions 
180, 225, 270 and 315 degrees does not add any further information to the analysis of co-
occurrence matrices. Five texture features are selected including energy, entropy, correlation, 

local homogeneity, and inertia. For the GLRLM method, run length features include short run 
emphasis, long run emphasis, grey level distribution, run length distribution, and run 
percentages. For GLDM method, features include contrast, angular second moment, entropy, 

mean, and inverse difference moment. For PSM method the features used include annular-ring 
sampling geometry, wedge sampling geometry, and parallel-slit sampling geometry. The 
evaluation procedure involves finding all texture pairs that can be discriminated using one 

algorithm. Say this set of pairs is A. Similarly we can find all texture pairs that are discriminated 
(at one time one texture discriminated from another) by the second algorithm and let us call it B. 
If A is a subset of B, then the algorithm that can discriminate all B is more powerful than 

algorithm that can separate all A. If they are totally disjoint then the two algorithms can not be 
compared. The study draws some important conclusions. The SGLDM method cannot innately 
discriminate between all visually distinct Markov texture pairs for certain distances. The five 

measures computed from the co-occurrence matrix do not contain all of the important texture-
context information available in the matrix. For GRLM method, it cannot discriminate between 
a Markov texture from its 180 degree rotated version. The same applies to GLDM and PSM 

methods. GRLM is also very sensitive to noise. Comparing the merits of the four algorithms, 
the authors note that SGLDM is the most powerful of all methods considered. A Venn diagram 
shows the overlap between different methods in terms of the texture pairs that they can 

discriminate is shown. 
 
VanGool et al.[213] present a survey of texture analysis methods. They discuss various 

statistical  and structural approaches to texture extraction. In the case of statistical approaches, 
the methods detailed include co-occurrence matrices, grey level difference method, grey level 
run length, Fourier power spectrum, autocorrelation, filter masks, random walk procedures, and 

methods based on texture models. For structural approaches they discuss techniques based on 
placement rules and primitive extraction, and syntactic approach. An overview of reported 
results by other studies is also provided. The authors recommend that texture features should 

correspond more closely with the human perception of texture which characterises features such 
as coarseness, directionality, etc. Also, the dimensionality of features extracted should be 
limited for reasons of computational ease of processing. At one end we have very 

computationally demanding procedures such as co-ocurrence matrices and at the other end 
fractal based models that yield low dimensional features with much less computation. The 
authors also detail texture as a basis of segmentation reviewing studies on edge and region 

based segmentation.  
 
Buf et al.[27] presented a comparative study of texture features, with particular emphasis to 

unsupervised image segmentation. A benchmark test is introduced in which a set of 20 simple 
images is used for feature extraction and segmentation. The authors have used three texture 
decomposition methods, two methods based on second order statistics, and two ad hoc methods 
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for texture extraction. The texture methods used were co-occurrence method, fractal dimension, 
Laws, Hadamard masks, spectral decomposition, and grey-level extrema method. The 
segmentation method adopted in the study is based on quadtree smoothing, developed by Spann 

and Wilson[200]. A feature image is expanded using a quadtree structure and a local clustering 
is performed. Boundaries found by pixel classification at that level are refined for each step 
going down one level in the tree, until the original image size is reached. The experiments were 

performed on the set of 20 texture images. The accuracy of the segmentation result, expressed in 
the mean boundary error, was used as the evaluation criterion. From the seven feature extraction 
methods tested, Haralick’s method, Laws masks and Hadamard masks gave best overall results. 

Results obtained also proved that the direct feature statistics such as Battacharyya distance are 
not appropriate evaluation criteria if texture features are used for image segmentation. The 
authors also concluded that the combination of features from different methods does not always 

guarantee an improvement of the segmentation result.  
 
Ohanian and Dubes[150] studied the performance of four types of texture feature extraction 

methods: Markov Random Field Parameters, Gabor multi-channel features, fractal-based 
features and co-occurrence features. They used four classes of images in experiments: fractal 
images, Gaussian Markov Random Field (GMRF) images, leather images, and painted images. 

Each image class contained four types of images: the synthetic fractals, and GMRF images 
(generated by using different parameter values) and the natural images represented different 
types of leather and painted surfaces. The images used for experimentation were of size 32x32  

pixels with 4 or 8 grey-levels. With these images four 4-class problems and one 16-class 
problem were established. Whitney’s forward selection method was used for feature selection 
and a k nearest neighbour (k=9) decision rule was used for classification. The co-occurrence 

features outperformed other features followed by the fractal features. The authors stated that the 
co-occurrence features should always be considered with small window sizes. Using features in 
more directions improves the classification results. The main drawback of co-occurrence 

features is the huge number of potential features and guiding theory to use only specific features 
for a particular problem. The overall recognition rates obtained were: co-occurrence matrices 
(95%), fractal features (91%), Markov Random Field, and Gabor features had correct 

recognition of only 65%.  The authors concluded that co-occurrence and fractal features should 
be considered for small image sizes and Gabor features for images with large sizes.  
 

Reed and Buf[180] presented a review of the texture segmentation and feature extraction 
techniques. The authors presented techniques for all three categories of feature extraction 
methods namely feature-based, model-based and structural. In case of feature based 

segmentation methods the studies include Laws masks, co-occurrence matrices, Hadamard 
masks, Chen and Pavlidis[40] method, grey-level dependency matrix, and transform domain 
features. In case of model based methods, the studies include fractal models and stochastic 

models. Structural methods include region-based methods, boundary based methods, and hybrid 
methods. Spatial frequency methods were also included in the study. These methods include 
Gabor power spectrum and global power spectrum. The main aim of this study was to briefly 

examine recent texture segmentation techniques, with a primary focus on those, which have a 
potential for unsupervised applications. The authors concluded that all the techniques have 
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distinct application areas. A rigorous quantitative comparison of various methods is conducted 
which yields promising results for both stochastic and structural textures.  
 

Compared to filtering features, co-occurrence based features were found better as reported by 
Strand and Taxt[201]. Augustejin[8] compares a range of features for ground cover 
identification in satellite images using a neural network classifier. The texture measures 

considered include co-occurrence matrices, grey-level differences, texture-tone analysis, 
features derived from the Fourier transform, and Gabor filters. In addition to the Haralick’s 
features used in this study, grey level difference features proposed by Weszka et al. have been 

used. For texture tone analysis, three sets of measures were used. In the first set, they use four 
central moments of pixels and the deviation of grey level values. In the second set, they use six 
measures corresponding to the grey level differences of a pixel from its neighbours. In the third 

set, they use grey level averages in the segment above and below a certain grey level reference. 
The authors further use measures from the Fourier power spectrum. Three sets of features are 
derived. The first set is based on the radial distribution of values in the spectrum and it is 

sensitive to the texture coarseness in the image segment. Coarse textures will have higher values 
in the power spectrum concentrated near the origin while fine textures will spread out. The 
averages of power spectrum values around the origin provide a measure of texture. The second 

set of features are based on four statistical features of the power spectrum namely maximum 
magnitude, average magnitude, energy of magnitude, and variance of magnitude. Finally, the 
amplitudes of a selected set of frequencies are selected in the feature set. The authors also use 

Gabor filter features for texture. A total of 100 segments of 8x8 pixels are extracted from each 
TM band for each class. Raw pixel based classification is used to provide a baseline. The 
authors find that no universally best feature set is found. The best feature set depends on the 

data to be classified. In ranked order of recognition performances, they find that Four ier features 
are the best with roughly 90% recognition result. Co-occurrence and Gabor features come 
second best with performances around 86% correct recognition, followed by performances of 

the texture tone and grey level analysis with around 85% correct recognition.  
 
Ojala et al.[155] compared different texture measures with classification based on feature 

distributions.  Texture measures used in this study include grey-level difference method, Laws 
texture method, center-symmetric covariance measures, and local binary patterns. The primary 
goal was to find pairs of features that provide complementary information about the texture.  In 

case of grey level difference method, histograms of neighbouring pixels computed in horizontal 
and vertical direction were chosen as features along with third feature representing absolute 
difference in horizontal and vertical direction, and the fourth feature accumulating difference in 

all four principal directions. In case of Laws method, four 3x3 masks were used. For the center-
symmetric covariance matrices three measures were used. Measures used include center-
symmetric autocorrelation measure with linear and rank-order versions with center-symmetric 

covariance measure. These three measures were introduced by Harwood et al.[92]. For local 
binary patterns the method introduced by Wang and He[216] was used. The method is based 
upon texture spectrum. Two sets of experiments were performed. In the first set of experiments, 

nine classes of texture taken from Brodatz album were used. The texture images were corrected 
for mean and standard deviation in order to minimise discrimination by overall grey-level 
variation. Windows of size 32x32 pixels and 16x16 pixels were considered and all the features 
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were used individually for classification. Then Kullback’s entropy measure was computed for 
classifying 9000 random samples (Kullback’s principle measures likelihoods that samples are 
from alternative texture classes, based on exact probabilities of feature values of pre-classified 

texture prototypes). The best performance was obtained for the local binary pattern feature 
followed by histogram features. Covariance measures also performed better than Laws. In the 
second set of experiments, the method applied by Ohanian and Dubes[150] for texture analysis 

was used on the same set of images. The images were again corrected for mean and standard 
deviation and the same process was repeated for 200 samples for a 4-class problem and 16-class 
problem, again using single features. Difference histogram method performed best for the both 

problems followed by covariance features while Laws features performed the worst. The 
authors concluded that distributions of feature values should be used instead of single values. 
The use of complementary measures also improves the results. Quite poor performance of Laws 

approach indicates that the discriminating power of these measures is mostly contained in the 
variances of the feature distributions, and they also need larger data sets to perform better. 
 

Pichler et al.[173] compare wavelet transforms with adaptive Gabor filtering feature extraction 
and report superior results using Gabor technique. However, the computational requirements are 
much larger for these than needed for wavelet transform, and in certain applications accuracy 

may be compromised for a faster algorithm. 
 
Smith and Burns[198] proposed a framework for comparing texture classification algorithms 

and also for measuring their accuracy. The framework consists of several suits of texture 
classification problems and a method for computing a score for each algorithm. The framework 
provides a way of standardising the algorithm results. It can be used to benchmark the 

performance of any combination of features and classifiers. The authors also provided a set of 
images as Meastex texture benchmark. The benchmark contains images divided into five 
different classes namely asphalt, concrete, grass, miscellaneous and rock. Each image in the 

database is 512x512 pixels. To demonstrate the usefulness of the framework’s quantitative 
measure a multivariate Gaussian classifier with Gabor energy features was implemented. The 
effect of feature set dimension was investigated by varying the orientation resolution of features. 

The framework gave consistent results over a range of test-suits, even where the absolute 
variations in accuracy are not large. The average classification scores and confidence-based 
classification scores were computed. The experiments proved that the confidence-based scores 

had higher percentages of correct scores. The authors concluded that the synthetic textures in 
the database offer an advantage to control the difficulty of texture problems. The framework can 
be easily used for quantitative comparison of texture classification algorithms. The framework 

is modular and additional test suits can be incorporated without modification of the current 
structure and the test suits can be available on the internet for the benefit of other researchers. 
 

Randen and Husøy[179] provide a detailed comparative study of various filtering approaches to 
texture extraction. The basic assumption for most filtering approaches is that the energy 
distribution in the frequency domain defines a texture. Hence, if the frequency spectrum is 

decomposed into sufficient number of subbands, the spectral energy signatures for these are 
very different for different textures. The approaches compared in this study include Law’s 
masks, ring/wedge filters, dyadic Gabor filter banks, wavelet transforms, wavelet packets and 
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frames, Quadrature Mirror Filters (QMF), Discrete Cosine Transform (DCT), eigen filters, 
optimised Gabor filters, linear predictors, and optimised finite impulse response filters. A 
summary of other studies comparing texture algorithms is also provided. The basic procedure 

for filtering is as follows. First, the input image is subjected to filtering that allows certain 
frequencies to pass through and blocks the remaining frequencies. A non-linear function is 
applied to the filtered image which rectifies the filter response followed by smoothing. Some of 

the commonly used non-linearities are magnitude, squaring, logarithm, and the rectified 
sigmoid. Mostly, smoothing functions include rectangular and Gaussian functions. The resultant 
feature image is used for classification along with other such images derived with different 

choices of filters and post-processing functions. The experiments were conducted on composite 
texture images. The authors find that no clear hierarchy of classification performances is 
observed. Different methods perform better on different images. The traditional Law’s method 

and ring/wedge filters are never the winners or stand out is being very good. The poor 
performances are also observed for Gabor filter bank and DCT. DCT however has the least 
computational complexity of all methods. The QMF and wavelet frame approaches are among 

the best for most images. Co-occurrence matrix method is also compared and found to be the 
worst in all experiments.  
 

Four filtering methods of texture discrimination have been compared by Chen and Chen[38]. 
These methods include Fourier transform, spatial filter, Gabor filter and wavelet transform. A 
total of six texture images are divided into one hundred 128x128 pixel subimages from each 

texture giving a data set of 600 images. Leave-one-out classification technique using nearest 
neighbours has been used. They find that wavelet and Gabor features perform equally well but 
the wavelet method is computationally less intensive. These two performances are better than 

the two other feature methods. 
 
Fioravanti et al.[62] compare the spectral and rank order approaches to texture analysis. They 

define Wigner distribution for texture analysis. This distribution provides a cojoint 
spatial/spatial frequency representation of the texture pattern. The rank ordered approach acts on 
first order image statistics and morphological aspects. The results are compared on four Brodatz 

images that have cracks superimposed. The aim is to determine which approach is the best in 
finding these cracks. The Wigner distribution approach is found to be superior on this task than 
the rank ordered texture analysis approach. 

 
Tuceyran and Jain[209] present different definitions of texture discussing the various 
applications where the study of texture is important. A survey of relevant studies in the areas of 

inspection of materials, medical image analysis, document processing, and remote sensing is 
provided. Next, a taxonomy of various texture models is presented including statistical methods, 
geometrical methods, and model based methods of signal processing. In the case of statistical 

methods, autocorrelation features and co-occurrence features are described in detail. The 
authors conclude that co-occurrence features are better suited for texture analysis rather than 
image segmentation. Also, they conclude that autocorrelation features can be used to assess the 

amount of regularity as well as the fineness or coarseness of the texture present. Finally, the 
texture problems are categorised into four broad categorie s: texture segmentation, texture 
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classification, texture synthesis, and shape from texture. The authors demonstrate the use of low 
level vision algorithms for texture analysis on SAR images. 
 

A general review on texture analysis can be found in [51,87,90,209]. The problem of analysing 
texture in images and segmenting them has been tackled in Pietikänen[174].  
 

2.2.3 Texture similarity and salience 
Some studies are primarily interested in studying texture for determining texture features that is 
not ultimately needed for classification. For example, we might be simply interested in knowing 

whether an image has significant amount of texture, and if so, its orientation, location, etc. This 
can be used for focussing attention at specific parts of the image. Content based image retrieval 
is also mostly based on matching object textures where nearest neighbour techniques can be 

used [60]. Here we review some of the studies in these areas. 
 
Sadjadi[185] presented a comparison of four separability measures for registration of two 

dimensional digital images. Image registration is the problem of matching an image denoted as 
a reference with a usually much broader and differently obtained picture. The main objective of 
the experiment was to decide which of these image views would perform better when used as a 

reference in a scene matching problem. The four separability measures used were Bayes 
probability of error, Chernoff bound, Bhattacharyya bound and Fisher’s criteria. All of the four 
separability measures were used for the general two category Gaussian density classification 

problem to find the best view. Four sets of image data of 128x128 pixel size and 64 grey levels 
were used in the experiment. The pictures were the down-looking and target-looking views of a 
building and their corresponding synthetic pictures. Target-looking is the term used when the 

camera is at an oblique angle while down-looking is the term when the camera is directly over 
the target scene. The reference image in each set was selected such that the target area was 
totally included in it. A matching area of 9 pixels was chosen for the estimation of the correct 

match statistics. Correlation functions for area, edge and variations of mean were computed and 
then separability measures were derived and a comparison of the resulting error probabilities 
was made. The experimental results show that for the real images, the target looking view 

performs better, for the synthetic images the down-looking view performs better. The 
comparisons of the various probabilities of error show that Fisher’s criteria produces the highest 
probability of error and Bayes the smallest with Chernoff and Bhattacharyya measures lie in 

between the two. 
 
The orientation of texture can be used in itself as a texture classification attribute, or used for 

grading or detecting oriented texture. Chaudhuri et al.[35] define a technique based on Hough 
transform for calculating texture orientation. In this simple method, an edge image is formed 
first using Laplacian of Gaussian approach. An orientation histogram of dominant local 

orientation is constructed from the edge image. Next, the algorithm detects the peaks and 
valleys of the histogram. The measure of texture orientation corresponds to the height and width 
of peaks. The authors show results on 16 texture images from Brodatz album of size 128x128 

pixels.  
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Picard and Kabir[172] proposed a method for finding similar patterns in large image databases. 
The method is used for automatic searching through large sets of images to find a pattern. A 
mean-squared error or weighted mean squared error is used to measure closeness of an image 

with the provided database. The authors have used eigen-filters and principal components of the 
texture covariance from the image as features. This method for feature extraction is also termed 
as Karhunen-Loeve transform or Principal Components Analysis. Principal components are 

computed directly from the covariance estimate of the spatial data. The performance of the 
shift-invariant principal components algorithm was characterised for each pattern and for 
various subsets of features. The method was applied to all 111 images from the Brodatz album. 

A set of nine 128x128 images was obtained from each image. The experiment was performed 
on 999 samples. The results were found to vary for difficult and easy images. The authors have 
also presented an ordering of all of the Brodatz images from difficult to easy based upon their 

recognition. The data can thus be used as a benchmark for comparing alternative algorithms. 
 
Azencott et al.[9] define a texture similarity measure based on symmetrisized Kullback distance. 

This measure forms the basis of a simple minimum distance classifier for texture discrimination. 
Texture is considered as a random Gaussian field that is measured using windowed Fourier 
filters. The symmetrisised Kullaback distance is the sum of distances in both directions when 

comparing two probability distributions. For developing a classifier based on this, a supervised 
approach is followed. From the training set, feature centroids are found that act as reference 
points for test cases. For any new image, the classifier measures the distances between the 

features and each centroid, and allocates the image to the class with minimal distance. This 
scheme is compared to the normalised quadratic distance scheme. The study uses 16 images 
from the Brodatz album and divides them into 49 subimages of size 32x32 pixels with an 

overlap of 16 pixels between adjacent windows. The proposed scheme performs better than the 
quadratic distance measure by 5% better accuracy showing 95.1% correct recognition. 
 

Santini and Jain[187] discuss similarity measures between textures. They use fuzzy logic to 
compute distances between features. This allows the modelling of the interference between  the 
features on which similarity is based. They use a total of 100 images from the Vistex texture 

database. Textures are characterised using Gabor filters. Euclidean distance, and their proposed 
Fuzzy Feature Contrast similarity measure are compared. They find that Euclidean distance 
suffers from the problem of different feature scales. Their comparison of raw and normalised 

data using this distance showed that the results are not very different, although the normalised 
data gives slightly better performance. The performances are compared on a set of 10 images 
retrieved by the two distance measures and a human subject based on texture similarity.  

 
In scene analysis, quite often we are confronted with images that contain too many objects or 
regions that may not be important. If we can rank different image regions on the basis of the 

quality of texture, then we can focus our attention only on those perceptually important regions 
that have high texture saliency. Also, this technique can be employed in visual tracking, 
surveillance and indexing image databases. Syeda -Mahmood[203] presents a measure of texture 

saliency ranking. This method is based on inferring such information from bright and dark 
regions within a texture. The following attributes are computed to find the texture saliency 
measure within a texture field: the number of holes, maximum number of holes within a white 
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region, area occupied by holes within the white region, shape of black regions and distribution 
of holes within white regions. These attributes are weighted by coefficients that have been 
derived from psychophysical experiments. Results are shown on Brodatz and natural images. 

Similarly in cluttered scenes, it may be useful to focus attention on specific parts of the image. 
This is especially important when we want to locate specific objects quickly or when we want to 
process only a specific part of the image. Itti et al.[105] and Itti and Koch[106] define how 

saliency maps can be formed by combining a number of feature maps computed on an image on 
the basis of different features. Neural networks or other classifiers can be trained on these for 
supervised location of areas of interest. 

 
2.3 Classification  
The performance of a scene analysis system relies heavily on the quality of classifier used and 

issues surrounding data preparation. It has been found in numerous studies that using different 
data and the same classifier we get different results, and vice-versa. A number of classifiers 
have been used in scene analysis applications. These include nearest neighbour and Bayesian 

classifiers [53,68] and neural networks [21,234]). Mantas[137] presents a brief survey of 
methodologies in image analysis and pattern recognition. According to Mantas, the main 
objective of image analysis is to describe the object image into its main features. In case of 

matching, stereo-matching and time-varying imagery are briefly addressed. In case of image 
segmentation techniques like thresholding, edge detection and advanced methods including 
region adjacency graphs are briefly described. A brief survey is also presented on different 

methodologies for pattern recognition including statistical pattern recognition, syntactic pattern 
recognition and hybrid methods in pattern recognition. Jain et al.[109] provide a broader review 
of statistical pattern recognition. A range of problem domains, applications and their 

corresponding data representation are highlighted. The four major approaches to recognising 
patterns are explained including template matching, statistical approach, structural approach and 
neural networks. The authors include discussion on statistical pattern recognition, and neural 

networks excluding review of work on fuzzy techniques. The paper discusses the curse of 
dimensionality and the peaking phenomenon. A range of important issues is discussed including 
dimensionality reduction, feature extraction, and feature selection. Classifier design and 

combination are discussed for a range of methods. The properties of various classifiers are 
highlighted and their error estimation is discussed. The paper also discusses unsupervised 
classification concluding with a treatment on the topic of frontiers in pattern recognition 

showing the issues that are most likely to dominate pattern recognition research for some years.   
 
In some applications, image classification is based on pixel-by-pixel classification. For 

example, Eklundh et al.[59] proposed a relaxation method for multi-spectral pixel classification. 
The authors compared three approaches for reducing errors in multi-spectral pixel classification. 
The approaches compared were pre-processing, post-processing and relaxation. In this 

approach, the pixels are initially classified probabilistically i.e. for each element a probability is 
estimated that it belongs to a certain class. Then the probabilities are all adjusted in parallel on 
the basis of the probability assignments at adjacent pixels. The process is iterated, and finally 

each pixel is classified as belonging to a class that has the maximum probability. In the 
experiments, the authors have a priori information about the correct pixel classification, and 
therefore the experiments are iterated until the classification error is minimised. All of the three 
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approaches are applied to a coloured house picture and the results are evaluated using the 
ground truth obtained by manual segmentation. The experiments proved that the pre-processing 
and post-processing techniques give a similar amount of reduction in error rate whereas the 

relaxation approach results in a far more substantial improvement. The authors concluded that 
the relaxation approach eliminates about four times as many errors as the other two stages. 
 

In most studies, feature based classification is used. Here, the understanding and processing of 
data for classification is of utmost importance. In particular, research is always trying to 
improve classifier performances. First, there is an issue related to having too much data 

sometimes. In some applications, we can have too many samples. The problem of data reduction 
has not been fully addressed in detail in the literature. Usually, data reduction is viewed as a 
problem of reducing data dimensionality. However, quite often some data sets simply contain 

too many points and as such reducing the number of samples without affecting the 
characteristics of the data in terms of its distribution, is an attractive proposition. Fukunaga and 
Mantock[67] have investigated this problem. For their analysis, they divide the data into two 

partitions called store and test. A data distribution criteria based on nearest neighbour density is 
minimised as single samples are transferred from one set to another until no more transfers can 
take place. The aim is to reduce the original data by half. The experiments show the successful 

implementation of this technique on Gaussian simulated data. 
 
Second, feature extraction is a key step in data analysis for improving performances. By using 

redundant, and too many features, the quality of classification is degraded. A number of 
probability distribution difference metrics have been described by Webb[219] including 
Bhattacharya distance, Patrick Fisher distance, divergence and Chernoff distance. Based on 

these, each feature can be ranked according to their importance in discriminating between any 
two classes. In addition to these methods, search strategies can also be used for effective subset 
selection. Some of thes procedures include branch and bound procedure, best individual N 

method, Sequential Forward Selection (SFS), Sequential Backward Selection (SBS), and 
Floating Search methods. Lerner et al.[129] show a comparative study of neural network based 
feature extraction paradigms. The results are tested on five databases. The methods tested 

include Multi-Layer Perceptron (MLP), Auto Associative Neural Network (AANN) and Neural 
network implementation of Sammon mapping. The results are compared for both exploratory 
data projection and classification. The results are compared with the non-linear principal 

component extractor. The authors draw the following conclusions. First, projection using the 
non-linear MLP feature extraction distorts the data structure and the underlying inter-pattern 
distances. However, this yields the best classification results. Second, linear models preserve the 

data structure but they are not a good alternative to the non-linear models in terms of their 
classification ability. 
 

The fact that appropriate feature selection is important for obtaining good recognition 
performances is demonstrated by Aha and Blankert[3]. This study is based on the extraction of 
204 features from regions of size 16x16 pixels. In order to exhaustively test the best feature 

subsets, a total of 264 feature subsets must be evaluated which is computationally infeasible. 
Previous work by Blankert[20] on this data set has applied a simple feature selection approach 
that improved the results from 75.3% on the original features to 78.9% on a subset of 15 
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features. Aha and Blankert explore two search strategy combinations with two control 
strategies. They used the forward sequential selection and backward sequential selection as 
search strategies. For control strategies they use filter and wrapper. These strategies have been 

shown in more detail in their paper. The best strategy yields recognition rates as high as 88% 
correct on the 10 class problem. 
 

Third, the design of experiment in terms of how inputs and outputs are defined can be crucial. 
Multistage classification using a tree structure proposed by Parikh[162] can be valuable for 
improving performance in terms of recognition accuracy. Different decision tree structures that 

describe the order in which classification takes place have been defined. Starting at the root of 
the tree, one child is specified as a distinct category of classification with other children grouped 
into one category appearing at the same level. In this study, a flat structure is compared with a 

hierarchical structure. The results of 89.7% correct classification for the flat structure is 
improved to 91.4% correct for the best hierarchical model. Also the study suggests that 
classification accuracy can be improved by designing discriminant functions to assume unequal 

a priori probabilities. One of the advantages of using multistage classification is that we have 
less number of classes at a given time to classify and as such classification error can be lower 
provided that the groups classified are fairly homogeneous. 

 
Other recent studies have also used multistage classification. For example, Vailaya et al.[212] 
describe the application of classifying images on the basis of features including colour 

hitogram, colour coherence vector, DCT coefficient, edge detection histogram, and edge 
direction coherence. A total of 171 outdoor images have been categorised by 8 human subjects 
into the following clusters: forests and farmlands, natural scenery and mountains, beach and 

water scenes, pathways, sunset/sunrise scenes, city scenes, bridges and city scenes with water, 
monuments, scenes of Washington DC, a mixed class of city and natural scenes, and face 
images. The authors recommend that rather than attempting a multiple class classification, 

multiple two-class classifications are better. Based on this, a hierarchical classifications scheme 
is used. The authors examine the relative advantages of these features based on the plot of inter-
class and intra-class distributions. They find that edge based features are the most distinguishing 

factors. The recognition result of 93.9% is obtained with a weighted nearest neighbour classifier 
based on the evaluation of 2716 images. The objective was to classify images as city versus 
landscape. This approach is further extended to classify sunset/sunrise images vs. forest and 

mountain images which results in the recognition rate of 94.5%. The forest and mountain 
images have been further classified as the two separate classes with 91.7% accuracy.  The main 
application of such analysis lies in the area of content based image retrieval especially for 

browsing images. 
 
The above approach is justified by Fukunaga and Flick[66] when discussing the classification 

errors for very large number of classes in any pattern recognition problem. When the number of 
classes is large, the probability of error becomes very large. This is because the class is 
surrounded by a large number of neighbouring classes. If one has to make a choice between a 

given true class and a neighbour class, the pairwise error may be low. But pairwise errors tend 
to add and the error in selecting a true class in the midst of many neighbouring classes may be 
several times larger than the pairwise error. The authors propose that a group rather than single 
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class classification scheme is a better choice. In this case, classes are grouped according to 
characteristics of interest. The group error is just a fraction of single class error. Fukunaga and 
Flick provide standard curves to predict single class and group error. 

 
Multistage classification in outdoor scene analysis has been used by Foresti[63]. First the scene 
is decomposed into few main classes that represent generic static objects (e.g. road, vegetation, 

house, sky, etc.) and into one class corresponding to mobile objects (e.g. vehicles and 
pedestrians). Then each region belonging to the mobile object class is further classified as the 
type of vehicle or pedestrian. Neural trees have been used for the classification problem. The 

nodes of such trees are perceptrons without hidden layers. The paper defines their architecture 
and methods of training such trees. The results are generated for both optical and infrared 
images. On a total of 250 optical and 50 infrared images, the authors report a recognition rate of 

82% and 74% respectively on distinguishing mobile objects from static objects and a 
recognition rate of more than 70% correct on further classifying mobile objects. 
 

Fourth, classifier combination can yield better results than using single classifiers. Roli et al. 
[182] review comparative studies of statistical classifiers and neural networks in the context of 
remote sensing studies. They propose that for image classification, classifier ensembles are 

likely to provide better results. They detail how classifier outputs can be combined using voting 
principles, Bayesian average, and belief functions. It is expected that combined classifier can 
keep the distinct advantages of classifier that are combined together. The image classification 

tests are carried out on a per pixel basis for five agricultural classes of data. The classifiers used 
include Gaussuan Classifier (GC) Nearest Neighbour (NN) classifier with k ranging between 1 
and 91, MLP neural nets, Radial Basis Function (RBF) neural nets, and Probabilistic Neural 

Network (PNN). The average performance of these classifiers individually is reported as GC 
(79.4%), NN (88.4%), MLP (81.6%), RBF (78.9%) and PNN (88.6%). Using the majority rule 
on a combination of NN, MLP and PNN, an accuracy of 90.4% is obtained which improves to 

91.3% for combination by belief functions. One of the other main conclusions is that the nearest 
neighbour classifier performs the best. 
 

Quite often, good data preparation is more important than the choice of classifier itself. 
However, it is important to understand the nature of classifiers before making a selection for 
object recognition task. In several studies it has been found that non-parameteric classifiers have 

similar performances on the same data. For example, Greenspan[76] studied the classification 
performances of three classifiers on texture features extracted in the frequency and orientation 
space. The classifiers compared include rule -based network, nearest neighbour classifier, and 

neural networks. For feature extraction, Gabor function and its Fourier transform on the original 
image are computed. Then, a Gabor wavelet decomposition scheme is employed to extract 
orientation and frequency responses from local areas of the input images. Three scales are used 

with four orientations per scale. A pyramidal representation of the image is convolved with 
fixed spatial support oriented Gabor filter. A measure of power or energy associated with each 
filtered map forms the basis of feature vectors for response on 8x8 pixel windows. The rule -

based network is developed in two stages. In the first stage, features are passed through a k-
means unsupervised clustering scheme to bundle them into discrete partitions that are later 
labelled. Using these partitions for confidence in that rule. The other two classifiers used are 
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standard. The results compared for different window sizes show in each case a difference of less 
than 3% in performance is obtained across the three classifiers. The best recognition result 
obtained is 100% with neural networks 32x32 pixel window on a total of 30 texture images. 

 
Aggarwal and Shah[2] proposed a method for object recognition and performance bounds. The 
main purpose of the study is to look at the fundamental problems of object recognition and 

discuss various ways of formulation in practical object recognition systems. The authors have 
used three approaches: Bayesian approach, neural network approach and rule based approach 
for pattern recognition. The authors have presented a coherent comparison of the methods and 

discussed the ability of each in measuring the performance of the object recognition process by 
incorporating a degree of uncertainty. The authors proposed that Bayesian statistics provide a 
firm theoretical footing to improve the performance of a pattern recognition system and 

incorporate error estimates for the overall process. Neural networks are data-driven modifying 
patterns on inter-node connectivity and modelling a function of the training data is the learning 
approach. Neural networks do not require geometric models but instead they require that the set 

of samples used for training should come from the same distribution. The rule based systems 
can handle uncertain decisions by attaching a measure of belief to each of their output decisions. 
However, rule based systems are also limited in their ability to interpret typical knowledge 

bases and also to evaluate error in their decision for characterising performance. The results 
proved that the Bayesian paradigm in its formulation is comparable to neural networks and rule 
based methods if the relevant features have a Gaussian distribution. The authors concluded that 

an ideal object recognition system should use a combination of all the three methodologies.  
 
Finally, it is important to know how well a system performs in terms of its ability to give 

consistent performances with high recognition accuracy. To know how to do an optimal design 
for a vision algorithm, one needs to understand for a synthesis problem how to propagate a 
perturbation process from the input to the output, considering images as input and the 

application of an algorithm or the classification end as the output. Haralick[91]comments on the 
propagation of errors from input to output in vision algorithms and devises a method of 
modelling the propagation of input covariance matrix to output covariance matrix. Liu et 

al.[131] discuss the importance of statistically validating computer vision software by studying 
random perturbations. This is based on the fact that there is inherent uncertainty associated with 
any computer vision algorithm. These uncertainties are best represented in terms of statistical 

distribution means and covariances. Often the image processing runs in several lines of code. 
One of the ways to check whether the software implementation and theoretical calculations are 
correct is to provide the algorithm with controlled input data, with known statistical 

characteristics, which is possible as the data is artificially generated, and check if the output is 
actually distributed as what is predicted by theoretical calculations. The authors state that for a 
distribution with q parameters, a total of 3q – 2q hypothesis tests can be performed. The authors 

propose different hypothesis tests when data comes from multivariate normal distribution. 
Kolmogorov –Smirnov test is also described here that measures if two distributions are alike.  
 

Kanungo et al.[114] define the methodology for the quantitative performance evaluation of 
detection algorithms. A typical detection task relates to the identification of a target in an image. 
The task is to compute a number called evidence strength that measures the evidence whether 
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the target is present. The problem can be complicated by the low signal to noise ratio. There are 
several applications including detection of edges, objects, etc. within an image. Each evidence 
strength has a certain frequency and a histogram can be plotted as one way of illustrating the 

performance of a detection algorithm. One can define the various probabilities of false alarms 
and correct recognition from which an overall probability of error is computed. A plot of this 
against the signal to noise ratio is another useful representation of algorithm performance with 

change in noise. The effect of changing our acceptability criterion, that determines whether the 
evidence of strength is larger than it or not, we can replot the above curves. The authors also 
present a method of combining several operating curves into one to capture more information 

than otherwise possible. 
 
2.4 Scene analysis studies 
Outdoor scene analysis is a complex problem. A number of different approaches have been used 
for recognising different objects in such scenes. In early experiments on scene analysis, simple 
problems were tackled. For example Brice and Fennema[24] defined the procedure to interpret 

simple objects in images such as wedges, cubes, wall and floor. They define a simple procedure 
for grouping regions and understanding them to see their shape properties for object 
recognition. Also semantic information, such as the fact that there is a specific spatial 

relationship between floor and wall, is used for simplifies the process of scene interpretation. 
Model based approaches, such as the one proposed by Brooks[26], have met with some success 
provided that objects can be defined with geometric primitives. These approaches have 

problems with recognising natural objects such as trees for example where such primitives are 
hard to define. Another approach is based on the use of a knowledge based scheme where hand-
coded rules are used for object recognition. These rules describe the characteristic properties of 

objects of different types. Some examples of such work include SCHEMA vision system by 
Draper et al.[55], region based scene analysis by Ohta[152], and VISOR connectionist system 
for scene analysis [128]. Although these approaches have shown reasonable results, a 

significant amount of computational effort is required even for simple scenes. More recently, far 
more complex problems are being solved using texture based image analysis. The theses of 
Becalick[15] and MacKeown[133] provide an excellent review treatment of other studies in this 

area and summarise the progress made. In particular, Becalick reviews important studies based 
on knowledge based approaches in scene analysis, Autonomous Ground Vehicle (AGV) 
research, and image database and multimedia search. 

 
A number of studies based an automated segmentation and texture analysis has been recently 
applied for natural object recognition in outdoor scenes. In most studies leave-one-out 

classifications schemes have been used for statistical classifiers and ten fold cross-validation for 
neural networks, however, more advanced bootstrap procedures can also be used [43]. Based on 
k-means segmentation on a 11 class problem, Campbell et al.[29] demonstrate recognition 

accuracy of 81.4% correct. The work by Mackeown et al. [134,135] formed a part of British 
Aerospace/ Bristol University project aimed at recognising natural objects for developing 
autonomous land vehicles. Neural networks have been used for learning object characteristics. 

The studies use an image set of 40 urban and 40 rural scenes of 24 colour bit depth for a 12 
class discrimination problem. A total of 29 features are used where 16 are contextual features 
that are derived at the segmentation stage. The 12 classes are selected after grouping originally 
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29 classes. On all 29 classes, the classification accuracy for 80:20 train/test set split is 51.1% 
and on only 12 objects it is 64.1%.  
 

Campbell et al.[30] presented a technique for the automatic classification of outdoor images 
using a neural network. The technique is to segment the images, extract features for each region 
and then train the neural network to act as a Bayesian classifier. For segmenting the image into 

its major regions, k-means clustering of the grey-level histogram has been used. It is important 
that the algorithm produces closed regions since feature extraction is to be performed. It has 
been found that the use of four neighbours (k=4) in the k-means clustering, produced the 

optimum balance between under-segmentation and over-segmentation. For feature extraction, 
28 features were extracted from each region including average color, position, size, and rotation. 
Additionally, texture, shape and context features of the region were also obtained. For 

classification, the optimum results were obtained using a network of size 28x24x11 (i.e. 28 
inputs, 24 hidden nodes and 11 outputs). The number of hidden units was found using conjugate 
gradient descent optimisation. The network was trained to recognise 11 possible output labels 

including sky, vegetation, road, wall, buildings, and so on. The data used for testing the network 
was extracted from the Bristol Image Database. This database consists of a large number of high 
quality colour images of outdoor scenes. The network was tested on unseen data from 3751 

regions. Over 80% of regions were classified correctly, corresponding to 91.1% of image area. 
Most of the errors occurred when the classifier had to separate between road and pavement, 
fence, wall and buildings, and so on. Another cause for misclassifications was attributed to 

errors during segmentation. This paper compares the classification techniques and found that 
Learning Vector Quantisation (LVQ) was superior to MLP neural network with the best result 
of 76.7% correct classification.  

 
The study by Campbell et al.[32] describes the classification of objects in the Bristol Image 
database. This database consists of 350 images of urban and rural scenes. The classification is 

performed on 11 natural object classes including vegetation, road marking, road, pavement, 
building, fence/wall, road sign, signs/poles, shadow and mobile objects. The problem is 
approached with pixel classification and region classification as two separate modes of object 

recognition. In both cases, neural networks are used as classifiers. In case of pixel based 
classification, only four objects namely sky, vegetation, road-like and others were classified. 
Each pixel is characterised by its colour information. It is also characterised by Gabor texture 

features based only on frequency and not orientation. The pixel intensity is also a feature. The 
authors find that using intensity alone, a recognition rate of 73.4% is obtained that improves to 
85.0% when colour information is added and to 87.1% when texture information is added. In 

the case of region based classification, the images are first automatically segmented using k-
means segmentation. Region based features including contextual features and shape features, in 
addition to all of the previously used features for pixel classification, are now computed for the 

segmented region. Contextual features are defined as a measure of confidence that the region is 
surrounded by pixels of a given class. Shape measures are obtained by finding principal 
components of region boundary information. The results obtained on testing over 3000 regions 

shows an overall recognition accuracy of 82.9% correct on regions and 91% of the image area 
being accurately classified. 
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Betke and Makris[16] describe the problem of natural object recognition from the perspective of 
using the theory of statistical estimation. An object is considered complex if it is composed of 
elaborately interconnected parts. The complexity of an object can be defined as the ratio of the 

outer volume to the coherence volume. This complexity information is defined as positional 
complexity, rotational complexity and contractional complexity. This information is based on 
the object’s Fisher information. An information conserving method is then developed for the 

recognition of objects in complex scenes. The complexity is then measured for a number of 
traffic signs and the classification is applied to traffic sign recognition on 408 scene images. The 
recognition rates for nine sign models show large number of correct matches and correct 

negatives with small number of false positives.  
 
A number of recent studies by Singh and his colleagues have addressed the problem of scene 

analysis with Forward Looking InfraRed (FLIR) images for military applications. In most of 
these studies, the images have been acquired as a video stream and segmented using 
probabilistic labelling and relaxation. Co-occurrence matrices have been decomposed as a 

function of Hermite coefficients that are used as texture features. In Singh et al.[188] two 
nearest neighbour classifier models have been proposed that are also used in this thesis. The 
application of these two models, one based on conflict resolution and the other on average 

distance across neighbours, is shown for the scene analysis problem for classifying five classes 
of data including river, trees, grass, and the reflection of trees and sky in river, are shown in 
Singh et al.[195] where an accuracy of nearly 70% is obtained using leave one out method of 

classification with nearest neighbour models. Much better results are reported on classifying 
more than ten classes using the same set-up in Singh et al.[190]. Neural networks have also 
been applied to this data for analysis in Singh et al.[191]. One of the key problems in dynamic 

scene analysis is that often new objects are found in images on which classifiers have not been 
trained and there is no a priori information available on them. A system that is capable of 
automatically detecting samples of completely unknown objects on which classifier has no 

ground truth data and issues related to its labelling have been discussed by Singh et al.[192], 
and Singh and Markou[193]. 
 

Batlle et al.[13] provide a review of various scene analysis studies categorised as bottom-up 
schemes, top-down schemes and hybrid approaches. In the case of bottom-up schemes, a scene 
is partitioned into regions by using a segmentation technique. These regions are then 

characterised by a fixed set of attributes and the scene can be described in terms of relationships 
between objects. The labelling process uses an inference engine to match a region to object 
model. In the top-down approach, we start with the hypothesis that the image contains a 

particular type of object and then try to prove the hypothesis. The hybrid scheme is a mixture of 
the two. The authors review a number of studies that fall in one of the three areas. We have 
borrowed their table for presenting this information in Table 2.1 where the first four rows are 

examples of top down approaches, the next five rows examples of hybrid schemes and the other 
rows are examples of bottom up approaches. 
 

In scene analysis applications, quite often we deal with video sequences rather than still images. 
In some of these applications, we may require image segmentation and object recognition for 
most applications (in other cases we might be simply interested in tracking natural objects, for 
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example as in tracking the road when driving [159]). In order to perform classification of video 
shots, it is important only to process those shots that contain regions or objects that have not 
been already classified. For this purpose, it is important to identify the shot transitions in video 

that define the introduction of new frames that are significantly different than old frames. The 
identification of these transitions is called video segmentation. Dailianas[47] defines various 
methods of identifying video short transitions and ways of ranking their performance on a video 

stream. The differences between successive frames can be computed on the basis of colour 
histogram changes, changes in moment invariants, changes in edges, model-based approach or a 
simple differencing technique. These methods are compared on four test videos using the results 

obtained by human observers as a baseline. The performance metrics include the correct 
identification of short transitions and false alarms. 
 

Natural object recognition is only the first step of a complete scene understanding system. The 
interpretation of these natural scenes requires semantic understanding of object relationships. In 
one way, these relationships allow us to better understand images. At the same time, if we have 

already stored some contextual information from our experience with how outdoor scenes 
should look like, then this information can be used for guiding low level image processing 
operations such as image segmentation. For interpreting scenes, the role of context is 

paramount, and the understanding of spatial relationships between objects important. 
 
Toussaint[208] discusses the role of context in pattern recognition especially for image 

classification. The role of context at perceptual, cognitive and mathematical levels is discussed 
and illustrated with examples. The paper surveys the techniques for using contextual 
information in pattern recognition. The emphasis is on text recognition as an application that 

can benefit from the use of context. The techniques that use context in such an application 
include dictionary look up methods, Markov and probability distribution approximation 
methods, and hybrid methods. 

 
Scene analysis mostly consists of identifying objects reliably within an image. Each of the 
objects however has some spatial relationship with others and on the basis of these one can 

guide the scene analysis process. Only those object labelling are valid that can be derived from 
the arrangement of real objects in space. The projected properties and relationships constrain the 
possible labelling of regions with object identifications. Thus scene analysis can be viewed as a 

constraint satisfaction problem. Kitchen and Rosenfeld[118] define how constraint satisfaction 
can be used for scene analysis. A constraint network is first set up and list of possible labels is 
attached to the nodes. Labellings can be filtered depending on whether they violate binary 

constraints. Finally, labels are eliminated that violate the requirement that the arc and node 
labelling are consistent, as well as the labels that violate essential constraints.  
 

Michalski et al.[142] describe the semantic interpretation of outdoor images. A number of 
studies on machine learning in computer vision are reviewed before tacking the problem of 
scene understanding. It is proposed that the combination of symbolic learning with neural 

networks is to yield the best solutions for classification. This is explored under the framework 
called MIST that stands for Multi-Level Image Sampling and Transformation. This framework 
has two stages of operation, the learning mode and the interpretation mode. The learning mode 
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uses symbolic learning and neural network classifiers. In the interpretation mode, the system 
applies descriptions from the image knowledge base to semantically interpret the new image. In 
their experiments, region features from natural images are extracted on the basis of attributes 

including hue, saturation, intensity, horizontal and vertical gradients, high frequency spots, and 
Laplacian operators. On the basis of training areas of size 10x10, 20x20 and 40x40 pixels, 
classification features are extracted. Accuracy between 95% and 100% is obtained for  different 

classifiers using a random 60:40 split for training and test sets. On the basis of learned one-level 
descriptions from these small regions, the entire image can be semantically labelled. 
 

In futuristic scene analysis systems, it is expected that we will be able to classify natural and 
synthetic objects much more accurately. In addition, hopefully better frameworks can be 
developed that capture object relationships and allow us to interpret scenes better. Ideally, 

contents of image analysis systems should be able to assess their own performance, provide 
feedback to other components and adjust process parameters to optimise performance for the 
prevailing image conditions [82]. 

 
In this chapter we have reviewed some studies to put own work into context. It is an obvious 
conclusion that for solving the same problem, a range of methods is available that give different 

results depending on application. In the next chapter we define our research methodology. 
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System identification Scene Colour 
space 

List and number of objects to 
recognise 

Object characteristics Segmentation 
technique 

Object and scene 
knowledge 

representation 

Labelling engine 

Campani et al.[28] & 
Parodi & Piccioli[163] 

U Colour Road boundaries, road signs, 
cross-walks, vehicles, buildings, 
trees (6) 

Spatial disposition in the 
scene, colour and 
segments 

A specific gross 
segmentation based on 
edges, colour, 
vanishing point 
detection 

Encode the specific 
features of the objects 
inside the algorithm 

A specific procedure that 
finds specific features 

Hild and Shirai[97] N Hue, 
brightness 

Tree trunks, branches, grass, 
leaves, sky (5) 

Shape, orientation, 
position, hue and texel 
direction 

Likelihood pixel 
classification 

Feature vectors Select the best candidate 
by shape processing 

Efenberger & 
Graefe[58], 
Regenberger and 
Graefe[181] 

R Grey levels  Road, tree trunk, tree, rock, barrel, 
car (6) 

Edges and grey levels  Edges and grey levels  Subsampled images and 
prominent edge elements 

2D correlation functions 
and special purposive 
methods 

Ide et al.[104] U Grey levels  Poles (1) Diameter, height and 
layout 

Vertical straight line 
detection 

Encode the specific 
features of the object to 
recognise inside the 
algorithm 

Recognition based on 
specific characteristics 

VISIONS Draper et al. 
(1989) & Hanson and 
Riseman[85] 

R, H Combinati
on of RGB 
and YIQ 
values 

Road scenes: sky, foliage, 
shoulder, trunk, sign-post, wire, 
warning sign, phonepole, road, 
roof, building, roadline, grass, 
unknown (14) House scenes:  Sky, 
tree, grass, bush, shutter, wire, 
housewall, roof, roadline, road, 
film border (11) 

Colour, texture, shape, 
size and spatial relations 
among objects 

Combined 
histogramming and 
region merging 
methods 

A schema and two 
graphs (part of 
invocaton) for scenes, 
and schemas for the 
objects 

Schemas based on slving 
specific confidence 
functions in order to 
verify hypothesis  

CONDOR Strat[202] N R,G,B Geometric horizon, complete sky, 
complete ground, skyline, sky, 
ground, raised object, foliage, 
bush, tree trunk, tree crown, tree, 
trall, grass (14) 

Colour, texture, 
geometric shapes and 
spatial relations among 
objects 

A set of specific 
context sets (rules) 
which include texture 
operators, edge 
operators, 
histogramming 
techniques, … 

Semantic networks and 
context sets (rules as 
pairs of conditions, 
actions) 

(a)  Candidate 
comparison by likelihood 
methods; (b) grouping 
mutually consistent 
hypothesis; (c) Select the 
best description 

Asada and Shirai[7], 
Hirata et al.[98], 
Taniguchi et al.[205] 

R (T,q,S), 
brightness, 
hue and 
saturation 

Road, roadlines, crosswalk, sky, 
trees, buildings, poles, cars, truck, 
not interpreted (10) 

Colour, heights, range 
information and spatial 
relations among objects 

Colour (they design a 
specific split and 
merge algorithm) 

Each object is 
represented as a frame. A 
scene is represented as a 
network of frames 
structures 

Rules in specific 
methods 
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Ohta et al.[153] U Combinati
on of RGB 

Sky, tree, building, road, 
unknown, car, car shadow, 
building window (8) 

Colour, texture, position 
and shape 

Region splitting using 
multi-histograms  

Semantic network Instantiate production 
rules (which the 
condition part is the 
fuzzy predicate) 

Gamba et al.[71], 
Mecocci et al.[139] 

`U Grey levels  Natural objects, lateral vertical 
surfaces, frontal vertical surfaces, 
horizontal surfaces, vanishing 
point, unrecognised (6) 

Segments and region 
localisation with respect 
to vanishing points 

A specific region 
growing algorithm, 
edge analysis and 
vanishing point 
detection 

Encode the specific 
features of the objects 
inside the algorithm 

Criteria (rules) 

Bajcsy and Joshi[10] N Colour Ground, sky, horizon, skillines, 
tree (4) 

Colour, sizes, and spatial 
relations among objects 

Colour separation Rules (named facts) Partial match operations 
on rules and facts  

Lavine[124], Lavine 
and Shaheen[125], 
Nazif and Lavine [147] 

H R,G,B Bushes, car, fence, grass, road, 
roof, shadow, window (8) 

Colour and spatial 
relations among objects 

Region, edges and area Rules Constraint relations, 
rules in order to verify 
the hypothesis  

Douglass[54] H H,S,I Trees, house, grass, sky, car, 
street, window, brick-wall, 
concrete-wall, roof, ground (11) 

Colour, texture, 
boundary shape, size, 
curvature and orientation 

Edges, colour and 
texture (the algorithm 
combines edge 
detection and region 
growing) 

Associative net 
(semantic net), where 
nodes are objects and 
links are logical and 
spatial relationships 
between objects 

Probabilistic method 

Kim and Yang [117] R, U R, g, b, r-b, 
intensity 
and 
saturation 

Sky, foliage, road, grass, wall, 
roadline, window, footway, tree 
(9) 

Spatial disposition in the 
scene, colour, texture and 
geometric features 

Region growing Feature vectors and 
graphs 

Labelling the nodes of a 
region adjacency graph 
by using a simulated 
annealing method 

Kumar and Desai [121] R Grey level Sky, tree, sidewalk, road (4) Spatial disposition in the 
scene, grey level, texture 
and geometric features 

k-means clustering Feature vectors and 
graphs 

Labelling the nodes of a 
region adjacency graph 
by using a simulated 
annealing method 

Bhanu et al.[19], and 
Peng and Bhanu[168] 

R R,G,B - - A genetic algorithm 
selects parameters 
automatically for 
region splitting 
algorithm  

- - 

Campbell et al.[32] R Combinati
on of RGB 

Sky, vegetation, road markings, 
road, pavement, building, 
fence/wall, road sign, signs/poles, 
shadow, mobile objects (11) 

28 features including 
colour, texture (isotropic 
Gabor), shape and 
contextual information 

k-means clustering Feature vectors Neural networks 

 
Table 2.1  Review of outdoor scene analysis techniques by Batlle et al.[13]. 

(Scene: U (urban), N (natural), H (house), R (road))
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Chapter 3 
 
Methodology 
 

The purpose of this chapter is to provide a detailed overview of the methodology employed for 
this study. This chapter describes the data used, its main characteristics, and an overview of the 
technical details of this research. Two sets of experiments were performed. The first experiment 

is for the evaluation of five different texture extraction algorithms on two texture benchmarks 
MeasTex and VisTex. The second experiment evaluates the performance of image segmentation 
and texture extraction algorithms on PANN database. This chapter details the methodology for 

both the processes with the relevant examples and parameters used.  
 
The chapter first describes the international texture benchmarks used and the PANN database. 

In the next section the detailed methodology followed for both the experiments is illustrated 
with the flowcharts and detailed description of all the steps involved. 
 

3.1 Data details 
This section gives detailed information on the texture benchmarks and an overview of outdoor 
data used. The experiments are first performed on standard texture benchmarks for texture 

extraction algorithm evaluation, and then on real outdoor data to evaluate the differences in 
performance when different image segmentation algorithms are used in combination with 
different texture extraction methods. 

 
3.1.1Texture benchmarks  
Two texture benchmarks called MeasTex and VisTex are used in this study for the performance 

evaluation of texture feature extraction methods without any segmentation. Various studies have 
already used the same benchmarks for testing and comparing texture algorithms. Both of these 
databases are publicly available for research purposes. Guy Smith’s MeasTex database [138] is 

an image database and quantitative measurement framework for image texture analysis 
algorithms. VisTex database [214] is another popular collection of texture images by MIT 
Media lab. This database provides a large set of high quality textures for various computer 

vision applications. The databases are explained in detail below. 
 
MeasTex database 

MeasTex is a publicly available international database. MeasTex is about the MEASurement of 
TEXture classification algorithms. This texture database contains images of natural objects with 
homogeneous texture. The database contains several test suites of texture classification 

problems. It is proposed as a standard framework for the analysis of robust methods of texture 
feature extraction. This framework has been tested on several algorithms and Unix platforms. 
Other studies have implemented various texture algorithms on this database and the results are 

available for comparison and evaluation [198]. 
 
There are a total of 67 images of synthetic homogeneous textures. The images are divided into 5 

different categories: Asphalt, Concrete, Grass, Miscellaneous and Rock. 
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File formats and image size 

All images in the MeasTex database are stored as 512x512 pixels raw pgm (P5) images. For our 
analysis, each image is divided into 16 parts to get enough samples for classification. Table 3.1 

shows the number of images available for analysis. We have not used any samples from the 
miscellaneous category. The table details the information about the total number of images 
available in the MeasTex database, the images used in this study, and also the total number of 

samples used. 
 

Objects Total images 

in the database 

Images used Samples used 

Asphalt 4 4 64 

Concrete 12 12 192 

Grass 18 18 288 

Miscellaneous 8 0 0 

Rock 25 25 400 

                   Table 3.1  MeasTex database composition and samples used. 

 
Various examples of images from the MeasTex database are presented in Figure 3.1. The first 
set of images includes various samples of asphalt. The samples are quite similar to each other. 

The second set of images includes various samples of concrete. The third set shows different 
samples of grass. The fourth set shows the miscellaneous images. It is clear from the images that 
the miscellaneous set contains images that are quite different from each other and also the 

texture contained in different images is also variable in nature. So these images are not used for 
the analysis. The fifth set contains different images of rocks. 
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Figure 3.1  Sample images from MeasTex database. 

             
 
   asphalt01.pgm               asphalt02.pgm             asphalt03.pgm         asphalt04.pgm 
 

         
 
    concrete01.pgm        concrete02.pgm             concrete03.pgm          concrete04.pgm 
 

          
 
      grass01.pgm                grass02.pgm                grass03.pgm                grass04.pgm 
 

          
 
       misc01.pgm                 misc02.pgm          misc03.pgm                misc04.pgm 
 

          
 
       rock01.pgm                  rock02.pgm                    rock03.pgm             rock04.pgm 
 

          
 
       rock05.pgm                 rock02.pgm                  rock03.pgm                rock04.pgm 
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VisTex database 
Vision Texture (VisTex) database is a publicly available international database by MIT Media 
lab. The database contains images of 18 different natural objects. The goal of VisTex is to 

provide texture images that are representative of real world conditions. This database is a 
standard framework for measuring the accuracy of texture classification algorithms. The 
database consists of real world images in different lighting conditions for analysis of various 

texture feature classification algorithms.  
 
There are a total of 67 images of different scenes with different lighting conditions. The images 

are divided into 18 different categories namely, Bark, Brick, Buildings, Clouds, Fabric, Flowers, 
Food, Grass, Leaves, Metal, Miscellaneous, Painting, Sand, Stone, Terrain, Tile , Water, 
Whereswaldo and Wood. 

 
File format and image size 

All images in the VisTex database are stored as raw ppm(P6) files. There are two standard sizes 

for images in VisTex: 512x512 pixels and 128x128 pixels. For our analysis, each 512x512 pixel 
image is divided into 4 parts to get enough samples for classification. Some objects in the 
database do not have enough samples so we have not used those image categories with less than 

five samples. In addition, some images are of extremely poor quality and we have excluded 
them from analysis. Also, we have not used those image categories that do not have uniform 
texture and would ideally need segmentation prior to feature extraction. In our study only seven 

objects are chosen for classification as discussed below. 
 
Various example images that are used for analysis from the VisTex database are presented in 

Figure 3.2. The first set of images shows bark samples. The second set of images shows fabric 
samples. These samples are highly variable in their composition. The third set of images shows 
food samples. Texture primitives are again highly variable in this case for different samples. 

The fourth set of images shows various samples of metal. The fifth set shows sand samples. The 
sixth set of images is shown for tile s. Different samples of tiles appear different from each other. 
The seventh set shows different images of water. 

 
Figure 3.3 gives some example images from the VisTex database which are not used for our 
analysis. There are several reasons for not using these images. The first reason is that the 

database contains too few samples of some categories. These categories will not yield a lot more 
samples even after subdivision. In order to avoid unbalancing the classification database with 
these categories, we have not used them. Also we have not used some of the images that have 

been taken under extremely poor lighting conditions. As such, good quality feature extraction 
from these can not be expected. Finally, we have not used those images that need segmentation. 
In images that contain buildings, flowers, paintings, etc., the texture is not uniform and greatly 

varied across different samples. Such images have been excluded from our analysis. 
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                                  Figure 3.2  Sample images used from the VisTex database. 

            
       bark01.pgm                   bark02.pgm                 bark03.pgm                 bark04.pgm 
 

             
       fabric01.pgm                fabric02.pgm                 fabric03.pgm              fabric04.pgm 
 

             
        food1.pgm                    food2.pgm                     food3.pgm                  food4.pgm 
 

            
       metal1.pgm                   metal2.pgm                    metal3.pgm               metal4.pgm 
 

             
        sand1.pgm                  sand2.pgm                     sand3.pgm                    sand4.pgm 
 

               
         tile1.pgm                      tile2.pgm                     tile3.pgm                      tile4.pgm 
 

             
     water1.pgm                  water2.pgm                  water3.pgm                    water4.pgm 
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Figure 3.3  Sample images not used from the VisTex database. 

           
       brick01.pgm               brick02.pgm                brick03.pgm                brick04.pgm 
 

             
   building01.pgm            building02.pgm            building03.pgm         building04.pgm 
 

          
     cloud01.pgm               cloud02.pgm                grass01.pgm                 grass02.pgm 
 

          
     flowers01.pgm            flowers02.pgm             flowers03.pgm            flowers04.pgm 
 

          
     leaves01.pgm              leaves02.pgm                leaves03.pgm              leaves04.pgm 
 

          
   painting01.pgm            painting02.pgm          painting03.pgm            painting04.pgm 
 

          
 whereswaldo01.pgm whereswaldo02.pgm           wood1.pgm                 wood2.pgm 
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Objects Total images in 

the database 

Images used Samples used 

Bark 13 9 36 

Brick 9 0(poor quality) 0 

Building 11 0(segmentation needed) 0 

Clouds 2 0(< 5 samples) 0 

Fabric 20 20 80 

Flower 8 0(segmentation needed) 0 

Food 12 12 48 

Grass 3 0(< 5 samples) 0 

Leaves 17 0(poor quality) 0 

Metal 6 6 24 

Miscellaneous 4 0(< 5 samples) 0 

Painting 14 0(segmentation needed) 0 

Sand 7 7 28 

Stone 6 0(poor quality) 0 

Terrain 11 0(poor quality) 0 

Tile 11 8 32 

Water 8 8 32 

Wherswaldo 3 0(< 5 samples) 0 

Wood 3 0(< 5 samples) 0 

Table 3.2  VisTex database composition and samples used. 

 

In Table 3.2 above we show the total number of samples available for our analysis from each 
category. 
 
Other databases 
In this study we have used two of the popular texture benchmarks. This is not to say that any 

other benchmarks are not available. For the sake of comprehensiveness, it is appropriate here to 
point them out and briefly summarise their characteristics. 
 

Brodatz data 

In 1966 Brodatz[25] published a photographic album of textures. A recent version of this has 
been printed again. Some example images are shown in Figure 3.4. A number of web sites have 

digitised textures from this book and thus digital texture data is available for analysis. The 
album contains 112 grey scale pictures. There are several advantages of using this texture data. 
First, this data is de facto standard for texture analysis. As we have seen in our literature survey, 

several studies use Brodatz images for texture analysis. Hence, there is a common 
understanding on how difficult these images are for classification. However, one of the 
problems using this data is that several different digitised collections exist and a number of 

authors have been very choosy in which images they have used for analysis. This makes 
comparison difficult. Another disadvantage is that the album was never designed in the first 
place for image analysis and as such does not contain all textures that are relevant for vision 
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research. Some links to these digitised collections can be obtained from 
http://wcc.ruca.ua.ac.be/~visielab/wta/brodatz.html. 
 

Elena classification data 

ELENA is ESPIRIT III Basic research action project (no. 6891) 
Under this repository, databases have been identified as real or synthetic. The real database 

consists of images of 11 different textures (grass, lawn, pressed calf leather, handmade paper, 
raffia looped to a high pile, cotton, canvas, etc.). The feature sets on this data are also available 
as 40 attributes built by the estimation of fourth order moments in four orientations of 0, 45, 90 

and 135 degrees. The data is available from: ftp://ftp.dice.ucl.ac.be/pub/neural-

nets/ELENA/databases  

 

Columbia-Utrecht reflectance and texture database 

Researchers at Columbia University and Utrecht University have put together a database that 
contains reflectance measurements for over 60 samples each observed with 200 different 

combinations of viewing and illumination conditions [48]. As a part of this, 60 different real-
world surfaces have been used. The categories include specular surfaces (aluminum foil, 
artificial grass), diffuse surfaces (plaster concrete), isotropic surfaces (cork, leather, styrofoam), 

anisotropic surfaces (straw, corduroy, corn husk), surfaces with large height variations 
(sandpaper, quarry tile, brick), pastel surfaces (paper, cotton), coloured surfaces (velvet, rug), 
natural surfaces (moss, lettuce, fur), and man made surfaces (sponge, terrycloth). The 

appearance of texture is considered as a function of the viewing and illumination conditions. 
The data is available through http://www.curet.cs.columbia.edu/curet/data. This is a relatively new 
data set compared to other texture benchmarks and not enough studies on its analysis are 

available. Also the database has been developed more for the graphic community for texture 
rendering studies. The database acts as a starting point for exploring 3D texture rendering 
algorithms. As such, it remains to be seen if it will prove useful for texture discrimination 

studies. 
 
3.1.2 PANN database 
As a part of this project, outdoor data was collected from the University of Exeter campus using 
a Panasonic digital video camera (Model NV-DS77B) having 720x576 pixels resolution. The 
data was collected in the form of 448 coloured digital stills. Images of different natural scenes 

containing grass, trees, sky, clouds, pebbles, road and different samples of bricks were 
collected. The camera was stabilized using a tripod. All the images were taken during daytime 
to give a realistic view of the real environment. At the same time, every effort was made to 

minimise the shadow effects. A selection of images from this database is shown in Figure 3.5. 
 
File format and image size 

All of the images collected are stored in bitmap (.bmp) format with 16-bit colour depth and a 
resolution of 760x576 pixels. The images have been reduced to a size of 512x512 pixel 
resolution using the ‘convert’ command in Linux for further analys is. At the same time, the 

images have been converted in .pgm format with 256 grey levels. 
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Figure 3.4  Sample images from the Brodatz album. 
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Figure 3.5  Sample images from the PANN Scene Analysis Benchmark. 

          
          outdoor1.bmp                    outdoor2.bmp                      outdoor3.bmp                      outdoor4.bmp  
 

          
        outdoor5.bmp                     outdoor6.bmp                         outdoor7.bmp                     outdoor8.bmp  
 

         
          outdoor9.bmp                       outdoor10.bmp                  outdoor11.bmp                    outdoor12.bmp  
 

          
          outdoor13.bmp                   outdoor14.bmp                     outdoor15.bmp                    outdoor16.bmp  
 

          
          outdoor17.bmp                  outdoor18.bmp                    outdoor19.bmp                      outdoor20.bmp  
 

          
         outdoor21.bmp                 outdoor22.bmp                      outdoor23.bmp                     outdoor24.bmp 
 

          
         outdoor25.bmp                    outdoor26.bmp                  outdoor27.bmp                       outdoor28.bmp  
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The analysis is performed on all of the 448 images of the PANN database. The images contain 
nine different natural objects trees, grass, sky, clouds, bricks, pebbles, road, water, leaves and 
water. Water is not included for classification, as it is present only in four images, and therefore 

it is not possible to have enough samples for classification. As the images consist of different 
objects, they need to be segmented before feature extraction. Therefore, in the case of outdoor 
data, the images are first segmented and then texture features are extracted.  

 

Class FCM Histogram 

Thresholding 

Region 

Growing 

Split and 

Merge 

Trees 387 314 180 316 

Grass 268 241 69 379 

Sky 293 419 187 400 

Clouds 247 303 176 315 

Bricks 137 274 143 302 

Pebbles 121 114 65 310 

Road 152 196 59 215 

Leaves 206 184 134 248 
Total 1811 2045 1013 2485 

Table 3.3  PANN benchmark data composition in terms of  

regions generated by different segmentation methods. 

 
In Table 3.3 we show the total number of regions generated by different image segmentation 
methods. Each region yields one sample for our analysis. Split and merge generates the 

maximum number of samples and takes the longest to compute. Region growing generates the 
smallest number of samples. Vegetation categories, including trees, grass and leaves, have more 
samples than natural objects such as sky, clouds, bricks, pebbles and road. 

 
3.2 Plan of work 
We first present two flowcharts showing the methodology for analysing texture benchmarks and 

PANN database. The first flowchart shows the detailed methodology involved in the benchmark 
analysis. The second flowchart shows different steps in outdoor data analysis. We discuss the 
flowcharts and the process they include in sections 3.2.1 and 3.2.2. 

 
3.2.1 Texture benchmark analysis 
Figure 3.6 shows the various steps of analysis for texture benchmarks. For MeasTex benchmark, 

each image is divided into 16 equal parts. In the case of VisTex benchmark, images are first 
converted into Portable Greyscale format and then divided into four parts each. In the next step, 
texture features are extracted using five different texture extraction methods. The methods used 

are auto-correlation [178,199], co-occurrence matrices [86,176,178], edge frequency [178,199], 
Laws[178,126], and primitive run length [46,176,199]. After the feature extraction phase, the 
features extracted from each method are classified individually and also features from all the 

five methods are combined as a set and then classified. For classification, linear classifier and 
nearest neighbour classifiers are used. It is well known that nearest neighbour models compare 
well with neural networks and provide good classification rates on non-linear classification 

problems[189]. In this study, two different models of the nearest neighbour classifiers namely 
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11 
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4 

5 



 88 

Model1 and Model2 are used [195]. The detailed results for the benchmark analysis are 
presented in chapter 5. 
 

 
 
 

 
 
 

 
 
 

 
    

Figure 3.6  Flowchart for the methodology of benchmark analysis. 

 
3.2.2 PANN database analysis 
Fig 3.7 shows the flowchart for the analysis of the PANN database. 

 
 

 

 

 

 

 

 

 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
Figure 3.7  Flowchart showing various image processing steps for PANN benchmark analysis. 
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We explain below various steps shown in the flowchart. For the basics of image processing 
operations, please refer to Petrou [170] and Gose et al.[75]. 
 

Step 1. Original images 
The entire set of original images from the Exeter PANN database is used for the analysis.  
 

Step 2. Convert to .PGM 
Using the convert command in Linux, each original colour image is converted to a 256 
greyscale Portable Grey Map (.pgm) format of size 512x512 pixels. This format is a popular 

academic research image format and the choice for many tools and techniques used in PANN 
laboratory. 
 

Step 3. Enhancement 
When the images are converted to pgm format, some information is lost because of the 
conversion. For only those images that are of very poor quality, enhancement is performed as a 

pre-processing step before image segmentation. First, noise is removed and then spatial domain 
and frequency domain filters are used as needed to improve the image quality. For noise 
removal, a median filter is used in this study. The median filter enhances a given image by 

reducing noise. The grey level of each pixel is replaced by the neighbourhood median and the 
result is a smoother image without noise. In this study, a 3x3 pixel neighbourhood is used for 
median filtering. In order to perform median filtering to an image in the neighbourhood of a 

pixel, we first sort the values of the pixel and its neighbours, determine the median, and assign 
this value to the pixel. For example, in a 3x3 pixel neighbourhood, the median is the 5th largest 
value, in a 5x5 neighbourhood it is the 13th largest value, and so on. When several values in a 

neighbourhood are the same, all equal values have to be grouped. For example, suppose that a 
3x3 neighbourhood has values (10, 20, 20, 20, 15, 20, 20, 25, 100). These values are sorted as 
(10, 15, 20, 20, 20, 20, 20, 25, 100), which results in a median of 20. Thus the principal function 

of median filtering is to force points with distinct intensities to be more like their neighbours, 
thus eliminating small regions that appear isolated in the area of the filter mask.  
 

Bright images are smoothed using average filter and lowpass-butterworth filter, while  dull 
images are sharpened using highpass-butterworth filters. Some images that appear too bright 
can be smoothed using a lowpass filter. In the case of a lowpass filter, the grey level of each 

pixel is replaced by the average in a neighbourhood and the result is a smooth image. In this 
study a 3x3 pixel neighbourhood is used for lowpass filtering. Image blurring is also done by 
the reduction of high-frequency components from the image. For this purpose a lowpass-

butterworth filter is used in this study. 
 
Some dull images are sharpened using a highpass filter. This filter is used to improve the edge 

information and enhance object contrast with the background. In our study a 3x3 pixel 
neighbourhood is used for highpass filtering. Image sharpening is also done by increasing the 
magnitude of the high frequency components relative to the low-frequency components. For this 

purpose a highpass-butterworth filter is used in this study. 
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The image enhancement step improves the visibility of the images and makes them better 
suitable for further analysis, such as image segmentation. Image enhancement is performed on 
32 images from the PANN database. After enhancement, the images are ready for the 

segmentation process, which is described below. 
 
Step 4. Segmentation 

Division of an image into its constituent objects is called segmentation. An image can be 
divided into a number of objects depending on the objects of interest in any problem i.e. 
segmentation is stopped when the objects of interest. Segmentation carries a risk of generating 

wrong object boundaries. Splitting the image into too many objects, which is termed as over-
segmentation, generate many small regions which is problematic for good texture analysis and 
time consuming to label when generating ground truth data. Under-segmentation is a much 

more serious problem, as in that case different objects can be merged into one cluster [118]. 
  
We find that it is better to risk over segmentation than under segmentation because in the first 

case all of the pixels belonging to a region belong to the same class.  On the other hand, in the 
case of under-segmentation different regions are merged together, so one region can contain 
pixels belonging to more than one class.  

 
In our study, we have used four commonly used techniques for image segmentation. The 
techniques used are: fuzzy c-means clustering[206], histogram based thresholding, region 

growing and split and merge[74]. All of the segmentation techniques are performed on the 
greyscale  (.pgm) version of the original images. After segmentation, the results produced by 
each method are processed individually for feature extraction and classification phase. The 

segmentation techniques are described below. Their detailed algorithms appear in the next 
chapter. 
 

a. Fuzzy c-means clustering based segmentation 

Fuzzy c-means clustering describes an image in terms of fuzzy classes. This means that each 
pixel in an image is assigned a membership to class clusters using a fuzzy function. Each class 

can consist of many disjoint segments, and depending on the nature of the image, this number 
can be a large figure. In this study, a version of the fuzzy c-means clustering algorithm 
implemented by the Robotics and Image Analysis Laboratory at the University of West Florida 

is used. For this we use the following parameters: number of classes is set to 5, the fuzzy factor 
used is 2.0, termination threshold is 0.5 and the maximum number of iterations used is 15. We 
have used a maximum of 5 clusters for each image as for a given image we always find the total 

number of classes present to be five or less.  
 
b. Histogram thresholding based image segmentation 

This method segments the image into a number of object regions based on the number of peaks 
in the image histogram. Histogram thresholding performs well only if different objects in the 
image have considerably different grey levels. In this method, the segmentation is automatic and 

there is no need to specify in advance the number of objects in which the image is to be 
segmented. In case of images with a large number of small peaks, histogram smoothing is 
required for the algorithm to perform well. In our case, as the number of objects is never more 
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than five in any image and the algorithm performs well without any form of pre-processing of 
the histogram.  
 

c. Region growing based image segmentation 

Region growing groups pixels into larger regions by the process of pixel aggregation. The 
process starts with the first pixel and merges the neighbouring pixels to it based on whether a 

certain condition is satisfied. In this case, the merging is based upon the grey level difference 
between the pixel and its neighbours. This threshold value determines the quality of 
segmentation. If this threshold is set to a small value, the result is over-segmentation because 

not many neighbouring pixels satisfy the merge criterion. On the other hand if the threshold is 
set to a large value, it results in under-segmentation and two or more regions are merged into a 
single region. Again, it is better to over-segment rather than under-segment. Various 

experiments were performed to find the best value of the threshold. In this study, this threshold 
is set to 30.  
 

d. Split and merge segmentation 

Split and merge segmentation initially subdivides an image into a set of arbitrary, disjoint 
regions and then merges them iteratively to satisfy a given criterion. At each step, the image is 

split into four disjoint quadrants and then each quadrant is again split until all of the pixels 
belonging to that quadrant are homogenous. We need to however specify the maximum splitting 
possible. The node size corresponds to the minimum size that an image quadrant can have after 

recursive splitting. When the splitting is complete, the neighbouring regions are merged until a 
certain condition is satisfied. For each quadrant obtained at the end of the split process, its 
average grey level is calculated. This is compared to the grey level average of neighbouring 

quadrants, and if the different between them is less than the merge factor, which is user 
specified, then the quadrants are merged together. For this a node size and a merge factor needs 
to be specified. In this study we have used a node size of  4 and a merge factor of 10. A set of 

preliminary experiments was performed to select the optimal values of the node size and the 
merge size.  
 
Step 5. Median filtering 
After the segmentation step, because of the complex detail in the outdoor scenes, image 
segmentation results in several very small regions, some of which have only a single pixel. Such 

regions are too small to be manually labelled when generating ground truth data, and therefore 
some form of filtering is required to eliminate regions that are less than a certain size. A filtering 
method is needed that removes these tiny regions while preserving image structure. Median 

filter is used to eliminate small regions that appear isolated in the area of the filter mask. A 5x5 
pixel mask is used for median filtering in this case. In Figure 3.8(a) we show an original image 
and in Figure 3.8(b-d) median filtered images using different mask sizes. We finally settles on 

using a mask size of 7x7 pixels. 
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(a) (b) 

  

  
(c) (d) 

 Figure 3.8  (a) Original segmented image; (b) median filtered output with 3x3 pixel mask;  

 (c) median filtered output with 5x5 pixe l mask; (d) median filtered output with 5x5 pixel mask. 

 

Step 6. Autofill 

The next aim is to construct a map file from the median filtered image that contains all regional 
information we need for textural feature extraction. The construction of a map file requires 
some processing of the median filtered image to generate the desired result. To extract texture 

features from a region, the main question is “what minimum sized area constitutes a valid 
region?” The quest for an answer to this question led us to the conclusion that the area should be 
at least 500 pixels in order to extract meaningful textural features. This may sound like quite a 

large figure, but it is not when the image size totals 262144 (512x512) pixels. Considering the 
median filtered images, we notice that even after applying a 7x7 mask to the segmented output 
we still have regions containing less than 500 pixels. Additional processing of the median 

filtered image is required that considers each region in the image. If a given region consists of 
less than 500 pixels, then it is merged within the region in which it is enclosed. 
 

For the map file to be useful, it must uniquely identify each region. This will allow us to trace 
back individual regions later in the project to help us to analyse case by case performance is 
needed. The regions should be labelled 1 to N, where N is the total number of regions in the map 

file. In theory, this is a relatively simple procedure, which involves scanning the median filtered 
image and labelling each homogeneous region with a unique number. In practice however, this 
is far from a trivial task. We eventually decided on designing a recursive technique to both 

eliminate the small regions and assign each to a unique identifier. The autofill algorithm 
eliminates all regions with less than 500 pixels and creates the map file by assigning a unique 
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value to every region. This map file is used to identify different regions for manual tagging and 
also for feature extraction. 
 

Step 7.  SUSAN  
The output of the autofill procedure produces a map file from the median filtered image that 
contains all of the regions needed for textural feature extraction. This map file is used not only 

for feature extraction. It is also used as a guide for generating the outlines of regions used when 
manually tagging the images to produce ground truth data. The borders of these regions are 
detected and traced over the original colour image. These edge-traced images are used when 

generating ground truth data by simply clicking within a bordered region with the mouse and 
labelling the region as of a particular class. The technique used for this is called SUSAN.  
 

  
(a) (b) 

  

  
                                      (c)                                                                                     (d) 

Figure 3.9  The effect of brightness parameter on detecting edges in SUSAN; (a) Equalised map file; (b) 

output with brightness parameter b=20; (c) output with b=10; (d) output with b=5. 

 
Although there are many edge detection techniques available, SUSAN is chosen for this study 

because of two reasons. First, SUSAN is very flexible as it allows a variety of parameter 
changes, which means that it can be customised to suit several different applications. Second, 
the detected edges with SUSAN are black edge pixels surrounded by a white border. This means 

that once the edges are found, it is a very simple process to retrieve these edges. In addition to 
these points, SUSAN is a very fast algorithm and it has been used successfully with other 
research at PANN research laboratory. Figures 3.9(a-d) show the example output of SUSAN 

using different brightness parameter settings. It is clear that Figure 3.9(d) detects more edges 
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than other examples. This example uses the value 5 for the brightness parameter and this was 
the default value we used for all images in the project data set. 
 

Step 8. Trace edges 
With the edges of the map file detected successfully, it is a relatively simple process to trace 
these edges over the original. A simple procedure was written to scan the SUSAN edge-detected 

image for edges (black pixels surrounded by a white border). When edges are found we draw a 
red pixel at the corresponding location in the original colour image. The following example 
shows a edge-detected map image and its corresponding traced image (Figure 3.10(a) and (b)).  

 

 
(a) 

 

 
(b) 

         Figure 3.10 (a) SUSAN edge detected image; (b) the same edges overlaid on the colour original. 
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Step 9. Use .BMP file 
The edge traced images in the .bmp format are used. This is required for manual region tagging 
to have the coloured images for adequate ground truth data generation. 

 
Step 10. Manual region tagging 
One of the greatest difficulties in scene analysis research is the generation of ground truth data. 

It is essential that ground truth data is available because it forms the basis of the training set(s) 
and provides a means of judging the classification performance when testing. To make the 
generation of this data as simple as possible, a software is designed in PANN lab to allow 

particular regions of an image to be labelled as one of the available classes, effectively 
generating our own ground truth. This manual tagging software consists of an image viewer that 
is used to display the edge-traced image and a point and click interface for manually tagging 

regions of the image. The idea is to open the edge traced images in sequence and for each image 
manually tag regions as of a known class. The traced edges from the SUSAN image are used as 
a guide to visualise the boundaries between regions. When an edge-traced image is displayed, 

its corresponding map file is automatically opened in the background. This map file is used as a 
reference for the pixels that fall within a region when the user clicks on a location in the image 
viewer. When the user clicks inside a region on the edge-traced image and chooses to label it as 

a particular class, the (x, y) coordinates of the mouse pointer are used to find the value of the 
corresponding location in the map file. The value of this location in the map file represents a 
unique region identifier, and all pixels sharing this identifier in the map file are marked as 

tagged. All of these corresponding pixels in the traced image are then updated to show that they 
have been tagged. The image viewer changes these pixels with a class-specific colour so that the 
user can determine which regions are left to be tagged.  

 
The motivation for performing this real-time, interactive image tagging is to generate our 
ground truth data as easily as possible. This ground truth data is appended to a file each time the 

user closes the current image. The generated file contains the ground truth information of each 
region in each image and is formatted as follows: 
 

#Scene117 

1,G,2 

2,C,4 

3,T,1 

4,S,3 

5,T,1 

6,R,7 

 
Figure 3.11 shows the file selection procedure used for tagging the images. This shows the 

interface for selecting the image to tag. When double clicked, each image file opens in the 
window shown in Figure 3.12. The example shows a partially tagged image. The different 
colours represent different class selections when tagging an image from the PANN database. 

 
 
 

Image Name 

For each region: 
 

<region no>,<class>,<class no> 
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Figure 3.11  File selection for tagging images. 

 

 
Figure 3.12 Region tagging for generating ground truth data. 

 

Step 11. Texture feature extraction 
Once we have labelled the regions, texture feature data needs to be extracted from them. This 
feature data will be used during classification to discriminate between different objects (classes) 
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from one another. Five different textural feature extraction techniques are used in this study. 
The five texture feature extraction methods used are: auto-correlation, co-occurrence matrices, 

edge frequency, Laws masks and primitive run length . For the results from each segmentation 

process, texture features are extracted individually. For each of the four segmentation methods, 
fuzzy c-means clustering, histogram thresholding, region growing and split and merge, features 
are extracted using five texture methods, so at the end we get 20 separate feature files (4 

segmentation methods multiplied by 5 texture extraction methods). Each original feature 
extraction method was run as a separate batch process to generate texture features from each 
region in each image. For each feature extraction method to work, it requires both the original 

greyscale copy of the original image and the map file. The map file contains information about 
each region to extract features from, and the greyscale copy contains the image structure from 
which texture features are extracted. For each region in the map file, a separate row in the 

feature file is generated. Each row contains the following tab delimited information shown in 
Table 3.4. 
 

<image1 name> <region 1> <texture features nff ,...1  for region 1> 

“ <region 2> <texture features nff ,...1  for region 2> 

“ “ “ 

“ “ “ 

“ “ “ 

<image2 name> <region 1> <texture features nff ,...1  for region 1> 

“ <region 2> <texture features nff ,...1  for region 2> 

“ “ “ 

“ “ “ 

“ “ “ 

<image3 name> <region 1> <texture features nff ,...1  for region 1> 

“ <region 2> <texture features nff ,...1  for region 2> 

“ “ “ 

“ “ “ 

                              Table 3.4  Structure of the generated feature file. 

 
In the case of autocorrelation features, a total of 99 features were extracted. For co-occurrence 

matrix features we used Haralick’s 14 texture features for our texture benchmark analysis. In 
case of PANN scene analysis benchmark analysis, we use an additional set of six features 
namely homogeneity, entropy, mean grey level, standard deviation of grey level, kurtosis and 

skewness. So we get a feature set of 20 features. For edge frequency method, a total of 50 
features have been used. For Law’s features, a total of 25 masks have been used giving a total of 
125 features. Finally, for primitive length we have used a total of 5 features with a primitive run 

length of 30 in all directions. All these features have been computed on all regions produced by 
the segmentation algorithm. The only exception to this lies with a small amount of difference 
with the co-occurrence matrix features where the algorithm did not compute reasonable features 

from very small regions which means that we have slightly less samples in some of the cases 
with this feature set for the scene analysis database. 
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Step 12. Labelled data set generation 
At this stage in the methodology, we have the ground truth data for each region and texture 

features for each region, both in separate files. A small procedure was written to take both files 
and generate a new, labelled data set. This procedure scans each row of the texture feature file 
and stores the <image name> and <region no>. It then scans each line of the ground truth data 

until the <image name> matches an image name entry. Once the feature entry is matched to its 
corresponding ground truth entry, each feature entry is written to a new file with its ground truth 
tag added on the end. Each row of this new re-labelled file contains the tab delimited 

information as shown in Table 3.5. For each of the five feature extraction methods, a file in the 
above format is available after ‘true feature labelling’. It is this class-labelled texture feature file 
that we use for classification. A file in the above format is available for each of the four 

segmentation methods for all the five texture feature extraction processes.  
 

<image1 name> <region1> <texture features nff ,...1  for region 1> <image1, region1, class no> 

. <region2> <texture features nff ,...1  for region 2> <image1, region2, class no> 

. . . <image1, region3, class no> 

. . . . 

. . . . 

<image2 name> <region1> <texture features nff ,...1  for region 1> <image2, region1, class no> 

. <region2> <texture features nff ,...1  for region 2> <image2, region2, class no> 

. . . <image2, region3, class no> 

. . . . 

. . . . 

<image n 

name> 

<region1> <texture features nff ,...1  for region 1> <image n, region1, class no> 

. <region2> <texture features nff ,...1  for region 2> <image n, region2, class no> 

. . . <image n, region3, class no> 

Table 3.5  Structure of the generated feature file with labelling. 

 
Step 13. Classification 
After the features are extracted, they are subjected to a classification stage. There are two 

important considerations. First, how do we present the data to the classifier? Random data split 
into training and test classes can result in either over-optimistic or over-pessimistic results. 
Hence for the purposes of our study we have used leave-one-out cross validation so that all 

available data is tested. Second, we need to consider the classifier to be used. For our study, we 
have used the linear classifier and the nearest neighbour classifier. The input to the classifier is 
the feature file that has been labelled and the output of the classifier is a confusion matrix 

showing how the samples are classified as well as an average recognition rate. 
 
In this chapter we have presented the methodology for our study giving details of the various 

data we will be using. The chapter has not, however, detailed the algorithms of different 
processes shown in the flowcharts. For example, we have not discussed any image segmentation 
or texture analysis algorithms. This forms the topic of detail in our next chapter. 
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Chapter 4 
 
Algorithms for image analysis and pattern 
recognition  
 

This chapter describes image processing and pattern recognition algorithms used in this study 
in algorithmic level of detail. These algorithms include methods used for image enhancement, 
image segmentation, texture feature extraction, and classification. These brief details are 

important to highlight the exact nature of tools used for processing images. We have not used 
image enhancement for all images. Only 32 images in the PANN database have been enhanced 
as it was considered worthwhile to improve their quality for feature extraction. For the other 416 

images, no preprocessing is performed. For segmentation and texture extraction, we detail the 
algorithms used. Their actual implementation is sometimes more complex than the detail 
presented here. The same applies to feature extraction methods such as principal components 

analysis. Classifier algorithms have also been provided except for in-depth details of the linear 
discriminant analysis that is widely available as a part of statistical packages. 
 

4.1 Algorithms for image enhancement 
In some cases before any analysis can be performed on natural images, it is necessary to pre-
process them to make them better suited for analysis. Enhancement is a technique that 

emphasises salient features of the original image such as object edges and removes background 
noise. The main aim of image enhancement is to improve the visibility of fine patterns and 
object details. In our analysis we have tried our best not to use image enhancement since it is 

not clear how this may affect the quality of the texture features extracted. However, we have 
used it for a small number of images in the scene analysis database where the images are of 
extremely poor quality and need enhancement before decent segmentation or texture analysis 

can be performed.  
 
We have used both smoothing and sharpening filters as described by Gonzalez and Woods[74]. 

In the frequency domain, these are referred to as lowpass and highpass filters respectively. We 
briefly detail these filters in the spatial and frequency domain. 
 

4.1.1 Filters in spatial domain 
The term spatial domain refers to the aggregate of pixels composing the image and spatial 
domain methods are the procedures that operate directly on these pixels. Image enhancement 

functions in the spatial domain are expressed as: )),((),( yxfTyxg = , where f(x,y) is the input 
image, g(x,y) is the processed image, and T is the image enhancement operator. It is the 
enhancement operator that determines how images are pre-processed.  

 
The use of spatial masks for image enhancement is usually called spatial filtering and the masks 
used are called spatial filters. A square neighbourhood is defined and the centre of this area is 

moved from pixel to pixel. At each location, the mask is convolved with the image pixels. The 
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original pixel value is replaced by the convolved value to generate the enhanced image. This is 
shown in Figure 4.1. 
 

 
 
 

 
    (a)             (b)        (c)   

Figure 4.1   (a) The pixel neighbourhood; (b) mask; (c) convolved values that are averaged. 
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The masks can be so designed to attenuate the low or high frequency components of the 
resultant image. Smoothing filters cause image regions to blur and remove noise. Sharpening 

filters enhance sharp edges and object boundaries. These filters are described below. 
 

Smoothing Filters 

These filters are used for blurring and for noise reduction. These filters are also used for 
bridging small gaps in lines or curves prior to image segmentation. Smoothing filters used in 
this study are averaging and median filters. In the case of averaging filters, the centre pixel 

value is replaced by the average of its neighbourhood. In the case of median filter, it is replaced 
by the median of the neighbourhood. 
 
Sharpening filters 

These filters are used to highlight fine details in an image or to enhance the details that have 

been blurred either by mistake or while image acquisition. We have used a highpass filter in this 
study. Highpass filter is used to enhance the edge details in the image. The mask has a positive 
coefficient at its centre, w5= 8 and all other wi = -1. The results are scaled to have a range of 

[0,255].  
 
 4.1.2 Filters in frequency domain  

In case of enhancement in the frequency domain, we first compute the Fourier transform of the 
image to be enhanced. The transform is then multiplied with a transfer function that determines 
the quality of enhancement. The inverse Fourier Transform is then performed on the resultant 

image to produce the enhanced image. Frequency domain filters used in this study include 
lowpass Butterworth filter and highpass Butterworth filter. These are described below. 
 

Lowpass Butterworth filter 
This is a smoothing filter. The transfer function of the Butterworth lowpass filter, of order n and 
with the cutoff frequency locus at a distance D0 from the origin, is defined by the relation: 
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Highpass Butterworth filter 

This is a sharpening filter. The transfer function of the Butterworth highpass filter, of order n 

and with the cutoff frequency locus at a distance D0 from the origin, is defined by the relation: 
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=                                                        …Eqn (2) 

 
4.2 Algorithms for image segmentation 
Image segmentation subdivides an image into its constituent parts or objects. It entails the 
separation of the image into regions of similar attribute or homogeneity with respect to a given 
characteristic. Autonomous segmentation is one of the most difficult tasks in image processing. 

The aim of this section is to describe the different techniques used and state why they were 
deemed applicable within the study. Four commonly used techniques for autonomous image 
segmentation are applied in this study and their results are compared. Performance evaluation of 

segmentation methods is a tough task as different parameter settings can affect the results 
significantly. The problem of over-segmentation and under-segmentation is also quite crucial in 
this context. All of the segmentation methods used in this study are selected so that there are 

very few user-defined parameters required. We have used four most commonly used traditional 
methods for image segmentation, namely fuzzy c-means clustering based segmentation, region 
split and merge segmentation, region growing, and histogram thresholding based segmentation. 

These are described in the following sections. The FCM algorithm has been taken from the 
implementation of Bezdek’s code and the split and merge algorithm has been taken from 
Gonzalez and Woods[74]. The two other pieces of code were written by myself. 

 
4.2.1 Fuzzy c-means clustering based segmentation 
Fuzzy c-means clustering is a process designed to assign each sample to a cluster based on 

cluster membership. The segmentation of the image into different regions can be thought of as 
the assignment of pixels to different clusters. The algorithm is based on iterative minimization 
of the following function: 
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…Eqn. (3) 

where, 
§ nxx ,...,1  are n  data sample vectors; 

§ { }cvvV ,...,1=  are cluster centres; 
§ [ ]ikuU =  is a nc ×  matrix, where iku  is the i th membership value of the k th input sample 

kx , and the membership values satisfy the following conditions 

 
10 ≤≤ iku  ;,...,2,1 ci =  nk ,...,2,1=  …Eqn. (4) 
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…Eqn. (6) 

§ [ ]∞∈ ,1m  is an exponent weight factor. 
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The objective function is the sum of the squared Euclidean distances between each input sample 
and its corresponding cluster centre, with the distances weighted by the fuzzy memberships. The 
algorithm is iterative and makes use of the following equations: 
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…Eqn. (8) 

For calculation of a cluster centre, all input samples are considered and the contributions of the 
samples are weighted by the membership values. For each sample, its membership value in each 

class depends on its distance to the corresponding cluster centre. The weight factor m reduces 
the influence of small membership values. The larger the value of m , the smaller the influence 
of samples with small membership values. The fuzzy c-means clustering procedure consists of 

the following steps. 
 
Algorithm FCM 

1 Initialise )0(U randomly or based on an approximation; initialise )0(V and calculate 
)0(U . Set the iteration counter 1∝= . Select the number of class centres c and 

choose the exponent weight m . 
2 Compute the cluster centres )(∝V according to Eqn. 7.  
3 Update the membership values )(∝U according to Eqn 8. 
4 

Stop the iteration if  ε≤− −∝∝ )1()(max ikik uu  

else let 1+∝=∝ and go to Step 2, where ε is the pre-specified small number 
representing the smallest acceptable change in U . 

 

Figure 4.2(b) shows the FCM segmented image corresponding to the original in Figure 4.2(a). 
 
 

 
 
 

 
 
 

 
 
 

 
 

       Figure 4.2 (a) Original image.                                        Figure 4.2(b) FCM segmented image.  
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4.2.2 Split and merge segmentation 
Split and merge is an image segmentation procedure that initially subdivides an image into a set 

of arbitrary, disjoint regions and then merges and/or splits the regions in an attempt to satisfy 
the conditions below [110]. Let R  represent the entire image region. Segmentation can be 
viewed as a process that partitions R  regions into n  subregions, ,,...,, 21 nRRR such that: 

 
1 

U
n

i
i RR

1
,

=
=  

2 iR  is a connected region, ,,...,2,1 ni =  
3 Φ=∩ ji RR for all i and j , ,ji ≠  

4 ( ) TRUERP i = for ,,...,2,1 ni = and 
5 ( ) FALSERRP ji =∪  for ,ji ≠  

 

where ( )iRP  is a logical predicate over the points in set iR and φ is the null set. Condition 1 
indicates that the segmentation must be complete, that is, every pixel must be in a region. The 
second condition requires that points in a region must be connected. Condition 3 requires that 

the regions must be disjoint. Condition 4 deals with the properties that must be satisfied by the 
pixels in a segmented region. For example ( ) TRUERP i = if all pixels in iR have the same 
intensity. Finally, condition 5 requires that regions iR  and jR  are different in the sense of 

predicate P .  
 

Algorithm Split and Merge 
1 Split into four disjoint quadrants any region iR  where ( ) FALSERP i = ; 
2 Merge any adjacent regions iR  and kR  for which ( ) TRUERRP kj =∪ ; and  

3 Stop when no further merging or splitting is possible. 
 

 
 
 

 
 
 

 
 
 

 
 

Figure 4.3  The partitioned image and its corresponding quadtree representation. 

 
The split and merge algorithm iteratively works towards satisfying these constraints as follows. 
Let R  represent the entire image region. Select a predicate P  as above. For a square image, 

divide it successively into smaller and smaller quadrant regions so that, for any region iR , 
( ) TRUERP i = . That is, if ( ) FALSERP = , divide the image into quadrants. If P  is FALSE for 

any quadrant, subdivide that quadrant into sub-quadrants, and so on. This splitting technique has 
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a convenient representation in the form of a so-called quadtree representation (that is, a tree in 
which each node has exactly for descendants) as illustrated in Figure 4.3. The root of the tree 
corresponds to the entire image and each node corresponds to a subdivision. The image is now a 

partition of adjacent regions with identical properties. The algorithm next merges regions but 
only those whose combined pixels satisfy the predicate P  above. The region merge and split 
algorithm may be summarised as follows. 

 
Figure 4.5 illustrates the split and merge algorithm. The image consists of a single object and 
background. For simplicity, both the object and background have constant grey levels and 

( ) TRUERP i = if all pixels in iR  have the same intensity. Then, for the entire image region R , 
( ) FALSERP = , so the image is split as shown in Figure 4.4(a). In the next step, only the top left 

region satisfies the predicate so it is not changed, while the other three quadrants are split into 

sub-quadrants, as shown in Figure 4.4(b). At this point several regions can be merged, with the 
exception of the two sub-quadrants that include the lower part of the object; these do not satisfy 
the predicate and must be split further. Figure 4.4(c) shows the results of the split and merge 

operation. At this point all regions satisfy P , and merging the appropriate regions from the last 
split operation yields the final, segmented result shown in Figure 4.4(d). 
 

    

            (a)                                (b)                                (c)                                (d) 

                                    Figure 4.4  Split and merge methodology. 

 
Figure 4.5(b) shows the region merge and split segmented image corresponding to the original 
in Figure 4.5(a). 

 
 
 

 
 
 

 
 
 

 
 
 

 
         Figure 4.5 (a) Original image.                              Figure 4.5 (b)  Split and merge segmented image.  
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4.2.3 Region growing segmentation 
As its name implies, region growing is a procedure that groups pixels or subregions into larger 

regions. The simplest of these approaches is pixel aggregation, which starts with the first pixel 
of the image then starts growing that region by appending its neighbouring pixels that have 
similar properties (such as grey level, texture, colour, etc.). After growing the first region it 

moves to the next pixel in the image that is not allocated to any region before. This process is 
continued until all of the pixels have been assigned to a region. This procedure is easily 
illustrated with the simple example below. 

 
 1 2 3 4 5    1 2 3 4 5    1 2 3 4 5 

1 0 0 5 6 7   1 a a 5 6 7   1 a a b b b 

2 1 1 5 8 7   2 a a 5 8 7   2 a a b b b 

3 0 1 6 7 7   3 a a 6 7 7   3 a a b b b 

4 2 0 7 6 6   4 a a 7 6 6   4 a a b b b 

5 0 1 5 6 5   5 a a 5 6 5   5 a a b b b 

             (a)                    (b)                  (c) 

Figure 4.6  A simple example showing region growing. 

 
The numbers inside each cell of Figure 4.6(a) represent the grey level values of a small 55 ×  
pixel image. The first point with co-ordinates ( )1,1  represents the first seed point and is indicated 

here in bold and underlined. Using this starting (seed) point, the segmentation results in a 
region 1R  and the rest of the image pixels remain the same. Then we move on to the next pixel 
in the image that has not been allocated to any region before i.e. the pixel with co-ordinates 

( )3,1 , and start appending the pixels to this new seed point until the segmentation results in two 
regions 1R and 2R . The property P  to be used to include a pixel in either region is that the 
absolute difference between the grey level of that pixel and the grey level of the seed should be 

less than a threshold T . Any pixel that satisfies this property for a seed is (arbitrarily) assigned 
to region 1R  or 2R . Figure 4.6(b) shows the result obtained using 3=T . In this case, the 
segmentation consists of two regions, where the points in region 1R are denoted a and the points 

in region 2R  by b. The example image segmented using this algorithm is shown in Figure 4.7. 
 
 

 
 
 

 
 
 

 
 
 

 
 
      Figure 4.7 (a) Original image.                               Figure 4.7 (b) Region growing segmented image.  
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4.2.4 Histogram thresholding based segmentation 
In histogram based thresholding, the image histogram is used for setting various thresholds to 
partition the given image into distinct regions. It is expected that each region within the image 

will have some mean grey level intensity and a small spread around this central value that pixels 
in this region will take. By examining the various peaks of the histogram denoting grey levels 
that occur with the highest frequency, we can use them as thresholds to partition the image. The 

algorithm for segmentation is given below. 
 

Algorithm Histogram Thresholding segmentation 

1. For an image I with pixel grey levels [0,L-1], first compute the frequency with which 
different grey levels occur. Let us denote the grey level variable as x, i.e. x lies in the range 
0 to L-1 where L is 256 for our study. Hence x0=0 and x255=255. The frequency value 

corresponding to grey level xi is denoted as f(i). 
2. Divide the histogram into a total of n=L/y segments, where y is a user set parameter equal to 

the size of the segment. There are a total of n segments. For each segment j find its peak. 

Peak corresponds to grey level corresponding to the largest frequency. We can denote this 
grey level as xj and frequency f(j). Store these values in an array P. 

3. Set N=0. 

4. Now for j=0 to n-1 do 
If((f(j+1) > f(j )) and (f(j+1) > f(j+2)) 
Then put f(j+1) and xj+1 in an array called final. 

Increment N by 1 each time a new value is added to final.  
5. N is the total number of objects found in the image. Each member can be relabelled as 

frequency h(k) corresponding to grey level xk for a total number of elements equal to N.  

6. For each pair of successive xk values, compute the lowest frequency in the original 
histogram. This is done as follows: 
For each pair xk and xk+1 where 0≤k≤size-1, let a= xk and b = xk+1 

Find the gray level that corresponds to the least frequency between a and b 
A total of N-1 thresholds are derived at the end  

7. Segment the image using these thresholds into different regions. 
 
The identification of the final peaks is shown in Figure 4.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8  The identification of three thresholds from the four peaks in histogram thresholding. 
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         Figure 4.9 (a) Original image.                             Figure 4.9 (b) Histogram thresholded image.  

 

4.3 Autofill 
The segmented file contains some very small regions that are less than 500 pixels in size that 
cannot be eliminated using median filter. So there is a need of some additional processing to 

manage these small regions. Also, to extract features from the segmented file, a Mapfile needs 
to be gererated which identifies each region uniquely. A recursive technique was adapted to 
solve these two problems prior to feature extraction. We named this technique ‘Autofill’. This 

technique merges all regions less than 500 pixe ls to the regions in which they are enclosed and 
also provides a unique label to every region in the Mapfile. Autofill is described by the 
following algorithm. 

 
Algorithm Autofill 

 For each pixel in the image, 
1 If it is part of an existing region goto 1. 
2 If it is not part of an existing region 

2.1 Initialise counter to 0. 
2.2 Recursively fill the region in eight directions, labelling each pixel with the 

value of current iteration, and for each direction stop when a pixel is 

encountered that is not equal to the current pixel. For each recursive call 
increment counter by 1. 

2.3 If region is less than 500 pixels, merge with surrounding region. 

3 Provide a unique label of every region in mapfile. 
 
On completion, this technique achieves the desired result and because of its recursive nature, it 

is very compact and efficient. The following example gives a simplistic representation of how 
autofill works. For the sake of demonstration, let the minimum size of a region be 2. 
 

Figure 4.10(a)  represents the top right corner of a median filtered image. Cell (3,2) represents a 
single pixel region valued 6. Figure 4.10(b) shows the result of autofill eliminating the pixel 
(3,2) by merging it with the adjacent region and indexes the regions from 1 to N, where N is the 

total number of region in the map file. 
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 1 2 3 4 5    1 2 3 4 5  

1 5 5 5 9 9   1 1 1 1 2 2  

2 5 5 5 9 9   2 1 1 1 2 2  

3 5 6 5 9 9   3 1 1 1 2 2  

4 5 5 5 9 9   4 1 1 1 2 2  

5 5 5 5 9 9   5 1 1 1 2 2  

 

 (a)    (b)  
Figure  4.10 A simple example showing how Autofill works. 

 

4.4 SUSAN 
The acronym SUSAN (Smallest Univalue Segment Assimilation Nucleus) is described as an 
entirely new non-linear low-level image processing technique. It offers edge detection (one 

dimensional feature detection), corner detection (two dimensional feature detection including 
corners, junctures etc.) and structure preserving noise reduction. The basis of SUSAN is the 
image pixel and its associated local area of similar brightness. This local area is referred to as 

USAN (Univalue Segment Assimilation Nucleus) and is said to contain important information 
about the image. From the size, centroid, and measure of pixel distribution values across USAN, 
two dimensional features and edges can be detected. The SUSAN algorithm is based on desired 

criteria for feature detecting: good detection (there should be a minimum number of false 
positives and false negatives); good localisation (the edge location must be reported as close to 
the correct location as possible); single detection (it must respond only to a single edge); and 

good processing speed (should be fast enough for image processing). 
 
To meet these requirements, the SUSAN algorithm offers three possible uses. 

 
1. Edge detection – Edges are found and drawn as links of black pixels 

surrounded by white pixels each side of the edge. 

2. Corner detection – Corners are found and drawn as black pixels surrounded by 
white pixels. 

3. Smoothing – Noise removal produces an enhanced image similar in appearance 

to a median filtered image. 
 
Although there are many edge detection techniques available, we chose SUSAN because of two 

reasons. First, SUSAN is very flexible as it allows a variety of parameter changes, which means 
that it can be customised to suit several different applications. Second, the detected edges with 
SUSAN are black edge pixels surrounded by a white border. This means that once the edges are 

found, it is a very simple process to retrieve these edges. The details of the SUSAN framework 
are available from: http://www.fmrib.ox.ac.uk/~steve/susan. 
 

4.5 Texture based feature extraction 
Texture features provide a measure of the underlying texture within a given region.  A variety of 
methods are used to extract texture characteristics. Some of the commonly used approaches 

include the use of spatial frequencies, edge frequencies, run lengths, pixel’s joint probability 
distribution, and special masks such as Law’s masks.  It has been demonstrated in different 
studies that different feature extraction methods yield different results based on the application 
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domain and it is for this reason that a diverse range of techniques were investigated.  Here we 
describe the above approaches of feature extraction. 
 

4.5.1  Autocorrelation 
The textural character of an image depends on the spatial size of texture primitives.  Large 
primitives give rise to coarse texture (e.g. rock surface) and small primitives give fine texture 

(e.g. silk surface).  An autocorrelation function can be evaluated that measures this coarseness.  
This function evaluates the linear spatial relationships between primitives.  If the primitives are 
large, the function decreases slowly with increasing distance whereas it decreases rapidly if 

texture consists of small primitives. However, if the primitives are periodic, then the 
autocorrelation increases and decreases periodically with distance.  The set of autocorrelation 
coefficients C shown below are used as texture features: 
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where p, q is the positional difference in the i, j  direction, and M, N are image dimensions.  
 
4.5.2 Co-occurrence matrices 
Statistical methods use second order statistics to model the relationships between pixels within 
the region by constructing Spatial Grey Level Dependency (SGLD) matrices. A SGLD matrix is 
the joint probability occurrence of grey levels i and j for two pixels with a defined spatial 

relationship in an image. The spatial relationship is defined in terms of distance d and angle θ. If 
the texture is coarse, and distance d is small compared to the size of the texture elements, the 
pairs of points at distance d should have similar grey levels. Conversely, for a fine texture, if 

distance d is comparable to the texture size, then the grey levels of points separated by distance 
d should often be quite different, so that the values in the SGLD matrix should be spread out 
relatively uniformly. Hence, a good way to analyse texture coarseness would be, for various 

values of distance d, some measure of scatter of the SGLD matrix around the main diagonal. 
Similarly, if the texture has some direction, i.e. is coarser in one direction than another, then the 
degree of spread of the values about the main diagonal in the SGLD matrix should vary with the 

direction θ.  Thus texture directionality can be analysed by comparing spread measures of 
SGLD matrices constructed at various distances d and direction θ. 

 

From SGLD matrices, a variety of features can be extracted. From each SGLD matrix, fourteen 
statistical measures are extracted using the following nomenclature: 
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Rjipjip /),(),( =  (i, j)th entry in a normalised SGLD matrix, 
p(i, j, d,θ) where i, j are the grey scale 
values of pixels at distance d pixels apart, 
and angle θ is the angle of the line joining 
the centres of these pixels in the creation of 
the SGLD matrix.  
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i th entry in the marginal-probability matrix 
obtained by summing the rows of p(i, j). 

Ng Number of grey levels in the image. 
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jth entry in the marginal-probability matrix 
obtained by summing the columns of p(i, j). 
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The result of adding the ith and jth entries 
calculated above from the marginal-
probability matrix. 
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The result of subtracting the ith and jth 
entries calculated above from the marginal-
probability matrix. 

 
The fourteen texture features suggested by Haralick et al. [86] are given by: 
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Table 4.1 Haralick's 14 texture measures based on co-occurrence matrices. 

 

The angular second moment is a measure of homogeneity of the image. In a homogenous image 
there are very few dominant grey tone changes and the SGLD matrix will have only a few 
entries of a large magnitude. Conversely, in a less homogenous image there will be many entries 

in the SGLD matrix of smaller magnitude and hence the ASM will be smaller in magnitude. The 
contrast feature is the difference moment of the SGLD matrix and a measure of the amount of 
local variation in the image. A low value of contrast results from uniform images whereas 

images with large variation produce a high value. Correlation is a measure of grey level linear-
dependency within the image. It measures the degree to which the rows and columns of SGLD 
matrix resemble each other. High values are obtained when the matrix elements are uniformly 

equal and low values are obtained for a matrix with large differences in element values. Entropy 
of the image is a measure of the randomness of grey pixel values. When the SGLD matrix is 
equal, the entropy is the highest. Low values for entropy are obtained when matrix elements are 

very different from each other (large variability). Hence higher values for entropy indicate 
greater randomness in the image. 
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4.5.3 Edge frequency 
A number of edge detectors can be used to yield an edge image from an original image.  We can 
compute an edge dependent texture description function E as follows: 

 
( ) |),(),(|),(),(||),(),(||),(),(| djifjifdjifjifjdifjifjdifjifdE −−++−+−−++−=  

This function is inversely related to the autocorrelation function. Texture features can be 
evaluated by choosing specified distances d (pixel distance). 

 
4.5.4 Law’s method 
Laws observed that certain gradient operators such as Laplacian and Sobel operators 

accentuated the underlying microstructure of texture within an image.  This was the basis for a 
feature extraction scheme based a series of pixel impulse response arrays obtained from 
combinations of 1-D vectors shown in Figure 4.11. Each 1-D array is associated with an 

underlying microstructure and labelled using an acronym accordingly. The arrays are convolved 
with other arrays in a combinatorial manner to generate a total of 25 masks, typically labelled as 
L5L5 for the mask resulting from the convolution of the two L5 arrays [127]. 

  
Level L5 = [ 1 4 6 4 1 ] 
Edge E5 = [ -1 -2 0 2 1 ] 

Spot S5 = [ -1 0 2 0 -1 ] 
Wave W5 =  [ -1 2 0 -2 1 ] 
Ripple  R5 =  [ 1 -4 6 -4 1 ] 

    Figure 4.11 Five 1-D arrays identified by Laws. 

 
These masks are subsequently convolved with a texture field to accentuate its microstructure 

giving an image from which the energy of the microstructure arrays is measured together with 
other statistics.  The energy measure for a neighbourhood centred at F (j, k), S (j, k), is based on 
the neighbourhood standard deviation computed from the mean image amplitude: 
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where W x W is the pixel neighbourhood and the mean image amplitude M (j, k) is defined as: 
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4.5.5  Primitive length (run length) encoding 
A large number of neighbouring pixels of the same grey level represent a coarse texture, a small 
number of these pixels represents a fine texture, and the lengths of texture primitives in different 

directions can be used for texture description. A primitive is a maximum contiguous set of 
constant grey-level pixels located in a line. These can then be described by grey level, length 
and direction. The texture description features is then based on computation of continuous 

probabilities of the length and the grey level of primitives in the texture.  
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Let B(a, r) be the number of primitives of all directions having length r and grey level a.  Let A 
be the area of the region in question, let L be the number of grey level within that region and let 

Nr be the maximum primitive length within the image.  The texture description features can then 
be determined as follows.  Let K be the total number of runs: 
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The features are defined as: 
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4.6 Classifiers 
Classification is the process where a given test sample is assigned a class on the basis of 
knowledge gained by the classifier during training. We have used two classifiers: linear 

discriminant analysis and nearest neighbour classifier. To make the classification results 
comparable and for exhaustive data analysis we have used leave-one-out classification for both 
classifiers. Two different models of the nearest neighbour classifier are used in our study as 

proposed by Singh et al.[195]. The results for both the models are shown. 
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4.6.1 Linear Discriminant Analysis (LDA) 
Linear analysis uses linear boundaries between data distributions to discriminate between 
samples. Linear combinations of the independent, sometimes called predictor, variables are 

formed and serve as the basis for classifying cases into one of the groups. In essence, linear 
discriminant analysis can be used for classifying samples that are linearly separable. If classes 
are linearly separable, then it is a good indication that the features that have been selected are 

discriminatory (Figure 4.12(a)). The type of distribution shown in Figure 4.12(b) would not 
allow a 100% classification result using standard linear discriminant analysis because the data 
distributions are overlapping (i.e. data not linearly separable). 

 
 

Feature 1

Feature 2

Class 1

Class 2

                                  (a) 

 

Feature 1

Feature 2

Class 1

Class 2

                                (b) 
Figure 4.12 Decision boundaries for LDA: (a) linearly separable data; (b) non-linearly separable data. 

 
On the basis of the training data available, LDA generates the boundaries that separate different 

class distributions. The linear discriminant equation assigns weights to each variable to give the 
“best” separation between groups. The linear discriminant boundary for separating data of 
different classes is given by: 

 

pp XBXBXBBD ++++= ...22110  
 

where iX  are the values of the variables or features and the iB  are the coefficients estimated 
from the data. For successful classification, two classes must differ in their D values. Unknown 
samples are classified using the coefficients determined from training data. To perform LDA 

classification, we use a statistical analysis software package called SPSS for Windows 
(www.spss.com). SPSS incorporates a simple data set import and allows many common 
statistical methods to be applied.  

 
4.6.2 Nearest neighbour classifier 
Nearest neighbour methods have been used as an important pattern recognition tool. In such 

methods, the aim is to find the nearest neighbours of an unidentified test pattern within a hyper-
sphere of pre-defined radius in order to determine its true class. The traditional k  nearest 
neighbour rule has been described as follows. 

 

Algorithm traditional kNN 
§ Out of N training vectors, identify the k nearest neighbours, irrespective of class label. k is 

chosen to be odd. 
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§ Out of these k  samples, identify the number of vectors, k i, that belong to class ωi, i=1, 2, 
…M. Obviously ∑i k i = k . 

§ Assign x to the class ωi with the maximum number k i of samples. 

 
 
 

 
 
 

 
 
 

 
 
 

           Figure 4.13  Nearest neighbour classifier in action on a two class problem. 

 
As shown in Figure 4.13, we need to determine the distances of a test pattern from surrounding 

neighbours. Nearest neighbour methods can detect a single or multiple number of nearest 
neighbours. A single nearest neighbour method is primarily suited to recognising data where we 
have sufficient confidence in the fact that class distributions are non-overlapping and the 

features used are discriminatory. In most practical applications however the data distributions 
for various classes are overlapping and more than one nearest neighbours are used for majority 
voting.  In k-nearest neighbour methods, certain implicit assumptions about data are made in 

order to achieve a good recognition performance. The first assumption requires that individual 
feature vectors for various classes are discriminatory. This assumes that feature vectors are 
statistically different across various classes. This ensures that for a given test data, it is more 

likely to be surrounded by data of its true class rather than of different classes. The second 
assumption requires that the unique characteristic of a pattern that defines its signature, and 
ultimately its class, is not significantly dependent on the interaction between various features. In 

other words, nearest neighbour methods work better with data where features are statistically 
independent. This is because nearest neighbour methods are based on some form of distance 
measure and nearest neighbour detection of test data is not dependent on their feature 

interaction. In this study, two models are used for the nearest neighbour classification. The 
algorithms for these are described below. 
 
Model-1 kNN rule 
§ Out of n training vectors, identify the k  nearest neighbours, irrespective of class label. k is 

chosen to be odd. 
§ Out of these k  samples, identify the number of vectors, k i, that belong to class ωi, i=1, 2, 

…M. Obviously ∑i k i = k . 
§ Assign x to the class ωi with the maximum number k i of samples. 
§ If two or more classes ωi, i ∈ [1…M], have an equal number E of maximum nearest 

neighbours, then we have a tie (conflict). Use conflict resolution strategy. 
§ For each class involved in the conflict, determine the distance di between test pattern x = 

{x1, …xN) and class ωi based on the E nearest neighbours found for class ωi. If the mth 
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§ Assign x to class C if its di is the smallest, i.e. x ∈ ωC, if dC < di for ∀i, such that C ∈[1…M] 
and i≠C. 

 
 
Model-2 kNN rule 
§ Out of n training vectors, identify the k  nearest neighbours, irrespective of class label. k is 

chosen to be odd. 
§ Out of these k  samples, identify the number of vectors, k i, that belong to class ωi, i=1, 2, 

…M. Obviously ∑i k i = k . 
§ Find the average distance di that represents the distance between test pattern x = {x1, …xN) 

and Ei nearest neighbours found for class ωi, i = 1…M. Only include classes for which 
samples were detected in the first step. If the mth training pattern of class ωi found within the 

hypershere is represented as ),...{ 1
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§ Assign x to class C if its di is the smallest, i.e. x ∈ ωC, if dC < di for ∀i, such that C ∈ [1…M] 
and i≠C. The decision in this model does not depend on the number of nearest neighbours 
found but solely on the average distance between the test pattern and samples of each class 
found.  

 

The two models can be explained using Figure 4.14. In Figures 4.14 (a) to (d), we have assumed 
a total of five classes ('a' to 'e'). The samples of each class are represented by symbols 'a' to 'e'. 
The test pattern is shown as the square block around which a hypersphere is drawn to determine 

the number of neighbours included in the analysis. In the traditional nearest neighbour 
implementation, Figure 4.14(a) would assign the test pattern to class 'a' as there are two samples 
of class 'a' and only one sample of class 'b' within the boundary. Such decisions are based only 

on the number of nearest neighbours found. In Figure 4.14(b) we show the problem of 
neighbour conflict. In such cases, equal number of neighbours is found for more than one class 
when determining the class of the test pattern. We term this a conflict. Conflicts can be resolved 

by either increasing the size of the hypersphere, i.e. involving more neighbours for a clear-cut 
decision, or by using conflict resolution described in model-1 above. Figure 4.14(c) shows 
model-2 process of finding the true class of the test pattern. Here the distance from a given class 

to the test pattern represents the averaged distance of all samples of that class found within the 
hypersphere. If all samples of a given class, e.g. 'e' in Figure 4.14(c), lie outside the 
hypersphere, then these are not included in the analysis. In all nearest neighbour methods, the 

number of neighbours analysed has a very important effect on the results of the analysis. This is 
shown in Figure 4.14(d). In this figure, when using the inner sphere, the class assignment for the 
unknown test pattern is 'a'. When we consider more neighbours with the outer sphere, the class 

assignment changes to 'd'. Thus, one important parameter to optimise in nearest neighbour 
methods is the number of neighbours included in the analysis. 
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Figure 4.14 k-nearest neighbour models and strategies: (a) Traditional k-nearest neighbour model; (b) 

Conflict resolution; (c) Closest average distance model; and (d) Hypersphere size effect.  

 

4.6.3 Data dimensionality reduction 
In order to reduce the computational time, it is desirable to reduce the original number of 
features into a smaller data set with reduced dimensionality such that the original data variance 

is retained with the new smaller set of features. Also, the use of such data can improve 
classification results as the effect of those features that are least variable on the classification 
process is much reduced. Principal Component Analysis is a popular technique for this. Its 

basics are explained below. 
 
Principal Components Analysis (PCA) 

PCA is a means of reducing the dimensionality of data. Essentially this reduces the number of 
features that we are using for classification. In PCA, linear combinations of the observed 
variables are formed. The first principal component is the combination that accounts for the 

largest amount of variance in the data. The second principal component accounts for the next 
largest amount of variance and is uncorrelated with the first. Successive components explain 
progressively smaller portions of the total variance, and all are uncorrelated with each other.  

 
If we have variables V1…Vn, then performing PCA will give us resultant variables P1…Pn. It is 
possible to compute as many principal components as there are variables (features) however in 

(c)    
 
 
 
 

(a)    d   d   d   d  
 
   d   d     d   d  d  
 
 
  a a  
 
b  b   b 
 
  b 
 
c             e 
c c 
c c c   
c    e        e 

a 

b 
a 

(b)     d   d   d   d  
 
   d   d     d   d  d 
 
 
  a a  
 
b  b    b 
 
  b 
 
c          e   
c c 
c c c   
c    e        e 

a 
a 

b     b 

a 

b 

c 

d 

e 

(d) 

a 
a 

b
b

c 
c 

b

     d  d        d  d 
d 

e 
c 

e 



 118 

practice only the first c  components are chosen with eigenvalues greater than 1. The first few 
principal components contribute more to the total variance and hence the selection of fewer 
components may be sufficient to represent the data. Principal components with negligible 

variance can be removed from any calculation to give us a resultant list of principal 
components, P1…Pc, where c << n. 
 

The algorithm for determining principal components is as follows. 
 
Algorithm PCA 

1) Normalise the features X1, X2…,Xp to have zero means and unit variances (i.e. scale all 
features relative to one another so that they now lie in the range [–1 to 1]. 

2) Calculate the covariance matrix C. 

3) Find the eigenvalues λ1, λ2,…, λp and the corresponding eigenvectors a1,  a1,…, ap. The 
coefficients of the ith principal component are then given by ai and λi is its variance. 
Calculate the principal component score from the above. 

4) Discard any principal components that only account for a small variation in the data. The 
best method of finding how many principal components to choose is based on plotting the 
cumulative variance explained by the components. A typical plot will show steep decline 

earlier on and the curves flattens rapidly as the addition of more principal components does 
not provide much of an advantage. In most cases, principal components that taken together 
explain 95% or above are chosen. They can also be chosen from the above plot by leaving 

principal components in the flat region of the plot. 
 
The above algorithmic descriptions give a basic insight into how the various image processing 

and pattern recognition tools have been used in this study. Now with this description given 
along with the methodology described in the previous chapter, we move on to describe our first 
set of results on MeasTex and VisTex benchmarks in the next chapter. 
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Chapter 5 
 
Texture benchmark analysis 
 
5.1 Texture benchmarks 
The evaluation of image analysis on artificial and natural texture benchmarks is important. 

Texture benchmarks allow a range of feature extraction techniques to be compared without 
involving any image segmentation step in the process. One of the most popular examples of 
texture benchmarks is the Brodatz album [25] that contains photographs of well-known textures. 

A number of studies have used this benchmark. There are also other well-known repositories. 
We have used two of the most popular that are called MeasTex [138] and VisTex [214]. The 
details of these benchmarks have been presented in section. In this chapter we present the results 

of evaluating the performance of five feature extraction methods on these two benchmarks. 
These features include autocorrelation, co-occurrence matrices, edge frequency, Law’s 

measures, and primitive length. We evaluate the performance of these methods on a complete 

set of selected features without using any feature selection method. In order to evaluate the 
recognition performance, we use two classifiers. The first classifier used is the linear 
discriminant classifier. The method is supposed to work best when the data distributions can be 

linearly separated. From our preliminary data analysis we know that data distributions are not 
linearly separable. However, the results will show us quantitatively how easy it is to classify 
data using a simple linear method and on the basis of such results the need for using a non-

parametric classifier can be justified. The second classifier used is k nearest neighbour classifier. 
As the data is not linearly separable, the results tend to improve by using non-linear classifier.  
 

5.2 Benchmark analysis  
We discuss the results of applying our five selected feature extraction techniques on MeasTex 
and VisTex benchmark data using leave-one-out cross-validation. The linear analysis has been 

applied using the standard statistical package SPSS. For the linear analysis, for each feature 
extraction method, a single analysis is performed yielding its confusion matrix. For the k-nearest 
neighbour method, we experiment with k=1, 3, 5 and 7 neighbours and for each analysis we 

obtain a different result in the form of a different confusion matrix and the average recognition 
rate. We have presented the confusion matrices of both classifier analyses in appendices A-D. 
 

5.3 MeasTex analysis 
In Table 5.1 we show the number of features extracted for each texture analysis method.  

 

Feature extraction 

method 

No. of 

features 

No. of 

classes 

No. of 

samples 

Autocorrelation 99 4 944 

Co-occurrence 20 4 944 

Edge frequency 50 4 944 

Law’s 125 4 944 

Primitive length 5 4 944 

Table 5.1  Details of feature extraction methods used on MeasTex data. 
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Features are extracted for a total of four classes. As discussed previously, each MeasTex image 
has been divided into sixteen parts giving a total of 944 samples from all of the images. We first 
discuss the results of applying the linear classifier in section 5.3.1 and then in the following 

section 5.3.2 we present the results of applying the k-nearest neighbour classifier. 
 
5.3.1 Linear classifier results 
Data visualisation in 2D can be useful for the visual understanding of how well separated the 
data is for different classes. One of the easiest techniques for visualising the complexity of the 
classification problem is to plot the scores of the first and the second principal components for 

data samples labelled by their class. Since principal components compress the data in terms of 
its dimensionality without affecting its complexity, this plot can be useful in understanding how 
much overlap exists between the class distributions. The usefulness of the plots depends on how 

accurately the visible overlaps reflect the real situation that in turn depends on the percentage of 
data variance explained by the first two components. Plots of the first two principal components 
that explain the majority of variance give a realistic picture of actual data distribution overlaps. 

The relationship between the discriminant functions or variables is shown with the canonical 
discriminant functions plot. The graph plots the variate scores for each sample for different 
groups or classes. The group centroids are highlighted and by visualising the plot we can see 

which variate discriminates better between the data groups.  
 
In Figure 5.1 we show the PCA plot and the canonical discriminant function plot for 

autocorrelation features.  
 
 

 
 
 
 
 
 
 
 
 

 (a)                                                 (b) 
Figure 5.1  (a) Plot of the first two principal components for the autocorrelation features on MeasTex 
data; (b) Plot of the discriminant functions generated by the linear classifier based on autocorrelation 
features on MeasTex data. 
 

In both plots we can see that asphalt samples are least separated from other class samples 

whereas grass samples are best separated. The plots also show the variability within each class. 
Classes such as asphalt and concrete are the most compact in terms of small inter-class 
variability whereas grass and rock samples are varied. Finally, the plots give some indication of 

the amount of outliers present in each class. Classes that are highly varied contain more outliers 
in Figure 5.1. 
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We obtain a correct recognition rate of 76.1% using leave-one-out validation method. For the 
first three classes, we obtain a recognition rate of 90% or above, however, the results are much 
poorer for rock for which we obtain just over 50% correct recognition. 

 
We next evaluate the co-occurrence features. Figure 5.2 shows the PCA plot and the 
discriminant function plot. With these features, more compact clusters are formed by grass and 

asphalt data. Concrete and rock data is distributed in more than one cluster. The overall 
recognition rate of 79.2% correct is attributed to the improved ability of the classifier in 
recognising rock and asphalt samples. Inspection of the confusion matrix in Appendix A shows 

that the system is capable of correctly identifying asphalt and grass samples with 100% 
accuracy. Recognition rates for other classes are: concrete (68%), and rock (67%). Concrete 
samples are most confused with asphalt, and rock samples predominantly with grass and 

concrete. 
 

 

 

 

 
 
 
 
 
 
 
 
 

 (a)                                                   (b) 
Figure 5.2  (a) Plot of the first two principal components for the co-occurrence  features on MeasTex data; 
(b) Plot of the discriminant functions generated by the linear classifier based on co-occurrence features on 
MeasTex data. 

 
In Figure 5.3, edge frequency measures have been used as input to the linear classifier. Rock 
samples are again by far the most varied along with grass samples. The concrete and asphalt 

yield the best compact clusters containing the least number of outliers. As a result of this large 
variability and significant overlap, it can be expected that the classification will not yield good 
results. The confusion matrix shows an overall recognition rate of 63.5% with the worst 

performances on grass and rock samples. The correct recognition rates on these four classes are: 
asphalt (86%); concrete (96%); grass (65%) and rock (42%). It is noticeable  that grass samples 
are most confused with rock samples in this analysis. 

 
Law’s features have been obtained using 25 spatial masks and their PCA and discriminant 
function plots have been shown in Figure 5.4. These have by far the most compact clusters 

obtained using any other feature extraction method so far. In the PCA plot, the main boundaries 
of data overlap lie across grass and rock, rock and asphalt, asphalt and concrete, and concrete 
and rock samples. Rock samples are by far the most varied. The LDA method achieves the best 

recognition rate of 82.8% correct. This improved rate is a result of better recognition on all 
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classes, especially on rock and concrete. The individual correct recognition rates for all classes 
are: asphalt (89%); concrete (77%); grass (97%) and rock (74%). 
 

 
 
 

 
 
 
 
 

 

 
 
 

 
(a)                                              (b) 

Figure 5.3  (a) Plot of the first two principal components for the edge frequency features on MeasTex 
data; (b) Plot of the discriminant functions generated by the linear classifier based on edge frequency 
features on MeasTex data. 

 

 
 
 
 
 

 
 

 

 

 

 

 
(a)                                                (b) 

Figure 5.4  (a) Plot of the first two principal components for the Law’s features on MeasTex data; (b) Plot 
of the dis criminant functions generated by the linear classifier based on Law’s features on MeasTex data. 

 
Next we evaluate the performance of the primitive length features on MeasTex data using the 
linear classifier. The plot in Figure 5.5 shows that the data variability can be explained along 

one of the axes. Concrete samples are the most discriminatory whereas there is a strong overlap 
across data of other classes. The PCA plot shows how limited the features are in discriminating 
different textures for MeasTex analysis. Confusion matrix results are fairly poor: asphalt (33%); 

concrete (78%); grass (48%) and rock (25%). 
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Figure 5.5  PCA plot for  the primitive length  features on MeasTex data. 

 
Finally, we evaluate how well a combined feature set would perform on the given problem. Not 
all features from the five methods are useful in discriminating between the four texture samples 

and as such their combination without any feature selection process may not necessarily lead to 
better performance. The PCA and canonical function plots are shown in Figure 5.6. We find that 
compact but elongated clusters have been formed for data of all classes. By far, the plots show 

the best situation possible. The confusion matrix shows an overall recognition rate of nearly 
88% correct with individual recognition rates for the four classes as follows: asphalt (100%); 
concrete (94%); grass (96%); and rock (75%). The main success has been high recognition rates 

on grass and concrete while maintaining good performance on recognising rock data. 
 
 

 
 
 

 
 
 
 
 
 
 

   (a)                                                   (b) 
 
Figure 5.6  (a) Plot of the first two principal components for the combined  features on MeasTex data;  
(b) Plot of the discriminant functions generated by the linear classifier based on combined features on 
MeasTex data. 

 
5.3.2 Nearest neighbour classifier results 
We next discuss the results of using k  nearest neighbour classifier on MeasTex data. We have 

used two models of nearest neighbour classsifier. In the first model, the classifier assigns a test 
pattern to the class for which we find maximum number of neighbours within a hypersphere 
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surrounding the test pattern. In those cases where two or more classes tie as the winning classes, 
a conflict resolution strategy is adopted on the basis of estimating average sample distance. In 
the second model, only average distances rather than the number of samples are used for 

determining the class of a test pattern. The algorithms for these have been detailed in chapter 4. 
 
The confusion matrices of MeasTex feature classification using nearest neighbour classifier 

appear in Appendix B. On each page we present the results of one feature extraction method 
using both nearest neighbour models. The results have been produced for k  = 1, 3, 5 and 7 
nearest neighbours (only odd values are used as prescribed by Devijver[52]). When k  =1, both 

models are equivalent. For autocorrelation features, we find that the best performance is 
achieved by the first model, for k=5, which gives the best performance of 79.5% correct 
recognition. Using a different value of k does not have much difference on the recognition rate. 

For the confusion matrix of this best performing classifier, recognising rock samples is the most 
difficult as it was the case with linear classifier. For misclassified patterns, the asphalt patterns 
are most confused as rock, concrete as asphalt and rock, grass as rock, and rock samples are 

confused as a bit of everything else. 
 
Co-occurrence feature performance is much better for MeasTex data. The performance of the 

first model is better than the second model in general, and the value of k  parameter has a more 
significant impact on model-2 than model-1. The best classifier performance is 86.9% correct 
recognition for samples from four classes. Even though similar mistakes are made on 

classification as autocorrelation method, the number of mistakes is much smaller.  
 
Edge frequency results are not as good as the two previous methods. Model-1 performance with 

k=3 is the best with a recognition rate of 70.7%. Rock samples are most confused with grass 
samples. The confusion matrix looks similar to other methods in terms of where the mistakes 
are being made leading us to conclude that edge frequency features have similar data overlap 

problems as the other two methods. 
 
Law’s features demonstrate similar performance to edge frequency method with a best 

recognition rate of 70.9% for model-1  (k=7). The confusion matrix shows the difficulties 
because of rock samples that are classed as other objects and other class samples that are 
labelled as rock. Similar to other methods, for model-2 classifier as k is increased, the 

performance drops (in this case from 63.4% for k=1 to 53.2% for k=7). 
 
Out of all texture analysis methods discussed, primitive length features yield the poorest 

performance. The best performance is shown by the model-1 with k=7 with a result of 54.1% 
correct recognition. The main reason for this poor performance is a significant overlap between 
rock and grass samples as more grass samples are confused as rock and vice-versa. The number 

of ties is larger than for other feature data and only 54% of ties get correctly resolved. In several 
cases, what should have been the winning class, turns out to be the second best.  
 

Finally, we consider the combined features performance. The recognition performance is very 
good but only second best to the co-occurrence matrix performance. The best performance is 
displayed by the first model (k=5) at 83.3% correct recognition. Compared to the confusion 
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matrix for co-occurrence matrix for the same model and same k  parameter, we find that the 
combined features are as good as the co-occurrence features in allowing us to assign grass 
samples correctly; on all other classes, the combined feature performance declines by a small 

amount. 
 
Our main conclusion from this analysis is that on the whole, the first classifier model performs 

better than the second model. The performance of the second model decreases as the value of k 

is increased. In general, all feature sets except Law’s and combined gave better performances 
with the nearest neighbour method compared to LDA analysis. For Law’s feature set, LDA gave 

results of 82.8% and combined features yielded 87.5% recognition which is better than 
equivalent nearest neighbour best results of 70.9% and  83.3% respectively. 
 

5.4 VisTex analysis  
The analysis of VisTex data is more complicated than MeasTex. There are several reasons for 
this. First, there is a larger number of classes involved. The increase in the number of classes 

does not always increase the complexity of the classification problem provided that the class 
data distributions are non-overlapping. However, in our case we find that VisTex class 
distributions are overlapping and the classification problem is by no means entirely solvable 

using linear techniques alone. Second, VisTex data has much less number of samples for each 
class and it is expected that the unbalance between samples across different classes will make 
the classification more difficult. Third, and of most concern, is the significant variability across 

samples of the same class in VisTex benchmark. This aspect will be evident in the form of 
scattered clusters in PCA plots, irrespective of the features used. 
  

Feature extraction 

method 

No. of 

features 

No. of 

classes 

No. of 

samples 

Autocorrelation 99 7 300 

Co-occurrence 20 7 300 

Edge frequency 50 7 300 

Law’s 125 7 300 

Primitive length 5 7 300 

Table 5.2 . Details of feature extraction methods used on VisTex data. 

 
In Table 5.2 above we show the number of features used for different texture extraction methods 

and summarise data details. We first present the results of applying linear classifier on the 
feature sets derived from previously discussed techniques. Next, we will apply the k  nearest 
neighbour model on these feature sets and evaluate any changes in performance. 

 
5.4.1 Linear classifier results 
We first apply the linear discriminant analysis to autocorrelation features that have been 

extracted from VisTex images. As mentioned earlier, we are only considering the images of the 
following classes: water, tile, sand, metal, food, fabric and bark. In Figure 5.7 the PCA plot and 
the canonical discriminant function plots are shown. These two plots confirm the variability 

across samples from the same class. In particular classes such as fabric samples are particularly 
varied whereas water samples have small inter-class variability.  
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 (a)                                                (b) 

Figure 5.7  (a) Plot of the first two principal components for the autocorrelation features on VisTex data; 
(b) Plot of the discriminant functions generated by the linear classifier based on autocorrelation features 
on VisTex data. 

 
The detailed results in the form of the confusion matrices are shown in Appendix C. Overall, we 
obtain a recognition rate of 72.1%. We find that water, sand, and food samples are the easiest to 

recognise. The individual recognition rates for the seven classes are: bark (63.9%); fabric 
(65.0%); food (83.3%); metal (66.7%); sand (82.1%); tile (53.1%) and water (96.9%). The 
misclassification of one class as another is important to note. For example, misclassified bark 

samples are mostly confused as tile or water. Similarly, misclassified fabric samples are 
confused as either bark or food; misclassified food samples are confused as bark or fabric; 
misclassified metal samples are predominantly confused as sand; and misclassified tile samples 

are confused as either bark or water. Our immediate impression from such results is that there 
are not enough samples in this benchmark that would give a more comprehensive grouping of 
samples in different classes, and more importantly, the images available show high amounts of 

inter-class variability in terms of their extracted features thus yielding poorer classification 
results. 
 

Figure 5.8 shows the co-occurrence feature distribution for the VisTex data in the form of PCA 
and discriminant function plots. Food and bark samples particularly overlap with others. 
However, these plots show better separation across samples of different classes which makes us 

optimistic that better results can be derived. Co-occurrence features can be discriminated for 
seven classes using the linear classifier with 73.9% accuracy. On the whole, fabric is the most 
difficult class to recognise, but all other class samples can be easily recognised. The recognition 

rates for samples of seven classes are: bark (72%); fabric (60%); food (81%); metal (96%); sand 
(86%); tile (78%) and water (70%). In particular, we can summarise the misclassifications as 
follows: most misclassifications for bark are confused as fabric or food; most misclassifications 

for fabric are confused as bark or food; most misclassifications for food are confused as fabric; 
most misclassifications for sand are confused as bark; most misclassifications for tile are 
confused as water, fabric or food; and most misclassifications for water are confused as bark, 

food or tile.  
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(a)                                                 (b) 
Figure 5.8  (a) Plot of the first two principal components for the co-occurrence  features on VisTex data;  
(b) Plot of the discriminant functions generated by the linear classifier based on co-occurrence features on 
VisTex data. 

 

In Figure 5.9 we show the plots obtained with edge frequency measures on VisTex data using 
PCA and linear discriminant analysis.  
 

 
 
 

 
 
 
 
 
 
 
 
 
 

(a)                                              (b) 
Figure 5.9  (a) Plot of the first two principal components for the edge frequency features on VisTex data; 
(b) Plot of the discriminant functions generated by the linear classifier based on edge frequency features 
on VisTex data. 
 

This is by far one of the most confusing situations where samples for each class appears 
scattered amongst samples of other classes. The recognition rate for the complete set is fairly 
poor at 53.2%. The individual recognition rates for different classes are as follows: bark (36%); 

fabric (31%); food (65%); metal  (92%); sand (68%); tile (47%) and water (75%).  The 
classifier makes a larger number of mistakes than before as: most misclassified bark samples are 
labelled as fabric, metal or sand; most misclassified fabric samples are labelled as food, metal or 
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water; most misclassified food samples are labelled as fabric ; most misclassified metal samples 
are labelled as fabric; most misclassified sand samples are labelled as water; most misclassified 
tile samples are labelled as sand or water; and finally, most misclassified water samples are 

labelled as bark. 
 
 
 
 
 
 
 
 
 
 
 
 

 (a)                                                (b) 
Figure 5.10 (a) Plot of the first two principal components for the Law’s features on VisTex data; (b) Plot 
of the discriminant functions generated by the linear classifier based on Law’s features on VisTex data. 

 
Law’s features again prove to be very successful in characterising texture in VisTex images. 

Their PCA plot in figure 5.10 shows that the majority of data variability is explained by the first 
component. The discriminant function plot shows that it is relatively hard to discriminate 
between samples of classes except water and tile. An overall recognition rate of 68.8% is not as 

good as 73.2% for co-occurrence matrices but still quite good using a linear classifier. The 
individual recognition performances on the classes are: bark (50%); fabric (58%); food (65%); 
metal (79%); sand (82%); tile (81%); and water (91%). The majority of misclassified bark 

samples are confused as fabric, metal or sand; the majority of misclassified fabric samples are 
confused as food or metal; the majority of misclassified food samples are confused as bark or 
water; the majority of misclassified metal samples are confused as fabric; the majority of 

misclassified sand samples are confused as water; the majority of misclassified tile samples are 
confused as sand or water; and the majority of misclassified water samples are labelled as bark. 
 
 
 

 

 
 
 

 
 
 

 
 

 
Figure 5.11 Plot of the first two principal components for the primitive length features on VisTex data. 
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Figure 5.11 shows the PCA plot for primitive length features. The data distribution is most 
overlapping for all classes. As a result of the significant overlap across different classes, a very 

poor overall recognition rate of 34.8% is obtained. A close inspection of the confusion matrix 
shows that for some classes, a greater percentage of samples are recognised as something else 
compared to being correctly classified. For example, more fabric samples are classed as bark 

and metal than fabric itself; more food samples are classed as bark than food itself; more sand 
samples are classed as water than sand itself; and more tile samples are classed as sand or water 
than tile. The individual recognition rates for the seven classes are: bark (42%); fabric (24%); 

food (25%); metal (100%); sand (21%); tile (25%); and water (50%). 
 

 

 

 

 

 

 

 

 

 

 

 

 
(a)                                                     (b) 

Figure 5.12 (a) Plot of the first two principal components for the combined features on VisTex data;  
(b) Plot of the discriminant functions generated by the linear classifier based on combined features on 
VisTex data. 

 
Figure 5.12 shows the plots obtained when using the combined feature set. As a result of adding 
more information, the classes now appear separable. The confusion matrix shows radically 

improved results on VisTex data provided that features using different texture methods are used 
together. An overall recognition rate of 94.6% is by far the most impressive. The samples of 
individual classes have been recognised with the following accuracy: bark (94%); fabric (96%); 

food (83%); metal (100%); sand (96%); tile (100%) and water (97%). The only explanation for 
such a good performance can be based on the hypothesis that different feature extraction 
methods measure something different but when features are combined together, we get a very 

powerful set of descriptors. It is not a complete surprise to see good performance from the 
combined feature set as improvements were also noticed for MeasTex data. However, the 
magnitude of improvement in performance is significant and most noticeable. 

 
5.4.2 Nearest neighbour classifier results 
The k-nearest nearest neighbour models when applied to VisTex data show good performance. 

The confusion matrices are presented in Appendix D. On the whole, model-1 performances are 
better than model-2. Also, when we increase the number of nearest neighbours parameter k for 
model-2, we get inferior recognition rates. We now discuss the results obtained for individual 

feature sets. 
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For autocorrelation features, the best results of 85.7% correct recognition are obtained for the 
first model for k=1. This is much better than the linear classification of 72.1% correct. The 

individual classes are recognised with the following accuracy: bark (88.5%), fabric (97.5%), 
food (97.9%), metal (66.7%), sand (46.4%), tile (81.2%) and water (90.6%). On the whole it is 
relative easy to recognise samples for bark, fabric, food, tile and water. The confusion matrix 

shows that the mistakes are made when sand samples get confused as metal or fabric.  
 
Co-occurrence features give a much better performance of 80.7% correct recognition for k=1. 

This better than the linear classifier performance of 73.9% correct. The individual classes are 
recognised with the following accuracy: bark (52.7%), fabric (87.5%), food (87.5%), metal 
(95.8%), sand (96.4%), tile (56.2%) and water (84.3%). The most difficult recognition is 

attributed to samples from tile that are confused as either bark or fabric, and samples from bark 
that are confused as fabric or food.  
 

Edge frequency features show a best recognition rate of 66.8% correct for model-1, k=3. This is 
much better than the linear classifier performance of 53.2%. The classes are recognised with the 
following accuracy: bark (38.8%), fabric (76.2%), food (77.0%), metal (70.8%), sand (64.2%), 

tile (71.8%) and water (59.3%). Classes that could be recognised with near perfect accuracy 
with the co-occurrence approach are now confused with others, e.g. food, metal and sand. The 
most difficult classes to recognise are bark, tile and water.  

 
Law’s features do not perform well here and their best result is only as good as 56.1% correct 
recognition with model-1 (k=7). The performance is much worse than the linear recognition rate 

of 68.8%. The classes are recognised with the following accuracy: bark (22.2%), fabric (70.0%), 
food (50.0%), metal (54.1%), sand (57.2%), tile (50%) and water (75.0%). Most of the mistakes 
as made when the fabric and food samples are confused as the other and when bark gets 

confused as fabric, metal as fabric and tile as fabric. So the analysis is biased toward making 
mistakes in favour of fabric class. 
 

For primitive length features, the best results are obtained using model-1 (k=7). The recognition 
performance of 42.4% is reasonably good compared to the linear classifier result of 34.8% 
correct. The classes are recognised with the following accuracy: bark (44.4%), fabric (61.2%), 

food (60.4%), metal (8.3%), sand (35.7%), tile (18.7%) and water (37.5%). Most of the 
mistakes are biased in favour of the first two classes, bark and fabric. 
 

Finally, we consider the results on the combined data set. The best performance is given by the  
model-1 classifier with k=5. An overall recognition accuracy of 61.3% is obtained. This is 
nowhere close to 94.6% correct recognition obtained on the linear classifier. The classes are 

recognised with the following accuracy: bark (16.7%), fabric (63.7%), food (56.2%), metal 
(70.8%), sand (89.2%), tile (40.6%) and water (78.1%). It appears from the confusion matrix 
that there is a large likelihood that the misclassified patterns will be assigned to fabric class. 

This is proved by the mistakes made. Bark, food and tile are often confused as fabric. Fabric on 
the other hand is confused as bark and food. 
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In summary, the best performance is given by autocorrelation method showing a correct 
recognition rate of 85.7% correct. This is quite impressive for the seven class classification 
problem. Co-occurrence matrices come as a good second with an impressive performance of 

80.7% correct. We also find that the use of the nearest neighbour classifier improves the 
performance significantly for half of the feature sets. 
 

In this chapter we have discussed the performance comparison of different texture extraction 
methods. Some of this work is published in Singh and Sharma [197]. In the next chapter we 
discuss the PANN natural image benchmark that was developed as a part of this is study. We 

discuss our experimental design for recognising image regions within this benchmark. This is 
quite important as this dictates the manner in which experiments are performed. This will be 
followed by experimental discussion in further chapters. 
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Chapter 6 
 
Experimental design for PANN benchmark 

 
The main purpose of this chapter is to detail the experimental design for PANN scene analysis 
database. PANN scene analysis database has been developed as a part of this study to provide a 

benchmark data set that can be used by researchers to test their natural object recognition 
schemes. In the following section, we discuss other scene analysis benchmarks and our reasons 
for not choosing them for analysis. Then we detail how our experiments are laid out that are 

described in the next two chapters.  
 
6.1 Scene analysis benchmarks 
There are a number of other data sets that other researchers have used for texture analysis. Some 
important databases have been discussed before. Unfortunately, there are not enough benchmark 
data sets on outdoor scene analysis. It would be inappropriate not to mention those available and 

their characteristics briefly to justify why it was felt necessary to develop a complete database 
of images as a part of this study. Most of these data repositories are available over the Internet. 
These datasets have been compiled by other researchers. Some of these are only for texture 

studies and hence only contain texture images. For such images, no segmentation is necessary. 
Data benchmarks on remote sensing and range data are available but not relevant to us. There 
are few good data repositories containing outdoor natural images. However, a number of 

repositories only contain very few images to be useful. For a comprehensive study, enough data 
is needed to generate meaningful results and as such these benchmarks are of limited use. 
 

The two benchmarks that were found worth analysis are called Groningen Natural Stimuli 
collection and Bristol Image Database. The first database contains over 4000 large calibrated 
still images of outdoor scenes taken with a Kodak camera (http://hlab.phys.rug.nl/archive.html). 

The images have a file format of 1536x1024 pixels where each pixel is a 2 byte unsigned 
integer. The natural scenes contain a range of objects such as water, vegetation, buildings, etc. 
The Bristol Image Database consists of over 350 images of a range of urban and rural scenes. 

The images are digitised using a calibrated digitiser from the 35 mm colour transparency film to 
produce high quality 36 bit colour images. The statistics for image content and acquisition have 
been carefully controlled. Nearly half of the images are rural and the other half urban, spanning 

a variety of viewpoints. Environmental conditions during capture were dry, fully overcast, and 
good atmospheric visibility. For all images the camera was focussed at infinity. The images 
have been hand-labelled for providing ground truth. The objects have been categorised as sky, 

vegetation, road marking, road, pavement, building, fence/wall, road sign, signs/poles, shadow 
and mobile objects. 
 

One of the key limitations of working with these databases is the unacceptably extreme 
variability with some of the objects present in different images. Also, some of the objects are 
not homogeneous in character, e.g. a building that contains windows, doors, etc. In such cases, 

an object is composed of several components that are individual objects in their own right. As 
such, segmentation and labelling would turn out to be too complex. Also, the images of rivers, 
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buildings, etc. have been taken at different locations, and the same natural object appears 
considerably different in different stills. Considering these problems, it was decided not to use 
these databases. PANN scene analysis benchmark data was developed with the following 

objectives: i) The database should contain sufficient samples of different natural objects for a 
meaningful analysis. The natural objects chosen for analysis were trees, grass, leaves, clouds, 
sky, pebbles, bricks, and road. ii) The natural objects considered should be uniform in the sense 

that they can not be broken into further individual components. iii) The stills should be captured 
directly in the digital format under similar lighting conditions, and both colour and grey scale 
images should be available for analysis. iv) The database should be collected from the same area 

or location to minimise extreme differences in samples. All data has been collected from the 
Exeter University campus. With these motivations, the PANN benchmark data was developed 
that contains 448 natural images taken by a Panasonic digital camera with a resolution of 

768x570 pixels. The environmental conditions during data capture are dry, mostly overcast but 
good visibility. 
 

6.2 Problem definition 
In natural scene analysis, the main task is to develop sophisticated image analysis and 
classification algorithms that lead to better recognition of natural objects. Some of these natural 

objects have uniform texture, e.g. roads, brick walls, etc. Other natural objects have more of a 
fractal nature such as snow, leaves, trees, etc. A number of these objects are very rich in texture 
but the quality of texture we can extract depends considerably on the image quality and the 

manner in which images are taken. In this study we have tried to ensure that images are taken in 
good conditions and shadow effects are minimised. However, a limited number images in the 
database do suffer from these problems. In the majority of such images, only a few regions were 

affected by poor imaging conditions. Even though such images represent a more realistic view 
of what kind of environment an automated object recognition system must cope with, they add 
to the complexity of the classification task.  

 
In our natural object classification task, the following objects have been considered: trees, grass, 
leaves, bricks, clouds, sky, pebbles, and road. A single image can contain more than one of 

these objects. Some of these classes are fairly homogeneous in their texture, e.g. bricks, sky, and 
road, whereas the others are more varied, e.g. trees, grass, leaves and clouds. Also, the 
vegetation has been imaged under different lighting conditions increasing the variability in 

samples. Clouds are by their very nature varied and thus their samples do not, by definition, 
form a very homogeneous class. An experiment on training the classifier on all classes was first 
performed using the different feature sets to determine the complexity of the classification task. 

Two points of observation soon became apparent from our experiments. First, we find that the 
data from different class distributions is highly overlapping. Second, we find that different 
clusters belonging to different classes have different amounts of variability. This is evident 

through the visualisation of compactness of data clusters through PCA plots. Also, it becomes 
apparent that there are a number of outliers present in data. An outlier can be defined as a 
sample of a class ω that is considerably far in terms of its Euclidean distance from the mean 

feature vector. However, different feature sets have different data representations for the same 
image regions and as such different outlier samples. Their elimination for one data set may not 
correspond to the same samples being eliminated in other data sets. Hence, outlier elimination 
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for different data sets will yield different final sets because different samples have been 
eliminated from analysis, and that would make it impossible to compare our experiments across 
data sets on an even basis. For this reason, we do not remove any outliers for the purpose of this 

study. However, it is a reasonable hypothesis that their removal from our data sets will yield 
better results. The data distribution overlaps are shown in Figure 6.1.  
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Figure 6.1  Data distribution overlaps during linear classification of natural scene analysis 
data containing 8 classes: vegetation (trees, grass, leaves) and natural objects (sky, clouds, 
bricks, pebbles, road). For all methods, FCM segmentation has been used. 
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There are several important observations to be made from Figure 6.1. First, in the first three 
feature extraction methods, there is considerable inter-class variability. Tree and grass samples 
appear as adjoining clusters masking the leaves cluster. Clusters, except for sky, are 

superimposed by vegetation clusters. For Law’s and primitive length method, the clusters 
appear compact for trees, grass and sky masking other distributions. This situation can be 
exemplified by considering Figure 6.2. 

 
 
 

 
 
 

 
 
 

 (a) 

 
 

 
 
 

 
 
 

 
 
                                         (b)                                                                 (c)  

Figure 6.2  Data distribution overlaps for the natural object recognition problem: a) vegetation and natural 

object data overlaps showing difficulty in linear discrimination; b) natural object data after vegetation has 

been removed; c) vegetation after natural object data is removed. 

 
In Figure 6.2(a) we show a graphical representation of how most class distributions overlap in 
our problem. A classifier would not perform well on such data. However, if we are to develop 

two classifiers for recognising natural object data and vegetation data separately, a much better 
performance can be achieved as visible from the almost linear separation between different 
classes shown in Figure 6.2(b) and 6.2(c). 

 
The considerable data distribution overlap in our experiments is an important consideration in 
how our experiments should be designed. There are two important considerations for our 

experimental design. First, our primary purpose is to compare recognition success of natural 
objects across 20 different data sets that have been generated by using different combinations of 
image segmentation and feature extraction methods. This being the primary aim of the thesis, 

our objective is to demonstrate which data sets yield the best results using the same classifier for 
all of them. Second, even though this is not the primary goal, the results obtained must be 
reasonable enough to act as a basis of being used for a realistic system, if implemented, for 
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natural object recognition. What is a reasonable result is debatable. In the literature surveyed, 
most studies deal only with texture benchmark data rather than scene analysis data and the 
results are less frequently reported on scene analysis data. So it is difficult to set a baseline 

result for such as problem. 
 
6.3 Experimental design 
We propose that one of the two strategies proposed below will yield a good experimental design 
for our analysis. Either of these strategies can be implemented depending on the ease of 
implementation and our goals. We describe these strategies in detail below. 

 

6.3.1 Experimental design based on two-phase classification 
In this strategy, classification of natural objects can be made on the basis of separating out 

vegetation from the rest of the data. This is apparent from Figure 6.1(a) that shows how 
vegetation data is highly overlapping with others. It is hypothesised that two-stage classification 
will yield much better results compared to classifying data of all classes in one go. In the two- 

stage procedure, each image region is first identified as coming from vegetation category, or 
from other natural objects. This process can be handled only if the colour information contained 
in the images is used. In such a case, for each segmented region, based on its colour pixel values 

in the original image, the contribution of the green colour using colour histograms can be 
identified. It is relatively straightforward to identify whether an image region is from vegetation 
or natural objects class. Once this decision has been made, two separate classifiers can be 

trained to classify these separated samples. One of the classifier can be trained on recognising 
the three vegetation classes, and the other classifier can be trained on recognising the five 
natural object classes. This is shown in Figure 6.3 where classifier's accuracy is R1 and R2%. 

 
 
 

 
 
 

            
 
 

 
Figure 6.3  Colour classification for separating vegetation data from other natural objects. 

 

One of the key advantages of using this two-stage scheme is that it is relatively simple to 
implement. Since colour image processing element acts only as a trigger as to which classifier 
should be used for a given test sample, we can achieve good performances using the two 

separate classifiers trained on grey-scale data. This hierarchical scheme ensures that we do not 
need to perform a full colour image analysis except for triggering different classifiers. Also, the 
two-stage scheme allows us to achieve better performances with data that is highly overlapping. 

Such an overlap is primarily as a result of vegetation data samples superimposed on the natural 
object clusters. Once these two categories of data are analysed with two separate classifiers, the 
overall performance of the recognition system improves. In our analysis, we make the 
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assumption that the colour image processing element is 100% accurate, i.e. we can filter out 
vegetation samples from others with 100% accuracy, before they are tested. The classifiers 
shown at the second level are based on working with the grey scale images. Hence the 

recognition performances of the two classifiers are a true reflection of the system performance. 
 
6.3.2 Experimental design based on multi-stage classification 
Parikh[162] has discussed the concept of multi-stage classifiers. In such a classification scheme, 
a number of classifier are developed. For example, for separating N different classes, we can 
construct a decision tree that represents different classifications at different levels. At each level 

i of the decision tree, a classifier is used based on a data partitioning scheme. Level i=0 denotes 
the root of the tree. How many levels are used for solving a problem depends on the number of 
classes N and the manner in which the experimentation is performed. We demonstrate multi-

stage classification process in Figure 6.4. Consider that we have N classes (ω1, ω2…ωN). These 
classes can be partitioned into a total of Ωi groups at level i. At least each group must be of size 
2 so that a classification is possible. The total numbers of combinations possible at level i and 

for the complete tree is considerably large. Each data group is considered as a homogeneous 
entity. In order to understand Figure 6.4, let us explain the symbols used. At each level, a 
partition or group of data ϑ can be formed.  

We label this group as: ϑ
ilevelatnumbergroup

groupinnumber,ilevel .  

Hence, the node ϑ1
21 represents classification at level 2 with first data set in the first group. The 

tree can have a depth of L depending on the experimental design. In group j at level i, there are a 

maximum of jl nodes. At each node, the different leaves represent the data groups that are 

considered as separate classes and subjected to the classification performance. 

 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
Figure 6.4  Multistage classification process where classifiers are used in a hierarchy. 
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Multistage classification is an important methodology where the separation of data from 
different classes in a hierarchical manner will yield better results rather than subjecting the 
complete data for classification into N classes. The recognition rate obtained finally is not a 

direct combination of recognition rates obtained at different levels. Only at the bottom of the 
tree, all misclassified samples can be collated and the overall success of the multistage 
classification scheme can be determined. How the experimental design is affected by the data 

depends on the amount of overlap between different classes. Similar to techniques used for 
optimal feature selection, search techniques can be employed to find the best possible decision 
tree for multi-stage classification process. An exhaustive approach would involve finding all 

possible combinations with which decisions are made. This is certainly not optimal and would 
waste a lot of time. A better approach can be adopted by considering class distribution distances 
from each other. It is common sense to separate out those classes first that have the maximal 

average distance across all features from other classes. On data plots, these classes should 
appear as separate and isolated from data of other classes. In fact, using Bhattacharya or 
Chernoff distance, we can rank classes as to how well they are separated from others. Using 

such a procedure, we can obtain only one optimal decision tree.  
 
In our study, we have used the first described strategy for classification based on colour 

information. Colour processing has not been used but it has been assumed that using a simple 
strategy, vegetation samples can be pooled separately from other samples and therefore we can 
develop two classifiers and as such two separate classification studies. The first study will be 

based on classifying vegetation data alone and the other study will be based on classifying 
natural object data. We next present our results on these two data sets individually in the next 
two chapters: first on vegetation data and then on natural objects. 
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Chapter 7   
 
Vegetation data analysis 
 
The main purpose of this chapter is to detail the experiments performed on the PANN scene 
analysis database. PANN scene analysis database has been developed to provide a benchmark 

data set that can be used by researchers to test their natural object recognition schemes. As with 
MeasTex and VisTex data sets, the results on texture recognition of different objects have been 
generated using the linear classifier and the k-nearest neighbour method. In the experiments 

with PANN database however, we have a lot more data sets. Since we have used four 
segmentation methods and five feature sets, we have a total of 20 data sets. The analysis of 
these data sets has been carried out using the leave-one-out cross-validation procedure. The 

chapter is organised as followed. We discuss the results obtained on the vegetation analysis of 
the PANN database categorised as per each segmentation method followed by texture analysis. 
The overall best results for these are summarised at the end to draw some meaningful 

conclusions. We discuss the significance of these findings in the context of the differences 
observed on recognition rates using different combinations of segmentation and feature 
extraction procedures. These differences are present as each segmentation procedure is sub-

optimal to a certain extent in its definition of object regions. Our study is to evaluate how the 
differences in segmentation can affect the quality of features for classification, i.e. poor 
segmentation will yield poor object regions and thus poor texture features from such regions. 

Obviously some feature extraction techniques would be more robust to the sub-optimal 
segmentation process. The quality of the features themselves is difficult to evaluate without 
teaching a classifier to differentiate between samples of different classes present in the images, 

and thus the performance evaluation of the experimental trials is based on percentage average 
recognition rates. The chapter concludes with some salient observations on our analysis. 
 

7.1 Analysis of vegetation data  
We first analyse vegetation data containing three classes namely trees, grass and leaves. Our 
results are based on a total of 20 data sets. The discussion is organised around four sections, 

each based on a different segmentation method. As discussed earlier, the quality of image 
segmentation is directly related to the final results obtained. A method that over-segments will 
generate texture features from a smaller region area, whereas a method that under-segments will 

have the texture feature contaminated by pixels of two or more regions. In our analysis we use 
the linear classifier and nearest neighbour classifier. As before, linear classification is discussed 
first followed by k  nearest neighbour classification. 

 
7.2 Linear classification 
We discuss the results first for FCM clustering, followed by, in order, histogram thresholding, 

region growing and split and merge segmentation methods. All results have been generated 
using the leave-one-out cross-validation procedure. 
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7.2.1 Fuzzy c-means clustering segmentation 
For this analysis, all images have been analysed using FCM clustering segmentation. Results for 
each of the five texture extraction methods using the linear classifier are detailed below. 

Detailed confusion matrices are available in Appendix E. 
 
Autocorrelation features 

The PCA plot and canonical discriminant plot for autocorrelation features extracted after FCM 
segmentation are shown in Figure 7.1. 
 

From these plots we can clearly see that tree and leaves samples have more variability compared 
to grass data. Also, tree and leaves overlap grass data. Tree samples appear to have more 
outliers than the two other classes. In Appendix E we find that the linear classifier using 

generates a recognition success of 71.1% correct.  The recognition accuracy on individual 
classes is trees (61.8%), grass (93.7%), and leaves (59.2%). Most of the mistakes are made 
when misclassified tree samples are labelled as grass, or when the leaves samples are mistaken 

as trees or grass. 
 
 

 
 
 

 
 
 

 
 
 

Figure 7.1   PCA plot and canonical discriminant function plot for the linear analysis using FCM and 

autocorrelation features for the discrimination of vegetation data. 

 
Co-occurrence features 
The PCA plot and canonical discriminant plot for co-occurrence features extracted after FCM 
segmentation are shown in Figure 7.2. As we can see, tree and leaves samples completely 

overlap. The separation however appears worse than Figure 7.1. As before, trees appear to have 
many more outliers compared to any other class. The PCA plot shows that using only the first 
two principal components, the samples are virtually indistinguishable. The confusion matrix in 

Appendix E shows an overall recognition rate of 57.3% correct. The best results are obtained for 
recognising grass and leaves, 70.5% and 72.5% correct recognition respectively. Trees are more 
difficult to recognise at 40.6% correct recognition. Trees are mostly misclassified as either 

leaves or grass. Most misclassified grass is classed as leaves and most misclassified leaves are 
classed as either trees or grass. 
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Figure 7.2 PCA plot and canonical discriminant function plot for the linear analysis using FCM and co-

occurrence features for the discrimination of vegetation data. 

 
Edge frequency features 

The PCA plot and canonical discriminant plot for edge frequency features extracted after FCM 
segmentation are shown in Figure 7.3. The two plots show that trees and grass this time form a 

more compact cluster but there are a significant number of outliers for leaves. However since 
these outliers are not at, or across, class boundaries this should not affect the recognition of 
leaves samples. The confusion matrix in Appendix E shows the best recognition performance of 

72.5%. The individual performances stand at trees (66.9%), grass (81.3%), and leaves (71.4%). 
Out of misclassified cases, the majority of samples from tree class are labelled as grass, most 
grass samples are labelled as trees, and most leaves are labelled as trees. 

 
 
 

 
 
 

 
 
 

 
 
Figure 7.3  PCA plot and canonical discriminant function plot for the linear analysis using FCM and edge 

frequency features for the discrimination of vegetation data. 

 
Law’s features 

The PCA plot and canonical discriminant plot for Law’s features extracted after FCM 
segmentation are shown in Figure 7.4. There is considerable variability amongst the tree and 
grass samples. Tree samples virtually overlap most of the leaves samples in the plot. This 

situation is similar to the co-occurrence plots. The confusion matrix in Appendix E shows how 
the linear classifier performs on this feature set. An overall recognition rate of 62.6% is obtained 
with the best individual recognition performances for different classes as follows: trees (59.4%), 
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grass (54.1%), and leaves (79.6%). In terms of misclassifications, most misclassified patterns of 
class trees are labelled as leaves, most grass patterns are labelled as leaves, and most leaves 
patterns are labelled as trees. 

 
 
 

 
 
 

 
 
 

 
 
 

Figure 7.4  PCA plot and canonical discriminant function plot for the linear analysis using FCM and 

Law’s features for the discrimination of vegetation data. 

 

Primitive length features 

These features are also called run length features. The PCA plot for primitive length features 
extracted after FCM segmentation are shown in Figure 7.5. The analysis fails to yield a 

canonical discriminant plot. Figure 7.5 shows little in terms of how data is distributed as all 
three classes lie linearly on top of each other. There is more variability along the second 
principal component axis. From Appendix E we see that the best overall performance of 36.7% 

correct recognition is obtained using linear analysis. The individual recognition rates are: trees 
(31.0%), grass (61.6%), and leaves (15%). Most mistakes are made when trees are misclassified 
as leaves, grass is misclassified as trees, and leaves are misclassified as trees and grass. 

 
 
 

 
 
 

 
 
 

 
 
Figure 7.5  PCA plot for the linear analysis using FCM and primitive length  features for the 

discrimination of vegetation data. 

 
Summary 

We find that on average the different feature sets perform relatively well except for primitive 
length method in discriminating between different vegetation classes. In Table 7.1 we 
summarise the overall results and highlight which class was best recognised for each feature set. 
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We find that tree samples are never the easiest to recognise. Also, three out of five times, grass 
is the easiest to recognise, and leaves is the best recognised class the other two times. The best 
result of 72.5% correct is obtained by the edge frequency method. 

 

Feature method Recognition Easiest to recognise 

Autocorrelation 71.1% Grass (93.7%) 

Co-occurrence 57.3% Leaves (72.5%) 

Edge frequency 72.5% Grass (81.3%) 

Law’s 62.6% Leaves (79.6%) 

Primitive length 36.7% Grass (61.6%) 

Table 7.1  Summary of linear classifier performance with FCM. 

 
Another manner in which the results can be summarised is to consider where the classifier 

makes most of the mistakes. This information present in confusion matrices is not easily 
visually interpreted.  In Table 7.2 we show a better presentation of these mistakes. For each 
method of feature extraction, if the class in row M gets misclassified as class in row N, by more 

then 10% then we put one asterisk in that matrix position. We put two asterisks for more than 
25% misclassification, and three asterisks for more than 50% misclassification. 
 

Feature method Class Trees Grass Leaves 

Autocorrelation Trees 

Grass 

Leaves 

 

 

* 

** 

 

* 

* 

Co-occurrence Trees 

Grass 

Leaves 

 

 

* 

* 

 

* 

** 

* 

 

Edge frequency Trees 

Grass 

Leaves 

 

* 

* 

* 

 

* 

Law’s Trees 

Grass 

Leaves 

 

 

* 

 ** 

** 

Primitive length Trees 

Grass 

Leaves 

 

** 

*** 

*** 

 

** 

* 

 

Table 7.2  Description of mistakes made by the linear classifier with FCM. 

 
Table 7.2 shows that for most methods, trees are more prone to be misclassified as grass than 

vice-versa. Trees and leaves are misclassified almost interchangeably. Only a few times grass is 
misclassified as leaves and vice-versa. Also grass is more likely to be classified as leaves than 
vice-versa. Leaves and tree get confused as each other quite often. The number of mistakes 

made by the primitive length method is the largest with considerable overlap between trees and 
grass. 
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7.2.2 Histogram thresholding segmentation 
For this analysis, all images have been analysed using histogram thresholding based 
segmentation. Results for each of the five texture extraction methods using the linear classifier 

are detailed below. Detailed confusion matrices are available in Appendix G.  
 
Autocorrelation features 

The PCA plot and canonical discriminant plot for autocorrelation features extracted after 
histogram based segmentation are shown in Figure 7.6. There appears to be a considerable 
amount of overlap across trees and grass data. Leaves samples are quite variable. Confusion 

matrices in Appendix G show an overall recognition rate of 64.3% correct with the individual 
classes recognised with the following accuracy: trees (48.7%), grass (91.7%), and leaves 
(54.9%). In terms of misclassifications, most of the tree samples are misclassified as leaves or 

grass, and leaves samples are mistaken as grass or trees. 
 
 

 
 
 

 
 

 

 

 

 

Figure 7.6  PCA plot and canonical discriminant function plot for the linear analysis using Histogram 

Thresholding and autocorrelation features for the discrimination of vegetation data. 

 

Co-occurrence features 

The PCA plot and canonical discriminant plot for co-occurrence features extracted after 
histogram based segmentation are shown in Figure 7.7. There appears to be a considerable 

amount of overlap across trees and leaves data. 
 
 

 
 
 

 
 
 

 
 
 

Figure 7.7  PCA plot and canonical discriminant function plot for the linear analysis using Histogram 

Thresholding and co-occurrence features for the discrimination of vegetation data.  
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The confusion matrix in Appendix G shows the overall recognition result of 62.8% correct 
using leave-one-out cross-validation with the individual classes recognised with the following 
accuracy: trees (50%), grass (74%), and leaves (70.1%). For mistaken samples, the majority of 

mistakes can be attributed to tree samples being misclassified as leaves, grass samples mistaken 
as leaves, and leaves samples mistaken as grass and trees. 
 

Edge frequency features 

The PCA plot and canonical discriminant plot for edge frequency features extracted after 
histogram based segmentation are shown in Figure 7.8. The plots show a much better distinction 

between the three clusters with some of the tree samples overlapping with leaves samples. Tree 
and grass clusters appear compact in both of the plots. 
 

 
 
 

 
 
 

 
 
 

 
Figure 7.8  PCA plot and canonical discriminant function plot for the linear analysis using Histogram 

Thresholding and edge frequency features for the discrimination of vegetation data.  

 
The confusion matrices in Appendix G show an overall recognition accuracy of 76.5%. This is a 
very good result considering the similarity in the texture of various vegetation classes. The 

individual classes are recognised with the following accuracy: trees (81.2%), grass (78.0%), and 
leaves (66.3%). For misclassifications, grass samples have been misclassified as trees, and 
leaves have been misclassified as grass or trees. 

 
Law’s features 

The PCA plot and canonical discriminant plot for Law’s features extracted after histogram 

based segmentation are shown in Figure 7.9.  
 
 

 
 
 

 
 
 

 
Figure 7.9  PCA plot and canonical discriminant function plot for the linear analysis using Histogram 

Thresholding and Law’s features for the discrimination of vegetation data.  
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The plots show a complete overlap of tree and leaves data. As a result of this, we can not expect 
the linear classifier to perform too well. The confusion matrix in Appendix G shows an overall 
leave-one-out recognition rate of 59.8% correct using leave-one-out cross-validation. The 

individual classes are recognised with the following accuracy: trees (49.7%), grass (63.5%), and 
leaves (72.3%). The misclassifications are mostly in cases of trees recognised as leaves, grass 
recognised as leaves, and leaves recognised as trees. 

 
Primitive length features 

The PCA plot for primitive length features extracted after histogram based segmentation are 

shown in Figure 7.10. The analysis fails to yield a canonical discriminant plot. Unfortunately 
there is not enough information from the plot except for the fact that the three classes are 
virtually impossible to classify on the basis of the two principal components alone. 

 
 
 

 
 
 

 
 
 

 
 
Figure 7.10 PCA plot for the linear analysis using Histogram Thresholding and primitive length features 

for the discrimination of vegetation data. 

 
The confusion matrix in Appendix G shows an overall recognition rate of 46.1% correct. The 

individual classes are recognised with the following accuracy: trees (55.1%), grass (53.1%), and 
leaves (21.7%). The major misclassifications occur when trees are mistaken as grass, grass is 
mistaken as trees, and leaves are mistaken as both grass and trees. 

 
Summary 

In Table 7.3 we summarise the overall results and highlight which class was best recognised for 

each feature set. On the whole, the best performance is achieved using the edge frequency 
features. Different classes are best recognised using different texture methods. 
 

Feature method Recognition Easiest to recognise 

Autocorrelation 64.3% Grass (91.7%) 

Co-occurrence 62.8% Grass (74.0%) 

Edge frequency 76.5% Trees (81.2%) 

Law’s 59.8% Leaves (72.3%) 

Primitive length 46.1% Trees (55.1%) 

Table 7.3  Summary of linear classifier performance with Histogram Thresholding. 
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Table 7.4 appears as described earlier. We find that in general there is a larger likelihood that 
tree samples are misclassified as grass rather than vice-versa. It is common for leaves samples to 
be mistaken as trees and vice versa.  

 

Feature method Class Trees Grass Leaves 

Autocorrelation Trees 

Grass 

Leaves 

 

 

* 

** 

 

* 

* 

Co-occurrence Trees 

Grass 

Leaves 

 

* 

* 

* 

 

* 

** 

* 

Edge frequency Trees 

Grass 

Leaves 

 

* 

* 

 

 

* 

 

Law’s Trees 

Grass 

Leaves 

 

 

** 

 ** 

** 

Primitive length Trees 

Grass 

Leaves 

 

** 

** 

** 

 

** 

* 

Table 7.4  Description of mistakes made by the linear classifier with Histogram Thresholding. 

 

7.2.3 Region growing segmentation 
For this analysis, all images have been analysed using region growing segmentation. Results for 
each of the five texture extraction methods using the linear classifier are detailed below. 

Detailed confusion matrices are available in Appendix I.  
 
Autocorrelation features 

The PCA plot and canonical discriminant plot for autocorrelation features extracted after region 
growing segmentation are shown in Figure 7.11. 
 

 
 
 

 
 
 

 
 
 

 
 
Figure 7.11 PCA plot and canonical discriminant function plot for the linear analysis using Region 

Growing and autocorrelation features for the discrimination of vegetation data. 
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The plots show that there is considerable overlap across all three categories. An overall best 
result of 66.8% is shown in Appendix I. Trees are recognised with 63.9% accuracy, grass with 
98.6% accuracy and leaves with 54.5% accuracy. The tree samples have been misclassified as 

grass or leaves, and leaves samples have been mistaken as trees and grass. 
 
Co-occurrence features 

The PCA plot and canonical discriminant plot for co-occurrence features extracted after region 
growing segmentation are shown in Figure 7.12. Co-occurrence features form elongated clusters 
as shown in Figure 7.12. With the high degree of overlap, the linear classifier can not be 

expected to perform too well. Appendix I shows the overall recognition rate of 54.3% correct 
with individual accuracy as follows: trees (50.3%), grass (52.0%), and leaves (60.6%). Each 
class has been roughly misclassified as something else with an error of around 20%. 

 
 
 

 
 
 

 
 
 

 
 
 

Figure 7.12 PCA plot and canonical discriminant function plot for the linear analysis using Region 

Growing and co-occurrence features for the discrimination of vegetation data. 

 

Edge frequency features 

The PCA plot and canonical discriminant plot for edge frequency features extracted after region 
growing segmentation are shown in Figure 7.13. 

 
 
 

 
 
 

 
 
 

 
 
 

 
Figure 7.13 PCA plot and canonical discriminant function plot for the linear analysis using Region 

Growing and edge frequency features for the discrimination of vegetation data. 
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In Figure 7.13, tree samples appear as a homogeneous cluster, whereas leaves are the most 
variable. An overall recognition accuracy of 69.5% is obtained using leave-one-out cross-
validation. The confusion matrix in Appendix I shows individual accuracy of trees (74.4%), 

grass (73.9%), and leaves (60.4%). Tree samples are confused as grass or leaves with roughly 
an equal error rate of just over 10%. Leaves are confused as trees, and grass is confused as trees. 
 

Law’s features 

The PCA plot and canonical discriminant plot for Law’s features extracted after region growing 
segmentation are shown in Figure 7.14. The plots in Figure 7.14 show a significant degree of 

overlap between grass and leaves, and trees and leaves. The boomerang shaped data has trees on 
one end and grass at the other. In Appendix I, the confusion matrix shows an overall recognition 
rate of 61.6% with individual accuracy as follows: trees (55.0%), grass (56.5%), and leaves 

(73.1%). None of the tree samples are confused as grass but roughly half of them are confused 
as leaves. Similarly, hardly any grass samples are confused as trees and nearly half are confused 
as leaves. Leaves samples are only confused as trees. 

 
 
 

 
 
 

 
 
 

 
 
 
Figure 7.14 PCA plot and canonical discriminant function plot for the linear analysis using Region 

Growing and Law’s features for the discrimination of vegetation data. 

 

Primitive length features 

The PCA plot for primitive length features extracted after histogram based segmentation are 
shown in Figure 7.15.  

 
 
 

 
 
 

 
 
 

 
Figure 7.15 PCA plot for the linear analysis using Region Growing and primitive length features for the 

discrimination of vegetation data. 
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The analysis fails to yield a canonical discriminant plot. The confusion matrix in Appendix I 
shows an overall recognition rate of 31.3%. The recognit ion performances for trees and grass 
are abysmal at 8.9% and 14.5% respectively. Only leaves class achieves a reasonable 

performance of 70.1%. Tree samples are confused mostly as grass and leaves, and grass samples 
are confused as trees and leaves. The majority of mistakes made on leaves samples are in favour 
of trees. 

 
Summary 

In Table 7.5 we summarise the overall results and highlight which class was best recognised. In 

Table 7.6 we summarise the mistakes made by the linear classifier. 
 

Feature method Recognition Easiest to recognise 

Autocorrelation 66.8% Grass (98.6%) 

Co-occurrence 54.3% Leaves (60.6%) 

Edge frequency 69.5% Trees (74.4%) 

Law’s 61.6% Leaves (73.1%) 

Primitive length 31.3% Leaves (70.1%) 

Table 7.5  Summary of linear classifier performance with Region Growing. 

 

The best performance is achieved by the edge frequency method of texture extraction. In three 
out of five methods, leaves are the easiest to recognise. The ability of the autocorrelation 
method to recognise grass with complete accuracy is very impressive. We next discuss the 

mistakes made by the classifier in Table 7.6 that has been constructed as explained earlier. It 
appears that trees are more likely to be confused as leaves than grass. Also grass is more likely 
to be confused as leaves rather than trees. Leaves on the other hand are equally likely to be 

confused as either trees or grass. 
 

Feature method Class Trees Grass Leaves 

Autocorrelation Trees 

Grass 

Leaves 

 

 

* 

* 

 

* 

* 

Co-occurrence Trees 

Grass 

Leaves 

 

* 

* 

* 

 

* 

** 

** 

Edge frequency Trees 

Grass 

Leaves 

 

* 

** 

* 

 

* 

* 

Law’s Trees 

Grass 

Leaves 

 

 

* 

 ** 

** 

Primitive length Trees 

Grass 

Leaves 

 

** 

* 

** ** 

** 

Table 7.6  Description of mistakes made by the linear classifier with Region Growing. 
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7.2.4 Split and merge segmentation 
For this analysis, all images have been analysed using split and merge based segmentation. 
Results for each of the five texture extraction methods using the linear classifier are detailed 

below. Detailed confusion matrices are available in Appendix K. 
 
Autocorrelation features 

The PCA plot and canonical discriminant plot for autocorrelation features extracted after split 
and merge segmentation are shown in Figure 7.16. 
 

 
 
 

 
 
 

 
 
 

 
Figure 7.16 PCA plot and canonical discriminant function plot for the linear analysis using Split and 

Merge and autocorrelation features for the discrimination of vegetation data. 

 
The plots show a considerable number of outliers for all three classes. Grass forms the most 
compact cluster followed by tree data. Appendix K shows an overall recognition performance of 

68.4% correct with the individual classes recognised with the following accuracy: trees (56.3%), 
grass (91.3%), and leaves (48.8%). It appears that this method is well suited to recognising grass 
texture. In terms of the classifier mistakes, these are made when mostly tree samples are with an 

equal likelihood assigned to grass or leaves, or when leaves are confused as trees or grass. 
 
Co-occurrence features 

The PCA plot and canonical discriminant plot for co-occurrence features extracted after split 
and merge segmentation are shown in Figure 7.17. 
 

 
 
 

 
 
 

 
 
 

 
Figure 7.17 PCA plot and canonical discriminant function plot for the linear analysis using Split and 

Merge and co-occurrence features for the discrimination of vegetation data. 
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In the above plot, the principal components appear totally overlapped and as such by themselves 
they will not yield good quality classification. Using the complete data, the canonical 
discriminant function plot shows a characteristic boomerang shape where tree and grass clusters 

appear disjoint but have considerable overlaps with leaves data. The results in Appendix K 
show an overall recognition accuracy of 69.8% with individual classes recognised as follows: 
trees (66.1%), grass (81.9%), and leaves (56.0%). The data plots justify the low recognition rate 

for leaves. In terms of mistakes, the tree samples are mostly mistaken as leaves, and leaves as 
both grass and trees. 
 

Edge frequency features 

The PCA plot and canonical discriminant plot for edge frequency features extracted after split 
and merge segmentation are shown in Figure 7.18. 

 
 
 

 
 
 

 
 
 

 
 
Figure 7.18 PCA plot and canonical discriminant function plot for the linear analysis using Split and 

Merge segmentation and edge frequency features for the discrimination of vegetation data. 

 
The above plot is the best seen so far. Trees, grass and leaves appear as three separate clusters 

and as such a good recognition performance can be expected using the linear classifier. This is 
confirmed by the very good accuracy on the data set of 79.4% correct as shown in Appendix K. 
The tree samples are the easiest to recognise (90.8% accuracy), something we have not seen in 

the previous analysis. Grass can be recognised with an accuracy of 74.1% and leaves with an 
accuracy of 73.0%. In terms of mistakes, grass is mostly confused as trees, and leaves as both 
grass and trees. 

 
Law’s features 

The PCA plot and canonical discriminant plot for Law’s features extracted after split and merge 

segmentation are shown in Figure 7.19. In Figure 7.19 we see a complete overlap of leaves data 
by the other two classes. All classes appear to have significant number of outliers. Appendix K 
shows a best recognition rate of 67.6% correct. The individual recognition accuracy of different 

classes are: trees (65.3%), grass (60.3%), and leaves (81.5%). In terms of mistakes made, the 
tree samples are mistaken as leaves, and grass samples are mistaken as leaves. 
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Figure 7.19 PCA plot and canonical discriminant function plot for the linear analysis using Split and 

Merge and Law’s features for the discrimination of vegetation data. 

 
Primitive length features 

The PCA plot for primitive length features extracted after split and merge based segmentation 
are shown in Figure 7.20. The analysis fails to yield a canonical discriminant plot. 
 

 
 
 

 
 
 

 
 
 

 
Figure 7.20 PCA plot for the linear analysis using Split and Merge and primitive length features for the 

discrimination of vegetation data. 

 
There is very little discriminatory information available from either of the two principal 
components. The results in Appendix K show an overall leave-one-out recognition performance 

of 41.1%. The percentage accuracy on individual classes stands at: trees (55.7%), grass (17.4%), 
and leaves (58.9%). Tree samples have been mostly confused as leaves, grass has been confused 
as trees or leaves and leaves as grass and trees. 

 
Summary 

In Table 7.7 we summarise the overall linear classification results and highlight which class was 

best recognised. In Table 7.8 we summarise the mistakes made by the linear classifier. The best 
performance is achieved by the edge frequency method of texture extraction. In two out of five 
methods, leaves are the easiest to recognise, and twice grass is the easiest to recognise. The 

ability of the autocorrelation method to recognise grass with very high accuracy, and the same 
in the case of edge frequency for recognising trees, is very impressive. We next discuss the 
mistakes made by the classifier in Table 7.8 that has been constructed as explained earlier. 
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Feature method Recognition Easiest to recognise 

Autocorrelation 68.4% Grass (91.3%) 

Co-occurrence 69.8% Grass (81.9%) 

Edge frequency 79.4% Trees (90.8%) 

Law’s 67.6% Leaves (81.5%) 

Primitive length 41.1% Leaves (58.9%) 

Table 7.7 Summary of linear classifier performance with Split and Merge. 

 

Feature method Class Trees Grass Leaves 

Autocorrelation Trees 

Grass 

Leaves 

 

 

* 

* 

 

** 

* 

 

 

Co-occurrence Trees 

Grass 

Leaves 

 

 

* 

* 

 

* 

* 

* 

Edge frequency Trees 

Grass 

Leaves 

 

* 

* 

 

 

* 

 

Law’s Trees 

Grass 

Leaves 

  ** 

** 

Primitive length Trees 

Grass 

Leaves 

 

** 

* 

* 

 

* 

** 

*** 

Table 7.8  Description of mistakes made by the linear classifier with Split and Merge. 

 
In Table 7.8 we find that for most methods, trees get misclassified as leaves and leaves get 
misclassified as trees. There is much less confusion between grass and trees. In the first four 

methods, grass hardly gets misclassified as leaves but this mistake is significant for the last two 
methods. Leaves are on the other hand more prone to be mistaken as grass.  
 

7.2.5 Summarising linear classification results on vegetation data 
We have already presented the summary of various analyses using the linear classifier. 
However, the summaries have been presented by grouping different feature extraction methods 

under a segmentation scheme. We can actually summarise the classifier mistakes in a reverse 
manner, i.e. how does the classifier make mistakes keeping the same feature extraction method 
based on the output of different segmentation methods. In this section we aim to show some 

tables with this information. Also, we present a final table showing the classification results of 
different segmentation and feature extraction combinations at one place. Let us first summarise 
how the mistakes are made by the linear classifier for each feature extraction method by 

changing the preceding segmentation process. For a total of 5 feature extraction methods, 
Tables 7.9-7.13 are drawn. Finally, Table 7.14 shows which combination of segmentation 
method with texture extraction method yields the best classification on vegetation data. 
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Table 7.9  Linear classifier mistakes for                 Table 7.10 Linear classifier mistakes    
autocorrelation features.                                for co-occurrence features. 

 

 
 
 

 
 
 

 
 
 

 
 
 
Table 7.11 Linear classifier mistakes for                 Table 7.12 Linear classifier mistakes   edge 
frequency features.                                        for Law’s features. 

 

 
 
 

 
 
 

 
 
 

 
 

Table 7.13 Linear classifier mistakes for primitive length features. 

 
In Tables 7.9-7.13, we find that for each feature extraction method, segmentation methods have 
small differences. Especially, FCM and histogram thresholding based segmentation 

performances are similar. Similarly, region growing, and split and merge performances are 

  
Segmentation 

method 
Class Trees Grass Leaves 

FCM Trees 
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similar. For autocorrelation features, most segmentation methods used show mistakes being 
made when trees are classed as grass. This mistake is made much more with FCM and 
histogram thresholding segmentation rather than with the other two techniques. Grass is less 

likely to be mistaken as anything else, but trees and leaves often get mistaken as grass. Leaves 
are often mistaken as grass or trees. In the case of co-occurrence features, we find that region 
growing segmentation performance is different from other techniques. The difference is present 

as grass gets misclassified as trees with region growing, and many more samples of grass are 
mistaken as leaves compared to other methods.  On the whole, other classes get misclassified as 
leaves quite often. The other patterns are similar to autocorrelation features. In the case of edge 

frequency features, we find that region growing and FCM performances are similar, and 
histogram thresholding and split and merge performances are similar. The main difference 
between these two groups is that in the first group trees get misclassified as grass or leaves 

whereas in the second group this does not happen. For this feature set, we find that similar to co-
occurrence features, grass samples are misclassified as others. This did not happen with FCM 
based segmentation.  In the case of Law’s features, all segmentation method results are nearly 

similar. There seems to be a major bias in errors in favour of classifying everything as leaves. 
Apart from this, the only other mistake is classifying leaves as trees. Finally, with primitive 
length features, we find that FCM and histogram based segmentation results are similar. Trees 

and grass are often mistaken as each other, and similarly trees and leaves are mistaken as each 
other. The main difference with the second group of segmentation techniques including region 
growing and split and merge is that grass is not mistaken as leaves as in the first group. 

 
The overall performance of the classification scheme is shown in Table 7.14 where mean and 
standard deviations have been computed across rows and columns. This is also shown as a plot 

in Figure 7.21. 
 

           Feature 

 

Segmentation 

 

Autocorrelation 

 

Co-occurrence 

 

Edge 

frequency 

 

Law’s 

 

Primitive 

length 

 

µ 

 

σ 

FCM 71.1% 57.3% 72.5% 62.6% 36.7% 60.0% 14.5% 

Histogram 64.3% 62.8% 76.5% 59.8% 46.1% 61.9% 10.9% 

Region Grow 66.8% 54.3% 69.5% 61.6% 31.3% 56.7% 15.3% 

Split & Merge 68.4% 69.8% 79.4% 67.6% 41.1% 65.3% 14.3% 

µ 67.6% 61.1% 74.5% 62.9% 38.8% - - 

σ 2.8% 6.8% 4.3% 3.3% 6.3% - - 

 
 
 

 
 
 

 
 
 

 

Table 7.14 The different classifier performance depending on which data set is used for vegetation analysis. 
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Figure 7.21 A graphical comparison of recognition accuracy obtained using different segmentation 

method and texture method combinations for vegetation data analysis using linear classifier. 

 

The following conclusions can be drawn from Table 7.14 and Figure 7.21. 
1. Edge frequency based texture extraction is the best for separating vegetation classes. 
2. On the whole, split and merge segmentation technique is the best performer. 

3. There is considerable variability in the following feature sets as the segmentation method is 
changed: co-occurrence, edge frequency, primitive length. The other feature extraction 
methods do not exhibit major performance changes. 

4. There is considerable variability for all of the segmentation methods as the feature sets are 
changed. The segmentation methods can be ranked in order of decreasing variability of 
performance as follows: region growing, split and merge, FCM and histogram based 

segmentation. Similarly the feature extraction methods can be ranked in decreasing order of 
variability as follows: Co-occurrence, primitive length, edge frequency, Law’s and 
autocorrelation. If we are to consider the least variable texture method as being the best, 

then autocorrelation is the best feature extraction method in our analysis. 
 
7.3 Nearest neighbour classification 
We discuss the results first for FCM clustering, followed by, in order, histogram thresholding, 
region growing and split and merge segmentation methods. The results have been produced 
using leave-one-out validation procedure. 

 
7.3.1 Fuzzy c-means clustering segmentation 
For this analysis, all images have been analysed using FCM clustering segmentation. Results for 

each of the five texture extraction methods using the kNN classifier are detailed below. Detailed 
confusion matrices are available in Appendix F. 
 

Autocorrelation features 

The best performance of 72.9% correct recognition is achieved using model-1 (k=5) which is 
slightly better than the linear analysis result of 71.1% correct. The confusion matrix shows that 

tree, samples have been misclassified as grass and leaves, grass samples have been mistaken as 
trees and leaves have been primarily mistaken as trees. The individual recognition accuracy is: 
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trees (73.9%), grass (80.6%), and leaves (47.0%). Hence, compared to the linear classification 
we are better at recognising trees but much poorer at recognising grass and leaves. 
 

Co-occurrence features 

The best performance of 56.5% correct is obtained for model-1 (k=7). The mistakes are made 
when any given class sample is confused as something else. The error rate is favour of the two 

other classes is not much different. The individual accuracy is: trees (66.0%), grass (47.7%), 
and leaves (49.0%). Compared to the linear classification, the recognition performance of 56.5% 
is slightly poorer than 57.3% obtained with LDA. We find that the performance on recognising 

trees has increased by more than 25% but the performance on recognising leaves and grass has 
dropped by nearly 20%. 
 

Edge frequency features 

The best performance is achieved with model-1 (k=7) of 72.0% correct recognition. This 
compares favourably with the linear classifier performance of 72.5% correct recognition. The 

confusion matrix shows that mistakes are made when significant amounts of grass samples are 
mistaken as trees and leaves samples are also mistaken as trees. The individual class recognition 
accuracy stands at: trees (85.7%), grass (64.2%), and leaves (56.3%). Compared to linear 

analysis, the nearest neighbour is significantly better at recognising trees but much worse on 
grass and leaves. 
 

Law’s features 
The best recognition performance is achieved by model-1 (k=5) of 74.6% correct which is 
significantly better than the linear classifier performance of 62.6%. The mistakes are made 

when tree samples are confused as grass, and when leaves are confused as grass of trees. The 
different classes are recognised with the following accuracy: trees (79.6%), grass (83.5%), and 
leaves (53.4%). Hence, compared to the linear classifier we get much better accuracy on 

recognising tree and grass samples but we are poor off at recognising the leaves data. 
 
Primitive length features 

The best performance of 57.6% correct is achieved using a single nearest neighbour. This is 
significantly better than the linear classification success of 36.7%. The mistakes are more or less 
equally distributed across different classes. The individual class accuracy are: trees (59.4%), 

grass (54.1%), and leaves (58.7%). Compared to linear analysis, we are better off at recognising 
tree samples, and significantly better at recognising leaves samples but slightly poorer at 
identifying grass samples. 

 
Summary 

On the whole we find that the k nearest neighbour classification improves the overall results but 

not significantly for the first three methods. The mistakes are redistributed across different class 
combinations. In almost all of the methods, the nearest neighbour classifier improves the 
recognition of tree samples.  In Table 7.15 we present the summary of the nearest neighbour 

classifier performance using FCM segmentation and the five feature extraction methods.  
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Feature method Recognition Easiest to recognise 

Autocorrelation 72.9% Grass (80.6%) 

Co-occurrence 50.7% Trees (57.3%) 

Edge frequency 72.0% Trees (83.2%) 

Law’s 74.6% Grass (83.5%) 

Primitive length 57.6% Trees (59.4%) 

Table 7.15 Summary of nearest neighbour classifier performance with FCM.  

 

Another manner in which the result can be summarised is to consider where the classifier makes 
most of the mistakes. This information present in confusion matrices is not easily interpreted.  
In Table 7.16 we show a better presentation of these mistakes as we did for linear classifier. We 

restate the procedure for this. For each method of feature extraction, if the class in row M gets 
misclassified as object in row N, by more then 10% then we put one asterisk in that matrix 
position. We put two asterisks for more than 25% misclassification, and three asterisks for more 

than 50% misclassification. 
 

Feature method Class Trees Grass Leaves 

Autocorrelation Trees 

Grass 

Leaves 

 

* 

** 

* 

 

* 

 

Co-occurrence Trees 

Grass 

Leaves 

 

** 

** 

* 

 

* 

* 

* 

Edge frequency Trees 

Grass 

Leaves 

 

** 

** 

  

Law’s Trees 

Grass 

Leaves 

 

* 

** 

* 

 

* 

 

Primitive length Trees 

Grass 

Leaves 

 

** 

** 

** 

 

* 

* 

* 

Table 7.16 Description of mistakes made by the nearest neighbour classifier with FCM. 

 
7.3.2 Histogram thresholding based segmentation 
For this analysis, all images have been analysed using histogram thresholding. Results for each 

of the five texture extraction methods using the k  nearest neighbour classifier are detailed 
below. Detailed confusion matrices are available in Appendix H. 
 

Autocorrelation features 

The best performance using nearest neighbour classifier is achieved with model-1 (k=5). This 
model shows the recognition accuracy of 70.0% correct. This is better than the linear classifier 

performance of 64.3% correct on the same data. The individual class recognition accuracy are: 
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trees (63.6%), grass (85.1%), and leaves (56.5%). Thus the nearest neighbour classifier is much 
better at recognising trees, slightly better at recognising leaves, and slightly poorer at 
recognising grass samples. For the nearest neighbour classifier, most of the mistakes are made 

when tree samples are confused as grass or leaves, and when leaves are confused a tree samples.  
 
Co-occurrence features 

Using model-1 (k=7), the best recognition performance of 57.3% correct is achieved. This is 
worse than that of the linear classifier at 62.6% correct. The mistakes are made when tree 
samples are, with nearly equal likelihood, labelled as grass and leaves, and when grass and 

leaves are confused as trees. In terms of the individual class accuracy we get: trees (60.5%), 
grass (60.1%), and leaves (45.1%). Hence, compared to the linear method we are much better at 
recognising trees but significantly worse off at recognising grass or leaves.  

 
Edge frequency features 

The best performance is achieved using model-1 (k=7) with a recognition rate of 70.0%. This 

performance is not as good as the one achieved by the linear classifier of 76.5% correct. In 
particular, the mistakes are made when tree samples are misclassified as leaves, grass and leaves 
samples are confused as trees. The individual accuracy of recognising each class are: trees 

(77.4%), grass (58.1%), and leaves (72.8%). This performance shows that the nearest neighbour 
classifier is better than the linear classifier at recognising leaves but poorer in identifying the 
other two classes. 

 
Law’s features 

The nearest neighbour yields the best recognition performance of 59.1% correct for model-1 

(k=7). This is not much different than the linear classifier performance of 59.8% correct. In 
terms of individual class recognition, we get the following accuracy: trees (63.7%), grass 
(71.7%), and leaves (34.7%). If we compare these performances with the linear classifier, we 

find that the nearest neighbour model is superior on recognising trees and grass but significantly 
poorer on recognising leaves. 
 

Primitive length features 
We find that the best performance is achieved with a single nearest neighbour. This result of 
55.6% correct recognition is superior than the linear classification result of 46.1% correct. The 

model makes errors when classifying grass and leaves samples. The individual class recognition 
is: trees (65.2%), grass (53.9%), and leaves (41.3%). Compared to the linear classifier, all 
classes can now be recognised with more accuracy, especially leaves. 

 
Summary 

On the whole we find that the k  nearest neighbour classification improves the overall results 

except for edge frequency measures where we see a drop of nearly 6% and with Law’s features 
where no significant difference is present. Otherwise, the results tend to improve by nearly 5% 
and for primitive length method the results get better by nearly 10%. The mistakes are 

redistributed across different class combinations. In Table 7.17 we present the summary of the 
nearest neighbour classifier performance using Histogram thresholding segmentation and the 
five feature extraction methods.  
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Feature method Recognition Easiest to recognise 

Autocorrelation 70.0% Grass (85.1%) 

Co-occurrence 57.3% Trees (60.5%) 

Edge frequency 70.0% Trees (77.4%) 

Law’s 59.1% Grass (71.7%) 

Primitive length 46.1% Trees(65.2%) 

Table 7.17 Summary of nearest neighbour classifier performance with Histogram Thresholding. 

 

Another manner in which the result can be summarised is to consider where the classifier makes 
most of the mistakes. In Table 7.18 we show a better presentation of these mistakes as we did 
for linear classifier. 

 
It appears that trees are often mistaken as grass and grass is mistaken as trees. The number of 
mistakes is just over 10% in such cases. Also leaves have a larger likelihood of being 

misclassified as trees as opposed to vice-versa. There is also significant confusion between 
distinguishing leaves from grass. On the whole, all feature sets except the last one yield similar 
errors when using the nearest neighbour classifier. 

 

Feature method Class Trees Grass Leaves 

Autocorrelation Trees 

Grass 

Leaves 

 

 

** 

* 

 

* 

* 

Co-occurrence Trees 

Grass 

Leaves 

 

** 

** 

* 

 

* 

* 

* 

Edge frequency Trees 

Grass 

Leaves 

 

* 

* 

 * 

* 

Law’s Trees 

Grass 

Leaves 

    

* 

** 

* 

 

* 

* 

* 

Primitive length Trees 

Grass 

Leaves 

 

** 

** 

* 

 

** 

* 

* 

 

Table 7.18 Description of mistakes made by the nearest neighbour classifier  

with Histogram Thresholding. 

 
7.3.3 Region growing based segmentation 
For this analysis, all images have been analysed using region growing. Results for each of the 

five texture extraction methods using the kNN classifier are detailed below. Detailed confusion 
matrices are available in Appendix J.  
 

 



 162 

Autocorrelation features 
The best performance with these features is obtained using model-1 (k=3). The recognition rate 
of 58.2% is much less than the 66.8% correct classification obtained with the linear model. The 

majority of the mistakes are made when tree samples are confused as leaves, and vice-versa. 
The individual recognition accuracy for classes are: trees (67.2%), grass (73.9%), and leaves 
(38.0%). Compared to the linear classifier, all classes have been recognised with lower 

accuracy, with the drop in performance for grass and leaves being significant. 
 
Co-occurrence features 

The best recognition is achieved using model-1 (k=3). The recognition rate of 52.3% is not too 
different from the linear classifier performance of 54.3%. The individual classes are recognised 
with the following accuracy: trees (64.5%), grass (22%) and leaves (48.0%). Compared to the 

linear classifier we find that trees are easier to recognise but grass and leaves are less 
recognisable. The drop in recognition accuracy for grass is around 30% and for leaves around 
12%. The nearest neighbour classifier makes majority of mistakes when tree samples are 

confused as leaves, grass samples are confused as tree and leaves, and leaves are confused as 
trees. 
 

Edge frequency features 
These features yield the best performance of 65.0% correct recognition when using model-1 
(k=7). This performance is slightly inferior to the linear classifier performance of 69.5%. The 

majority of the mistakes are made when tree samples are confused as leaves, and vice-versa. 
The worst recognition is seen for grass. More than half of the grass patterns get misclassified as 
trees and nearly a quarter get misclassified as leaves. The individual recognition rates for the 

classes are: trees (80.5%), grass (24.6%), and leaves (64.9%).  Compared to the linear classifier 
we are slightly better at recognising trees and leaves, but poorer by up to 50% at recognising 
grass samples. 

 
Law’s features 

These features give a best performance of 64.0% correct recognition when using model-1 (k=7). 

We find that this compares well with the linear classification rate of 61.6%. The individual 
recognition rates for each cla ss are: trees (72.2%), grass (59.4%), and leaves (55.2%). 
Compared to the linear classifier, we are roughly 20% better at recognising trees, slightly poorer 

at recognising grass and roughly 20% inferior at recognising leaves. For the nearest neighbour 
classifier, the majority of the mistakes are made when the tree samples are confused as leaves 
and vice-versa, and majority of grass samples is confused as leaves. 

 
Primitive length features 

The best performance of 56.7% correct recognition is achieved using model-1 (k=7). This is 

much better than the linear classifier performance of 31.3% correct. The individual classes get 
recognised with the following accuracy: trees (76.7%), grass (7.2%), and leaves (55.2%). The 
performance for grass recognition is abysmal. Compared to the linear classifier, we find that the 

nearest neighbour method is much better at recognising trees by nearly 65% more, grass 
recognition is worse off by 7% and leaves are worse off by nearly 15%. The majority of 
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classification mistakes are made when trees are misclassified as leaves and vice-versa, and when 
leaves are confused as leaves or trees. 
 

Summary 

On the whole we find that the k  nearest neighbour classification is inferior to the linear method 
except for a couple of feature sets. There is however a considerable improvement with the 

primitive length method. On the whole, the k  nearest neighbour classifier makes different kinds 
of mistakes than the linear classifier. In Table 7.19 we present the summary of the nearest 
neighbour classifie r performance-using region growing segmentation and the five feature 

extraction methods. On the whole the best performer is the edge frequency method closely 
followed by the Law’s method. Trees appear to be the easiest to recognise in most of these 
feature sets. 

 

Feature method Recognition Easiest to recognise 

Autocorrelation 58.2% Grass (73.9%) 

Co-occurrence 52.3% Trees (64.5%) 

Edge frequency 65.0% Trees (80.5%) 

Law’s 64.0% Trees (72.2%) 

Primitive length 56.7% Trees (76.7%) 

Table 7.19 Summary of nearest neighbour classifier performance with Region Growing. 

 
Another manner in which the result can be summarised is to consider where the classifier makes 

most of the mistakes. In Table 7.20 we show a better presentation of these mistakes. 
 

Feature method Class Trees Grass Leaves 

Autocorrelation Trees 

Grass 

Leaves 

 

* 

*** 

* 

 

* 

* 

* 

Co-occurrence Trees 

Grass 

Leaves 

 

** 

** 

 

 

* 

** 

** 

Edge frequency Trees 

Grass 

Leaves 

 

*** 

** 

 * 

* 

Law’s Trees 

Grass 

Leaves 

 

 

** 

 

 

* 

* 

* 

Primitive length Trees 

Grass 

Leaves 

 

*** 

** 

 

 

* 

** 

** 

Table 7.20 Description of mistakes made by the nearest neighbour classifier with Region 

Growing. 

 
The Table 7.20 shows that trees are more likely to be mistaken as leaves rather than grass. Also 

grass is quite often mistaken as trees except for Law’s feature set. It also gets mistaken as leaves 
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with most feature sets. Leaves are, in considerable quantity, mistaken as trees but to a smaller 
degree as grass. 
 

7.3.4 Split and merge segmentation 
For this analysis, all images have been analysed using split and merge segmentation. Results for 
each of the five texture extraction methods using the kNN classifier are detailed below. Detailed 

confusion matrices are available in Appendix L.  
 

Autocorrelation features 

The best with this feature set is obtained with model-1 (k=5). The recognition rate of 64.2% 
compares favourably with the linear classifier performance of 68.4% correct. Mistakes are made 
when tree samples are confused as grass or leaves, and when leaves are confused as grass and 

trees. The individual recognition rates are: trees (51.8%), grass (87.6%) and leaves (43.9%). 
Compared to the linear classifier, the nearest neighbour method is poorer at recognising trees by 
roughly 5%, grass by 4%, and leaves by 5%. 

 
Co-occurrence features 

The best recognition performance of 66.2% is obtained with model-1 (k=5). This is inferior to 

the linear classifier performance by roughly 3%. The individual classes are recognised with the 
following accuracy: trees (69.0%), grass (77.1%), and leaves (46.0%). Roughly an equal 
number of samples of a given class are misclassified as the two other classes. Compared to the 

linear classifier, we find that trees are recognised roughly 3% better, grass recognition is about 
5% poorer and leaves 10% poorer.  
 

Edge frequency f eatures 

The best recognition performance is obtained for model-1 (k=5). The recognition accuracy of 
74.0% correct is much less than the linear classifier success of 79.4%. Most of the 

misclassifications can be attributed to tree samples being confused as leaves and grass samples 
confused as trees. The average recognition rates for the classes are: trees (82.2%), grass 
(66.7%), and leaves (75%). Compared to the linear classifier, the tree samples are recognised 

poorer by 9%, grass poorer by 7%, and leaves better recognised by 2%.  
 
Law’s features 

The best recognition performance is achieved using model-1 (k=7). The recognition rate of 
73.5% is better than the linear classifier performance of 67.6%. Classification mistakes are 
made when tree samples are confused as grass or trees, grass samples are confused as leaves, 

and leaves are confused as trees or grass. The individual class recognition accuracy are: trees 
(75.3%), grass (84.4%), and leaves (53.6%). Compared to the linear classifier, we are better at 
recognising trees by 10%, grass by 24% but poorer at recognising leaves by 28%. 

 

Primitive length features 

The best results are obtained for the single nearest neighbour model with 55.6% recognition 

success. This performance is much better compared to the linear classifier recognition of 41.1%. 
The individual class recognition accuracy are: trees (59.1%), grass (60.6%), and leaves (42.3%). 
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This shows that compared to the linear classifier we are better at recognising trees by 4%, grass 
by 43% but poorer at recognising leaves by 17%. 
 

Summary 

On the whole we find that the kNN classification is inferior to the linear method except for 
couple of feature sets. There is however a considerable improvement with the Law’s and 

primitive length method. On the whole, the kNN classifier makes different kinds of mistakes 
than the linear classifier.  In Table 7.21 we present the summary of the nearest neighbour 
classifier performance using split and merge segmentation and the five feature extraction 

methods. On the whole the best performer is the edge frequency method closely followed by 
Law’s method. Grass appears to be the easiest to recognise in most of these feature sets. 
 

Feature method Recognition Easiest to recognise 

Autocorrelation 64.2% Grass (87.6%) 

Co-occurrence 66.2% Grass (77.1%) 

Edge frequency 74.0% Trees (82.2%), 

Law’s 73.5% Grass (84.4%) 

Primitive length 55.6% Grass (84.4%) 

Table 7.21 Summary of nearest neighbour classifier performance with Split and Merge. 

 
Another manner in which the result can be summarised is to consider where the classifier makes 
most of the mistakes. In Table 7.22 we show a better presentation of these mistakes. 

 

Feature method Class Trees Grass Leaves 

Autocorrelation Trees 

Grass 

Leaves 

 

 

** 

* 

 

* 

** 

Co-occurrence Trees 

Grass 

Leaves 

 

* 

** 

* 

 

** 

* 

* 

Edge frequency Trees 

Grass 

Leaves 

 

** 

* 

 

* 

 

Law’s Trees 

Grass 

Leaves 

 

 

* 

 

 

** 

* 

* 

Primitive length Trees 

Grass 

Leaves 

 

* 

* 

* 

 

** 

* 

* 

Table 7.22 Description of mistakes made by the nearest neighbour classifier with Split and Merge. 

 

Table 7.22 shows that trees get confused as both grass and leaves with all feature sets. Grass is 
more likely to be confused as leaves except for the edge frequency method where a considerable 
amount of grass is labelled as trees. Leaves have an equal likelihood of being labelled by 

mistake as grass or trees. For autocorrelation method, errors are biased in favour of grass, for 
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co-occurrence they are equally balanced, for edge frequency they are biased in favour of grass, 
for Law’s they are biased in favour of leaves and for primitive length method they are balanced. 
 

7.3.5 Summarising nearest neighbour classification results on vegetation data 
In the above discussion we have presented the results of the nearest neighbour classifier. The 
summaries have been presented by grouping different feature extraction methods under a 

segmentation scheme. We can actually summarise the classifier mistakes in a reverse manner, 
i.e. how does the classifier make mistakes keeping the same feature extraction method based on 
the output of different segmentation methods. In this section we aim to show some tables with 

this information. Also, we present a final table showing the classification results of different 
segmentation and feature extraction combinations at one place. 
 

We summarise how the nearest neighbour classifier makes the mistakes for each feature 
extraction method by changing the preceding segmentation process. For a total of 5 feature 
extraction methods, Tables 7.23-7.27 are drawn. Finally, Table 7.28 shows which combination 

of segmentation and texture extraction method yields the best classification on vegetation data. 
 
The results in Tables 7.23 to 7.27 appear more uniform across different segmentation method 

for a given texture method than they did for different feature extraction methods for a given 
segmentation method. We can draw the following conclusions. 
 

i) For autocorrelation feature extraction, similar mistakes are made for histogram based 
segmentation and split and merge. Using FCM, misclassification as leaves is small. 
Most segmentation models yield errors in favour of grass, i.e. the two other classes get 

misclassified as grass. FCM is similar to histogram based segmentation except for the 
fact that no mistakes in favour of leaves are made. Also region growing is  similar to 
histogram based segmentation except for a number of grass samples mistaken as leaves 

and trees. 
ii) For co-occurrence features, all segmentation methods make almost identical mistakes 

except for the number of mistakes and that region growing does not yield mistakes of 

trees confused as grass.  
iii)  For edge frequency measures, histogram thresholding and region growing segmentation 

yield similar errors. In both cases, other classes get misclassified as trees or leaves, but 

nothing is mistaken as grass. FCM is slightly superior in that hardly any samples get 
mistaken as grass or leaves. Split and merge is different from all others: here grass gets 
confused as trees, and trees and leaves get confused as grass. 

iv) For Law’s features, we find two separate groups. In group 1, we can put FCM and 
histogram thresholding with the minor difference that the histogram based segmentation 
makes mistakes in confusing tree and grass samples as leaves. In the second group we 

can put split and merge and region growing methods that make identical mistakes.  
v) For primitive length features, all segmentation methods yield similar errors. Most 

noticeable difference is the large number of mistakes made by the region growing 

method in confusing grass samples as trees. 
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Table 7.23 kNN classifier mistakes for                          Table 7.24 kNN classifier mistakes for   
autocorrelation features.                                      co-occurrence features. 

 
 
 

 
 
 

 
 
 

 
 
 

Table 7.25 kNN classifier mistakes for                       Table 7.26 kNN classifier mistakes for   

edge frequency features.                                     Law’s features. 

 

 
 
 

 
 
 

 
 
 

 
 

Table 7.27 kNN classifier mistakes for primitive length  features. 
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The overall performance of the classification scheme is shown in Table 7.28 and Figure 7.22.  
 

Feature 

 

Segmentation 

 

Autocorrelation 

 

Co-occurrence 

 

Edge 

frequency 

 

Law’s 

 

Primitive 

length 

 

µ 

 

σ 

FCM 72.9% 56.5% 72.0% 74.6% 57.6% 66.7% 8.8% 

Histogram 70.0% 57.3% 70.0% 59.1% 46.1% 60.5% 10.0% 

Region Grow 58.2% 52.2% 65.0% 64.0% 56.7% 59.2% 5.3% 

Split & Merge 64.2% 66.2% 74.0% 73.5% 55.6% 66.7% 7.6% 

µ 66.3% 58.1% 70.2% 67.8% 54.0% - - 

σ 6.5% 5.8% 3.8% 7.5% 5.3% - - 

Table 7.28 The different nearest neighbour classifier performance depending on which data set is used 

for vegetation analysis. 

Figure 7.22 A graphical comparison of recognition accuracy obtained using different segmentation 

method and texture method combinations for vegetation data analysis. 

 
On the basis of Table 7.28 and Figure 7.22, the following salient observations can be made: 

i) FCM and split and merge performances are very similar for all feature extraction 
methods. FCM is the best on 3 feature extraction methods and split and merge is the 
best on the remaining two methods. 

ii) Region growing is the worst performer on three feature sets and histogram thresholding 
on two others. 

iii)  There is considerable variability in both rows and columns adding weight the argument 

that the choice of appropriate combination of segmentation and feature extraction 
methods is crucial. For example the best performance stands at 74.5% correct (FCM 
segmentation followed by Law’s features), and the worst performance stands at 46.1% 

(Histogram thresholding followed by primitive length features) - a significant difference 
of nearly 28%. For segmentation methods, in order of decreasing variability, the 
methods are ranked as: histogram based segmentation, FCM, split and merge, and 

region growing. Feature extraction methods can be ranked in order of decreasing 
variability as follows: Law’s, autocorrelation, co-occurrence, primitive length and edge 
frequency. If we are looking for the least variable feature extraction method, then edge 

frequency is the best. 
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Chapter 8 
 
Natural object data analysis 
 

In the previous chapter we discussed the analysis of vegetation data and obtained very good 
results on this non trivial problem. The other class of data that we did not discuss was natural 

objects. These natural objects include bricks, sky, clouds, pebbles and road. It was suggested in 
our experimental design that such object regions can be separated in the original data from 
vegetation on the basis of colour quite easily. In this chapter we show the results obtained using 

leave-one-out classification using both the linear classifier and the nearest neighbour classifier. 
We lay out our results in a similar fashion to the previous chapter. The results are first discussed 
for the linear classifier and then for the nearest neighbour method. The results are first presented 

for each segmentation method and then later summarised for each feature extraction method. 
For each segmentation method, we get a different number of regions and thus samples.  
 

8.1 Linear classification 
The linear classification scheme is important to determine how well the natural data 
distributions can be separated linearly. It is not always the case that they would perform inferior 

to approaches such as nearest neighbour as we found in the last chapter. In this chapter we 
describe the experiments with linear cla ssifier first for FCM segmentation followed by, in order, 
histogram thresholding, region growing and split and merge. For each of the linear analysis we 

plot the PCA plot and the canonical discriminant function plot showing how well the two 
principal components differentiate the different classes and also how well decision boundaries 
between the two classes can be placed. 

 
8.1.1 Fuzzy c-means clustering segmentation 
We present the following results of feature sets that were extracted on images that were 

segmented using FCM clustering. The results for these are available in Appendix M. 
 

Autocorrelation features 

In Figure 8.1 the PCA plot and the discriminant plot for all groups is shown. 
 
 

 
 
 

 
 
 

 
 
Figure 8.1  PCA plot and canonical discriminant function plot for the linear analysis using FCM and 

autocorrelation features for the discrimination of natural object data. 
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The following conclusions can be drawn immediately from the above plots. First, sky, road and 
clouds form compact clusters. Pebbles and bricks appear more variable. Second, there appears 
to be a certain degree of overlap between the first three classes mentioned. The test recognition 

rate of 69.1% is achieved. The majority of the mistakes are made when sky is confused as 
clouds, clouds are confused as sky, bricks are confused as road, pebbles are confused as road 
and when road is confused as sky. The individual recognition rates for the five classes are: sky 

(81.6%), clouds (64.0%), bricks (60.6%), pebbles (81.0%) and road (51.3%). Hence, it is easie st 
to recognise sky and pebbles and most difficult to recognise roads. 
 

Co-occurrence features 
The PCA and discriminant function plots for this data are shown in Figure 8.2.  
 

 
 
 

 
 
 

 
 
 

 
 
Figure 8.2  PCA plot and canonical discriminant function plot for the linear analysis using FCM and co-

occurrence features for the discrimination of natural object data. 

 
There is much more overlap across different classes in these plots. The principal components on 

their own give little information for classification purposes. In the discriminant plot, most 
categories appear overlapped except for pebbles that are isolated than the rest. The overall 
leave-one-out recognition of 51.1% is obtained for the analysis. The individual classes are 

recognised with the following accuracy: sky (39.1%), clouds (55.3%), bricks (33.9%), pebbles 
(78.4%), and road (60.9%). Hence, for most classes the accuracy is quite poor. Only pebbles 
and road have a reasonable result. We find that errors are not biased in favour of one class but 

uniformly distributed across different classes in almost equal numbers. 
 

Edge frequency features 

The PCA plot and the canonical discriminant function plots are shown in Figure 8.3. The plots 
show that the different classes appear as separate clusters for most part. In particular, pebbles 
cluster is disjoint from the rest. The recognition rate of 71.0% correct confirms that the data is 

fairly linearly separable. The individual recognition accuracy for classes are: sky (84%), clouds 
(60.9%), bricks (53.3%), pebbles (93.4%) and road (60.5%). Detailed inspection of the 
confusion matrix shows that the majority of mistakes can be attributed to sky samples confused 

as clouds and vice-versa, bricks samples confused as sky and road, and road confused as sky. It 
appears reasonable that roads could appear similar to sky as they have similar texture. Also sky 
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and cloud confusion is not out of the ordinary as in cases when clouds are not dense, they may 
appear similar to sky. The only unexpected result is bricks confused as sky and road. 
 

 
 
 

 
 
 

 
 
 

 
 
Figure 8.3  PCA plot and canonical discriminant function plot for the linear analysis using FCM and edge 

frequency features for the discrimination of natural object data. 

 

Law’s features 

The PCA and canonical discriminant function plots are shown in Figure 8.4. 
 
 

 
 
 

 
 
 

 
 
 

Figure 8.4  PCA plot and canonical discriminant function plot for the linear analysis using FCM and 

Law’s features for the discrimination of natural object data. 

 

Figure 8.4 shows a boomerang shaped data distribution. At the two ends of this structure lie sky 
and bricks data distributions. The other classes overlap in the middle. We obtain a linear 
classification accuracy of 58.1% correct. The individual class recognition is as follows: sky 

(51.2%), clouds (89.5%), bricks (50.4%), pebbles (48.8%) and road (34.9%). Clouds have been 
recognised with the highest accuracy and road recognition is the worst. The mistakes are made 
when sky is confused as clouds, bricks are confused as clouds, pebbles or road, pebbles are 

confused as clouds, and road is confused as clouds or pebbles. 
 

Primitive length features 

Figure 8.5 shows the PCA plot. The analysis fails to yield a discriminant function plot. 
Unfortunately, not much information can be gained from the PCA plot alone. 
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Figure 8.5  PCA plot using FCM and primitive length features for discrimination of natural object data. 

 
The confusion matrix shows a recognition accuracy of 38.7% correct with the individual class 

recognition accuracy as follows: sky (17.4%), clouds (73.4%), bricks (57.7%), pebbles (25.6%) 
and road (16.4%). Clouds have been recognised with the highest accuracy. This result is 
supported by other work within our laboratory with cloud analysis where it was found that in 

distinguishing different varieties of clouds, the primitive length method was the best. A large 
number of mistakes are however made. The most significant ones include large numbers of sky 
samples confused as clouds and bricks, large number of pebble samples confused as sky, and 

large number of road samples confused as bricks. 
 
Summary 

In Table 8.1 we summarise the overall results and highlight which class was best recognised.  
 

Feature method Recognition Easiest to 

recognise 

Autocorrelation 69.1% Sky (81.6%) 

Co-occurrence 51.1% Pebbles (78.4%) 

Edge frequency 71.0% Pebbles (93.4%) 

Law’s 58.1% Clouds (89.5%) 

Primitive length 38.7% Clouds (73.4%) 

Table 8.1  Summary of linear classifier performance with FCM. 

 
The best results are obtained for the edge frequency measures. Pebbles and clouds appear as one 
of the easiest classes to distinguish from others. Co-occurrence method, widely considered as an 

important texture analysis method, is slightly disappointing. 
 
Another manner in which the result can be summarised is to consider where the classifie r makes 

most of the mistakes. This information present in confusion matrices is not easily interpreted.  
In Table 8.2 we show a better presentation of these mistakes. For each method of feature 
extraction, if the class in row M gets misclassified as class in row N by more then 10% then we 

put one asterisk in that matrix position. We put two asterisks for more than 25% 
misclassification, and three asterisks for more than 50% misclassification. 
 

Table 8.2 shows that co-occurrence and primitive length method make most of the mistakes. 
Primitive length method is the worst performer so it can be considered separately. On all other 
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methods we find that mistakes are likely to be made when clouds get mistaken as sky and vice-
versa and when bricks are confused as road. Each method also has its distinguishing 
characteristics. For example, for autocorrelation and edge frequency methods, hardly any 

mistakes are made confusing other class data as bricks or pebbles. For both of these methods the 
mistakes are biased in favour of sky class. Similarly for co-occurrence nothing except sky 
samples get confused as bricks. Mistakes are biased in favour of pebbles. For Law’s method 

nothing gets confused as sky or bricks and mistakes are biased in favour of clouds. Primitive 
length makes a number of mistakes where other classes are less likely to be mistaken as clouds. 
Also as we noted before, it distinguishes clouds very well. 

 

Feature method Class Sky Clouds Bricks Pebbles Road 

Autocorrelation Sky 

Clouds 

Bricks 

Pebbles 

Road 

 

** 

* 

 

** 

*    

 

* 

* 

Co-occurrence Sky 

Clouds 

Bricks 

Pebbles 

Road 

 

* 

* 

 

 

** 

 

* 

* * 

* 

* 

 

* 

* 

 

** 

Edge frequency Sky 

Clouds 

Bricks 

Pebbles 

Road 

 

** 

* 

 

* 

*    

 

* 

Law’s Sky 

Clouds 

Bricks 

Pebbles 

Road 

 ** 

 

* 

** 

** 

  

 

* 

 

* 

 

 

* 

Primitive length Sky 

Clouds 

Bricks 

Pebbles 

Road 

 

* 

* 

*** 

* 

** ** 

 

 

* 

*** 

* 

 

* 

 

* 

* 

 

* 

Table 8.2  Description of mistakes made by the linear classifier with FCM. 

 
8.1.2 Histogram thresholding segmentation 
We present the following results of feature sets that were extracted on images that were 

segmented using histogram thresholding. The results for these are available in Appendix O. 
 

Autocorrelation features 

In Figure 8.6 the PCA plot and the discriminant plot for all groups is shown. 
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Figure 8.6  PCA plot and canonical discriminant function plot for the linear analysis using Histogram 

Thresholding and autocorrelation features for the discrimination of natural object data. 

 
The following observations can be made from the above figure. First, sky and clouds appear as a 

compact cluster. Pebbles cluster has high variability but it is disjoint. Second, there are a 
number of outliers in the data. Most of them are present in pebbles and bricks data. Also, road, 
cloud and sky appear too close and similar to each other. If we were to have a third layer of 

classification which could separate these three from pebbles and bricks, even better recognition 
could be obtained we hope. We achieve a recognition performance of 63.0% correct with the 
following class accuracy: sky (82.8%), clouds (52.8%), bricks (51.5%), pebbles (80.7%) and 

road (42.3%). These results are consistent with the plots shown above. The misclassifications 
can be attributed to sky being confused as clouds and vice-versa, bricks confused as sky and 
road, pebbles confused as road, and road confused as sky. 

 

Co-occurrence features 
The PCA and canonical discriminant function plots are shown in Figure 8.7. The PCA plot does 

not show much discriminatory information. In the other plot, sky appears as one tight cluster at 
the bottom and as another spread out cluster overlapping other classes. All classes appear mixed 
with each other and as such this method can not be expected to yield the best results for our 

analysis.  
 
 

 
 
 

 
 
 

 
 
 

Figure 8.7  PCA plot and canonical discriminant function plot for the linear analysis using Histogram 

Thresholding segmentation and co-occurrence features for the discrimination of natural object data. 
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We obtain a result of 53.6% correct recognition for linear analysis. The individual classes can 
be recognised with the following accuracy: sky (49.3%), clouds (61.7%), bricks (52.9%), 
pebbles (81.4%) and road (34.2%). Here pebbles are recognised the best and road the worst. In 

terms of mistakes they are not biased in favour of any single class. Almost all classes are 
confused as something else with a roughly equal number.  It appears that the results can be 
improved with such data by outlier elimination and using a non-linear classification method. 

 

Edge frequency features 

The PCA and canonical discriminant plots are shown in Figure 8.8. 

 
 
 

 
 
 

 
 
 

 
 
Figure 8.8  PCA plot and canonical discriminant function plots for the linear analysis using Histogram 

Thresholding segmentation and edge frequency features for the discrimination of natural object data. 

 
In these plots we find the best separation across different groups. Sky and cloud samples appear 

as compact groups but there is a region of overlap between these two classes. Pebbles appear as 
a scattered but disjoint group. Road samples are the worst affected by the overlap. The 
recognition rate of 69.7% is reasonably good for this data. The individual class accuracy stands 

at: sky (87.4%), clouds (63.4%), bricks (48.5%), pebbles (90.4%) and road (59.2%). The 
mistakes are made when some sky samples are confused as clouds and vice versa, bricks are 
confused as sky, clouds and road, and road is confused as sky. 

 
Law’s features 

Th PCA and discriminant function plots are shown in Figure 8.9.  

 
 
 

 
 
 

 
 
 

 

Figure 8.9  PCA plot and canonical discriminant function plots for the linear analysis using Histogram 

Thresholding and Law’s features for the discrimination of natural object data. 
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Sky and bricks appear as disjoint groups but tend to overlap the distributions of other classes. 
The appendix shows result of 53.4% correct. The individual class accuracy is found as sky 
(59.2%), clouds (88.8%), bricks (30.3%), pebbles (36.0%) and road (28.6%). Most of the 

mistakes are made when sky samples are confused as clouds, bricks are confused as clouds or 
road, pebbles are confused as clouds or road and road is confused as clouds. The mistakes 
appear to be biased in favour of clouds. 

 
Primitive length features 

In Figure 8.10 we show the PCA plot of this method. The analysis fails to give the discriminant 
function plot. 
 

 
 
 

 
 
 

 
 
 

Figure 8.10 PCA plot using Histogram Thresholding and primitive length  features for the discrimination 

of natural object data. 

 

We obtain a recognition accuracy of 31.9% correct. The individual classes are recognised with 
the following accuracy: sky (6.9%), clouds (64.7%), bricks (10.9%), pebbles (49.1%), and road 
(53.6%). Majority of the mistakes are made when sky is confused as clouds or road. Also cloud 

samples get confused as pebbles or road, bricks get confused as pebbles or road, pebbles get 
confused as clouds and road gets confused as sky and clouds. The performance on recognising 
clouds is quite good but the method exhibits a very poor performance of recognising sky and 

bricks. 
 
Summary 

In Table 8.3 we summarise the overall results and highlight which class was best recognised.  
 

Feature method Recognition Easiest to recognise 

Autocorrelation 63.0% Sky (82.8%) 

Co-occurrence 53.6% Pebbles (81.4%) 

Edge frequency 69.7% Pebbles (90.4%) 

Law’s 53.4% Clouds (88.8%) 

Primitive length 31.9% Clouds (64.7%) 

Table 8.3  Summary of linear classifier performance for Histogram Thresholding. 

 

The best results are obtained for the edge frequency measures. Pebbles and clouds appear as one 
of the easiest classes to distinguish from the others.  
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Another manner in which the result can be summarised is to consider where the classifier makes 
most of the mistakes. Table 8.4 shows these mistakes in a more meaningful manner. 
 

Feature method Class Sky Clouds Bricks Pebbles Road 

Autocorrelation Sky 

Clouds 

Bricks 

Pebbles 

Road 

 

** 

* 

 

** 

* 

 

 

 

* 

   

 

* 

* 

Co-occurrence Sky 

Clouds 

Bricks 

Pebbles 

Road 

 

* 

 

 

* 

* 

 

 

 

* 

* 

* 

 

* 

* 

 

 

* 

 

* 

 

* 

* 

Edge frequency Sky 

Clouds 

Bricks 

Pebbles 

Road 

 

** 

* 

 

** 

* 

 

* 

   

 

* 

Law’s Sky 

Clouds 

Bricks 

Pebbles 

Road 

 ** 

 

** 

** 

** 

 

 

 

* 

 

 

* 

 

* 

 

 

* 

* 

Primitive length Sky 

Clouds 

Bricks 

Pebbles 

Road 

 

 

* 

 

* 

** 

 

* 

** 

* 

  

* 

* 

*** 

* 

** 

* 

Table 8.4  Description of mistakes made by the linear classifier with Histogram Thresholding. 

 

Different feature extraction methods are biased in making mistakes in favour of particular 
classes. For example, for autocorrelation and edge frequency methods, most of the mistakes are 
made as samples of other classes are mistaken as sky. Co-occurrence model is biased in favour 

of bricks, and Law’s and primitive length in methods favour of clouds. Both autocorrelation and 
edge frequency methods do not make many mistakes confusing samples of other classes for 
bricks or pebbles. Similarly Law’s method does not by mistake confuse anything as sky and 

primitive length does not by mistake confuse anything as bricks. On the whole, for almost all 
methods, sky and cloud samples are confused as each other. Bricks are confused as road, and 
road as sky or cloud, or both. 

 
8.1.3 Region growing segmentation 
We present the following results of feature sets that were extracted on images that were 

segmented using region growing. The results for these are available in Appendix Q. 
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Autocorrelation features 

In Figure 8.11 the PCA plot and the discriminant plot for all groups is shown. The sky and 
cloud clusters appear fairly compact. These overlap the road cluster. The bricks and pebbles 

samples are scattered but easily distinguishable from the other categories. The road cluster 
group appears to have several outliers that are surrounded by bricks and pebbles samples. The 
overall recognition rate of 64.3% is obtained. The individual classes are recognised with the 

following accuracy: sky (78.1%), clouds (58.5%), bricks (62.2%), pebbles (75.4%) and road 
(30.5%). The poor performance on recognising roads is as expected.  Sky and pebbles are best 
recognised. The majority of the mistakes are made when sky samples are confused as cloud and 

vice-versa. Also brick and pebbles samples are confused as road. Road is confused as sky and 
cloud. 
 

 
 
 

 
 
 

 
 
 

 
 
Figure 8.11 PCA plot and canonical discriminant function plots for the linear analysis using Region 

Growing and autocorrelation features for the discrimination of natural object data. 

 

Co-occurrence features  

The PCA plot and the discriminant function plot for this feature set is shown in Figure 8.12.  
 
 

 
 
 

 
 
 

 
 
 

 
Figure 8.12 PCA plot and canonical discriminant function plots for the linear analysis using Region 

Growing segmentation and co-occurrence features for the discrimination of natural object data. 

 
The PCA plot shows almost a complete overlap and little discriminatory information in 
principal components alone. The discriminant function plot shows sky distributed as two 
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separate clusters: one cluster is very compact and the other is fairly scattered. There is a 
considerable overlap across all classes. Pebbles appear to overlap with road, bricks with clouds 
and road, and sky with clouds. The confusion matrix shows an overall recognition accuracy of 

55.2% correct. The individual classes are recognised with the following accuracy: sky (57.8%), 
clouds (58.0%), bricks (46.6%), pebbles (76.3%), and road (33.3%). This poor performance is 
explained by the following misclassifications: sky samples confused as cloud and vice-versa, 

sky and clouds confused as bricks, bricks confused as sky, cloud and roads , pebbles confused as 
road, and road confused as bricks and pebbles. 
 
Edge frequency features 

The PCA and canonical discriminant function plot is shown in Figure 8.13. This plot appears to 

be one of the best that we have seen so far. Each class appears as a separate cluster except for 
road samples that are overlapped by brick and sky samples. The linear classifier can be expected 
to give a decent results on this data. The confusion matrix shows an overall result of 68.6% 

correct recognition. The individual classes are recognised with the following accuracy: sky 
(89.3%), clouds (65.9%), bricks (46.9%), pebbles (92.3%) and road (37.3%). The poor result for 
roads and bricks is to be expected considering the large overlap across their samples. The 

majority of the mistakes are made when sky samples are confused as clouds and vice-versa, 
bricks are confused as sky or road, and when road is confused as other classes, in particular sky. 
 

 
 
 

 
 
 

 
 
 

 
Figure 8.13 PCA plot and canonical discriminant function plots for the linear analysis using Region 

Growing and edge frequency features for the discrimination of natural object data. 

 

Law’s features 

The PCA plot and the discriminant function plot for this data set are shown in Figure 8.14. 

These plots show the classic boomerang shape. At one end of it are the brick samples and at the 
other end sky samples. This looks very similar to the plot obtained for Law’s features using 
FCM segmentation. There is a considerable overlap between pebbles, brick and road samples. 

At the other end, these three categories further overlap with clouds. Sky samples appear 
distinctly separate from a small cluster overlapped by clouds. The linear classifier yields a 
recognition performance of 67.5% correct. The individual classes are recognised with the 

following accuracy: sky (71.1%), clouds (93.2%), bricks (50.3%), pebbles (56.9%) and road 
(32.2%). The majority of the mistakes are made when sky samples are confused as clouds, 
bricks are confused as clouds, pebbles and road, pebbles are confused as clouds or road, and 

road is confused as clouds or pebbles. 
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Figure 8.14 PCA plot and canonical discriminant function plots for the linear analysis using Region 

Growing segmentation and Law’s features for the discrimination of natural object data. 

 
Primitive length features 
The PCA plot for this analysis is shown in Figure 8.15. The analysis fails to yield a discriminant 

function plot. The plot contains little information for classifying the five categories of data. 
 
 

 
 
 

 
 
 

 
 
Figure 8.15 PCA plot for the linear analysis using Region Growing segmentation and primitive length 

features for the discrimination of natural object data. 

 
The linear classifier yields a best recognition performance of 43.8% correct. The individual 

class recognition performances can be shown as: sky (8.0%), clouds (75.0%), bricks (54.5%), 
pebbles (49.2%) and road (32.2%). Sky has been confused in equal numbers as almost 
everything else. Clouds are primarily confused as pebbles, bricks are confused as pebbles and 

road, pebbles ate confused as bricks and road is confused as a bit of everything else. 
 
Summary 

In Table 8.5 we summarise the overall results and highlight which class was best recognised.  
 

Feature method Recognition Easiest to recognise 

Autocorrelation 64.3% Sky (78.1%) 

Co-occurrence 55.2% Pebbles (76.3%) 

Edge frequency 68.6% Pebbles (92.3%) 

Law’s 67.5% Clouds (93.2%) 

Primitive length 43.8% Clouds (75.0%) 

Table 8.5  Summary of linear classifier performance with Region Growing. 
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The best results are obtained for the edge frequency measures. These are closely followed by the 
Law’s feature and autocorrelation performances. Pebbles and clouds appear as one of the easiest 
classes to distinguish from the others.  

 

Feature method Class Sky Clouds Bricks Pebbles Road 

Autocorrelation Sky 

Clouds 

Bricks 

Pebbles 

Road 

 

** 

 

 

** 

* 

 

 

 

* 

   

 

** 

* 

Co-occurrence Sky 

Clouds 

Bricks 

Pebbles 

Road 

 

* 

* 

* 

 

* 

 

* 

* 

* 

 

 

* 

 

* 

* 

 

* 

 

 

* 

* 

Edge frequency Sky 

Clouds 

Bricks 

Pebbles 

Road 

 

** 

* 

 

* 

* 

 

 

 

* 

 

 

 

 

* 

 

 

 

 

* 

 

 

* 

Law’s Sky 

Clouds 

Bricks 

Pebbles 

Road 

 * 

 

* 

** 

** 

  

 

* 

 

* 

 

 

* 

Primitive length Sky 

Clouds 

Bricks 

Pebbles 

Road 

 

 

 

* 

* 

* 

 

 

* 

** 

 

 

* 

** 

* 

* 

* 

* 

 

* 

Table 8.6  Description of mistakes made by the linear classifier. 

 
Another manner in which the result can be summarised is to consider where the classifier makes 
most of the mistakes. Table 8.6 shows these mistakes in a more meaningful manner. The 

performance of each feature set is different than others. For autocorrelation feature set, mistakes 
are biased in favour of sky and road. For co-occurrence feature set they are more balanced 
across different classes. In the case of edge frequency, the misclassification are biased toward 

sky, for Law’s feature set they are biased toward clouds, and they again appear fairly balanced 
across different classes for the primitive length feature set. Also some feature sets never make 
mistakes in favour of certain classes. For example, for autocorrelation features, hardly any 

samples are by mistake assigned to bricks and pebbles classes. Similarly in the case of Law’s 
features, hardly by mistake anything is assigned to sky. 
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8.1.4 Split and merge segmentation 
We present the following results of feature sets that were extracted on images that were 
segmented using region split and merge. The results for these are available in Appendix S. 

These results have been obtained using leave-one-out cross validation. 
 

Autocorrelation features 

The PCA and canonical discriminant plots are shown in Figure 8.16. 
 
 

 
 
 

 
 
 

 
 
 

Figure 8.16 PCA plot and canonical discriminant function plots for the linear analysis using Split and 

Merge and autocorrelation  features for the discrimination of natural object data. 

 

The above plots show fairly good clusters for all groups except for road. Sky and cloud samples 
form a very tight cluster. Also bricks and pebbles form distinct clusters. There is a significant 
overlap though between sky and clouds, sky and bricks and road samples with others. The 

overall recognition accuracy of 64.7% is achieved with the linear classifier. The individual 
classes are recognised with the following accuracy: sky (81.3%), clouds (58.7%), bricks 
(52.6%), pebbles (72.6%), and road (48.4%). The majority of the mistakes are made when sky 

samples are confused as clouds and vice-versa, brick samples are confused as sky, clouds and 
road, pebbles are confused as road, and road is confused as sky. 
 

Co-occurrence features 
The PCA and canonical discriminant plots are shown in Figure 8.17. 
 

 
 
 

 
 
 

 
 
 

 
Figure 8.17 PCA plot and canonical discriminant function plots for the linear analysis using Split and 

Merge and co-occurrence features for the discrimination of natural object data. 
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The above plot shows a much better separation across data samples than what we have seen 
with co-occurrence matrices in the past. Most of the classes, except for sky, form a very tight 
cluster but there is significant overlap across the following class combinations: bricks and sky, 

bricks and road, sky and clouds. An overall recognition rate of 64.7% is obtained. The 
individual classes are recognised with the following accuracy: sky (81.3%), clouds (58.7%), 
bricks (52.6%), pebbles (72.6%), and road (48.4%). The majority of the misclassifications can 

be attributed to sky samples being confused as cloud and vice-versa, bricks confused as 
confused as sky and road, pebbles confused as road, and road confused as sky. 
 

Edge frequency features 
The PCA and canonical discriminant plot is shown in Figure 8.18. 
 

 
 
 

 
 
 

 
 
 

 
 
Figure 8.18 PCA plot and canonical discriminant function plots for the linear analysis using Split and 

Merge segmentation and edge frequency features for the discrimination of natural object data. 

 
In these plots it appears that most classes form separate clusters. Bricks are most overlapping on 

pebbles and road. Sky also overlaps across cloud. We find an overall recognition rate of 69.6%. 
The individual classes are recognised with the following accuracy: sky (87.8%), clouds (61.9%), 
bricks (54.3%), pebbles (81.6%), and road (51.6%). The majority of the misclassifications are 

made when sky samples are confused as clouds and vice-versa, brick samples are confused as 
sky, clouds and road, pebbles are confused as road, and road samples are confused as sky. 
 

Law’s features 
The PCA and discriminant function plot are shown in Figure 8.19. In these plots we find that 
there is significant overlap across different classes. The best recognition performance of 55.8% 

is obtained with the linear classifier. The individual classes are recognised with the following 
accuracy: sky (50.1%), clouds (77.5%), bricks (23.3%), pebbles (78.7%) and road (44.4%). We 
find that most of the mistakes are made when sky samples are confused as clouds and vice-

versa, bricks are confused as pebbles or road, pebbles are confused as bricks, and road is 
confused as clouds and pebbles. 
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Figure 8.19 PCA plot and canonical discriminant function plots for the linear analysis using Split and 

Merge and Law’s features for the discrimination of natural object data. 

 
Primitive length features 

The PCA plot is shown in Figure 8.20. The analysis does not yield a discriminant function plot. 
 
 

 
 
 

 
 
 

 
 
Figure 8.20 PCA plot the linear analysis using Split and Merge and primitive length features for the 

discrimination of natural object data.  

 
The plot shows that there are two symmetrical bands. The linear classifier gives a leave-one-out 

classification of 44.0% correct. The individual classes are recognised with the following 
accuracy: sky (56.5%), clouds (67.3%), bricks (24.2%), pebbles (50.0%), and road (5.6%). It 
appears as before this method is well suited to recognising clouds. However, the method is 

abysmal at recognising road. The mistakes are evenly spread out for different classes. 
 
Summary 

In Table 8.7 we summarise the overall results and highlight which class was best recognised.  
 

Feature method Recognition Easiest to recognise 

Autocorrelation 64.7% Sky (81.3%) 

Co-occurrence 60.9% Clouds (72.0%) 

Edge frequency 69.6% Sky (87.8%) 

Law’s 55.8% Pebbles (78.7%) 

Primitive length 44.0% Clouds (67.3%) 

Table 8.7   Summary of linear classifier performance with Split and Merge. 
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The best results are obtained for edge frequency features. These are followed by autocorrelation 
performance. For different features we find that different classes are the easiest to recognise.  
 

Feature method Class Sky Clouds Bricks Pebbles Road 

Autocorrelation Sky 

Clouds 

Bricks 

Pebbles 

Road 

 

** 

* 

 

** 

* 

 

* 

   

 

* 

* 

 

Co-occurrence Sky 

Clouds 

Bricks 

Pebbles 

Road 

 

* 

* 

* 

 

* 

 

 

* 

* 

 

 

* 

 

* 

 

 

* 

 

Edge frequency Sky 

Clouds 

Bricks 

Pebbles 

Road 

 

** 

* 

 

** 

* 

 

* 

  

 

 

 

* 

 

 

* 

* 

 

Law’s Sky 

Clouds 

Bricks 

Pebbles 

Road 

 

* 

** 

 

 

 

* 

 

 

 

* 

 

* 

*** 

 

** 

* 

 

* 

Primitive length Sky 

Clouds 

Bricks 

Pebbles 

Road 

 

* 

** 

 

*** 

* 

 

* 

** 

* 

* 

 

 

* 

* 

* 

* 

* 

 

* 

 

Table 8.8  Description of mistakes made by the linear classifier with Split and Merge. 

 

Another manner in which the result can be summarised is to consider where the classifier makes 
most of the mistakes. Table 8.8 shows these mistakes in a more meaningful manner. The pattern 
of mistakes appears similar for autocorrelation and edge frequency features. Other feature sets 

show different patterns of mistakes. For autocorrelation and edge frequency method there are 
hardly any mistakes in favour of classes such as bricks and pebbles. Mistakes appear to be 
biased in favour of sky class. For co-occurrence features, the mistakes appear to be biased in 

favour of bricks. In the case of Law’s feature set, mistakes are biased in favour of pebbles. In 
the case of primitive length method, there are several mistakes made as we have found earlier. 
Most of the samples are attributed to classes other than road that have also got a very poor 

recognition of only 5.6%. 
 
8.1.5 Summarising linear classification results on natural object data 
In the previous sections we grouped results under different segmentation methods that were 
used to generate the different regions in images. We can summarise the classifier mistakes in the 
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reverse manner, i.e. how does the classifier make mistakes keeping the same feature extraction 
method based on the output of different segmentation methods. In this section we aim to show 
some tables with this information. Also, we present a final table showing the classification 

results of different segmentation and feature extraction combinations at one place. Let us first 
summarise how the mistakes are made by the linear classifier for each feature extraction method 
by changing the preceding segmentation process. For a total of 5 feature extraction methods, 

Tables 8.9-8.13 are drawn. Finally, Table 8.14 shows which combination of segmentation 
method with texture extraction method yields the best classification on natural object data. 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
Table 8.9  Mistakes made by the linear classifier for autocorrelation features. 

 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

Table 8.10 Mistakes made by the linear classifier for co-occurrence features. 

 Segmentation 
method 

Class Sky Clouds Bricks Pebbles Road 

FCM Sky 
Clouds 
Bricks 
Pebbles 
Road 

 
** 
* 
 

** 

*    
 

* 
* 

Histogram Sky 
Clouds 
Bricks 
Pebbles 
Road 

 
** 
* 
 

** 

* 
 
 
 

* 

   
 

* 
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Region 
Growing 

Sky 
Clouds 
Bricks 
Pebbles 
Road 

 
** 

 
 

** 

* 
 
 
 

* 

   
 

** 
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Split & Merge Sky 
Clouds 
Bricks 
Pebbles 
Road 
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* 
 

** 

* 
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 Segmentation 
method 
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Road 
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Table 8.11 Mistakes made by the linear classifier for edge frequency features. 

 
 

 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

Table 8.12 Mistakes made by the linear classifier for Law’s  features. 

 Segmentation 
method 

Class Sky Clouds Bricks Pebbles Road 

FCM Sky 
Clouds 
Bricks 
Pebbles 
Road 

 
** 
* 
 

* 

*    
 

* 

Histo 
gram 

Sky 
Clouds 
Bricks 
Pebbles 
Road 

 
** 
* 
 

** 

* 
 

* 

   
 

* 

Region 
Growing 

Sky 
Clouds 
Bricks 
Pebbles 
Road 

 
** 
* 
 

* 

* 
 
 
 

* 

 
 
 
 

* 

 
 
 
 

* 

 
 

* 

Split & Merge Sky 
Clouds 
Bricks 
Pebbles 
Road 

 
** 
* 
 

** 

* 
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* 
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 Segmentation 
method 

Class Sky Clouds Bricks Pebbles Road 

FCM Sky 
Clouds 
Bricks 
Pebbles 
Road 

 ** 
 

* 
** 
** 

  
 

* 
 

* 

 
 

* 

Histogram Sky 
Clouds 
Bricks 
Pebbles 
Road 

 ** 
 

** 
** 
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Growing 
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Bricks 
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Road 

 * 
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** 
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* 

 
 

* 

Split & Merge Sky 
Clouds 
Bricks 
Pebbles 
Road 

 
* 

** 
 
 
 

* 
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* 

*** 
 

** 

* 
 

* 
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Table 8.13 Mistakes made by the linear classifier for primitive length features. 

 
We can draw the following conclusions from Tables 8.9 to 8.13. 
i) For the autocorrelation feature extraction, the mistakes across the use of different 

segmentation methods is very similar. The mistakes are biased in favour of sky, clouds 
and road classes. No matter which segmentation method is used, during the 
classification of the feature set, hardly any mistakes are made attributing smples 

wrongly to bricks or  pebbles class. 
ii) For co-occurrence features, different preceding segmentation methods yield different 

results. The mistakes are spread across different classes in a uniform manner. 

iii)  For edge frequency features, the results are very similar to the autocorrelation features 
except for those obtained with region growing segmentation.   

iv) For Law’s feature set, mistakes are highly biased in the favour of clouds. There are 

hardly any mistakes made in favour of sky. The first three segmentation methods, FCM, 
histogram based segmentation, and region growing, are similar in their performances. 
Split and merge behaves quite differently from these. 

v) For primitive length, just as with co-occurrence matrices, there does not appear to be 
consistency in mistakes across different segmentation methods. 

 

The overall performance of the classification scheme is shown in Table 8.14. This is also shown 
as a plot in Figure 8.21. From Table 8.14, the following conclusions can be drawn. 
i) The best average recognition rate performance across the four segmentation methods is 

that of edge frequency with the average recognition performance of 69.7% correct. The 
single best performance is of edge frequency with FCM of 71% correct.  

ii) The best average performance across the rows (for all segmentation methods using the 

different feature extraction methods), is that of region growing with an average 59.9% 
correct. 

 Segmentation 
method 

Class Sky Clouds Bricks Pebbles Road 

FCM Sky 
Clouds 
Bricks 
Pebbles 
Road 
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*** 
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** ** 
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* 
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* 

Histogram Sky 
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* 

** 
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iii)  In terms of variability in performance, texture algorithms can be ranked as follows in 
order of decreasing variability: Law’s, primitive length, co-occurrence, autocorrelation 
and edge frequency. If we are to consider the best texture method that has the least 

variability, then edge frequency can be considered the best. Similarly the segmentation 
methods can be ranked in order of decreasing variability as follows: Histogram 
thresholding, FCM, Region growing and Split and merge.  

 

           Feature 

 

Segmentation 

 

Autocorrelation 

 

Co-occurrence 

 

Edge 

frequency 

 

Law’s 

 

Primitive 

length 

 

µ 

 

σ 

FCM 69.1% 51.1% 71.0% 58.1% 38.7% 57.6% 13.3% 

Histogram 63.0% 53.6% 69.7% 53.4% 31.9% 54.3% 14.3% 

Region Grow 64.3% 55.2% 68.6% 67.5% 43.8% 59.9% 10.4% 

Split & Merge 64.7% 60.9% 69.6% 55.8% 44.0% 59.0% 9.8% 

µ 65.3% 55.2% 69.7% 58.7% 39.6% - - 

σ 2.6% 4.2% 1.0% 6.2% 5.7% - - 

Table 8.14 The different linear classifier performance depending on which data set is used for natural 

object data analysis. 

Figure 8.21 A graphical comparison of linear classifier recognition accuracy obtained using different 

segmentation method and texture method combinations for natural data analysis. 

 
From Figure 8.21 it can be seen that all segmentation methods have similar performances for 

edge frequency features. On the whole, the two best segmentation algorithms appear to be 
region growing and split and merge.  
 

8.2 Nearest neighbour classification 
We now show the results obtained using the nearest neighbour classifier. As with our earlier 
discussion, we group results on a per segmentation method basis and at the end collate results 

within each feature extraction category and provide a summary. The results have been generated 
using the leave-one-out procedure. 
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8.2.1 Fuzzy c-means clustering segmentation 
In this section we discuss experimental results obtained for FCM segmentation.  
 

Autocorrelation features 
The results for these are shown in Appendix N. The best results are obtained using model-1 
(k=5). The recognition rate of 69.4% is slightly better than the linear classifier performance of 

69.1%. We also find that the individual classes are recognised with the following accuracy: sky 
(71.7%), clouds (76.5%), bricks (61.3%), pebbles (81.8%), and road (51.9%). Compared to the 
linear classifier, we are better at recognising clouds by 12%, and poorer at recognising the sky 

by 10%. On other classes, the performances are more or less the same. 
 

Co-occurrence features  

The best performance is achieved using the model-1 classifier (k=3). The recognition accuracy 
of 52.2% is slightly better than the linear classifier result of 51.1%. The following accuracy is 
achieved on recognising individual classes: sky (55.5%), clouds (46.7%), bricks (42.1%), 

pebbles (48.6%), and road (50.7%). Majority of the mistakes are made when sky and cloud are 
confused as the other, and road is confused as sky. The other mistakes are balanced over all 
classes. Compared to the linear classifier, the kNN classifier is better at recognising sky by 

nearly 15%, and bricks by 8%. It is however worse at recognising other classes such as clouds 
by 9%, pebbles by 30% and road by 10%. 
 

Edge frequency features 
The kNN classifier achieves the best performance with model-1 (k=5). The recognition rate of 
69.2%  is slightly inferior to the linear classifier performance of 71.0% correct. In terms of 

individual classes, they are recognised with the following accuracy: sky (72.3%), clouds 
(77.7%), bricks (47.4%), pebbles (90.1%), and road (52.6%). The misclassifications can be 
attributed to confusion between sky and cloud samples, bricks confused as clouds, pebbles or 

road, and road confused as sky or bricks. Compared to the linear classifier, we find that the 
nearest neighbour classifier is better at recognising clouds by nearly 16%. It is however worse 
off at recognising sky by 12%, bricks by 6%, pebbles by 3%, and road by 8%. 

 

Law’s features 
The best performance of the nearest neighbour classifier is achieved with model-1 (k=7). The 

recognition rate of 59.8% correct is a slight improvement on the 58.1% correct classification 
obtained with the linear classifier. The individual classes can be recognised with the following 
accuracy: sky (63.8%), clouds (79.7%), bricks (49.6%), pebbles (59.5%), and road (29.6%). The 

majority of the mistakes are made when sky and cloud samples are confused as the other, bricks 
are confused as pebbles and road, pebbles are confused as road and road is confused as 
everything else except bricks. Compared to the linear classifier, kNN is better at recognising sky 

by 13% and pebbles by 11%. It is however poor at recognising others including clouds by 10%, 
bricks by 1% and road by 5%. 
 

Primitive length features 
The best performance is achieved using mode l-1 (k=3). The classification success of 49.8% 
correct is superior to the linear classifier performance of 38.7% correct. The individual classes 
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are recognised with the following accuracy: sky (43.3%), clouds (61.9%), bricks (35.7%), 
pebbles (49.5%) and road (55.9%). The majority of the mistakes are biased in favour of sky and 
bricks. The kNN classifier is better than the linear classifier in recognising sky by 26%, pebbles 

by 24%, and road by 40%, but poor at recognising clouds by 11% and bricks by 22%. 
 
Summary 

In Table 8.15 we summarise the overall results and highlight which class was best recognised.  
 

Feature method Recognition Easiest to recognise 

Autocorrelation 69.4% Pebbles (81.8%) 

Co-occurrence 52.2% Sky (55.5%) 

Edge frequency 69.2% Pebbles (90.1%) 

Law’s 59.8% Clouds (79.7%) 

Primitive length 49.8% Clouds (61.9%) 

Table 8.15 Summary of nearest neighbour classifier performance for FCM. 

 

Feature method Class Sky Clouds Bricks Pebbles Road 

Autocorrelation Sky 

Clouds 

Bricks 

Pebbles 

Road 
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*  
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Co-occurrence Sky 

Clouds 

Bricks 

Pebbles 

Road 
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* 
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* 
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Edge frequency Sky 

Clouds 

Bricks 

Pebbles 

Road 
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Law’s Sky 

Clouds 

Bricks 

Pebbles 

Road 

 

* 

 

 

* 

** 

 

 

 

** 

  

 

** 
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* 

* 
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Primitive length Sky 

Clouds 

Bricks 

Pebbles 

Road 

 

** 

** 

* 

* 

** * 
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* 

 

* 

 

 

* 

* 

Table 8.16 Description of mistakes made by the nearest neighbour classifier with FCM. 
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The best results are obtained for the autocorrelation features. These are followed by the edge 
frequency performance. For different features we find that different classes are the easiest to 
recognise but pebbles and clouds appear to be most distinguishable. 

 
Another manner in which the result can be summarised is to consider where the classifier makes 
most of the mistakes. Table 8.16 shows these mistakes in a more meaningful manner. The 

performance of each feature set is found to be different than others.  
 
The following conclusions can be drawn from the above table. Most of the feature sets make 

different kinds of mistakes. Autocorrelation feature set makes the least number of mistakes 
which confirms it as being the best for the overall analysis. Co-occurrence model is biased 
heavily in favour of sky and clouds when making misclassifications. Both of these feature sets 

and Law’s method do not make any errors misclassifying patterns as of type bricks. 
 
8.2.2 Histogram thresholding segmentation 

In this section we discuss experimental results obtained on all feature sets based on regions 
generated by the histogram thresholding method. The results for these are shown in Appendix P. 
Autocorrelation features 

The best results are obtained for model-1 (k=5). The recognition rate of 62.5% is similar to the 
63.0% correct recognition achieved by the linear classifier. The individual classes are 
recognised with the following accuracy: sky (78.3%), clouds (51.8%), bricks (53.3%), pebbles 

(86.8%), and road (42.8%). The worst mistakes are made when sky samples are confused as 
cloud and vice-versa, bricks are confused as pebbles or road, pebbles are confused as road or 
when road is confused as sky. Compared to the linear classifier, the kNN classifier is better at 

recognising pebbles by roughly 6% and worse off at recognising sky by 4%. Other classes have 
very similar recognition accuracy across the two classifiers. 
 

Co-occurrence features 
The best recognition rate is obtained using model-1 (k=7). The recognition success of 53.7% is 
the same as that achieved using the linear classifier of 53.6%. The distribution of mistakes is 

however different across the two classifier. The kNN individual class accuracy are: sky (53.6%), 
clouds (57.7%), bricks (56.3%), pebbles (46.9%), and road (47.8%). The mistakes are evenly 
distributed across different classes. The worst ones are made when sky and cloud are confused. 

Compared to the linear classifier, sky is recognised better by 4%, bricks by 4%, and road by 
13%. However, the kNN classifier is poor at recognising clouds by 4% and pebbles by 34%. 
 

Edge frequency features 
The best performance is obtained with model-1 (k=3). The recognition rate of 65.8% is slightly 
inferior to the linear classifier performance of 69.7% correct. The individual classes are 

recognised with the following accuracy: sky (77.0%), clouds (65.0%), bricks (43.4%), pebbles 
(86.8%), and road (61.7%). The majority of the misclassifications can be attributed to sky and 
cloud samples confused as the other, bricks confused as road, and road confused as bricks and 

sky. Compared to the linear classifier, the kNN classifier is better at recognising road by roughly 
2%. It is poor on everything else: we are worse off on sky by 10%, clouds by 2%, bricks by 5%, 
and pebbles by 3%. 
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Law’s features 
kNN model-1 (k=7) achieves a best recognition performance of 52.3% correct. This is not much 
different than the linear classifier performance of 53.4% correct recognition. The individual 

classes are recognised with the following accuracy: sky (71.8%), clouds (46.2%), bricks 
(60.2%), pebbles (25.4%) and road (24.4%). Sky and cloud samples are often confused. Also, 
bricks are likely to be confused as all other categories, pebbles primarily as bricks or road, and 

road as all other categories except pebbles. Compared to the linear classifier, this classifier is 
better at recognising sky samples by a margin of 13%, bricks by a margin of 30%. It is however 
worse off on the other categories with an inferior performance margin of 42% for clouds, 

pebbles by 11% and road by 4%. 
 
Primitive length features 

The best recognition performance of 45.3% correct is achieved using model-1 (k=5). This is 
much better than the linear classification result of 31.9% correct. The individual classes are 
recognised with the following accuracy: sky (45.6%), clouds (48.5%), bricks (44.1%), pebbles 

(34.2%), and road (47.4%). The mistakes are evenly spread across different categories. 
Compared to the linear classifier we find that the kNN classifier is superior at recognising sky 
by 39% and bricks by 33%. It is however worse off on the other categories by the following 

margins: for cloud 16%, for pebbles 15% and for road 6%. 
 
Summary 

In Table 8.17 we summarise the overall results and highlight which class was best recognised.  
 

Feature method Recognition Easiest to recognise 

Autocorrelation 62.5% Pebbles (86.8%) 

Co-occurrence 53.7% Clouds (57.7%) 

Edge frequency 65.8% Pebbles (86.8%) 

Law’s 52.3% Sky (71.8%) 

Primitive length 45.3% Clouds (48.5%) 

Table 8.17 Summary of nearest neighbour classifier performance for Histogram Thresholding. 

 

In Table 8.17 the best results are obtained for the edge frequency features. For different features 
we find that different classes are the easiest to recognise but pebbles and clouds appear to be 
most distinguishable. The difference in performances can be categorised under three groups. 

The first group consisting of autocorrelation and edge frequency shows good performance 
above 60%. In the second group we find Law’s and co-occurrence that have performances 
above 50%, and finally primitive length method that has performance of more than 40%. 

 
Another manner in which the result can be summarised is to consider where the classifier makes 
most of the mistakes. Table 8.18 shows these mistakes in a more meaningful manner. We find 

in this table that autocorrelation and edge frequency methods make similar mistakes. For the 
first three feature extraction methods, most of the mistakes are biased in favour of the first three 
classes of sky, clouds and bricks. The primitive length feature method shows the majority of the 

mistakes. 
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Feature method Class Sky Clouds Bricks Pebbles Road 
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Table 8.18 Description of mistakes made by the linear classifier for Histogram segmentation. 

 

8.2.3 Region growing segmentation 
In this section we discuss experimental results obtained on all feature sets based on regions 
generated by the region growing method. The results for these are shown in Appendix R. 

 

Autocorrelation features 
The best performance of 66.8% correct for this feature set is achieved using model-1 kNN (k=3) 

which is better than the linear classifier performance of 64.3% correct. The individual classes 
are recognised with the following accuracy: sky (60.9%), clouds (63.0%), bricks (67.8%), 
pebbles (75.3%), and road (33.9%). The major mistakes are localised as follows: sky and cloud 

samples are confused as the other, bricks are confused as pebbles and road, pebbles are 
confused as the road and road samples are confused as sky. When compared to the linear 
classifier, we find that the kNN classifier has a better accuracy on recognising clouds by a 

margin of 5%, bricks by 6%. Pebbles and road are recognised with roughly the same accuracy 
but the kNN classifier is poorer on recognising sky by a margin of 18%. 
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Co-occurrence features 
The best recognition performance of 51.7% is obtained using model-1 (k=7). This is inferior 
than the linear classifier recognition rate of 55.2%. The individual classes are recognised with 

the following accuracy: sky (66.7%), clouds (57.9%), bricks (45.0%), pebbles (37.2%), and road 
(11.7%). The classifier has particular problems when classifying road samples as they are 
mostly confused as sky or bricks. Bricks are also mostly confused as sky or cloud. When 

compared to the linear classifier we find that the nearest neighbour method is better at 
recognising sky by a margin of 8% but it is worse off on recognising pebbles by a margin of 
39% and road by a margin of 22%. The recognition on clouds and bricks is nearly the same. 

 

Edge frequency features 
The best recognition performance of 67.1% is achieved using model-1 (k=7). The result is 

poorer than the linear classifier performance of 68.6%. The individual classes are recognised 
with the following accuracy: sky (82.8%), clouds (69.3%), bricks (53.8%), pebbles (86.1%), and 
road (22.0%). Most of the mistakes are made when sky and cloud samples as confused as the 

other and bricks are confused as cloud or pebbles or road, and when road is confused as bricks. 
Compared to the linear classifier we are better at recognising clouds by a margin of 4%, and 
bricks by 7%. It is poorer in recognition by a rough margin of 7% on sky, by 6% on pebbles and 

by 15% on roads. 
 

Law’s features 

The overall best result is obtained with model-1 (k=5). The recognition rate of 62.1% compares 
poorly with the linear classifier’s performance of 67.5%. The classes are recognised with the 
following accuracy: sky (68.4%), clouds (77.2%), bricks (67.8%), pebbles (30.7%), and road 

(16.9%). The mistakes are evenly spread across the first three classes. Compared to the linear 
classifier, kNN is better at recognising bricks by 17%. Otherwise it performs inferior on all 
other classes with the following margins: sky by 3%, clouds by 16%, pebbles by 27% and road 

by 15%. 
 

Primitive length features 

The best recognition rates are obtained for model-1 (k=5). The overall performance of 48.1% is 
much better than 43.8% correct performance obtained using the linear classifier. The individual 
classes are recognised with the following accuracy: sky (39.5%), clouds (67.1%), bricks 

(47.5%), pebbles (32.3%), and road (38.9%). The misclassifications can be attributed to sky and 
cloud samples confused as the other, bricks confused as all other classes, pebbles confused as 
sky and bricks and road confused as sky or bricks. Compared to the linear classifier, the kNN 

classifier is better at recognising sky by 31% and road by 6%. On other classes the performance 
is poorer by 8% for clouds, 7% for bricks and 2% for pebbles. 
 

Summary 

In Table 8.19 we summarise the overall results and highlight which class was best recognised. 
The best results for region growing based segmentation are achieved using edge frequency as 

shown in Table 8.19. The performance is not much different compared to autocorrelation 
method or Law’s feature set performance. Co-occurrence and primitive length features continue 
to perform poorly on this problem. 
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Feature method Recognition Easiest to recognise 

Autocorrelation 66.8% Pebbles (75.3%) 

Co-occurrence 51.7% Sky (66.7%) 

Edge frequency 67.1% Pebbles (86.1%) 

Law’s 62.1% Clouds (77.2%) 

Primitive length 48.1% Clouds (67.1%) 

Table 8.19 Summary of nearest neighbour classifier performance for Region Growing. 

 
Another manner in which the result can be summarised is to consider where the classifier makes 
most of the mistakes. Table 8.20 shows these mistakes in a more meaningful manner. We find 

in this table that autocorrelation and edge frequency methods make similar mistakes. Also, co-
occurrence and Law’s feature sets have similar pattern of mistakes. In general, most mistakes 
are made in favour of clouds as they contain an element of texture that is found in other 

categories. 
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Table 8.20 Description of mistakes made by the nearest neighbour classifier for Region 

Growing. 
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8.2.4 Split and merge segmentation 
In this section we discuss experimental results obtained on all feature sets based on regions 
generated by the split and merge method. The results for these are shown in Appendix T. 

 

Autocorrelation features 
The best recognition performance of 65.3% correct is achieved using the nearest neighbour 

model-1 with k=7. This is slightly better than the linear classification performance of 64.7% 
correct. The individual classes are recognised with the following accuracy: sky (75.7%), clouds 
(60.0%), bricks (51.0%), pebbles (83.8%), and road (46.9%). The majority of the mistakes are 

made when sky and cloud samples are confused as the other, bricks are confused as pebbles or 
road, pebbles are confused as the road, and road is confused as sky or pebbles.  
 

Co-occurrence features 

The best results using the nearest neighbour classifier are achieved with model-1 (k=7). This 
performance of 55.6% correct is only much worse than the linear classification of 64.7%. The 

individual classes are recognised with the following accuracy: sky (52.5%), clouds (64.0%), 
bricks (57.3%), pebbles (64.8%), and road (33.0%). The mistakes are balanced across different 
classes. The comparison with the linear classifier shows that we are now better at recognising 

clouds and bricks by a rough margin of 5%, but worse off on other by rough margins of 29% for 
sky, 8% for pebbles and 15% for road. 
 

Edge frequency features 
For these features, the kNN model with k=1, 3 and 7 neighbours yields the same performance of 
64.3% correct. For the sake of discussion, we use the single nearest neighbour model as the best. 

This result is slightly inferior to the linear classification accuracy of 69.6% correct. The 
different classes are recognised with the following accuracy: sky (71.0%), clouds (60.6%), 
bricks (50.3%), pebbles (81.9%) and road (51.6%). The majority of the mistakes are made when 

sky and cloud samples are confused as the other, bricks are confused as road or pebbles, pebbles 
are confused as road and when road is confused as bricks, pebble and sky. Compared to the 
linear classifier, the kNN classifier is worse off at recognising sky by a rough margin of 16%. 

The rest of the classes are recognised with similar accuracy. 
 

Law’s features 

The best recognition performance of 50.4% is achieved using model-1 nearest neighbour with 
k=7. This is slightly inferior to the linear classifier performance of 55.8% correct. The classes 
involved are recognised with the following accuracy: sky (59.3%), clouds (57.7%), bricks 

(36.4%), pebbles (53.8%), and road (32.1%). The mistakes are quite evenly spread across 
different classes. Compared to the linear classifier, kNN is better at recognising sky by a rough 
margin of 9% and bricks by 13%, however, it is worse off at recognising clouds by 20%, 

pebbles by 25% and road by 12%. 
 

Primitive length features 

The best recognition performance of this feature set is obtained using model-1 (k=7). The 
recognition rate of 50.1% is significantly better than the linear classification rate of 44.0% 
correct. The classes are recognised with the following accuracy: sky (42.7%), clouds (61.3%), 
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bricks (40.0%), pebbles (69.0%) and road (33.9%). The mistakes are quite evenly spread out 
across different classes. Compared to the linear classifier, we get better performances on 
recognising bricks by16%, pebbles by 19%, and road by 27%. However the performance is 

inferior for sky by 14%, and clouds by 6%. 
 
Summary 

In Table 8.21 we summarise the overall results and highlight which class was best recognised.  
 

Feature method Recognition Easiest to recognise 

Autocorrelation 65.3% Pebbles (83.8%) 

Co-occurrence 55.6% Pebbles (64.8%) 

Edge frequency 64.3% Pebbles (81.9%) 

Law’s 50.4% Sky (59.3%) 

Primitive length 50.1% Pebbles (69.0%) 

Table 8.21 Summary of the nearest neighbour classifier performance for Split and Merge. 
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Table 8.22 Description of mistakes made by the nearest neighbour classifier for Split and Merge. 
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The best results are obtained for autocorrelation feature set closely followed by the edge 
frequency method. Again we find that these two methods are one level up compared to the 
others. Also, pebbles tend to be the easiest to distinguish. 

 
In Table 8.22 it does not appear that there is any particular pattern of mistakes that are made for 
the five different feature extraction methods. For autocorrelation, mistakes are hardly made 

assigning data to bricks incorrectly and for co-occurrence no mistakes are made in favour of 
road. There is however some similarity between the pattern of misclassifications for edge 
frequency and autocorrelation.  

 
8.2.5 Summarising nearest neighbour classification results on natural object data 
In the previous sections we grouped results under different segmentation methods that were 

used to generate the different regions in images. We can summarise the classifier mistakes in the 
reverse manner, i.e. how does the classifier make mistakes keeping the same feature extraction 
method based on the output of different segmentation methods. In this section we aim to show 

some tables with this information. Also, we present a final table showing the classification 
results of different segmentation and feature extraction combinations at one place. Let us first 
summarise how the mistakes are made by the nearest neighbour classifier for each of the feature 

extraction methods by changing the preceding segmentation process. For a total of 5 feature 
extraction methods, Tables 8.23-8.27 are drawn. Finally, Table 8.28 shows which combination 
of segmentation and texture extraction methods yields the best classification on natural object 

data. 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Table 8.23 Mistakes made by the nearest neighbour classifier for autocorrelation  features.  
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Table 8.24 Mistakes made by the nearest neighbour classifier for co-occurrence features.  

 
 
 

 
 
 

Table 8.10 Mistakes made by the linear classifier for co-occurrence features 
 
 

 
 
 

 
 
 

 
 

Table 8.25 Mistakes made by the nearest neighbour classifier for edge frequency features. 
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Table 8.26 Mistakes made by the nearest neighbour classifier for Law’s  features.  

 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Table 8.27 Mistakes made by the nearest neighbour classifier for primitive length  features. 
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The following conclusions can be drawn from Tables 8.23 to 8.27. 
i) The number of mistakes made by the autocorrelation method is smaller in comparison 

with other methods. The FCM and histogram segmentation based mistake patterns are 

similar, and the two region growing based methods are similar. The mistakes are biased 
in favour of sky class.  

ii) Co-occurrence features yield many more mistakes, and for them the first three 

segmentation methods show similar performances. The mistakes are biased in favour of 
sky and clouds. However these two classes are least likely to be confused as others. 

iii)  For edge frequency measures, the mistakes are almost identical across the first three 

segmentation methods, and even the fourth segmentation method does not give too 
many dissimilar mistakes. Bricks are most likely to be confused as something else. 
Road is the second most confused class. 

iv) For Law’s feature set, all segmentation methods totally different patterns of mistakes. 
Sky, pebbles and road have a high risk of being misclassif ied. 

v) For primitive length, the majority of the mistakes are made in favour of class sky. 

Bricks, pebbles, and road are most likely to be misclassified. All methods yield similar 
patterns of mistakes except for region growing. 

 

The overall performance of the classification scheme is shown in Table 8.28. This is also shown 
as a plot in Figure 8.22. 
 

           Feature 

 

Segmentation 

 

Autocorrelation 

 

Co-occurrence 

 

Edge 

frequency 

 

Law’s 

 

Primitive 

length 

 

µ 

 

σ 

FCM 69.4% 52.2% 69.2% 59.8% 49.8% 62.6% 9.2% 

Histogram 62.5% 53.7% 65.8% 52.3% 45.3% 58.5% 8.2% 

Region Grow 66.8% 51.7% 67.1% 62.1% 48.1% 61.9% 8.8% 

Split & Merge 65.3% 55.6% 64.3% 50.4% 50.1% 58.9% 7.3% 

µ 66.0% 53.3% 66.6% 56.2% 48.3% - - 

σ 2.9% 1.7% 2.1% 5.6% 2.2% - - 

Table 8.28 The different nearest neighbour classifier performance depending on which data set is used 

for natural object data analysis. 

 
The following conclusions can be drawn from Table 8.28.  
i) The best overall performance is that of autocorrelation features using FCM at 69.4% 

correct recognition. 
ii) We can rank the feature extraction methods on the basis of their variability across 

different segmentation methods. In decreasing order of variability these are Law’s, 

autocorrelation, primitive length, edge frequency, and co-occurrence matrices. If we are 
to consider a texture method that is robust to the changes in segmentation process, we 
can safely say that co-occurrence matrices and edge frequency are the best. Similarly 

we can rank the segmentation methods in decreasing order of variability for the use of 
different texture methods as follows: FCM, region growing, histogram thresholding and 
split and merge. 
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Figure 8.22 A graphical comparison of recognition accuracy obtained using different segmentation 

method and texture method combinations for natural data analysis. 

 

It is not easy to discriminate which segmentation method is the overall best performer. We 
illustrate briefly how we have determined the overall best winner. We do this by ranking each 
method as follows in Table 8.29. 

 

f1 f2 f3 f4 f5 

FCM SM FCM RG FCM 

RG H RG FCM SM 

SM FCM H H RG 

H RG SM SM H 

Table 8.29 Ranking the different segmentation programs based  

on different feature sets f1 (autocorrelation) to f5 (primitive length).  

 

We can average out the rankings to get these final scores: FCM (2.7), H (3.2), RG (2.4) and SM 
(2.8). Hence, on the basis of the lower the score, the better the method, we can rank them in 
order of importance as region growing as follows: FCM, split and merge and histogram 

thresholding. 
 
8.3 Conclusions 
Some very brief conclusions are in order after writing this chapter. More detailed conclusions 
and discussion follows in the next chapter. For a complex recognition task as ours, it would be 
unrealistic to assume too much out of feature extraction methods or classifiers. For a five class 

problem, the best that can be achieved by chance is only 20% and therefore the best recognition 
performance of nearly 70% is impressive. However, this does not mean that further 
improvements are not possible. We discuss this in our next and final chapter. In this whole 

analysis we have used original data without any processing for improving recognition rates. 
This was done to make the study comparative. Further improvements can be made by better 
feature selection, data preprocessing and through the use of other non-linear classifiers. We find 

from this chapter that the nearest neighbour classifier did not make much of an improvement as 
expected because of the nature of the data. However, as we discuss in the next chapter, 
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significant improvements based on principal component data are possible. Another important 
observation we have made is the presence of significant difference across different segmentation 
and feature extraction method combinations. This difference adds weight to the fundamental 

hypothesis of this thesis that optimisation of these processes on their own in an image 
processing pipeline will not necessarily produce good results, i.e. it is the combination, of these 
processes that is extremely crucial.  
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Chapter 9 
 

Conclusions  

 

Writing this thesis has been a journey. The primary goal of the thesis was to explore the effect 

of using different image segmentation and texture extraction algorithms on natural scene 
recognition. Also in this study we showed comparative results across different texture extraction 
algorithms on two popular texture databases. As a part of this exploration there have been 

challenges and successes, but above all the satisfaction of having some answers that were not 
available at the beginning of the thesis. Of course the number of choices available for different 
methodologies possible for evaluating images are enormous and it has not been possible to test 

all of them. Also, even though the database for natural images that we have developed is large, 
yet limited in size, we must be cautious in generalising our results. However, the study has 
managed to address some important issues at a scale that the results have meaning and even 

though we have not tried many more algorithms for benchmarking, as would be ideal, we have 
used some of the most popular methods available generating useful conclusions.  
 

In this chapter we present some key conclusions of this work. Detailed results on our chosen 
experimental design have been presented in the previous chapters. We first discuss the 
importance of the work and how well this study addresses issues of relevance to image 

understanding and scene analysis research. We next discuss how further improvements can be 
made on our work. In other words, how we can achieve better recognition accuracy on our data. 
Next, we quote some of our key results from our previous chapters on benchmarking texture 

databases and PANN scene analysis benchmark. Some key conclusions from our analysis are 
drawn. Finally, we summarise some salient observations from this work. 
 
9.1 Scene analysis in perspective 

The analysis of images is important from a variety of perspectives. In some cases we are 
primarily interested in recognising its components. In others we aim to derive a better 

understanding of the relationship between these components. Our study has been devoted to the 
first objective. The recognition of various objects in natural scene images is a complex problem. 
The complexity of the problem derives from the intrinsic nature of real images. In such images, 

the image environment is dynamically changing and as such the role of light in terms of its 
reflectance and absorption with different natural objects plays an important role. Texture of such 
objects, especially when dealing with grey level images alone, depends on the brightness of 

pixels which in turn is determined by the surface properties and lighting conditions. 
Furthermore, for natural object recognition, the number of different characteristic descriptors for 
objects is limited. As such, based on texture alone, the identification of such objects is quite 

difficult. As image processing hardware has been considerably expensive in the past, the role of 
colour has also been quite limited restricting most of the past studies in this area to grey level 
image analysis. Parker[161] states that although only 256 grey levels are possible in a typical 

grey image, there are 65536 times this number of possible colours. With these limitations, it 
becomes very important that the choice of image segmentation and texture analysis algorithms 
is as close to optimal as possible in order to achieve reasonable results. As mentioned earlier, 
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what is reasonable is debatable. It depends on the purpose of the study. Imagine a situation 
where our sole purpose of analysis is to determine if the image contains vegetation. If we can 
recognise trees and grass with near complete accuracy, and get a less than 10% accuracy on 

everything else, then we have achieved reasonable results. On the other hand if our objective 
was to recognise all objects with a reasonable accuracy, we fail to meet this objective.   
 

Scene analysis, though complex, is the basic building block of future autonomous systems. An 
autonomous system must be able to acquire images by itself, process them, and make some 
decisions on what its understanding of these images is. The first step is that of recognising the 

objects within the image and the second step is that of interpreting the scene as a whole. Better 
recognition of objects for such a computer-based system depends on the following factors: a) 
accurate region definition; b) accurate texture definition of these regions; c) intelligent data 

recognition strategies; d) use of a priori information on object relationships. The image 
understanding scheme can be visualised as a pipeline where each of these components is usually 
plugged in order. The system is fed an input stream of images that are analysed using low level 

image processing operators. The output efficiency of this pipeline is based on the overall 
recognition accuracy of the system based on some cross-validation scheme. It is, in most 
applications, important to get the best output from this pipeline.  One of the schemes involves 

that each component of the pipeline is optimised on its own. In other words, we evaluate how 
good texture algorithms are on some benchmark images, and evaluate segmentation algorithms 
in isolation and choose the best ones. Unfortunately, such evaluations are quite difficult on real 

data. For example, evaluating segmentation algorithms on real natural images is quite difficult. 
It is unlikely that such a scheme of work will yield the best recognition results. In most studies, 
however, this is mostly what is done. Algorithms considered as the best from previous 

experience or on the basis of other studies are plugged in a scene analysis or object recognition 
system without an exhaustive testing of different combinations. Obviously the number of 
possible combinations can be quite large. Consider a total of N steps during the image 

processing. Each process p has a maximum of choices in . The total number of possible 
combinations is:           ..    . 
 

Some of the important processes that need optimisation include image enhancement, image 
segmentation, feature extraction, and classification. In literature there are dozens of good 
options for each of these and it is only common sense that any study must be selective in terms 

of what to use. In some cases, such as for enhancement, quantitative methods have been 
developed to select the optimal algorithms[194]. Thus, they can be eliminated from the 
combinatorial exhaustive testing. However, the other three steps need exhaustive combinatorial 

testing because of the following reasons: a) different segmentation processes yield different 
regions that give different texture measures for the same feature extraction method; b) different 
texture feature sets are best suited for classification by different classifiers because of the nature 

of data distributions. By the same token, different classifiers will output different kinds of 
mistakes on the same data and hence show different recognition performance.  
 

In this thesis we do not preach exhaustive testing of data sets for all image analysis applications 
but demonstrate the variability across results if different algorithm combinations are used for 
processing data. As such our results are quite important in demonstrating this variability. Only 

∏
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when it has been accepted that such variability exists, and that is important when designing 
image understanding solution, we can then begin to address it. This area has not been explored 
in enough detail by other studies on scene analysis. Only when we begin to synthesise this 

problem in more detail, novel solutions of optimising the algorithmic pipeline can be found that 
are computationally feasible. These solutions will invariably lead to better quality image 
understanding and scene analysis systems. 

 
9.2 Further improvement on recognition rates 
The purpose of this study was primarily on comparing different image analysis algorithms on 

the basis of the final recognition accuracy on identifying natural objects. For an evenly based 
comparison, it has not been possible to incorporate optimal improvements possible on each 
feature set. For example, as we have mentioned earlier, it was decided not to remove outliers 

from the feature sets, as for different feature sets we get different outliers. The same applies to 
feature selection as different features derived from the same texture algorithm will be more 
discriminatory for different data sets. One of the disadvantages of this limitation has been that 

we can not claim that the results that we have generated are the best. Obviously several 
improvements are possible and we list some of them that are the most obvious. Further 
extension to this work will investigate these more thoroughly. 

 
a) Improvements based on outlier removal 

Outliers are those patterns that are the farthest away from the mean feature vector of a given 

class. These can be removed in several ways. Either we can take out those patterns that are 
further away from the mean by a certain standard deviation of a class distribution. We can also 
remove the outliers by ranking how far away these samples are from the mean and simply 

taking away a certain percentage of the most distant samples. Outlier removal not necessarily 
improves the performance. Only those outliers that are scattered into the region dominated by 
other classes are useful to remove. 

 
b) Improvements based on using PCA data  

Principal component analysis is an important methodology for reducing data dimensionality. 

This reduction does not mean that the complexity of the data classification problem is much 
reduced. The principal components are based on their ability to explain the overall variability in 
the data set. Since each principal component is a weighted average of different features, features 

that are the least variable, and in some ways redundant, are given much less weight than highly 
variable features. To some extent, PCA scores can be used as a better set of features than the 
original variables. We have thus also produces results on PCA scores to demonstrate that better 

results can be obtained using them, especially for the nearest neighbour classifier. We hope that 
by this process we can still compare the different algorithmic combinations on an even basis. 
 

In Table 9.1 we first demonstrate the results obtained on the MeasTex data using PCA scores 
for nearest neighbour classification. So, how does this compare to the results obtained by the 
same classifier on the original data as discussed in Chapter 5. On autocorrelation, we had the 

best result of 79.5% correct and now we have 86.1% correct, an improvement of nearly 7%. On 
co-occurrence features, we had a previous best of 86.9% that has now improved to 93.5%, an 
improvement of 7% again. For edge frequency we had on original data recognition of 70.7% 
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that has now improved by 4% to 74.9%. On Law’s features, there is hardly any change from 
70.9% to 69.3%. On pr imitive length features we get a better performance as results improve 
from 54.1% correct to 55.9%.  On combined features, there is hardly any change in performance 

from 83.3% correct to 83.6%. On the whole we can conclude that the use of PCA features 
improves the performance on most feature sets and has very little impact on the others. 
 

Feature extraction      k=1            k=3           k=5            k=7 

Auto-correlation 84.0% 85.9% 85.8% 86.1%  

Co-occurrence 93.2% 93.4% 93.5%  93.4% 

Edge frequency 71.7% 73.7% 74.9%  73.8% 

Laws 61.6% 66.4% 68.2% 69.3%  

Primitive length 52.3% 55.5% 55.5% 55.9%  

Combined 82.8% 82.8% 83.6%  83.4% 

Table 9.1  MeasTex PCA data classification using nearest neighbour classifier. 

 

In Table 9.2 we show the results of the nearest neighbour classifier with PCA data of VisTex 
database. 

 

Feature extraction      k=1            k=3           k=5            k=7 

Auto-correlation 91.4%  90.4% 88.6% 80.4% 

Co-occurrence 93.6%  86.4% 81.8% 82.9% 

Edge frequency 73.6% 76.1%  74.3% 73.2% 

Laws 47.5% 52.9% 53.2%  52.5% 

Primitive length 56.1%  55.4% 54.3% 55.7% 

Combined 84.6% 85.0%  82.9% 82.5% 

Table 9.2  VisTex PCA data classification using nearest neighbour classifier. 

 

Let us compare these to the original data classification rates: autocorrelation results improve 

from 85.7% to 91.4% (by nearly 6%), co-occurrence results improve from 80.7% to 93.6% (by 
nearly 13%), edge frequency results improve from 66.8% to 76.1% (by nearly 10%), Law’s 
results are slightly worse from 56.1% to 53.2% (by nearly 3%), primitive length features 

improve from 42.4% to 56.1% (by nearly 14%) and combined features result improves from 
61.3% to 85.0% (by nearly 24%). This is a significantly good performance of the kNN classifier 
on PCA data. 

 
We can draw some important conclusions from the above. First, we find that on MeasTex data 
the maximum improvement is that of 7% on autocorrelation and co-occurrence feature sets. On 

other features sets there is not much difference in performance. To put the 7% increment in 
perspective when dealing with 944 samples, it means a total of 66 samples recognised correctly 
that were otherwise misclassified. Second, on VisTex data we find that improvements are of 

much larger magnitude. The most significant improvement is that of 24% on combined features. 
This implies 67 samples correctly recognised that would have been otherwise misclassified out 
of a total of 280 samples. Law’s is the only feature set where the performance declines 

marginally. On all other feature sets, the performance increases considerably. 
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The performance improvements on the vegetation data using the four different segmentations 
methods are shown in the next four tables. In Table 9.3, we show the change in performance 
with PCA data classification. For autocorrelation method, the recognition rate improves from 

72.9% to 74.6% (by nearly 2%), for co-occurrence features it improves from 56.5% to 59.5% 
(by 3%), for edge frequency features the performance improves from 72.0% to 74.8% (by 
nearly 3%), for Law’s it deteriorates from 74.6% to 69.6% (by nearly 5%), and for primitive 

length features it improves from 57.6% to 60.5% (by nearly 3%). Hence, we find that except for 
Law’s feature set, the performance improves on the whole. 
 

Feature extraction      k=1            k=3           k=5            k=7 

Auto-correlation 70.5% 73.1% 74.6%  73.9% 

Co-occurrence 53.0% 56.1% 57.4% 59.5%  

Edge frequency 70.0% 73.4% 74.8%  74.6% 

Laws 63.2% 67.9% 68.1% 69.6%  

Primitive length 60.3% 60.5%  58.7% 56.9% 

Table 9.3  PCA data classification using nearest neighbour classifier on 

vegetation data recognition with FCM. 

 
The results on Histogram Thresholding are shown in Table 9.4. 

 

Feature extraction      k=1            k=3           k=5            k=7 

Auto-correlation 67.0% 70.1% 70.6% 71.2%  

Co-occurrence 56.7% 56.7% 59.8%  58.9% 

Edge frequency 69.0% 72.8% 74.4% 76.1%  

Laws 54.8% 57.5% 58.5% 59.1%  

Primitive length 58.3%  55.5% 53.2% 51.4% 

Table 9.4  PCA data classification using nearest neighbour classifier on 

vegetation data recognition with Histogram Thresholding. 

 

The performance changes are as follows. For autocorrelation features the performance improves 
from 70.0% to 71.2% (by nearly 1%), for co-occurrence features it improves from 57.3% to 
59.8% (by more than 2%), for edge frequency features it improves from 70.0% to 76.5% (by 

more than 6%), for Law’s features it remains the same at 59.1%, and on primitive length 
features it improves from 55.6% to 58.3% (by nearly 3%). 
 

In Table 9.5 we show the results for Region Growing based segmentation. In this case, the 
performance changes are as follows. For autocorrelation features, the performance improves 
from 58.2% to 64.2% (by 6%), co-occurrence performance improves from 52.3% to 55.5% 

(more than 3%), edge frequency performance improves from 65.0% to 73.9% (nearly 9%), for 
Law’s it remains the same at 64.0%, and for primitive length it improves from 56.7% to 64.2% 
(nearly 8%). 
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Feature extraction      k=1            k=3           k=5            k=7 

Auto-correlation 61.1% 64.2%  64.2% 62.7% 

Co-occurrence 55.5%  52.3% 49.1% 54.1% 

Edge frequency 71.3% 72.6% 73.9%  73.6% 

Laws 60.6% 61.6% 62.4% 64.0%  

Primitive length 60.8% 61.9% 63.7% 64.2%  

Table 9.5  PCA data classification using nearest neighbour classifier on 

vegetation data recognition with Region Growing. 

 

In Table 9.6, we show the results for Split and Merge segmentation. 

 

Feature extraction      k=1            k=3           k=5            k=7 

Auto-correlation 63.4% 65.8% 68.0% 68.1%  

Co-occurrence 62.4% 65.6% 68.0% 69.9%  

Edge frequency 77.4% 80.6% 81.2% 82.0%  

Laws 68.2% 71.8% 73.2% 73.5%  

Primitive length 63.1% 60.9% 62.6% 63.4%  

Table 9.6  PCA data classification using nearest neighbour classifier on 

vegetation data recognition with Split and Merge. 

 

We find that once more better results are obtained using PCA data than the original data. The 
performances improve as follows. For autocorrelation features, it improves from 64.2% to 
68.1% (by nearly 6%), for co-occurrence features it improves from 66.2% to 69.9% (by more 

than 3%), for edge frequency features it improves from 74.0% to 82.0% (by 8%), for Law’s 
features it remains the same at 73.5% and for primitive length method it improves from 55.6% 
to 63.4% (by nearly 8%). 

 
The following conclusions can be drawn from the above analysis. Region growing shows the 
largest difference in magnitude between the performances with the original data and the PCA 

data and FCM shows the least difference. However these percentages must be understood 
cautiously. Since the different feature sets have different number of samples for different 
segmentation methods, the percentages translates into different number of actual samples that 

are correctly recognised. For region growing and edge frequency combination, we have a total 
of 383 samples, so a 9% better performance translates into 35 samples correctly recognised that 
were misclassified with original data. This appears to be significant improvement. We next 

present the results on classifying natural object data using PCA scores. These are again 
classified as per the segmentation method. 
 

In Table 9.7 we show the results obtained using FCM clustering segmentation. The following 
changes in performance are noticeable. The recognition rate for autocorrelation features 
improves from 69.4% to 71.3% correct (by nearly 2%), for co-occurrence features it improves 

from 52.2% to 57.5% (by nearly 5%), for edge frequency it improves from 69.2% to 73.8% (by 
nearly 4%). For Law’s features it remains the same at 59.8% and for primitive length it changes 
from 49.8% to 53.5% (by nearly 4%). 
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Feature extraction      k=1            k=3           k=5            k=7 

Auto-correlation 66.6% 69.6% 71.3%  69.4% 

Co-occurrence 52.8% 55.0% 56.9% 57.5%  

Edge frequency 70.0% 71.8% 73.8%  72.8% 

Laws 53.1% 56.7% 58.0% 59.8%  

Primitive length 51.7% 52.5% 53.5%  52.7% 

Table 9.7  PCA data classification using nearest neighbour classifier on 

natural object data recognition with FCM. 

 

We show the results of Histogram Thresholding in Table 9.8. 
 

Feature extraction      k=1            k=3           k=5            k=7 

Auto-correlation 61.3% 63.0% 64.7% 65.2%  

Co-occurrence 47.2% 50.1% 53.6% 54.1%  

Edge frequency 67.6% 69.8% 69.6% 70.3%  

Laws 44.8% 49.1% 51.6% 52.3%  

Primitive length 49.1% 48.0% 50.1%  49.2% 

Table 9.8  PCA data classification using nearest neighbour classifier on 

natural object data recognition with Histogram Thresholding. 

 

The performance difference compared to the original data is as follows. Recognition rate 
improves for autocorrelation features from 62.5% to 65.2% (by nearly 3%), it improves for co-

occurrence features from 53.7% to 54.1% (by less than 1%), for edge frequency features it 
improves from 65.8% to 70.3% (by nearly 5%), for Law’s features it remains the same at 52.3% 
and for primitive length features it improves from 45.3% to 50.1% (nearly 5%). 

 
We show the results for region growing segmentation in Table 9.9. 
 

Feature extraction      k=1            k=3           k=5            k=7 

Auto-correlation 67.1% 68.9% 69.1% 69.5%  

Co-occurrence 55.5% 57.1%  56.9% 56.9% 

Edge frequency 70.5% 72.5%  72.2% 71.6% 

Laws 56.0% 57.8% 62.1%  60.8% 

Primitive length 58.4% 57.1% 60.0%  59.7% 

Table 9.9  PCA data classification using nearest neighbour classifier on 

natural object data recognition with Region Growing. 

 

In this case the performance improvement is higher. The following improvements are 

noticeable: for autocorrelation the recognition improves from 66.8% to 69.5% (by nearly 3%), 
for co-occurrence features it remains the same at 57.1%, for edge frequency it improves from 
67.1% to 72.5% (by nearly 5%), for Law’s it remains the same at 62.1% correct, and finally for 

primitive length we see a significant improvement of nearly 12% from 48.1% correct to 60.0% 
correct. 
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Finally, for split and merge segmentation, the results are shown in Table 9.10. 
 

Feature extraction      k=1            k=3           k=5            k=7 

Auto-correlation 62.1% 64.4% 65.9% 66.2%  

Co-occurrence 52.6% 56.3% 57.0% 59.5%  

Edge frequency 69.5% 72.7% 73.5% 74.2%  

Laws 47.3% 49.7% 51.4% 52.9%  

Primitive length 59.2% 59.7% 61.7%  60.4% 

Table 9.10 PCA data classification using nearest neighbour classifier on 

natural object data recognition with Split and Merge. 

 
The performances are different this time as follows. For autocorrelation features, the 

performance improves from 65.3% to 66.2% (nearly 3%), for co-occurrence matrices it 
improves from 55.6% to 59.5% (by nearly 3%), for edge frequency it improves from 64.3% to 
74.2% (by nearly 10%), for Law’s feature set they improve from 50.4% to 52.9%, and finally 

for primitive length features they improve from 50.1% to 61.7% (by nearly 12%). 
 
The following conclusions can be drawn from the above. First, we find that larger 

improvements are made with region growing and split and merge methods of segmentation. 
Second, we find that the largest improvement  of 12% for primitive length using split and merge 
and the second largest of 10% for edge frequency features for split and merge. These translated 

to the number of samples now correctly identified but previously misclassified amounts to 185 
and 154 samples respectively. 
 

c) Improvements based on feature selection 

One of the reasons for using a scheme of feature selection is to remove redundant or 
unnecessary information, thereby improving the recognition rates. There are two ways in which 

the results can be improved. The first involves the selection of d most discriminatory variables 
out of p possible. This is termed as feature selection. The other involves the transformation of p 

measurements to a lower dimensional space. This is termed as feature extraction [219]. This 

may involve a linear or non-linear transformation of the original variables. As seen earlier, we 
have used PCA for improving our results. However, in the future, further improvements are 
possible using feature selection. For a total of d variables, and selection of subsets of size p, the 

total number of possible subsets is equal to         
 

 
Obviously, the number of subsets to be evaluated based on testing all subsets exhaustively is an 
enormous task. As such, a number of strategies have been proposed in the literature for selecting 

the best combination of features without testing all subsets. The selection of features can be 
based on two criteria. First, we can design a classifier based on a reduced feature set and choose 
the feature set for which the classifier performs the best on a separate test/validation set. 

Second, instead of the above, we can estimate the overlap between distributions from which the 
data are drawn and favour those feature sets for which this overlap is minimal. This process is 
independent of the classifier used. It has the advantage of computational ease of 
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implementation, however, the separation measures can be crude and unreliable. A range of 
probability based distances are used in various studies. These distances include Bhattacharya 
distance, Chernoff distance, Patrick Fisher distance and Divergence. In addition to these 

methods, search strategies can also be used for effective subset selection. Some of these 
procedures include branch and bound procedure, best individual N method, Sequential Forward 
Selection (SFS), Sequential Backward Selection (SBS), and Floating Search methods.  

 

d) Improvements based on multistage classification 

As we mentioned in our experimental design, one way of improving results is to develop a 

multistage classification strategy. In such a strategy, multiple classifiers can be trained to 
separate out those classes first that are easily separable. It has been shown that such a strategy 
can yield better performances. Our analysis has shown that different classifiers are superior at 

recognising different classes involved in our data. Also as we mentioned earlier, if two sets of 
data distributions, both linearly separable themselves, overlap each other, the resultant data is no 
longer linearly separable. This problem is better resolved with multistage classification. 

 
e) Improvements based on non-linear classifiers 

Neural networks have been widely recognised as an important class of non-linear classifiers. 

One of the main reasons for not including them in this study has been the limited amount of 
time we had for the research. Also since we are dealing with very large number of data sets, 
optimising neural networks would normally take a very long time. Hence, nearest neighbour 

classifiers, often shown to perform as good as neural networks, were selected for our analysis. 
However, there is scope for further improvement should non-linear classifiers be applied on our 
data. 

 
f) Improvements based on using colour information 

One of assumptions made in this study was that colour information is too expensive to process 

and hence we have excluded that from analysis. This will not true be for long as image 
processing hardware becomes much cheaper and faster. Colour has much of a role to play either 
in the form of colour features for different image regions, or for acting as a classifier triggering 

mechanism for a multistage classifier strategy. It is only common sense that as humans we use 
most colour information for object recognition and that computers should have the same 
advantage. 

 
9.3 Key results 
In Table 9.11 we present the best results obtained on the four sets of data considered in this 

thesis. The results are compared across original and PCA data. 
 

Data Segmentation Texture Classifier Data Type Result 

MeasTex - Co-occurrence kNN PCA 93.5% 

VisTex - Combined Linear Original 94.6% 

PANN Vegetation Split & Merge Edge frequency kNN PCA 82.0% 

PANN Natural Object Split & Merge Edge frequency kNN PCA 74.2% 

Table 9.11 The best results on different data sets. 
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We can draw the following conclusions from the results presented in the thesis. 
§ As discussed earlier, we found that PCA data yields better results.  
§ In general the use of nearest neighbour classifier improves the quality of results. The 

recognition accuracy for the four data sets in the above table is impressive considering the 
complexity of the task. 

§ Split and merge algorithm shows the best performance. 

§ There is a considerable variability in recognition performances depending on the choice of 
segmentation method used. These are summed up on vegetation analysis as follows from 
Table 7.28: autocorrelation (6.5%), co-occurrence (5.8%), edge frequency (3.8%), Law’s 

(7.5%) and primitive length (5.3%). For natural object data analysis, these are: 
autocorrelation (2.9%), co-occurrence (1.7%), edge frequency (2.1%), Law’s (5.6%) and 
primitive length (2.2%). So in both cases Law’s feature set is the most affected, and edge 

frequency one of the least affected. 
§ In terms of computational time taken for image segmentation, split and merge takes the 

longest and histogram thresholding takes the least. 

§ In terms of the total number of regions generated for PANN benchmark, we have in order: 
split and merge (2485 samples), histogram thresholding (2045 samples), FCM (1811 
samples) and region growing (1013 samples). 

§ Primitive length features yield the worst results in general but are one of the best on 
recognising clouds. 

§ Texture algorithms get different ranks in order of how well they perform on synthetic data 

as compared to their real data performance. 
§ The combined feature set has some advantage in classification and must be explored in 

further studies. 

§ We have successfully demonstrated that there is a large range of performances depending 
on the choice of segmentation and texture methods used in combination. Based on a detailed 
study on the pattern of mistakes made, and inspection of cases where mistakes are made, 

image analysis can be further improved. 
 
9.4 Summary 
In this study we have compared a range of texture analysis and image segmentation algorithms 
for understanding the differences in their performances on the same data. We have found that 
there is considerable variability in the performances of different texture analysis algorithms. 

Also we find that these algorithms perform much better on synthetic textures as compared to 
real data. The definition of regions in natural images is an important factor in the quality of 
features extracted from them. Regions that are poorly segmented yield texture measures 

contaminated by pixels that come from two or more regions. We have found that different 
combination of segmentation and texture extraction methods yield different recognition 
accuracy and the variability in these results is significant. Only by optimising for this fact, high 

quality scene analysis systems can be developed. 
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