
Generalized Haar Spectral Representations and Their
Applications

Bogdan J. Falkowski 
Nanyang Technological University,

School of Electrical and Electronic Engineering,
Blk S1, Nanyang Avenue, Singapore 639798.

Email : efalkowski@ntu.edu.sg
Phone : (65)790-4521
Fax : (65)791-2687

Abstract 

Haar transform is known to have the smallest computational requirement and has been
used mainly for pattern recognition and image processing. Although the properties of
Haar spectra of Boolean functions have considerable interest and attraction, the majority
of publications to date have employed the Walsh rather than Haar transform in their
considerations. It is mainly due to the fact that up to recently there was no efficient method
of calculating Haar spectra directly from reduced representations of Boolean functions
such as decision diagrams and cubes. Recently, efficient methods based on Decision
Diagrams and cubical representation for the computation of Haar spectra have been
developed. Two methods based on decision diagrams and a new data structure called the
“Haar Spectral Diagram” is discussed. The method to calculate Haar spectra from disjoint
cubes of Boolean functions is also presented. A concept of paired Haar transform for
representation and efficient optimization of systems of incompletely specified Boolean
functions will be discussed. Finally another form of Haar transform, so called “Sign Haar
Transform” is discussed and basic properties of Boolean functions in its spectral domain
are shown. Various applications of Haar transform in logic design are also mentioned.

1. Introduction

There are at least two transforms which are based on square-wave like functions that
are well suitable for Boolean functions: Walsh and Haar transforms. The Walsh functions are
global like the Fourier functions and consist of a set of irregular rectangular waveforms with
only two amplitude values +1 and −1 [1, 2, 20, 23-27, 39, 42, 43]. Each but two basis
functions in Haar transform consists of a square wave pulse located on an otherwise zero
amplitude interval. Computation of the fast Haar transform (FHT) requires order N (N is a
number of spectral coefficients) additions and subtractions, which makes it much faster than
the fast Walsh transform (FWT) [1, 2, 32]. Due to its low computing requirements, Haar
transform has been used mainly for pattern recognition and image processing [2, 3, 9, 27, 42,
43]. Such a transform is also well suited in communication technology for data coding,
multiplexing and digital filtering [1, 26, 36]. The advantages of computational and memory
requirements of the Haar transform make it of big interest to VLSI designers as well [24, 34,
35]. 

Local property of Haar transform makes it of interest in those applications in
computer-aided design systems where there are Boolean functions of many variables that
have most of its values grouped locally. Such weakly specified and local functions frequently
occur in logic design and machine learning [8, 28, 29] and can be extremely well described by



few spectral coefficients from Haar transform while the application of Walsh, global
transform would be quite cumbersome in such cases and the locally grouped minterms would
be spread throughout the Walsh spectrum. In most engineering design problems, incompletely
specified functions have to be dealt with. To better deal with the mentioned cases, we have
introduced a novel concept of Paired Haar transform [11, 13, 15]. In Paired Haar Transform,
all the information about true and don't care minterms is kept separately, by what it is
available in different stages of CAD process. In efficient synthesis of incompletely specified
Boolean functions there is a need for filling don't care minterms of the original function by
'0's and '1's in such a way that the resulting completely specified Boolean function will be
easily implemented by available basic gate structures and Programmable Logic Devices
(PLDs). Different complexity criteria are used in order to make such an allocation of don't
minterms optimal in the sense that the final SOP consists of the least number of product
terms or literals. In order to fulfill the above requirement by spectral approach, instead of
operating on a single spectrum from the R-coded vector, a Paired Haar transform has been
introduced. The definitions and properties of Paired Haar transforms are discussed here. 

Finding the minimal realizations for logic functions is usually associated with the
problems of optimizing their reduced representations. An array of cubes provides a straight
forward implementation of a disjunctive sum-of-products (SOP) expression for a given
function in two-levels [10]. Generation of a minimal SOP expression for an incompletely
specified Boolean function is equivalent to the well known set covering problem which is
NP-hard. To avoid duplicating effects due to common minterms among cubes, an array of
disjoint cubes corresponding to the disjoint sum-of-products (DSOP) representation has often
been used as an initial representation or preprocessing tool in many logic synthesizers [19, 20,
28]. For large circuits, Free Binary Decision Diagram (FBDD) [6] is a more succinct
representation than the cubical representations of SOP and DSOP. A special subset of FBDD
is the Ordered Binary Decision Diagram (OBDD) [12, 14, 22, 38, 40] which is a canonical
representation of Boolean function with a given ordering of variables. All these four reduced
Boolean domain representations have widespread applications in logic design and can be
directly mapped into two-level realizations or used as initial formulations for further
refinement and synthesis in various forms of multilevel digital circuits. The way of
calculating Haar spectra directly from various decision diagrams are discussed. 

In the next section, a new data structure called the “Haar Spectral Diagram” is also
discussed. The way of calculating Paired Haar transform directly from disjoint cubes is also
presented. Section 6 discusses non-linear quantized transforms. First, a non-linear transform,
called the "Sign Haar Transform" is introduced. The transform is unique and converts
binary/ternary vectors into ternary spectral domain. Walsh functions served as the underlying
basis functions of Sign Walsh Transform with restricted coefficient values. In this section,
unnormalized Haar functions are used as the basis of new quantized transform called "Sign
Haar Transform". Similarly to the case when the sign function is applied to Walsh functions,
two versions of Sign Haar Transform are possible. First, when the signs of normalized Haar
spectral coefficients are used, second when the quantized functions at each stage of the flow
graph of fast, normalized Haar Transforms are applied. The properties of both spectra
obtained according to the above definitions are similar to those obtained by the Sign Walsh
Transform. The final section lists different applications of Haar transform in logic design. 



2. Unnormalized Haar Transform
The orthogonal discrete Haar functions introduced in [23] can be formulated according

to [26, 39, 42] as :

Hdc(x) = 1 for 0 ≤ x < 1,
 

 {  for , (1)Hl
(k)(x) =

2 l

− 2 l

0

k
2l � x < 2k+1
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2k+1
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where x is a continuous interval [0,1); l = 0, 1, 2,..., n−1 is a degree of Haar function
describing the number of zero crossing; k = 0, 1, ..., 2l−1 is an order of Haar function
describing the position of the subset l within a function. 

The discrete Haar matrix TN [1, 2, 3, 5, 24, 32, 36, 43] is an N x N  (N = 2n) orthogonal
matrix formed by a discrete sampling of the set of Haar functions at  division in the1

2n

interval [0,1). The first two rows of TN are global basis functions Hdc(x) and ,H0
(0)(x)

respectively. All subsequent rows are constituted by local basis functions  in anHl
(k)(x)

ascending order of  l and k. The discrete Haar functions represented by the rows of a (2n  2n)�
matrix may be ordered in the sequential and natural ordering.

    T8S =

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
2 2 − 2 − 2 0 0 0 0
0 0 0 0 2 2 − 2 − 2
2 −2 0 0 0 0 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 0 0 0 0 2 −2

Figure 1: Sequency ordered Haar functions for n = 3.

                                     T8N =

1 1 1 1 1 1 1 1
2 −2 0 0 0 0 0 0
2 2 − 2 − 2 0 0 0 0
0 0 2 −2 0 0 0 0
1 1 1 1 −1 −1 −1 −1
0 0 0 0 2 −2 0 0
0 0 0 0 2 2 − 2 − 2
0 0 0 0 0 0 2 −2

Figure 2: Naturally ordered Haar functions for n = 3.

Definition 2: Discrete Haar functions of order N represented by the (2n  2n) matrix Ts(n), in�
the sequential ordering are given by the following recurrence relation [39]:



            (2)Ts(n) =
Ts(n − 1) � [1 1]

2
(n−2)

2
2 0
0 2

� I2k−2 � 1 −1
with Ts(1) = 1 1

1 −1

In digital logic design, an unnormalized discrete Haar transform is used instead [11-15,
24-26, 39, 40, 43]. The entries in the unnormalized discrete Haar matrix contain only the
values of 1, −1 and 0 that are obtained by taking the signs of all the non-zero entries in the
discrete Haar matrix TN . For simplicity, the same symbols  and TN are used to denote anHl

(k)

unnormalized discrete Haar function and the matrix respectively. From now on, they will be
referred to as Haar function and Haar matrix without the words unnormalized and discrete.
Definition 3 : The Haar transform matrix TN  of order N = 2n can be defined recursively as [1,
2, 36, 39, 42] :

  and  T1 = 1,                                                 (3)TN =
T N

2
� 1 1

I N
2
� 1 −1

where  is an identity matrix of order N/2.I N
2

Besides the first two spectral coefficients rdc and , which are globally sensitive tor0
(0)

F(X), the remaining 2n−2 Haar spectral coefficients are only locally sensitive to the cofactors
resulted from the repeated applications of Shannon's decomposition of F(X) with respect to
some variable xi, i = 1, 2, ..., n. Similarly to the Haar functions , spectral coefficients Hl

(k) rl
(k)

are characterized by their degrees l and orders k. 
Property 1 : For a Haar spectrum of an n-variable Boolean function F, there are 2n−i spectral
coefficients of degree n−i, each measures a correlation of a different set of 2i neighboring
minterms where i = 1, 2, ... n. The value of rdc is equal to the number of minterms of the
Boolean function and the coefficient  describes the difference between the number ofr0

(0)

minterms of the cofactors decomposed around the literals and xn, respectively.xn

Definition 4 : A standard trivial function uI, I = 2l +k and I∈{0, 1,..., 2n −1}, associated with
each Haar function  describes a Boolean space of 2n−l neighboring minterms on aHl

(k)

Karnaugh map that has an influence on the value of a spectral coefficient  where l = 0, 1,rl
(k)

2,..., n−1 and k = 0, 1, ..., 2l −1. For each index I of uI , there exists a unique value of l and k.
Formally, uI  can be expressed as a product term :

u0 = u1 = 1 and uI =  ∀ l, k ∈Z ; 1 ≤ l ≤ n−1 and 0 ≤ k ≤ 2l−1, (4)�
i=1

l
xn−l+i

ki

where Z is the set of integers.

Definition 5 : A literal , l = 0, 1, ..., n−1 is called an extended literal of the standard



xn−l

trivial function uI (I = 1, 2, ..., 2n−1). 

Property 2 : An extended literal divides the corresponding standard trivial function, uI (I



xn−l

= 1, 2,..., 2n−1) into a positive and a negative standard trivial function (PSTF and NSTF),
equivalent to the cofactors of the Shannon's decomposition of the standard trivial function
with respect to xn−l and  accordingly. Consequently, Hdc = u0 = 1,  = uI  ∀ lxn−l Hl

(k) (xn−l − xn−l )
and k where I = 2l+k.
Property 3 : The degree l of a Haar function indicates the number of literals present in its
standard trivial function uI (I = 1, 2, 3,.., 2n−1). All 2l Haar functions of degree l have the
same extended literal .




xn−l

Property 4 : The maximum and minimum values of any Haar coefficient of degree l are equal
to 2n−l−1 and −2n−l−1 respectively.



Property 5 :  The order k of a Haar function  indicates the polarities of the literals presentHl
(k)

in the standard trivial function uI. The order k can be expressed as a binary l-tuple by writing a
1 or 0 for each variable in uI according to whether this literal appears in affirmation or
negation,  with the most significant bit corresponds to the literal  and the least significant




xn

bit corresponds to the literal .



xn−l+1

Example 1 : For a four variable Boolean function, the Haar coefficient  has the standardr3
(1)

trivial function u9. Since l = 3, k can be expressed as a binary 3-tuple 001. From (4), u9 = 
 and the extended literal is = .x4x3x2




x4−3



x1

3. Definition and Properties of Paired Haar Spectrum
Different non-polynomial spectral expansions for completely specified Boolean

functions have been known [1, 25]. Based on the recursive definition of unnormalized Haar
transform in (3), a non-polynomial Haar expansion of an n-variable Boolean function F can
be derived [13].
Theorem 1 :

F(X) = ,            (5)1
2n rdc + (−1)xn r0

(0) + �
l=1

n−1

2 l(−1)xn−l �
k=0

2 l−1

rl
(k)

�
i=n−l+1

n
xi

ki−n+l

where ki ∈{0,1} is the i-th bit in the binary l-tuple of the order k ;  = xi if  j = 1 and  if  xi
j xi

j = xi

j = 0.
Proof : The inverse unnormalized Haar transform  of order of N = 2n can be defined in aTN

−1

similar recursive form as in (3) :

, (6)TN
−1 = 1

2n GN
T

where    and G1 = 1.                                                                  GN =
G N

2
� 1 1

N
2 I N

2
� 1 −1

Comparing (3) and (6), GN is generated from TN by incorporating a scaling factor of
N/2. For n ≥ 1, since each iteration of (6) generates an additional degree of inverse Haar
functions, the scaling factor of 2l can be applied to every forward Haar functions of the same
degree l to obtain the corresponding row in GN. 

Hence,  and  where I = 1, 2, ..., 2n−1, theT−1(0) = 1
2n TT(0) T−1(I) = 1

2n � 2 l � TT(I)
superscript T denotes matrix transpose and T(I) is the row vector corresponding to row I of
the matrix T and I = 2l + k.

F(X) =  =  +  +  +  + ... + T−1 � R [T−1(0)]Trdc [T−1(1)]Tr0
(0) [T−1(2)]Tr1

(0) [T−1(3)]Tr1
(1)

 = .[T−1(2n − 1)]Trn−1
(2n−1−1) 1

2n T(0)rdc + �
l=0

n−1
�

k=0

2l−1
2 lT(2 l + k)rl

(k)

The forward Haar functions representing each row of the transform T are given by :
T(0) = 1, T(1) =  and T(I) = T(2l +k) = ,  where uI is the standard(xn−l − xn−l ) uI(xn−l − xn−l )
trivial function corresponding to the Haar function T(I). Since  = 1 if xn−l = 0 and −1xn−l − xn−l

if xn−l = 1, . The standard trivial function uI can be represented by thexn−l − xn−l = (−1)xn−l

product , where ki−n+l ∈{0, 1} is the (i−n+l)-th bit in the binary l-tuple of the order�
i=n−l+1

n
xi

ki−n+l

k and  if ki−n+l = 1 and  if ki−n+l = 0. Thus, xi
ki−n+l = xi xi

ki−n+l = xi

F(X) =                1
2n rdc + (−1)xn r0

(0) + �
l=1

n−1

�
k=0

2l−1

2 l(−1)xn−l r l
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�
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n
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          =  .               � 1
2n rdc + (−1)xn r0
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n
xi
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Example 2 : Consider the four-variable incompletely specified Boolean function F(X) =
ΣON(8, 9, 10, 14, 15) + ΣDC(1, 4, 5) where the numbers enclosed in ΣON(...) and ΣDC(...) indicate
the truth and don't care minterms, respectively. The Haar spectrum calculated from the
R-coded vector of F is given by :

 R = [ ]T = [6.5  −3.5  −0.5  1  0.5  1 1rdc r0
(0) r1

(0) r1
(1) r2

(0)
� r2

(3) r3
(0)

� r3
(7)

 −2  −0.5  0  0  0  0  1  0  0]T. 
From Theorem 1, the Haar expansion of this function is given by : 

F(X) = {6.5 −  +  + (  +  +  −1
16 (−1)x4 (3.5) (−1)x3 (−x4 + 2x4 ) (−1)x2 2x4x3 4x4x3 4x4x3

) + (  + ) }.8x4x3 (−1)x1 −4x4x3x2 8x4x3x2

Consider the input assignment X = 5 = 01012, i.e., x4 = x2 = 0 and x3 = x1 = 1. The
R-coded value of F under this input assignment can be calculated from the above expansion.
F(5) = (6.5 − 3.5 + 1 + 4 + 0) = 0.5.1

16

Definition 6 : A Paired Haar transform (PHT) for an incompletely specified n-variable
Boolean function F is a mapping χ : (FON, FDC) → (RON, RDC), where RON = T × FON  and RDC =
T × FDC. FON is obtained by replacing all don't care outputs of F by 0s, and FDC is obtained
from F by replacing all true outputs by 0s and don't care outputs by 1s. T is the unnormalized
Haar transform defined in (3). The tuple (RON, RDC) is known as the Paired Haar spectrum.
Spectral coefficients from spectra RON and RDC are indicated by lower case letters accordingly.

In R coding, the unnormalized Haar spectrum is related to the Paired Haar spectrum as
follows :

R = RON + 0.5 × RDC. (7)
The Paired Haar spectrum for an incompletely specified n-variable Boolean function F

is composed of 2n vectors, each having two elements. The elements in the first vector are
denoted by (rON)dc and (rDC)dc, and in the remaining vectors by   and , where 0 ≤(rON )l

(k) (rDC )l
(k)

l ≤ n−1, 0 ≤ k ≤ 2l−1. Each coefficient can be interpreted as the cardinality of the interception
of true and don't care sets of the function with the appropriate PSTF and NSTF. Let beal

(k)

the number of true minterms of F in NSTF,  the number of true minterms of F in PSTF, bl
(k)

 the number of don't care minterms of F in NSTF and  is the number of don't carecl
(k) dl

(k)

minterms of F in PSTF. Let adc and cdc represents the total number of true and don't care
minterms, respectively. Then, (rON)dc = adc, (rDC)dc = cdc,  =  and  = . (rON )l

k al
(k) − bl

(k) (rDC )l
(k)

cl
(k) − dl

(k)

For completely specified function, Paired Haar spectrum becomes the unnormalized Haar
spectrum since for completely specified Boolean functions  and are always 0. cl

(k) dl
(k)

Example 3 : Figure 3 shows the Karnaugh maps of the standard trivial functions for
unnormalized Haar transform of order 16. The NSTF and PSTF are filled with triangles and
circles, respectively, on each map. For the four-variable incompletely specified Boolean
function F(X) = ΣON(8, 9, 10, 14, 15) + ΣDC(1, 4, 5) from Example 2, the values  al

(k), bl
(k), cl

(k)

and  are listed below each Karnaugh map. From Figure 3, the Paired Haar spectrum  (RON,dl
(k)

RDC)  =  [( , )      ( , )      ( , )  ...  ( , (rON )dc (rDC )dc (rON )0
(0) (rDC )0

(0) (rON )1
(0) (rDC )1

(0) (rON )3
(7) (rDC )3

(7)

)]T = [(5, 3)  (−5, 3)  (0, −1)  (1, 0)  (0, 1)  (0, 2)  (1, 0)  (−2, 0)  (0, −1)  (0, 0)  (0, 0)  (0, 0)  
(0, 0)  (1, 0)  (0, 0)  (0, 0)]T.
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Figure 3: Number of minterms in PSTF and NSTF of unnormalized Haar transform of an
four-variable incompletely specified Boolean function.

Table 1 shows the Paired Haar spectra for some completely and incompletely n-variable
elementary functions. In Table 1, z is the number of '1s' in the binary n-tuple of the order k.
The abbreviations OR, NOR, AND, NAND, XOR and XNOR are used for the Boolean
expressions x1 ∨ x2 ∨ ... ∨ xn, , x1 ∧ x2 ∧ ... ∧ xn, , x1 ⊕ x2 ⊕ ...x1 � x2 �� � xn x1 � x2 �� � xn

⊕ xn and , respectively. For completely specified elementary functions,x1 � x2 ��� xn

DC(F) = ∅. The incompletely specified elementary functions that are considered are the
functions whose ON and DC arrays can be described by the above elementary functions or the
functions whose ON array is empty and DC array is described by an elementary function. The



latter will not happen in the specification of the original Boolean function but may appear in
some subfunctions in the process of decomposition. Unless otherwise specified, the values of
l and k in Table 1 are integers in the following ranges :  l = 0, 1, ..., n−1, k = 0, 1, ..., 2 l−1.
Property 6 : The maximum value of any parameter , ,  or  associated with theal

(k) bl
(k) cl

(k) dl
(k)

Paired Haar coefficient of degree l is equal to 2n−l−1.
Property 7 : The sum of all parameters and  with the same degree l is equal to adc andal

(k) bl
(k)

the sum of all parameters and  with the same degree l is equal to cdc. i.e.,cl
(k) dl

(k)

,                                                                                                                                                (8)�
k=0

2l−1
(al

(k) + bl
(k)) = adc

.                                                                                                    (9)�
k=0

2l−1
(cl

(k) + dl
(k)) = cdc

Property 8 : If = 2n−l−1 for some l and k, there exists an ON (n−l−1)-cube(rON )l
(k) + (rDC ) l

(k)

equal to the corresponding NSTF with total assignment of all don't care minterms in the
NSTF.  Similarly, if = −2n−l−1 for some l and k, there exists an ON(rON )l

(k) + (rDC ) l
(k)

(n−l−1)-cube equal to the corresponding PSTF with total assignment of all don't care
minterms in the PSTF.
Lemma 1 : With the consideration of all possible assignments of don't care minterms in an
incompletely specified Boolean function, the cardinality of the largest prime implicant p, has
the upper and lower bounds given by : 

2n−lmax−1 ≤ p ≤ ,                (10)2log2§(rON )dc+(rDC )dc¨

where  means the largest integer no greater than x. lmax is the maximum degree among all�x�
degrees l that has an order k such that  = 2n−l−1 or −2n−l−1. (rON )l

(k) + (rDC ) l
(k)

Proof : The upper bound of any implicant can not exceed the total number of true and don't
care minterms which is given by the sum adc + cdc = (rON)dc + (rDC)dc. Since the cardinality of
any implicant is an integer exponent of base 2, the upper bound of (10) is proven. Since the
cardinality of the largest prime implicant is always larger than or equal to the smallest
implicant, the lower bound is trivially obtained from Property 8.          �
Lemma 2 : The Paired Haar spectrum for the complement ( ) of Boolean function F is givenF
by :

( , ) = (2n −  − , ), and (rON )dc
� (rDC )dc

� (rON )dc (rDC )dc (rDC )dc

( , )  = ( , ),            (11)(rON )l
(k)� (rDC )l

(k)� −(rON )l
(k) − (rDC ) l

(k) (rDC )l
(k)

where prime superscripts ' ' are used to indicate the spectral coefficients of the complement�

function . l = 0, 1, ..., n−1 and k = 0, 1, ... , 2l−1.F
Proof : Complementing a Boolean function changes the ON minterms to OFF minterms and
vice versa but leaves the DC minterms unchanged. Thus, =  and  = (rDC )dc

� (rDC )dc (rDC )l
(k)�

.  = The number of ON minterms of  = number of OFF minterms in F = 2n−(rDC )l
(k) (rON )dc

� F
number of ON and DC minterms of F = 2n −  − . The number of ON minterms(rON )dc (rDC )dc

of  in NSTF (or PSTF) = number of OFF minterms of F in NSTF (or PSTF) = number ofF
cells in NSTF (or PSTF) − number of ON and DC minterms of F in NSTF (or PSTF). For any
degree l, the number of cells in the NSTF and PSTF are both equal to 2n−l−1. By definition,
number of ON and DC minterms of F in NSTF =  +  and number of ON and DCal

(k) cl
(k)

minterms in PSTF =  + . Hence,  = 2n−l−1 − − − (2n−l−1 −  − ) = −bl
(k) dl

(k) (rON )l
(k)� al

(k) cl
(k) bl

(k) dl
(k) bl

(k)

 + −  = −  − .                                           �al
(k) dl

(k) cl
(k) (rON )l

(k) (rDC )l
(k)

Lemma 3 : If an n-variable Boolean function is independent of the variable xi , then



.      (12)     �
k=0

2n−i−1

(rON )n−i
(k) = 0

Proof : If an n-variable Boolean function is independent of the variable xi, then

 .�
k=0

2n−i−1

an−i
(k) = �

k=0

2n−i−1

bn−i
(k)

The value of rDC is not important as the values of the don't care minterms covered by xi

can be set to 0 to make xi redundant if required. Since rON = aON − bON for any degree l and
order k, (12) is obtained.                �        
                                                                                                               

Table 1 Paired Haar spectra for elementary functions.

(rON )dc = 2n−1, (rON )n−1
(k) = (−1)z

�k; (rDC )dc = 2n−1, (rDC )n−1
(k) = (−1)z+1

�kXORXNOR

(rON )dc = 2n−1, (rON )n−1
(k) = (−1)z+1

�k; (rDC )dc = 2n−1, (rDC )n−1
(k) = (−1)z

�kXNORXOR

(rDC )dc = 2n−1, (rDC )n−1
(k) = (−1)z

�kXNOR∅

(rDC )dc = 2n−1, (rDC )n−1
(k) = (−1)z+1

�kXOR∅

(rON )dc = 2n−1, (rON )n−1
(k) = (−1)z

�k∅XNOR

(rON )dc = 2n−1, (rON )n−1
(k) = (−1)z+1

�k∅XOR

(rON )dc = 2n − 1, (rON ) l
(2 l−1) = 1�l; (rDC )dc = 1, (rDC ) l

(2l−1) = −1�lANDNAND

(rON )dc = 1, (rON )l
(2l−1) = −1�l; (rDC )dc = 2n − 1, (rDC )l

(k) = 1�lNANDAND

(rDC )dc = 2n − 1, (rDC ) l
(2 l−1) = 1�lNAND∅

(rDC )dc = 1, (rDC )l
(2l−1) = −1�lAND∅

(rON )dc = 2n − 1, (rON ) l
(2 l−1) = 1�l∅NAND

(rON )dc = 1, (rON )l
(2l−1) = −1�l∅AND

(rON )dc = 1, (rON )l
(0) = 1�l; (rDC )dc = 2n − 1, (rDC ) l

(0) = −1�lORNOR

(rON )dc = 2n − 1, (rON ) l
(0) = −1�l; (rDC )dc = 1, (rDC ) l

(0) = 1�lNOROR

(rDC )dc = 1, (rON )l
(0) = 1�lNOR∅

(rDC )dc = 2n − 1, (rDC ) l
(0) = −1�lOR∅

(rON )dc = 1, (rON )l
(0) = 1�l∅NOR

(rON )dc = 2n − 1, (rON ) l
(0) = −1�l∅OR

Non-vanishing coefficients of Paired Haar SpectrumDC(F)ON(F)

4. Calculation of Paired Haar Spectrum from Disjoint Cubes   

Although hardware based fast Haar chips exist [3, 5], very few algorithms are available
for calculating discrete unnormalized Haar spectrum that can be incorporated directly into
computer-aided design tools of VLSI digital circuits. In order to enhance the effectiveness
and efficiency of the newly introduced Paired Haar transform in CAD and software
applications, it is important to develop fast algorithm for the calculation of their spectra. Here
the Boolean function from which the Paired Haar spectrum is calculated is represented by an
array of disjoint cubes [8, 19, 20]. The advantages of the presented algorithm are that it
allows the independent calculation of only some selected coefficients, and the partial spectral
coefficients contributed by each disjoint ON or DC cube can be executed concurrently in
parallel dedicated processors.



Definition 7 : The partial spectral coefficient of an ON or a DC p-cube of a Boolean function
F is equal to the value of the spectral coefficient that corresponds to the contribution of this
cube to the full n-space spectrum of the Boolean function F. The number of partial spectral
coefficients npsc describing the Boolean function F is equal to the number of ON and DC
cubes describing this function.
Property 9: The partial dc coefficient ( , ) contributed by a p-cube C of a(rON )dc (rDC )dc

Boolean function F is equal to (2p, 0) if C is an ON cube and equal to (0, 2p) if C is a DC
cube.
Property 10 : Each ON(or DC) cube contributes a partial Paired Haar spectral coefficient 

(or ) of degree l and order k depending on the logical value of the literal xn−l  ((rON )l
(k) (rDC )l

(k)

0 ≤ l ≤ n−1, xn is the MSB and x1 is the LSB). Each literal xi (1 ≤ i ≤ n) of a p-cube C
contributes a value v  to the Paired Haar coefficient,  if C is an ON cube and to (rON )n−i

(k)

 if C is a DC cube. Depending on the literal xi and the order k of the spectral(rDC )n−i
(k)

coefficient, the value v is given by :

 = ,                                                                        (13)v { 2p−q if k 	 � i(C) and xi = ‘0’
−2p−q if k 	 � i(C) and xi = ‘1’

0 Otherwise

where ρi(C) is the cube obtained by shifting the cube C i bits to the right, and q is the number
of '−' in the cube ρi(C), i.e., q = log2ρi(C). v = 0 if xi = '−' or the binary representation of
the order k is not covered by the cube ρi(C). 

Based on Property 10, the procedure to calculate the partial Paired Haar spectral
coefficient ( , ) contributed by a p-cube of an n-variable Boolean function F is(rON )l

(k) (rDC )l
(k)

given in Figure 4. 

Procedure partial_coeft (Paired Haar spectrum PHS, cube C, degree l) 
{

order_list = {k∈Z | k ⊆ ρn−l(C)}; 

for (each integer k in order_list) {
    p = number of '−' in C ; q = number of '−' in ρn−l(C);

if (bit xn−l of C  = 0) v = 2p−q; 
else if (bit xn−l of C  = 1) v = −2p−q;
if (lookup(PHS, l, k, , ) = 0) create( , );(rON ) l

(k) (rDC ) l
(k) (rON ) l

(k) (rDC ) l
(k)

if (C is an ON cube)  += v ;(rON ) l
(k)

else if (C is a DC cube)  += v ;(rDC ) l
(k)

if ( = 0 and  = 0) remove(PHS, l, k);(rON ) l
(k) (rDC ) l

(k)

else insert(PHS,  l, k, , );(rON ) l
(k) (rDC ) l

(k)

}
} 

     Figure 4 : Procedure for calculating the partial spectrum contributed by a p-cube.

In Figure 4, order_list is an array of integers representing the minterms covered by the
cube ρn−l(C). PHS is a link list of non-zero valued Paired Haar spectral coefficients sorted in
ascending order of degree l and order k. The routine lookup searches from PHS for any
non-zero Paired Haar coefficient of degree l and order k. If found, it returns the coefficient in
the tuple ( , ). Otherwise, the routine create is called to allocate new Paired(rON )l

(k) (rDC )l
(k)

Haar coefficient of degree l and order k. If the computed values of  and  are(rON )l
(k) (rDC )l

(k)

both equal to zero, the routine remove is called to remove the Paired Haar coefficient of



degree l and order k from PHS. Otherwise, the routine insert is called to insert the non-zero
coefficient in PHS according to l and k. The partial dc coefficient can be easily computed
from the cardinality of the cube C by Property 9. By summing up the respective partial
coefficients contributed by all disjoint cubes, the full Paired Haar spectrum for the n-variable
Boolean function F is obtained. The algorithm in Figure 5 describes the procedure of
calculating the complete Paired Haar spectrum.

Procedure Paired_Haar(Array of disjoint ON and DC cubes D) 
{

Initialize(PHS);
foreach (cube Cj ∈ D, j = 1 to npsc) {

p = number of '−' in Cj ;
if (Cj is an ON cube) (rON)dc += 2p ;
else if (Cj is a DC cube) (rDC)dc += 2p ;

              for (l = 0 to n−1) partial_coeft (PHS, Cj, l); 
}
return PHS ;

}

Figure 5:  Algorithm to calculate the complete Paired Haar spectrum.

In Figure 5, the routine Initialize sets up the link list PHS and initializes the dc
coefficient (rON)dc and (rDC)dc to 0. The number of partial spectral coefficients npsc is equal to
the number of disjoint ON and DC cubes. To conserve disk space, it is sufficient to store only
the non vanishing Paired Haar coefficients. The Procedure Paired_Haar can be modified to
include options to just calculate a selected Paired Haar coefficient or only spectral
coefficients for a complete degree. In the former case, the Procedure partial_coef can be
simplified to accept the desired degree l and order k as arguments. In the latter case, the
degree l is supplied as an additional input argument to Procedure Paired_Haar and the for
loop involving l is omitted.
Example 4 : An example for calculating the Paired Haar spectrum by Procedure Paired_Haar
is shown in Table 2. The four-variable incompletely specified Boolean function used in this
example is F(X) = ΣON(1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15) + ΣDC(0). The disjoint ON and
DC cubes describing F are given in the first row of Table 2. Since there are four disjoint ON
and DC cubes, npsc = 4. The column under each disjoint cube shows its corresponding partial
spectral coefficients. The total spectrum obtained by summing all partial coefficients is given
in the last column. 
The calculation of one of the Paired Haar spectral coefficients ( , ) is(rON )1

(0) (rDC )1
(0)

demonstrated as follows :
Since  l = 1, n−l = 3. For the ON cube −−1−, p = 3, ρ3(−−1−) = 000−, q = 1. Since x3 =

'−', = 0. For the ON cube 110−, ρ3(110−) = 0001. Since k = 0 = 00002 ⊄ 0001,(rON )1
(0)

 = 0. For the ON cube 0−01, p = 1, ρ3(0−01) = 0000, q = 0. Since x3 = '−', = 0.(rON )1
(0) (rON )1

(0)

For the DC cube 0000, ρ3(0000) = 0000, p = q = 0. Since k = 0 = 00002 ⊆ 0000 and x3 = '0',
 = 20−0 = 1. Hence, , ) = (0, 1).(rDC )1

(0) ((rON )1
(0) (rDC )1

(0)



    

TABLE 2 Calculation of Paired Haar spectrum from an array of disjoint cubes.

(0, 0)000073

(0, 0)000063

(0, 0)000053

(0, 0)000043

(0, 0)000033

(-1, 0)0-10023

(0, 0)000013

(-1, 1)1-10003

(0, 0)002-232

(-2, 0)000-222

(-1, 0)010-212

(-1, 1)110-202

(-2, 0)00-2011

(0, 1)100001

(0, 1)12-2000

(12, 1)1228dc coeficient

((rON )l
(k)

, (rDC ) l
(k))(rDC ) l

(k)(rON ) l
(k)(rON ) l

(k)(rON ) l
(k)kl

Total spectrum 00000−01110 −− −1−Cube

The algorithm Ordered_Paired_Haar is implemented in C, and the computation time
and space requirement of the Paired Haar spectra for some MCNC benchmark functions are
given in Table 3. The MCNC benchmark functions in PLA format are preprocessed by the
disjoint cube algorithm [19, 20] before the test. The number of disjoint cubes is given in the
fourth column labeled #disjoint in Table 3. The number of input and output variables of each
function are also given in the second and third columns, respectively. The column labeled
#coefficients is the number of non-vanishing Paired Haar coefficients and the column labeled
Time is the system execution time in seconds on a HP Apollo Series 735 workstation.



TABLE 3  Benchmark results for Ordered_Paried_Haar.

0.0225625648rd84

0.0412814137rd73

0.02323235rd53

0.04171615xor5

0.02323285squar5

0.05 1021  1017 1010ex1010

0.15 28880 70915b12

0.27 28231 887116t481

0.032554048sqrt8

0.32 78011 1661517table5

0.02 8992 1791414table3

0.17 5404  2945 1414misex3c

0.15 3168 1641414misex3

0.032323278misex1

0.011283397inc

0.03851127con1

0.0250417659clip

0.0329106285bw

0.07511523199apex4

0.0310296410sao2

0.16 12008  1043 814alu4

0.04128128107Z5xp1

0.02128751075xp1

0.0321118519Z9sym

0.01211145199sym

Time (s)#coefficients#disjoint#outputs#inputsFunctions

5. Calculation of Haar Spectra from Binary Decision Diagrams

Due to the importance of both spectral and BDD representations in different
applications of logic design, there is a growing research interest in finding the mutual
relations between them. Recently, we have investigated the links between OBDDs and Haar
spectra of Boolean functions [6, 12, 14]. The following definitions associate the standard
characteristic set of a Haar spectral coefficient with paths in the FBDD representation. 
Definition 8 : A complete path is a path that contains vertices of all variables present in the
standard characteristic set of a spectral coefficient being calculated. 
Definition 9 : An indexed edge is an edge of a vertex whose top variable is present in the
standard characteristic set of a spectral coefficient being calculated. Conversely, a non



indexed edge is an edge of a vertex whose top variable is absent in the standard characteristic
set.

For any spectrum used in digital logic design, a set of positive and negative standard
trivial functions (PSTFs and NSTFs) can always be determined from the positions of the '1'
and '−1' entries in its transformation matrix. From the difference between the number of
minterms covered by the interception of the cover of a Boolean function and PSTFs and
NSTFs, an unified and systematic approach to the computation of the spectral coefficients for
any transform from FBDD is derived. The general principle is illustrated in Figure 6.

FBDD

according to the index   I
of the coefficient to be calculated

Select the set of complete paths, ΩI

Prune pairs of redundant complete paths
by examining their indexed edges

( )

( )(   )εM Φε(   )ηη sign z, and

The spectral coefficient is an arithmetic
function of 

(   )Compute εM Φε(   )ηη sign z, and

Figure 6: General principle for calculating any spectral coefficient from FBDD.

In Figure 6, Mε(η) represents the number of minterms covered by each path η in ΩI,

Φε(η) represents the value assigned to the path η in ΩI according to whether it contains an
odd or even number of indexed edges, and sign(z) = 1 or −1 depending on whether the order z
of the coefficient being calculated is odd or even. Since the PSTF is a tautology for the dc
coefficient of most transforms, the dc coefficient is usually calculated separately. In the
sequel, specific procedures applying the principle from Figure 6 to the calculation of the  
Haar spectra will be shown. Either the set of ON and DC paths or the set of OFF and DC
paths are considered, preferably the set with the fewer number of paths is selected. If the set
of OFF and DC paths is selected, the negation in spectral domain is required.
Computation of Haar spectrum from FBDD

 Unlike Hadamard-Walsh transform, Haar transform is local and does not possess any
recursive standard Kronecker product structure in any ordering. Due to the local property of
Haar transform, apart from the first two coefficients, the union of PSTF and NSTF does not
occupy the complete Boolean n-space. Hence, the definition of the complete path must
correlate with the reduced space of the standard trivial functions. 
Definition 10 : A local complete path is a path that fulfills all the following requirements :
1. it contains vertices of one or more variables present in the standard characteristic set of

the spectral coefficient being calculated. 
2. all indexed edge values follow the polarities of the variables present in the standard

trivial function, i.e., 0 if complemented, 1 if affirmative.
3. it contains a vertex of the extended variable xn−l.



In the above definition, it should be noted that both edges of the vertex containing the
extended variable are considered as non-indexed edges.

The local complete paths can be selected by a matching process. Each path is either
selected or rejected based on the outcome of the comparison of every indexed edge value with
the affirmative (logical 1) or negative (logical 0) value of the associated literal in the standard
trivial function uI . Starting from the root, a preorder traversal is performed. If the top variable
xi (i = index(v)) of a non terminal vertex v is present in uI , only one of its two children will
be traversed depending on the polarity of the corresponding literal in uI . If the literal is
complemented, low(v) will be visited, otherwise high(v) will be visited. When a match
occurs, the number of indexed edges is also incremented. If the top variable of v is the
extended variable (i.e., index(v) = n−l) or is absent in uI, both children of v will be traversed.
Along the traversal, the top variable of each vertex and its edge value are recorded. During
the recursive preorder traversal, whenever a terminus is encountered, a path η is selected. η is
a local complete path if the number of indexed edges is greater than 0 and the extended
variable is contained in the recorded list. Otherwise, the path is pruned. For the special case
of OBDD, the matching process can be sped up by pruning paths that do not contain the
extended literal early before the terminus is reached. Let v be the present vertex of the OBDD
and u∈{low(v), high(v)} be the next vertex to be visited according to the above rule. Then, u
will not be visited if index(v) > n−l and index(u) < n−l.

The following procedure calculates the Haar spectrum for completely and incompletely
specified Boolean functions from FBDD. 

Procedure 1 : Calculation of Haar spectrum from FBDD
A. Calculation of dc coefficient, rdc

1. The dc Haar coefficient is calculated as follows :

,                     (14)rdc = �
�F�(1)

2n− � + 1
2 �
�F�(−)

2n− �

where η(1) and η(−) are the set of ON- and DC- paths respectively, and n is the number
of variables of the Boolean function F.

B. Calculation of other coefficients, rl
(k)

1. Select only the ON- and DC- local complete paths using the matching process described
above. The set of such paths is denoted by  Ω (l, k), where l and k are the degree and
order of the Haar coefficient to be calculated.

2. The value of the Haar spectral coefficient  is given by :rl
(k)

, (15)rl
(k) = �

�(1)F
(l,k)
2n−l−�(�(1))−1�(�(1)) + 1

2 �
�(−)F
(l,k)

2n−l−�(�(−))−1�(�(−))

 where η(1) and η(−) are the ON- and DC- local complete paths respectively. κ(η) =
number of non-indexed edges in the path η − 1 (minus 1 since the non-indexed edge of
the extended variable is excluded).  The sign Φ(η) is equal to "+1" if the edge value of
the extended variable xn−l in the local complete path η is 0, and equal to "−1" if the edge
value of the extended variable is 1. It is apparent that when l = n−1, all but an edge of the
extended variable in a local complete path are indexed, and hence κ(η) = 0. 

If the spectral coefficients are calculated by considering the OFF- local complete paths
instead of the ON- local complete paths, η(1) in (14) and (15) are replaced by η(0). The
calculated spectrum is the spectrum of the complemented function, . The actual spectrum RR
can be calculated from  by the following set of equations [12, 14] :R



rdc = 2
n − ,  (16)r dc

   for l = 0,1, ..., n−1;  k = 0, 1, ..., 2l −1.          (17)rl
(k) = −r l

(k)

Example 5 : As an example, the complete set of Haar coefficients for an incompletely
specified Boolean function ON(F) = { , , x4x3x2}, DC(F) = representedx4x2x1 x4x2x1 x4x3x2

by the FBDD in Figure 7 is computed. 

x4

x1

x2

x4

x1
x3x3

0 1

0 1

0 1
0 1

0

1
0

1

a

b c

d e f

g

0 1

0 1

Figure 7:  FBDD for the incompletely specified Boolean function, 
ON(F) = { , , x4x3x2} and DC(F) = { }.x4x2x1 x4x2x1 x4x3x2

The ON-paths are ηabd(1), ηacg(1) and ηacfg(1). The only DC-path is ηabe(−). |ηabe(1)| =
|ηacg(1)| = |ηabe(−)| = 3 and |ηacfg(1)| = 4. From (14), rdc = (2+2+1) + 0.5(2) = 6.

For a sample calculation of , Ω(0, 0) = {ηabd(1), ηacg(1), ηacfg(1), ηabe(−)}.r0
(0)

 Φ(ηabd(1)) = 1, Φ(ηacg(1)) = Φ(ηacfg(1)) = Φ(ηabe(−)) = −1. 
κ(ηabd(1)) = κ(ηacg(1)) = κ(ηabe(−)) = 2 and κ(ηacfg(1)) = 3. 
From (15), = 24−0−2−1(1) + 24−0−2−1(−1) + 24−0−3−1(−1) + 0.5{24−0−2−1(−1)} = 2 − 2 − 1 − 1r0

(0)

= −2. 
Since Ω(1, 0) = ∅,  = 0. r1

(0)

All higher degree spectral coefficients are calculated similarly and the results are given 
in Table 4.



TABLE 4 Calculation of Haar spectral coefficients from FBDD.

01ηacg(1)01ηabe(−)

00−1ηacfg(1)7301−1ηacg(1)22

0−−∅63111ηacd(1)12

101ηacg(1)53111ηabd(1)02

0−−∅4311ηabe(−)

0−−∅3302−1ηacfg(1)11

−10−1ηabd(1)230−−∅01

0−−∅132−1ηabe(−)

−10−1ηabd(1)033−1ηacfg(1)

1−1ηacfg(1)2−1ηacg(1)

−21−1ηacg(1)3¨ 2.00−221ηabd(1)00

rl
(k)κ(η)Φ(η)Ω(l, k)klrl

(k)κ(η)Φ(η)Ω(l, k)kl

TABLE 5 Experimental results for the calculation of Haar spectra.

0.08269121519sct

0.2165792919pcle

0.69262136332comp

0.511638401727pcler8

 5.00 8391262124ttt2

0.07176262021cc

0.09157091316pm1

0.05591114cu

0.025147Z4ml

0.05224116cmb

0.038288f51m

0.1135490121mux

0.1932768116parity

0.0497710x2

0.05214199symml

0.066185814alu4

0.03441610alu2

Time (sec.)NumberOutputsInputsMCNC

 

Table 5  shows the results of the calculation of Haar spectra by Procedure 1. The BDD
representations of the benchmark functions are generated before applying our algorithm. The



variables are ordered according to the given circuit topology. In both tables, the columns
'Inputs' and 'Outputs' are the number of inputs and outputs of the benchmark functions
respectively. In Table 5, the column 'Number' represents the number of essential
non-vanishing Haar spectral coefficients, while the column 'Time' is the system execution
time in seconds required to calculate the Haar spectrum on an HP Apollo Series 715
workstation.

5.2 Calculation of the Haar Spectrum in Natural Ordering on Decision Diagrams

In [38] the Haar spectrum calculation based on decision diagrams was proposed. The
presented algorithm have taken the advantages of the properties of the Haar functions in the
natural ordering. However, this algoritm can be also adapted to the sequency ordering through
rearrangement of the calculation and applies to both normalized and unnormalized Haar
spectra. 

Thanks to the relation (2), the procedure for the Haar spectrum calculation is based on
following rule [38] that is performed recursively at all the nodes in the DD, starting from the
root node.
        

 Q(N, k) = (Q(N0, k − 1) �+ Q(N1, k − 1)�( 2n−k �


 (Q(N0, k − 1) �− Q(N1, k − 1)) (18)

Q(N, 0) = vN if N is the terminal node

where denotes concatenation of vectors, k is the node level, vN  is the value of the terminal�

node N, n is the number of variables and  and   are applied only for the first elements in
�+, �− �



vectors and they denote addition, subtraction and multiplication, respectively.
Finally the Haar spectrum is determined by:
                                             Yf (n) = Q(root, n).                                                                   (19)

Relations (18) can be easily modified as follows to calculate the spectrum of the
unnormalized Haar transform.
        Q(N, k) = (Q(N0, k − 1) �+ Q(N1, k − 1))�(Q(N0, k − 1) �− Q(N1, k − 1)) (20)
Example 5: By using the procedure the Haar spectrum of the integered-valued three-variable
discrete function f = [1, 1, 2, 0, 2, 0,2, 0] is calculated as follows:

         

Q(c, 1) = ([2] �+ [0])�2
�


 ([2] �− [0]) = 2 4
T

Q(c �, 1) = ([1] �+ [1])�2
�


 ([1] �− [1]) = 2 0
T

Q(b, 2) = 2
0

�+ 2
4

� 2
�



2
0

�− 2
4

= 4 0 0 4
T

Q(b �, 2) =
2
4

�+
2
4

� 2
�



2
4

�−
2
4

= 4 4 0 4
T

Q(a, 3) =

4
0
0
4

�+

4
4
0
4

�

4
0
0
4

�−

4
4
0
4

= 8 0 0 4 0 4 0 4
T



Unlike the other discrete transform and the corresponding DDs based calculation
procedures, in the calculation of the Haar spectrum through the recurrence relation (18), the
operations  and  are applied to the first elements in the sub vectors represented by the

�+, �− �



nodes in the DD. The other elements of these sub vectors are not involved in the calculation
procedure. This feature is due to the local property of Haar transform and results in a
considerable simplification of the calculation procedure for the Haar spectrum.

5.3 The Haar Spectral Diagram and Its Properties
In [22], a new data structure called “Haar Spectral Diagram” (or HSD) and its

properties have been analyzed. The natural ordered unnormalized Haar functions are used to
represent the Haar transform in terms of a Kronecker product yielding a natural
decision-diagram based representation. The resulting graph is a point decomposition of the
Haar spectrum using edge values. It was shown in [22] that the Haar spectrum represented as
an HSD requires no more nodes than the ROBDD for the same function, and for incompletely
specified functions, the HSD is isomorphic to the ROBDD.

The natural ordered unnormalized Haar transform can be represented as follows [22].
We first define the  “DC” matrix Dn  in which the first row is all ones, and all the other2n � 2n

elements are zero, then, we separate the Haar transform matrix Tn into the DC part and the
remaining  “AC” part An as:
                                       Tn = An + Dn                                                                                  (21)

We now define the matrix An for the “AC” part to be:

                                                                             (22)An =
1 0
0 1

� An−1 +
0 0
1 −1

� Dn−1

where A0 = 0. For n=3, this modified Haar Transform matrix has the form as follows, i.e.
represents the unnormalized Haar matrix in natural ordering:

                                                                                 (23)T3 =

1 1 1 1 1 1 1 1
1 −1 0 0 0 0 0 0
1 1 −1 −1 0 0 0 0
0 0 1 −1 0 0 0 0
1 1 1 1 −1 −1 −1 −1
0 0 0 0 1 −1 0 0
0 0 0 0 1 1 −1 −1
0 0 0 0 0 0 1 −1

Using the above modified Haar matrix, the Haar transform of an n-input Boolean
function f can be written as:
                                   Sn(f) = AnYn(f) + DnYn(f)                                                                    (24)

Since the first row of An is all zeros, and only the first row of Dn is non-zero,  =AY
~
S

represents the AC components of the spectrum. By (22) we can separate this vector into its
low half and high half as:
                                                                                                                  (25)L(

~
S) = An−1L(Y)

                                                                                (26)   H(
~
S) = An−1H(Y) + Dn−1(L(Y) − H(Y))

These equations are the basis for a decision diagram which is called the Haar-Spectral
Diagram(HSD) [22]. While an HSD can be used to represent any vector, unless stated
otherwise, it is assumed that  it  is being used to represent the Haar transform of some
Boolean function. An HSD is an acyclic directed graph having a single terminal node, and



with all other nodes  labeled with a variable and having two edges leaving the node labeled
“0” and “1”. Each of these variable node split the represented vector into a low and a high
half. The 1-edge of each non-terminal node, and the  top edge of the graph have a
“0-element” value. The edge value represents the first element of the vector to which it is
applied. That is, an edge value is only applied when the “0” branch is taken for all nodes
below it on a path, including any skipped variables or “cross-points”. In practice this implies
that no more than one non-zero value can be applied on any path. Figure 8 shows an HSD
node.

The HSD is the ideal representation for the Haar transform of a Boolean function
since the equations for the low half (25) and high half (26) of the spectrum fit naturally onto
the definition of the HSD. The right-hand side of the addition in (26) is a vector in which only
the first element is non-zero mapping naturally onto the HSD concept of a 0-element edge.
Similarly, the right-hand side of (21) is also a vector in which only the first element is
non-zero which also maps to the 0-element edge concept for the top node.

                                   
                  
                                   
                             
       

Figure 8: An HSD Node

Two acyclic graphs are said to be isomorphic when they have the same structure, or
more precisely(var(g), L* (g) and H*(g) are respectively the variable index, the low and high
edges of node g): 
Definition 11 : ROBDD graph GR with nodes ri and HSD graph GH with nodes hj are
isomorphic (GR  GH) if and only if there is mapping function  such that for any terminal� �

node ri of GR, (ri) maps to the unique terminal node of  GH, and for any pair of non-terminal�

nodes the mapping is one-to-one and hj = (ri) holds if and only if  var(hj ) = var(ri), L*(hj) =�

(L*(ri)) and H* (hj) =  (H*(ri)).� �

Theorem 2 : [22] For any completely specified function f having a truth table represented by
ROBDD GR(f) and Haar spectrum represented by HSD GH(f) each with the same variable
ordering, GR(f) and GH(f) are isomorphic.

Example 7: An example HSD/ROBDD for the function:
 is shown in Figure 9. Since the ROBDD isx4x3x2x1 + x4x2x0 + x4x3x2x1x0 + x4x3x2x1x0

isomorphic to the HSD, the same graph can be interpreted as either an HSD or an ROBDD.
The terminal nodes are marked to correspond to the ROBDD terminal values, but are ignored
in the HSD interpretation. The “1” edges are indicated by marking them with their HSD edge
value. For completely specified functions, the terminal node values for the ROBDD can also
be recovered from the HSD edge values. When the “1” edge value of a node is negative, any
terminal node from the “1” edge is logic-0, and any terminal node from the “0” edge is a

0 1

s0, s1, ...s7 ][

[0, s s s1, 2
, 3 ] [ 0,s5 ,s6 , s

7]

s0

2x



logic-1. When the “1” edge value is positive, the reverse is true. Furthermore, it can be shown
that if the “1” edge value of a node is 0, then that node cannot have a terminal node as a child,
since any such node would be removed by the deletion rule.

Figure 9: HSD/ROBDD for a five input function.

  6. Sign Haar Transform

Various generalizations of Haar transform are known. They were introduced to adapt
the original system of Haar functions to some practical applications as well as to extend their
applications to different classes of signals. The recent review of some selected generalizations
of Haar functions is available [37]. Some of these generalizations include the slant Haar
transform [21], Watari transform [41], complex Haar transform [31] and the real
multiple-valued Haar transform [39]. In this section another form of Haar transform is
considered known as “Sign Haar Transform” [16-18, 30] . The number of different properties
of Sign Haar Transform are investigated and presented in this section. The computational
advantages of traditional Haar versus Walsh spectra still apply for their corresponding
quantized transforms. It is therefore advantageous from the computational points of view to
use Sign Haar Transform where Sign Walsh Transform have been used i.e., for Boolean
function decomposition and testing of logical circuits [4]. Besides applications in logic
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design, the new transform can be used when there is a need for a unique coding of
binary/ternary vectors into the spectral domain of the same dimensions. One possible
application would be security coding in cryptographic systems using the Sign Haar-χ Walsh-γ
Transform [18] and ternary communication systems with the Sign Haar-χ Transform [30].

Besides calculation of both forward and inverse Sign Haar Transforms by using fast
flow diagrams which is similar to those of fast Haar Transforms, Sign Haar spectra can be
calculated directly from recursive definitions that involve data and transform domain
variables. 
Definition 12 : An invertible forward Sign Haar Transform h is:

                       (27)             h
→  
On �d �1 = sign �

xn=0

1

sign �
xn−1=0

1

...sign �
x1=0

1

(−1)xn*1 f → xn ...

 and

h
→  
On �d

→  
�p �d 2p = sign �

xn−p=0

1

sign �
xn−p−1=0

1

.             (28)..sign �
x1=0

1

(−1)xn−1 f
→ 
O n �d

→ 
� p �c (n − p) �d

→  xn−p ...

The inverse Transform is:

f → xn = sign (−1)x1 h
→  
O1 �

→ xn �c 1 �d 2n−1 +

sign (−1)x2h
→  
O2 �

→ xn �c 2 �d 2n−2 + ...

... + sign (−1)xph
→  
Op �

→ xn �c p �d 2n−p + ... +

sign (−1)xn−1h
→  

On−1 �
→ xn �c (n − 1) �d 2 +

.             (29)sign �
*1=0

1

(−1)xn*1 h
→  
On �d �1 ... ...

In (28), 1 ≤ p < n and in (29), 1 ≤ p ≤ n.
Mutual relations in the definitions of forward and inverse Sign Haar Transforms h for p-th ωp

and first transform variable ω1 are shown. For the forward transform when p → 0, (28) yields

when ω1 = 1.h
→  
On �d

→  
�p �d 2p = h

→  
On �d

→  
�0 �d 20 = h

→  
On �d 1 = h

→  
On �d �1

Hence for this condition, (27) has been derived. For the inverse transform, the p-th element is 

, and when p → n, the equation approachessign{(−1)xp h
→  
Op �

→ xn �c p �d 2n−p

sign{(−1)xn h
→  
On �

→ xn �c n �d 2n−n = sign{(−1)xn h
→  
On �c n �d 1

 when ω1 = 1.= sign{(−1)xn h
→  
On �d 1 = sign(−1)xn*1 h

→  
On �d �1

Hence, the n-th element of the recursive definition in (29) has been derived.
In this part, the Sign Haar spectra for common logic functions and the major

properties of the transform are presented. There is no direct relationship between the Sign
Haar spectra calculated for S- and R-coded Boolean functions, which differs from other
transforms used in logic design (i.e., Walsh, Haar). 

In the following presentation of the properties, let f be the original data function and  h
its Sign Haar transform. Let a and b be ternary variables, where a, b ∈ {−1, 0, 1}. 
Property 11: For arbitrary ternary variables a and b : 

sign[sign{a+b}+sign{a−b}] = a               (30)
and  sign[sign{a+b}−sign{a−b}] = b.              (31)



Property 12: Let function be a constant, such that its ternary vector  has all thef → xn
→ 
F

coefficients equal and Fj (0 ≤ j < N); Fj ∈ {−, 0, +}. Then,

 , xp, ωp ∈ {0, 1} and 1 ≤ p ≤ n.                  (32)f → xn = 0 � h →  
�n = 0

Also, .            (33)f → xn = 
1 � h →  
�n = 
�

p=1

n

(1 − �p−1 )

Property 13 : When an S-coded n-variable function is functionally dependent on a single
Boolean variable in affirmation, i.e.,

,f → xn = f(xn, ......., x1 ) = xp , p � 1, ..., n , xp � +1, −1
the corresponding Sign Haar Transform,

,           (34)h →  
�n = +1 � �n−p+1 � �

k=n−p+2

n

�k

where ωk ∈ {0, 1} and the logic AND operation in brackets ( ) will yield the value 1 or 0. If

for some p, k > n, by definition the expression  is equal to 1, otherwise the symbol �
k=n−p+2

n

�k

 represents the logical inversion of the transform variable ωk. The meaning of the symbol �k

 and the restriction on the value of  for some p, when k > n is also the same as�k �
k=n−p+2

n

�k

above for Properties 14 - 16.
Property 14 : When an S-coded n-variable function is functionally dependent on a single
Boolean variable in negation, i.e., 

 ,f → xn = f(xn, ......, x1 ) = xp , p � 1, ..., n , xp � +1, −1
its Sign Haar Transform is,

.           (35)h →  
�n = −1 � �n−p+1 � �

k=n−p+2

n

�k

Property 15 : For an S-coded n-variable Boolean function  where the Sign Haarf → xn

spectrum is , the spectrum of the negated function is derived simply by inverting all theh →  
�n

signs of the original spectra. Hence, when
, f → xn � h →  

�n

then .          (36)f → xn � −h →  
�n

Property 16 : When an R-coded n-variable function is functionally dependent on a single
Boolean variable in affirmation, i.e.,

 where p ∈ {1, 2,..., n} and xp ∈ {0,1},f → xn = xp

its Sign Haar Transform,

,         (37)h →  
�n = �

k=1

n

�k − �n−p+1 � �
k=n−p+2

n

�k

where ωk ∈ {0,1} and the logical AND operation in the bracket ( ) will yield value 1 or 0.

.h
3

→  
�4 = [+, 0, 0, 0, −, −, −, −, 0, 0, 0, 0, 0, 0, 0, 0]

Property 17 : When an R-coded n-variable function is functionally dependent on a single
Boolean variable in negation, i.e.,

 where p ∈ {1, 2,..., n} and xp ∈ {0,1},f → xn = xp

then the Sign Haar Transform

.        (38)h →  
�n = �

k=1

n

�k + �n−p+1 � �
k=n−p+2

n

�k



7. Application of Haar Transform in Logic Design

The advantages of computational and memory requirements of the Haar transform make
it of big interest to VLSI designers. For example, the authors of [33-35] presented a set of
CAD tools to perform a switch-level fault detection and diagnosis of physical faults for
practical MOS digital circuits using a reduced Haar spectrum analysis. In their system the
unnormalized reduced Haar binary spectrum was used as means not only for diagnosing
digital MOS IC's as a tool external to the circuit but also as a possibility for a self-test
strategy. The use of this set of CAD tools allowed to derive strategies for testing MOS
circuits when memory states were encountered as a consequence of some fault types. The
advantage to use Haar functions instead of Walsh functions in CAD systems based on
spectral methods for some classes of Boolean functions was shown in [24, 26, 43]. For
example, the analysis in [24] shows that the spectral complexity of conjunction and
disjunction increases with the number of variables exponentially for the Walsh functions and
only linearly for the Haar functions. The circuit of spectral multifunctional logical module
[24, 26] to generate arbitrary Boolean functions consists of a generator of basis functions, an
adder, a multiplier, and the memory to store spectral coefficients. The module can be
reprogrammed by changing dynamically its memory content. Such a behavior of the module
is useful in real time adaptive control systems [26, 43]. Karpovsky [24] noticed that the size
of the memory block can be optimized only when the Haar basis is used. It is due to the fact
that the number of non vanishing Haar coefficients is reduced with input permutation of
variables - the situation which does not apply to Walsh basis. It should be noted that the
realization of a permutation requires no special hardware [24]. Another advantage of the Haar
spectrum in this application is the smallest number of required arithmetic operations as there
are many zero entries in the Haar transform matrix and the number of non vanishing Haar
coefficients is reduced.  

In many practical problems of logic design and machine learning, weakly specified
Boolean functions are frequently encountered [8, 29]. These functions are efficiently
represented by the arrays of ON and OFF terms since a majority of their functional domain
are don't cares. The local property of the Haar transform makes it of interest in those
applications in computer-aided design systems where there are Boolean functions of many
variables that have most of their ON-minterms grouped locally. Such weakly specified and
local functions can be extremely well described by few spectral coefficients from Haar
transform while the application of Walsh, global transform would be quite cumbersome in
such cases and the locally grouped minterms would be spread throughout the Walsh
spectrum. In most engineering design problems, incompletely specified functions have to be
dealt with. The don't care sets derived from circuit structures represent an additional degree of
freedom and their effective utilization often results in highly economical circuits. To better
deal with the mentioned cases, the concept of Paired Haar transform was introduced [11, 13,
15]. In Paired Haar Transform, all the information about true and don't care minterms is kept
separately, by what it is available in different stages of CAD process. Useful properties and
applications of Paired Haar spectra in logic design, for example, minimization of mixed
polarity Reed-Muller expansion, generation of quasi-optimal FBDDs and multiplexer
synthesis for incompletely specified Boolean functions, have been demonstrated in [6, 7, 15].
An unified entropy approach operating on Paired Haar spectrum for their heuristic
optimization with effective utilization of the don't care sets for incompletely specified
Boolean functions have been developed in [7]. For FBDD and OBDD minimization, there is
no need to generate an initial BDD with an arbitrary variable ordering followed by improving



the variable ordering with local search or simulated annealing in two steps. The algorithm for
the FBDD minimization can be used for multiplexer universal logic module network
synthesis in tree type realization by treating each vertex as a set of control variables with
multiple children. The extension of the FBDD minimization algorithm to multiplexer
synthesis permits mixed control variables within each level if it leads to early termination of
more paths with constants or single variables.

8. Conclusion
This paper is a short review of some recent developments in the area of Haar

transform in logic design. This survey presented the basic definitions and properties of paired
Haar transform and its efficient calculation from disjoint cubes. Various methods of
calculation of Haar spectra through decision diagrams were also shown. A novel data
structure so called Haar decision diagram was discussed. Essential properties of Sign Haar
spectra of Boolean functions were presented. It should be noticed that as in all reviews not all
the recent work could be included and discussed. For example in [40] the relationship
between the conditional output probabilities of Boolean functions and the Haar transform is
discussed. Also the applications of Haar spectra were only mentioned and the interested
readers can look into the references for more details. Due to unique local property of Haar
spectra there should be more problems in the analysis and synthesis of Boolean and discrete
functions that could be possibly solved more efficiently by exploiting the information present
in the Haar spectrum.
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