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e Circuits

e Grover’s search algorithm
e 3-5um

e Finding the minimum

e Minimum spanning tree

e Searching in an ordered table



A possible implementation of a quantum

e A dozen ions are trapped in a magnetic
field

e they can have spin up or down (|0) or [1))
e inside a laser beam they stand still

e Otherwise the oscillate and interact with
neighbors




T he circuit model of computation
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Wires represent qubits, times goes down-
wards

two-qubit interactions are represented as
gates

There is a unitary matrix M € C?*? asso-
Ciated to each gate

Its action is M ® Id on the overal qubits
space

At the end we observe the qubits and the
outcome of the computation



More on circuits

e Gates should only be drawn from a universal, realistic
set of gates, as for example
{ Crtl-Crtl-Not (=Toffoli gate), Hadamard}

e the number of gates is the time complexity of it

e its depth the parallel computation time complexity



Two ways to encode the input
let be the binary input = € {0,1}"

]

X maps ‘b1b0> to (—1)wb‘b1b0>, where b = 2b1 —I—bo



Query model

e An algorithm corresponds to a description of a family
of circuits (for each value of n) which is uniform in the
sense that in time poly(n) the n-th circuit can be
produced

e Clearly the number of query gates < the number of
arbitrary gates

e SO a lower bound on the number of queries is a lower
bound on the time complexity in this model

e For our algorithms today, these two are identical (up to
a logarithmic factor)

e We are interested only in randomized algorithms (which
succeed with probability at least 2/3)



T he search problem
on a table f € {0,1}¥

we want x such that f(z) =1,

f = 000000010000

we want the smallest x such that f(z) =1,
knowing that f is sorted and f(N) = 1.

f = 000000011111

Query complexity : how many queries to f are necessary?



T he unstructured search

Quantum query complexity
e deterministic case O(N)

e probabilistic case O(v/'N)
Time complexity O(log(N)VN)



Algorithm of Lov Grover 1996

working space H = CN

The superposition ) a.|r) consists of N basis states,
divided into "good ones” (for f(x) =1) and "bad ones” (for

flz) =0).

The goal is to amplify the good amplitudes in order to
increase the probability of observing a solution to the search
problem.



Operators

1. Query gate
Uy : |z) — (—=1)7]z)
U; changes the phase of the "good” amplitudes

2. the diffusion operator D (be patient, definition comes
in two slides)

Suppose that there exist a single z’ € [N] such that f(z') = 1.

1. Initialize with the uniform superposition »_|z)
let's forget the normalisation factors

2. Apply DUy [Zv/N]| times

3. Observe. (the probability to observe z’ is high)
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Let's see graphically what happens

Draw an amplitude as a vector
ai+f3
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T he probability to observe a basis state is proportional to
the square of the length of the vector. Amplitudes add like

vectors.
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Definition of D (finally!)
D=—-HnxUyHpn
where Uy flips only the amplitude associated to |0)
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and Hy is the Hadamard transform, from which we only
need

Hyl0) =) |z)
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D is the inversion about the mean
Let be the mean u= ~ > a,. Then D maps

" ala) = 3t o))

x
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Evolution of the algorithm

Oy

initial superposition

after application of Uy

after application of D

Oy




T he evolution happens in a tiny subspace

At every moment all amplitudes «, for f(x) =0 are real, and
are the same.

The same happens for the good amplitudes.

Let

To) = ) |z)

x:f(x)=0

o) = ) )

x:f(x)=1

So the algorithms involves only in the subspace spanned by
[Wo), [Py).
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DU; makes a rotation by angle 20

Let |®) =) |z) and 6 the angle in the circle spanned by
{\Ifo,\:[fl}. Then

e U; is the inversion about |Uy)

e D is the inversion about |®).

W
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Required number of iterations
DUy ... DUy |®) = sin((2k + 1)6)|W1) + cos((2k + 1)6)|¥)
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But sin(f) = 4/+, therefore the probability of observing the
good basis state |z') is maximized

kng/ﬁ
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Variants of this algorithm

e [Boyer,Brassard,Hgyer, Tapp,1997]
If there are t solutions then the complexity is ©(y/N/t)

e If ¢t is not known in advance, there is an algorithm which
never errs, but its expected complexity is ©(,/N/t).
Moreover each output has equal probability 1/t.

e [0 get the error probability down to € classically we do
log(1/e€) repetitions and output the majority. Quantumly
we just need O(y/log(1/¢)) repetitions.
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3-Sum

[Bahinav,Diirr,Lafaye,Kulkarni,04]
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Reduction
3-Sum Given f:[n] — N find a,b,c € [n] such that
fla)+ f(b) + f(c) =0

[Gajentaan,Overmars,95] reduces to |

finish
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Complexity
e classically O(n?), in the algebraic decision tree Q(n?)

e quantumly O(nlogn), in the query model Q(n?/3)

e Come up with a quantum version of the algebraic
decision tree model

e Find out the quantum query complexity
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Finding the minimum

Find i such that f(i) is minimum costs ©(v/N) queries to f
[Dirr,Hgyer,1997]
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The algorithm

W.l.0.g. suppose that f is a permutation on [N]
Non-halting Algorithm A

e Choose uniformly y € [N].

e Repeat until saint glin-glin

— Search an element x such that f(z) < f(y)
use the version of Grover’s algorithm which suceeds
in expected time O(/N/(r — 1)) where r is the rank
of f(y) and runs forever if the rank is 1.

— Sety«—=x
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Final algorithm

e Let e be the expected total number of queries to f
until f(y) is the solution

e Algorithm A’: Interrupt A after 2e total queries to f
and return the current value of y.

e success probability of A’ is at least 1/2.

Now let's find out what e is. ..
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Analysis

def Let p,. be the probability that at some
moment in the execution of A f(y) has
rank r.

facts py =1/N, p1 = 1.

claim p, =1/r

proof The first moment y becomes such
that f(y) < r it is choosen unformly
(property of Grover's algorithm)

e<y %WN/(T “1) = O(VN)

and we are done.
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Extension to more functions

e Suppose we have d functions
fi:[N1] = N, ... fq:[Ng] — N and wish to compute
(41,...,1q) such that with probability > 1/2,

fi(i1), ..., fa(iq) are all minima.

e Then we if we call d times A’ (with logd repetitions to
succeed each with probability > 1 —1/2d) it would cost

O(log d Y, v/N;).

e There is an algorithm which does this with O(vVdN)
queries where N =} . N;.
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Algorithm
def S ={(j,7) : j € [d],i € [N;]}
e Choose uniformly y = (i1,...,%q) € [N1] X -+ - X [Ng]

e Repeat until saint glin-glin
— Search (i,j) € § such that f;(i) < f,(i,)

— Set ij<—i
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Application : minimum spanning tree
[Diirr,Heiligman,Hgyer,Mhalla,04]

e Given a connected graph G(V, F), w: E — N find a
spanning tree A (maximal cycle-free edge-set) with
minimum total weight »___, w(e).

e Application: find cheapest telephone network, or for a
2/3 approximation for the Traveling Salesman Problem.
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Standard approach

W.l.0.9 suppose all edge weights are different

e Start with empty edge set A, and each vertex in its own
component

e Search for every component C the cheapest border
edge e € ENC x C such that w(e) is minimal

e Add these edges to A, and merge components
connected by the new edges.

e repeat at most log, n times

29



Algorithm

e We consider the adjacency table (~ list) query model,
where the input is a function f: |m] — E.

e If there are d components, the minima search procedure
cost O(vdm) queries.

e For the -th iteration repeat 1 + 1 times to get error
probability down to 1/2'*! which makes
O((i + 1)y/(n/i)m) queries to f
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Overall picture

err. prob. # queries

) ~ 15
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<1/2 O(y/nm)
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Other results on graph problems

Problem

adj. matrix model

adj. table model

Minimum spanning tree

Connectivity

Strong connectivity
Shortest paths
2-colorability
Triangle membership

Perfect matching
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Insertion In an ordered table

History of bounds on the query complexity for the
deterministic case

e > /log N [Buhrman,deWolf,1998]

e > log, N/(2log,log, N) [Fahri..1998]

°
1V

= log, N = 0,0831og, N [Ambainis, 1999]
e > 1InN =0,22log, N [H@yer,Neerbek,2001]
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Recall: classical binary research
Query : Tj..[i] = value of the rightmost leaf of the left

Subtree
Algorithm: start with ¢ = 1, while i is not a leaf i « 2i+ T}, [i]

log, N queries is optimal, since k queries permit only to
distinguish 2% different input functions
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Quantum version

Let

M : i) = [2i+ T i]). M
makes a single query to
T.

Applied in superposi-
tion :

M(]5) + 10) + v/2[21)) =
(110) + [21) + v2|42))
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Inverse Haar transform

Let U be an opera-
tor (which also makes
a single query to T).
which Dbehaves like
U(]5) + [10) + v2[21)) =
V4[42) .

It is this operator which
gives the quantum ac-
celeration

42
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Définition U applied on border nodes

Let there be a level called the border. Then if ¢ is a border
node, Uli)= is the uniform superposition on the leafs of the

good subtree

() () (_ OO OENOENO
QOO0 QOO0 00000000
+ + + -

40 |0 |41 o [42]i [43]s

Ul5) = [40) + |41) + |42) + |43)
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Definition U applied on underborder
nodes

If ¢ is @ node under the border, then Uli) =

(—1)Tr=li (uniform superposition of the leafs of the left
subtree - uniform superposition of the leafs of the right
subtree)

QOO0 0]010101010]010101010
-+ |

40 |0 |41 o [42]i [43]s
U]10) = —[40) — |41) + |42) + |43)
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Interference scheme

400, |41}y |42} [43]

contribution: + + + 4+
_|_ _
final amplitudes 0 O 1 0
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A single call to U is enough to the solution exacty, if is
applied on the correct superposition.

How can we produce the required
superposition 7

[Haha. . .]
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A distribution of colored pebbles on
nodes (which are not leafs)

satisfying :
(A) on every path from the root to a leaf there is exactly one pebble
from each color

(B) the number of pebbles in a node (except on the border) is the total
number of pebbles of his ancestors

Definition The border is just the first level containing pebbles

O O O O
(o) (@ C) () (o) (o) (o) (&
(©) EXEEEEEEEEEEOOE &
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T he algorithm

We have two registers: one containing a color, the other
containing a node number.

1. put the first register in superposition on the colors
(19)+] )+19)+19))  |0)

2. put in the second register the number of the unique
node of the good path containing the pebble of this
color

@)15) + 1 )[10) +[©)[21) + |@)[21)
3. uncolor the first register

0) @ (|5) +[10) + v/2]21))
4. apply U on the second register

0)[42)

42



T he recursion

Among all nodes containing a pebble of a fixed color
finding the unique node on the good path comes to
finding the first node ¢ such that T,..|i] =1. (£ Ty~ 1)

@
() (O
() () ()
() @ v d %
Sounds familiar?

Size of the new table N/3 + O(log N)
— Complexity log; N + O(1)
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