Quantum search algorithms

Christoph Dürr LRI, Univ. Paris-Sud

version 4 for the spring school at Montagnac les Truffes

- Circuits
- Grover's search algorithm
- 3-Sum
- Finding the minimum
- Minimum spanning tree
- Searching in an ordered table

A possible implementation of a quantum computer

- A dozen ions are trapped in a magnetic field
- they can have spin up or down ($|0\rangle$ or $|1\rangle$)
- inside a laser beam they stand still
- otherwise the oscillate and interact with neighbors

The circuit model of computation

- Wires represent qubits, times goes downwards
- two-qubit interactions are represented as gates
- ullet There is a unitary matrix $M\in\mathbb{C}^{2 imes2}$ associated to each gate
- \bullet Its action is $M\otimes Id$ on the overal qubits space
- At the end we observe the qubits and the outcome of the computation

More on circuits

 Gates should only be drawn from a universal, realistic set of gates, as for example
 { Crtl-Crtl-Not (=Toffoli gate), Hadamard}

- the number of gates is the time complexity of it
- its depth the parallel computation time complexity

Two ways to encode the input

let be the binary input $x \in \{0,1\}^n$

In the initial configuration In a query gate

 $X \text{ maps } |b_1b_0\rangle \text{ to } (-1)^{x_b}|b_1b_0\rangle$, where $b=2b_1+b_0$.

Query model

- An algorithm corresponds to a description of a family of circuits (for each value of n) which is uniform in the sense that in time poly(n) the n-th circuit can be produced
- Clearly the number of query gates ≤ the number of arbitrary gates
- So a lower bound on the number of queries is a lower bound on the time complexity in this model
- For our algorithms today, these two are identical (up to a logarithmic factor)
- We are interested only in randomized algorithms (which succeed with probability at least 2/3)

The search problem

on a table $f \in \{0,1\}^N$

unstructured case

we want x such that f(x) = 1,

$$f = 00000010000$$

sorted case

we want the smallest x such that f(x)=1, knowing that f is sorted and f(N)=1.

$$f = 0000000111111$$

Query complexity: how many queries to f are necessary?

The unstructured search

Quantum query complexity

- ullet deterministic case $\Theta(N)$
- probabilistic case $\Theta(\sqrt{N})$ Time complexity $O(\log(N)\sqrt{N})$

Algorithm of Lov Grover 1996

working space $\mathcal{H} = \mathbb{C}^N$

Idea

The superposition $\sum_x \alpha_x |x\rangle$ consists of N basis states, divided into "good ones" (for f(x)=1) and "bad ones" (for f(x)=0).

The goal is to amplify the good amplitudes in order to increase the probability of observing a solution to the search problem.

Operators

1. Query gate

$$U_f:|x\rangle\mapsto (-1)^{f(x)}|x\rangle$$

 U_f changes the phase of the "good" amplitudes

2. the diffusion operator D (be patient, definition comes in two slides)

Algorithm

Suppose that there exist a single $x' \in [N]$ such that f(x') = 1.

- 1. Initialize with the uniform superposition $\sum_{x} |x\rangle$ let's forget the normalisation factors
- 2. Apply $DU_f \lfloor \frac{\pi}{4} \sqrt{N} \rfloor$ times
- 3. Observe. (the probability to observe x' is high)

Let's see graphically what happens

Draw an amplitude as a vector

The probability to observe a basis state is proportional to the square of the length of the vector. Amplitudes add like vectors.

Definition of D (finally!)

$$D = -H_N U_0 H_N$$

where U_0 flips only the amplitude associated to $|0\rangle$

$$U_0 = \left(egin{array}{cccc} -1 & 0 & & 0 \ 0 & 1 & & 0 \ & & \ddots & & \ 0 & 0 & & 1 \end{array}
ight)$$

and H_N is the Hadamard transform, from which we only need

$$H_N|0\rangle = \sum_x |x\rangle$$

D is the inversion about the mean

Let be the mean $\mu = \frac{1}{N} \sum_{x} \alpha_{x}$. Then D maps

$$\sum_{x} \alpha_x |x\rangle := \sum_{x} (\mu + \alpha_x') |x\rangle$$

to

$$\sum_{x} (\mu - \alpha_x') |x\rangle$$

Explanation

Evolution of the algorithm

initial superposition

after application of U_f

after application of ${\cal D}$

The evolution happens in a tiny subspace

At every moment all amplitudes α_x for f(x) = 0 are real, and are the same.

The same happens for the good amplitudes.

Therefore

Let

$$|\Psi_0\rangle = \sum_{x:f(x)=0} |x\rangle$$

 $|\Psi_1\rangle = \sum_{x:f(x)=1} |x\rangle$

So the algorithms involves only in the subspace spanned by $|\Psi_0\rangle, |\Psi_1\rangle.$

DU_f makes a rotation by angle 2θ

Let $|\Phi\rangle=\sum_x|x\rangle$ and θ the angle in the circle spanned by $\{\Psi_0,\Psi_1\}$. Then

- ullet U_f is the inversion about $|\Psi_0
 angle$
- D is the inversion about $|\Phi\rangle$.

Required number of iterations

$$\underbrace{DU_f \dots DU_f}_{k} |\Phi\rangle = \sin((2k+1)\theta)|\Psi_1\rangle + \cos((2k+1)\theta)|\Psi_0\rangle$$

But $\sin(\theta)=\sqrt{\frac{1}{N}}$, therefore the probability of observing the good basis state $|x'\rangle$ is maximized

$$k \sim \frac{\pi}{4} \sqrt{N}$$

Variants of this algorithm

- [Boyer, Brassard, Høyer, Tapp, 1997] If there are t solutions then the complexity is $\Theta(\sqrt{N/t})$
- If t is not known in advance, there is an algorithm which never errs, but its expected complexity is $\Theta(\sqrt{N/t})$. Moreover each output has equal probability 1/t.
- To get the error probability down to ϵ classically we do $\log(1/\epsilon)$ repetitions and output the majority. Quantumly we just need $O(\sqrt{\log(1/\epsilon)})$ repetitions.

3-Sum

[Bahinav, Dürr, Lafaye, Kulkarni, 04]

Reduction

3-Sum Given $f:[n] \to \mathbb{N}$ find $a,b,c \in [n]$ such that f(a)+f(b)+f(c)=0

[Gajentaan, Overmars, 95] reduces to ↓

Complexity

- classically $O(n^2)$, in the algebraic decision tree $\Omega(n^2)$
- quantumly $O(n \log n)$, in the query model $\Omega(n^{2/3})$

Directions of research

- Come up with a quantum version of the algebraic decision tree model
- Find out the quantum query complexity

Finding the minimum

Find i such that f(i) is minimum costs $\Theta(\sqrt{N})$ queries to f [Dürr, Høyer, 1997]

The algorithm

W.I.o.g. suppose that f is a permutation on [N]

Non-halting Algorithm A

- Choose uniformly $y \in [N]$.
- Repeat until saint glin-glin
 - Search an element x such that f(x) < f(y) use the version of Grover's algorithm which suceeds in expected time $O(\sqrt{N/(r-1)})$ where r is the rank of f(y) and runs forever if the rank is 1.
 - Set $y \leftarrow x$

Final algorithm

- Let e be the expected total number of queries to f until f(y) is the solution
- Algorithm A': Interrupt A after 2e total queries to f and return the current value of y.
- success probability of A' is at least 1/2.

Now let's find out what e is. . .

Analysis

def Let p_r be the probability that at some moment in the execution of A f(y) has rank r.

facts
$$p_N=1/N$$
, $p_1=1$. claim $p_r=1/r$

proof The first moment y becomes such that $f(y) \leq r$ it is choosen unformly (property of Grover's algorithm)

$$e \le \sum_{r=2}^{N} \frac{1}{r} c\sqrt{N/(r-1)} = O(\sqrt{N})$$

and we are done.

Extension to more functions

- Suppose we have d functions $f_1:[N_1] \to \mathbb{N}, \ldots f_d:[N_d] \to \mathbb{N}$ and wish to compute (i_1,\ldots,i_d) such that with probability $\geq 1/2$, $f_1(i_1),\ldots,f_d(i_d)$ are all minima.
- Then we if we call d times A' (with $\log d$ repetitions to succeed each with probability $\geq 1-1/2d$) it would cost $O(\log d\sum_j \sqrt{N_j})$.
- There is an algorithm which does this with $O(\sqrt{dN})$ queries where $N = \sum_j N_j$.

Algorithm

$$\mathsf{def}\ S = \{(j, i) : j \in [d], i \in [N_j]\}$$

- Choose uniformly $y = (i_1, \dots, i_d) \in [N_1] \times \dots \times [N_d]$
- Repeat until saint glin-glin
 - Search $(i,j) \in S$ such that $f_j(i) < f_j(i_j)$
 - Set $i_j \leftarrow i$

Application: minimum spanning tree

[Dürr, Heiligman, Høyer, Mhalla, 04]

- Given a connected graph G(V,E), $w:E\to\mathbb{N}$ find a spanning tree A (maximal cycle-free edge-set) with minimum total weight $\sum_{e\in A}w(e)$.
- Application: find cheapest telephone network, or for a 2/3 approximation for the Traveling Salesman Problem.

Standard approach

W.l.o.g suppose all edge weights are different

- Start with empty edge set A, and each vertex in its own component
- Search for every component C the cheapest border edge $e \in E \cap C \times \overline{C}$ such that w(e) is minimal

- ullet Add these edges to A, and merge components connected by the new edges.
- repeat at most $\log_2 n$ times

Algorithm

- We consider the adjacency table (\sim list) query model, where the input is a function $f:[m] \to E$.
- If there are d components, the minima search procedure cost $O(\sqrt{dm})$ queries.
- For the i-th iteration repeat i+1 times to get error probability down to $1/2^{i+1}$, which makes $O((i+1)\sqrt{(n/i)m})$ queries to f

Overall picture

$$\leq 1/2$$

$$O(\sqrt{nm})$$

Other results on graph problems

Problem	adj. matrix model	adj. table model
Minimum spanning tree	$\Theta(n^{3/2})$	$\Theta(\sqrt{nm})$
Connectivity	$\Theta(n^{3/2})$	$\Theta(n)$
Strong connectivity	$\Theta(n^{3/2})$	$\Omega(\sqrt{nm}) \ O(\sqrt{nm \log n})$
Shortest paths	$\Omega(n^{3/2}) \qquad O(n^{3/2}\log^2 n)$	$\Omega(\sqrt{nm}) \ O(\sqrt{nm}\log^2 n)$
2-colorability	$\Omega(n^{3/2}) O(n^{3/2})$	$\Theta(n)$
Triangle membership	$\Omega(n)$ $O(n^{1.3})$	
Perfect matching	$\Omega(n^{3/2})$	

Insertion in an ordered table

History of bounds on the query complexity for the deterministic case

- $\geq \sqrt{\log N}$ [Buhrman,deWolf,1998]
- $\geq \log_2 N/(2\log_2\log_2 N)$ [Fahri..1998]
- $\geq \frac{1}{12} \log_2 N = 0,083 \log_2 N$ [Ambainis,1999]
- $\bullet \geq \frac{1}{\pi} \ln N = 0,22 \log_2 N$ [Høyer, Neerbek, 2001]
- $\leq 3 \log_{52} N = 0,526 \log_2 N$ [Fahri..1999]
- $\leq \log_3(N) = 0.631 \log_2 N$ [Høyer, Neerbek, 2001]

Recall: classical binary research

Query : $T_{lr*}[i]$ = value of the rightmost leaf of the left subtree

Algorithm: start with i=1, while i is not a leaf $i \leftarrow 2i + \overline{T_{lr*}[i]}$

 $\log_2 N$ queries is optimal, since k queries permit only to distinguish 2^k different input functions

Quantum version

Let

 $M:|i\rangle\mapsto|2i+\overline{T_{lr*}[i]}\rangle.$ M makes a single query to T

Applied in superposition:

$$M(|5\rangle + |10\rangle + \sqrt{2}|21\rangle) =$$
$$(|10\rangle + |21\rangle + \sqrt{2}|42\rangle)$$

Inverse Haar transform

Let U be an operator (which also makes a single query to T).

which behaves like : $U(|5\rangle + |10\rangle + \sqrt{2}|21\rangle) = \sqrt{4}|42\rangle.$

It is this operator which gives the quantum acceleration

Définition U applied on border nodes

Let there be a level called the *border*. Then if i is a border node, $U|i\rangle=$ is the uniform superposition on the leafs of the good subtree

Definition U applied on underborder nodes

If i is a node under the border, then $U|i\rangle=(-1)^{\overline{T_{lr*}[i]}}$ (uniform superposition of the leafs of the left subtree - uniform superposition of the leafs of the right subtree)

$$U|10\rangle = -|40\rangle - |41\rangle + |42\rangle + |43\rangle$$

Interference scheme

A single call to U is enough to the solution exacty, if is applied on the correct superposition.

How can we produce the required superposition ?

[Haha...]

A distribution of colored pebbles on nodes (which are not leafs)

satisfying:

- (A) on every path from the root to a leaf there is exactly one pebble from each color
- (B) the number of pebbles in a node (except on the border) is the total number of pebbles of his ancestors

Definition The border is just the first level containing pebbles

The algorithm

We have two registers: one containing a color, the other containing a node number.

1. put the first register in superposition on the colors

$$(| \bullet \rangle + | \bullet \rangle + | \bullet \rangle + | \bullet \rangle) \otimes | 0 \rangle$$

2. put in the second register the number of the unique node of the good path containing the pebble of this color

$$| \bullet \rangle | 5 \rangle + | \bullet \rangle | 10 \rangle + | \bullet \rangle | 21 \rangle + | \bullet \rangle | 21 \rangle$$

3. uncolor the first register

$$|0\rangle \otimes (|5\rangle + |10\rangle + \sqrt{2}|21\rangle)$$

4. apply U on the second register

$$|0\rangle|42\rangle$$

The recursion

Among all nodes containing a pebble of a fixed color finding the unique node on the good path comes to finding the first node i such that $T_{r*}[i] = 1$. $(\neq T_{lr*}!)$

Sounds familiar?

Size of the new table $N/3 + O(\log N)$

 \rightarrow Complexity $\log_3 N + O(1)$