
Quantum search algorithms

Christoph Dürr

LRI, Univ. Paris-Sud

version 4 for the spring school at Montagnac les Truffes

• Circuits

• Grover’s search algorithm

• 3-Sum

• Finding the minimum

• Minimum spanning tree

• Searching in an ordered table

1

A possible implementation of a quantum
computer

• A dozen ions are trapped in a magnetic

field

• they can have spin up or down (|0〉 or |1〉)

• inside a laser beam they stand still

• otherwise the oscillate and interact with

neighbors

2

The circuit model of computation

• Wires represent qubits, times goes down-

wards

• two-qubit interactions are represented as

gates

• There is a unitary matrix M ∈ C2×2 asso-

ciated to each gate

• Its action is M ⊗ Id on the overal qubits

space

• At the end we observe the qubits and the

outcome of the computation

3

More on circuits

• Gates should only be drawn from a universal, realistic

set of gates, as for example

{ Crtl-Crtl-Not (=Toffoli gate), Hadamard}

�� ��

• the number of gates is the time complexity of it

• its depth the parallel computation time complexity

4

Two ways to encode the input

let be the binary input x ∈ {0, 1}n

In the initial configuration In a query gate

X maps |b1b0〉 to (−1)xb |b1b0〉, where b = 2b1 + b0.

5

Query model

• An algorithm corresponds to a description of a family

of circuits (for each value of n) which is uniform in the

sense that in time poly(n) the n-th circuit can be

produced

• Clearly the number of query gates ≤ the number of

arbitrary gates

• So a lower bound on the number of queries is a lower

bound on the time complexity in this model

• For our algorithms today, these two are identical (up to

a logarithmic factor)

• We are interested only in randomized algorithms (which

succeed with probability at least 2/3)

6

The search problem
on a table f ∈ {0, 1}N

unstructured case

we want x such that f(x) = 1,

f = 000000010000

sorted case

we want the smallest x such that f(x) = 1,

knowing that f is sorted and f(N) = 1.

f = 000000011111

Query complexity : how many queries to f are necessary?

7

The unstructured search

Quantum query complexity

• deterministic case Θ(N)

• probabilistic case Θ(
√

N)

Time complexity O(log(N)
√

N)

8

Algorithm of Lov Grover 1996

working space H = CN

Idea

The superposition
∑

x αx|x〉 consists of N basis states,

divided into ”good ones” (for f(x) = 1) and ”bad ones” (for

f(x) = 0).

The goal is to amplify the good amplitudes in order to

increase the probability of observing a solution to the search

problem.

9

Operators

1. Query gate

Uf : |x〉 7→ (−1)f(x)|x〉
Uf changes the phase of the ”good” amplitudes

2. the diffusion operator D (be patient, definition comes

in two slides)

Algorithm

Suppose that there exist a single x′ ∈ [N] such that f(x′) = 1.

1. Initialize with the uniform superposition
∑

x |x〉
let’s forget the normalisation factors

2. Apply DUf bπ
4

√
Nc times

3. Observe. (the probability to observe x′ is high)

10

Let’s see graphically what happens

Draw an amplitude as a vector

α

β

α +βi

The probability to observe a basis state is proportional to

the square of the length of the vector. Amplitudes add like

vectors.

b

aa+b

97 %
3%

a
b

a+b

11

Definition of D (finally!)

D = −HNU0HN

where U0 flips only the amplitude associated to |0〉

U0 =











−1 0 0

0 1 0

. . .

0 0 1











and HN is the Hadamard transform, from which we only

need

HN |0〉 =
∑

x

|x〉

12

D is the inversion about the mean

Let be the mean µ = 1
N

∑

x αx. Then D maps

∑

x

αx|x〉 :=
∑

x

(µ + α′

x)|x〉

to
∑

x

(µ− α′

x)|x〉

Explanation

D = 2








1
N

1
N

. . .

1
N

1
N







− I

µ

µ

µ α

2µ

−

−α

α

β

α
x

x x

x
x

13

Evolution of the algorithm

initial superposition

α

µ

x

x

after application of Uf

α

µ

x

x

after application of D

α

µ

x

x

14

The evolution happens in a tiny subspace

At every moment all amplitudes αx for f(x) = 0 are real, and

are the same.

The same happens for the good amplitudes.

Therefore

Let

|Ψ0〉 =
∑

x:f(x)=0

|x〉

|Ψ1〉 =
∑

x:f(x)=1

|x〉

So the algorithms involves only in the subspace spanned by

|Ψ0〉, |Ψ1〉.

15

DUf makes a rotation by angle 2θ

Let |Φ〉 =
∑

x |x〉 and θ the angle in the circle spanned by

{Ψ0, Ψ1}. Then

• Uf is the inversion about |Ψ0〉

• D is the inversion about |Φ〉.

0

fΦ

DUf Φ

Φ

θ
θ

2θ

Ψ1

Ψ

U

16

Required number of iterations

DUf . . .DUf
︸ ︷︷ ︸

k

|Φ〉 = sin((2k + 1)θ)|Ψ1〉+ cos((2k + 1)θ)|Ψ0〉

But sin(θ) =
√

1
N , therefore the probability of observing the

good basis state |x′〉 is maximized

k ∼ π

4

√
N

17

Variants of this algorithm

• [Boyer,Brassard,Høyer,Tapp,1997]

If there are t solutions then the complexity is Θ(
√

N/t)

• If t is not known in advance, there is an algorithm which

never errs, but its expected complexity is Θ(
√

N/t).

Moreover each output has equal probability 1/t.

• To get the error probability down to ε classically we do

log(1/ε) repetitions and output the majority. Quantumly

we just need O(
√

log(1/ε)) repetitions.

18

3-Sum

[Bahinav,Dürr,Lafaye,Kulkarni,04]

19

Reduction

3-Sum Given f : [n]→ N find a, b, c ∈ [n] such that

f(a) + f(b) + f(c) = 0

[Gajentaan,Overmars,95] reduces to ↓

� � � � �

� 	
 � �

20

Complexity

• classically O(n2), in the algebraic decision tree Ω(n2)

• quantumly O(n log n), in the query model Ω(n2/3)

Directions of research

• Come up with a quantum version of the algebraic

decision tree model

• Find out the quantum query complexity

21

Finding the minimum

Find i such that f(i) is minimum costs Θ(
√

N) queries to f

[Dürr,Høyer,1997]

22

The algorithm

W.l.o.g. suppose that f is a permutation on [N]

Non-halting Algorithm A

• Choose uniformly y ∈ [N].

• Repeat until saint glin-glin

– Search an element x such that f(x) < f(y)

use the version of Grover’s algorithm which suceeds

in expected time O(
√

N/(r − 1)) where r is the rank

of f(y) and runs forever if the rank is 1.

– Set y ← x

23

Final algorithm

• Let e be the expected total number of queries to f

until f(y) is the solution

• Algorithm A′: Interrupt A after 2e total queries to f

and return the current value of y.

• success probability of A′ is at least 1/2.

Now let’s find out what e is. . .

24

Analysis
def Let pr be the probability that at some

moment in the execution of A f(y) has

rank r.

facts pN = 1/N , p1 = 1.

claim pr = 1/r

proof The first moment y becomes such

that f(y) ≤ r it is choosen unformly

(property of Grover’s algorithm)

e ≤
N∑

r=2

1

r
c
√

N/(r − 1) = O(
√

N)

and we are done.

25

Extension to more functions

• Suppose we have d functions

f1 : [N1]→ N, . . . fd : [Nd]→ N and wish to compute

(i1, . . . , id) such that with probability ≥ 1/2,

f1(i1), . . . , fd(id) are all minima.

• Then we if we call d times A′ (with log d repetitions to

succeed each with probability ≥ 1− 1/2d) it would cost

O(log d
∑

j

√
Nj).

• There is an algorithm which does this with O(
√

dN)

queries where N =
∑

j Nj.

26

Algorithm

def S = {(j, i) : j ∈ [d], i ∈ [Nj]}

• Choose uniformly y = (i1, . . . , id) ∈ [N1]× · · · × [Nd]

• Repeat until saint glin-glin

– Search (i, j) ∈ S such that fj(i) < fj(ij)

– Set ij ← i

27

Application : minimum spanning tree

[Dürr,Heiligman,Høyer,Mhalla,04]

• Given a connected graph G(V, E), w : E → N find a

spanning tree A (maximal cycle-free edge-set) with

minimum total weight
∑

e∈A w(e).

• Application: find cheapest telephone network, or for a

2/3 approximation for the Traveling Salesman Problem.

28

Standard approach

W.l.o.g suppose all edge weights are different

• Start with empty edge set A, and each vertex in its own

component

• Search for every component C the cheapest border

edge e ∈ E ∩ C × C such that w(e) is minimal

• Add these edges to A, and merge components

connected by the new edges.

• repeat at most log2 n times

29

Algorithm

• We consider the adjacency table (∼ list) query model,

where the input is a function f : [m]→ E.

• If there are d components, the minima search procedure

cost O(
√

dm) queries.

• For the i-th iteration repeat i + 1 times to get error

probability down to 1/2i+1, which makes

O((i + 1)
√

(n/i)m) queries to f

30

Overall picture

err. prob. # queries

1/4 2
√

nm

1/8 3
√

(n/2)m

1/16 4
√

(n/4)m
...

≤ 1/2 O(
√

nm)

31

Other results on graph problems

Problem adj. matrix model adj. table model

Minimum spanning tree Θ(n3/2) Θ(
√

nm)

Connectivity Θ(n3/2) Θ(n)

Strong connectivity Θ(n3/2) Ω(
√

nm) O(
√

nm log n)

Shortest paths Ω(n3/2) O(n3/2 log2
n) Ω(

√

nm) O(
√

nm log2
n)

2-colorability Ω(n3/2) O(n3/2) Θ(n)

Triangle membership Ω(n) O(n1.3)

Perfect matching Ω(n3/2)

32

Insertion in an ordered table

History of bounds on the query complexity for the

deterministic case

• ≥
√

log N [Buhrman,deWolf,1998]

• ≥ log2 N/(2 log2 log2 N) [Fahri..1998]

• ≥ 1
12 log2 N = 0, 083 log2 N [Ambainis,1999]

• ≥ 1
π lnN = 0, 22 log2 N [Høyer,Neerbek,2001]

• ≤ 3 log52 N = 0, 526 log2 N [Fahri..1999]

• ≤ log3(N) = 0, 631 log2 N [Høyer,Neerbek,2001]

33

Recall: classical binary research

Query : Tlr∗[i] = value of the rightmost leaf of the left

subtree

Algorithm: start with i = 1, while i is not a leaf i← 2i+Tlr∗[i]

1

2

4

8

16

0 0

17

0 0

9

18

0 0

19

0 0

5

10

20

0 0

21

1 1

11

22

1 1

23

1 1

3

6

12

24

1 1

25

1 1

13

26

1 1

27

1 1

7

14

28

1 1

29

1 1

15

30

1 1

31

1 1

log2 N queries is optimal, since k queries permit only to

distinguish 2k different input functions

34

Quantum version

1

2

5

10

21

42

7→ 1

2

5

10

21

42

Let

M : |i〉 7→ |2i+Tlr∗[i]〉. M

makes a single query to

T.

Applied in superposi-

tion :

M(|5〉 + |10〉 +
√

2|21〉) =

(|10〉+ |21〉+
√

2|42〉)

35

Inverse Haar transform

1

1

5

10

21

42

7→ 1

2

5

10

21

42

Let U be an opera-

tor (which also makes

a single query to T).

which behaves like :

U(|5〉 + |10〉 +
√

2|21〉) =√
4|42〉.

It is this operator which

gives the quantum ac-

celeration

36

Définition U applied on border nodes

Let there be a level called the border. Then if i is a border

node, U |i〉= is the uniform superposition on the leafs of the

good subtree

5

40 0

+
41 0

+
42 1

+
43 1

+

U |5〉 = |40〉+ |41〉+ |42〉+ |43〉

37

Definition U applied on underborder
nodes

If i is a node under the border, then U |i〉 =

(−1)Tlr∗[i](uniform superposition of the leafs of the left

subtree - uniform superposition of the leafs of the right

subtree)

10

40 0

-
41 0

-
42 1

+
43 1

+

U |10〉 = −|40〉 − |41〉+ |42〉+ |43〉

38

Interference scheme

5

10

20 21

40 0 41 0 42 1 43 1

contribution: + + + +

- - + +

+ -

+ -

final amplitudes 0 0 1 0

39

A single call to U is enough to the solution exacty, if is

applied on the correct superposition.

How can we produce the required
superposition ?

[Haha. . .]

40

A distribution of colored pebbles on
nodes (which are not leafs)
satisfying :

(A) on every path from the root to a leaf there is exactly one pebble

from each color

(B) the number of pebbles in a node (except on the border) is the total

number of pebbles of his ancestors

Definition The border is just the first level containing pebbles

.

41

The algorithm

We have two registers: one containing a color, the other

containing a node number.

1. put the first register in superposition on the colors

(| 〉+ | 〉+ | 〉+ | 〉)⊗ |0〉

2. put in the second register the number of the unique

node of the good path containing the pebble of this

color

| 〉|5〉+ | 〉|10〉+ | 〉|21〉+ | 〉|21〉

3. uncolor the first register

|0〉 ⊗ (|5〉+ |10〉+
√

2|21〉)

4. apply U on the second register

|0〉|42〉

42

The recursion

Among all nodes containing a pebble of a fixed color

finding the unique node on the good path comes to

finding the first node i such that Tr∗[i] = 1. (6= Tlr∗ !)

0

1 1

1 1 1 1 1 1 1 1

Sounds familiar?

Size of the new table N/3 + O(log N)

→ Complexity log3 N + O(1)

43

