
Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 1

1

Computer Graphics & Image Processing
Sixteen lectures

Part IB
Part II(General)
Diploma

Normally lectured by Dr Neil Dodgson
Three exam questions

2What are Computer Graphics &
Image Processing?

Scene
description

Digital
image

Computer
graphics

Image analysis &
computer vision

Image processing

3What are Computer Graphics &
Image Processing?

Scene
description

Digital
image

Computer
graphics

Image analysis &
computer vision

Image processing

Image
capture

Image
display

4

Why bother with CG & IP?
All visual computer output depends on
Computer Graphics

printed output
monitor (CRT/LCD/whatever)
all visual computer output consists of real images
generated by the computer from some internal
digital image

5

What are CG & IP used for?
2D computer graphics

graphical user interfaces: Mac, Windows, X,…
graphic design: posters, cereal packets,…
typesetting: book publishing, report writing,…

Image processing
photograph retouching: publishing, posters,…
photocollaging: satellite imagery,…
art: new forms of artwork based on digitised images

3D computer graphics
visualisation: scientific, medical, architectural,…
Computer Aided Design (CAD)
entertainment: special effect, games, movies,…

6

Course Structure
Background [3L]

images, human vision, displays

2D computer graphics [4L]
lines, curves, clipping, polygon filling,
transformations

3D computer graphics [6L]
projection (3D→2D), surfaces,
clipping, transformations, lighting,
filling, ray tracing, texture mapping

Image processing [3L]
filtering, compositing, half-toning,
dithering, encoding, compression

Background

2D CG IP

3D CG

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 2

7

Course books
Computer Graphics: Principles & Practice

Foley, van Dam, Feiner & Hughes,Addison-Wesley, 1990
Older version: Fundamentals of Interactive Computer Graphics

Foley & van Dam, Addison-Wesley, 1982
Computer Graphics & Virtual Environments

Slater, Steed, & Chrysanthou, Addison-Wesley, 2002

Digital Image Processing
Gonzalez & Woods, Addison-Wesley, 1992

Alternatives:
Digital Image Processing, Gonzalez & Wintz
Digital Picture Processing, Rosenfeld & Kak

8
Past exam questions

Dr Dodgson has been lecturing the course since 1996
the course changed considerably between 1996 and 1997
all questions from 1997 onwards are good examples of his
question setting style
do not worry about the last 5 marks of 97/5/2

this is now part of Advanced Graphics syllabus

do not attempt exam questions from 1994 or earlier
the course was so different back then that they are not helpful

9

Background
what is a digital image?

what are the constraints on digital images?
how does human vision work?

what are the limits of human vision?
what can we get away with given these constraints
& limits?

how do displays & printers work?
how do we fool the human eye into seeing what
we want it to see?

2D CG IP

3D CG

Background

10

What is an image?
two dimensional function
value at any point is an intensity or colour
not digital!

11

What is a digital image?
a contradiction in terms

if you can see it, it’s not digital
if it’s digital, it’s just a collection of numbers

a sampled and quantised version of a real
image
a rectangular array of intensity or colour
values

12

Image capture
a variety of devices can be used

scanners
line CCD in a flatbed scanner
spot detector in a drum scanner

cameras
area CCD

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 3

13

Image capture example

A real image A digital image

103 59 12 80 56 12 34 30 1 78 79 21 145 156 52 136 143 65 115 129 41 128 143 50 85
106 11 74 96 14 85 97 23 66 74 23 73 82 29 67 76 21 40 48 7 33 39 9 94 54 19
42 27 6 19 10 3 59 60 28 102 107 41 208 88 63 204 75 54 197 82 63 179 63 46 158 62
46 146 49 40 52 65 21 60 68 11 40 51 17 35 37 0 28 29 0 83 50 15 2 0 1 13 14
8 243 173 161 231 140 69 239 142 89 230 143 90 210 126 79 184 88 48 152 69 35 123 51
27 104 41 23 55 45 9 36 27 0 28 28 2 29 28 7 40 28 16 13 13 1 224 167 112 240
174 80 227 174 78 227 176 87 233 177 94 213 149 78 196 123 57 141 72 31 108 53 22 121
62 22 126 50 24 101 49 35 16 21 1 12 5 0 14 16 11 3 0 0 237 176 83 244 206 123
241 236 144 238 222 147 221 190 108 215 170 77 190 135 52 136 93 38 76 35 7 113 56 26
156 83 38 107 52 21 31 14 7 9 6 0 20 14 12 255 214 112 242 215 108 246 227 133 239
232 152 229 209 123 232 193 98 208 162 64 179 133 47 142 90 32 29 19 27 89 53 21 171
116 49 114 64 29 75 49 24 10 9 5 11 16 9 237 190 82 249 221 122 241 225 129 240 219
126 240 199 93 218 173 69 188 135 33 219 186 79 189 184 93 136 104 65 112 69 37 191 153
80 122 74 28 80 51 19 19 37 47 16 37 32 223 177 83 235 208 105 243 218 125 238 206
103 221 188 83 228 204 98 224 220 123 210 194 109 192 159 62 150 98 40 116 73 28 146 104
46 109 59 24 75 48 18 27 33 33 47 100 118 216 177 98 223 189 91 239 209 111 236 213
117 217 200 108 218 200 100 218 206 104 207 175 76 177 131 54 142 88 41 108 65 22 103
59 22 93 53 18 76 50 17 9 10 2 54 76 74 108 111 102 218 194 108 228 203 102 228 200
100 212 180 79 220 182 85 198 158 62 180 138 54 155 106 37 132 82 33 95 51 14 87 48
15 81 46 14 16 15 0 11 6 0 64 90 91 54 80 93 220 186 97 212 190 105 214 177 86 208
165 71 196 150 64 175 127 42 170 117 49 139 89 30 102 53 12 84 43 13 79 46 15 72 42
14 10 13 4 12 8 0 69 104 110 58 96 109 130 128 115 196 154 82 196 148 66 183 138 70
174 125 56 169 120 54 146 97 41 118 67 24 90 52 16 75 46 16 58 42 19 13 7 9 10 5
0 18 11 3 66 111 116 70 100 102 78 103 99 57 71 82 162 111 66 141 96 37 152 102 51
130 80 31 110 63 21 83 44 11 69 42 12 28 8 0 7 5 10 18 4 0 17 10 2 30 20 10
58 88 96 53 88 94 59 91 102 69 99 110 54 80 79 23 69 85 31 34 25 53 41 25 21 2
0 8 0 0 17 10 4 11 0 0 34 21 13 47 35 23 38 26 14 47 35 23

14

Image display
a digital image is an array of integers, how do
you display it?
reconstruct a real image on some sort of
display device

CRT - computer monitor, TV set
LCD - portable computer
printer - dot matrix, laser printer, dye sublimation

15

Image display example

Displayed on a CRT

The image data

103 59 12 80 56 12 34 30 1 78 79 21 145 156 52 136 143 65 115 129 41 128 143 50 85
106 11 74 96 14 85 97 23 66 74 23 73 82 29 67 76 21 40 48 7 33 39 9 94 54 19
42 27 6 19 10 3 59 60 28 102 107 41 208 88 63 204 75 54 197 82 63 179 63 46 158 62
46 146 49 40 52 65 21 60 68 11 40 51 17 35 37 0 28 29 0 83 50 15 2 0 1 13 14
8 243 173 161 231 140 69 239 142 89 230 143 90 210 126 79 184 88 48 152 69 35 123 51
27 104 41 23 55 45 9 36 27 0 28 28 2 29 28 7 40 28 16 13 13 1 224 167 112 240
174 80 227 174 78 227 176 87 233 177 94 213 149 78 196 123 57 141 72 31 108 53 22 121
62 22 126 50 24 101 49 35 16 21 1 12 5 0 14 16 11 3 0 0 237 176 83 244 206 123
241 236 144 238 222 147 221 190 108 215 170 77 190 135 52 136 93 38 76 35 7 113 56 26
156 83 38 107 52 21 31 14 7 9 6 0 20 14 12 255 214 112 242 215 108 246 227 133 239
232 152 229 209 123 232 193 98 208 162 64 179 133 47 142 90 32 29 19 27 89 53 21 171
116 49 114 64 29 75 49 24 10 9 5 11 16 9 237 190 82 249 221 122 241 225 129 240 219
126 240 199 93 218 173 69 188 135 33 219 186 79 189 184 93 136 104 65 112 69 37 191 153
80 122 74 28 80 51 19 19 37 47 16 37 32 223 177 83 235 208 105 243 218 125 238 206
103 221 188 83 228 204 98 224 220 123 210 194 109 192 159 62 150 98 40 116 73 28 146 104
46 109 59 24 75 48 18 27 33 33 47 100 118 216 177 98 223 189 91 239 209 111 236 213
117 217 200 108 218 200 100 218 206 104 207 175 76 177 131 54 142 88 41 108 65 22 103
59 22 93 53 18 76 50 17 9 10 2 54 76 74 108 111 102 218 194 108 228 203 102 228 200
100 212 180 79 220 182 85 198 158 62 180 138 54 155 106 37 132 82 33 95 51 14 87 48
15 81 46 14 16 15 0 11 6 0 64 90 91 54 80 93 220 186 97 212 190 105 214 177 86 208
165 71 196 150 64 175 127 42 170 117 49 139 89 30 102 53 12 84 43 13 79 46 15 72 42
14 10 13 4 12 8 0 69 104 110 58 96 109 130 128 115 196 154 82 196 148 66 183 138 70
174 125 56 169 120 54 146 97 41 118 67 24 90 52 16 75 46 16 58 42 19 13 7 9 10 5
0 18 11 3 66 111 116 70 100 102 78 103 99 57 71 82 162 111 66 141 96 37 152 102 51
130 80 31 110 63 21 83 44 11 69 42 12 28 8 0 7 5 10 18 4 0 17 10 2 30 20 10
58 88 96 53 88 94 59 91 102 69 99 110 54 80 79 23 69 85 31 34 25 53 41 25 21 2
0 8 0 0 17 10 4 11 0 0 34 21 13 47 35 23 38 26 14 47 35 23

16Different ways of displaying the same
digital image

Nearest-neighbour
e.g. LCD

Gaussian
e.g. CRT

Half-toning
e.g. laser printer

17

Sampling
a digital image is a rectangular array of
intensity values
each value is called a pixel

“picture element”
sampling resolution is normally measured in
pixels per inch (ppi) or dots per inch (dpi)

computer monitors have a resolution around 100 ppi
laser printers have resolutions between 300 and 1200 ppi

18

Sampling resolution
256×256 128×128 64×64 32×32

2×2 4×4 8×8 16×16

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 4

19

Quantisation
each intensity value is a number
for digital storage the intensity values must
be quantised

limits the number of different intensities that can be
stored
limits the brightest intensity that can be stored

how many intensity levels are needed for
human consumption

8 bits usually sufficient
some applications use 10 or 12 bits

20

Quantisation levels
8 bits

(256 levels)
7 bits

(128 levels)
6 bits

(64 levels)
5 bits

(32 levels)

1 bit
(2 levels)

2 bits
(4 levels)

3 bits
(8 levels)

4 bits
(16 levels)

21

The workings of the human visual system
to understand the requirements of displays
(resolution, quantisation and colour) we need
to know how the human eye works...

The lens of the eye forms an
image of the world on the
retina: the back surface of
the eye

GW Fig 2.1, 2.2; Sec 2.1.1
FLS Fig 35-2

22

The retina
consists of ~150 million light receptors
retina outputs information to the brain along
the optic nerve

there are ~1 million nerve fibres in the optic nerve
the retina performs significant pre-processing to
reduce the number of signals from 150M to 1M
pre-processing includes:

averaging multiple inputs together
colour signal processing
edge detection

23

Some of the processing in the eye
discrimination

discriminates between different intensities and colours

adaptation
adapts to changes in illumination level and colour
can see about 1:100 contrast at any given time
but can adapt to see light over a range of 1010

persistence
integrates light over a period of about 1/30 second

edge detection and edge enhancement
visible in e.g. Mach banding effects

GLA Fig 1.17
GW Fig 2.4

24

Simultaneous contrast
as well as responding to changes in overall
light, the eye responds to local changes

The centre square is the same intensity in all four cases

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 5

25

Mach bands
show the effect of edge enhancement in the
retina’s pre-processing

Each of the nine rectangles is a constant colour

26

Ghost squares
another effect caused by retinal pre-processing

27

Light detectors in the retina
two classes

rods
cones

cones come in three types
sensitive to short, medium and long wavelengths

the fovea is a densely packed region in the
centre of the retina

contains the highest density of cones
provides the highest resolution vision

28

Foveal vision
150,000 cones per square millimetre in the
fovea

high resolution
colour

outside fovea: mostly rods
lower resolution
principally monochromatic

provides peripheral vision
allows you to keep the high resolution region in context
allows you to avoid being hit by passing branches

GW Fig 2.1, 2.2

29

Summary of what human eyes do...
sample the image that is projected onto the
retina
adapt to changing conditions
perform non-linear processing

makes it very hard to model and predict behaviour
pass information to the visual cortex

which performs extremely complex processing
discussed in the Computer Vision course

30

What is required for vision?
illumination

some source of light

objects
which reflect (or transmit) the light

eyes
to capture the light as an image

direct viewing transmission reflection

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 6

31

Light: wavelengths & spectra
light is electromagnetic radiation

visible light is a tiny part of the electromagnetic spectrum
visible light ranges in wavelength from 700nm (red end of
spectrum) to 400nm (violet end)

every light has a spectrum of wavelengths that
it emits
every object has a spectrum of wavelengths
that it reflects (or transmits)
the combination of the two gives the spectrum
of wavelengths that arrive at the eye

MIN Fig 22a

MIN Examples 1 & 2

32

Classifying colours
we want some way of classifying colours and,
preferably, quantifying them
we will discuss:

Munsell’s artists’ scheme
which classifies colours on a perceptual basis

the mechanism of colour vision
how colour perception works

various colour spaces
which quantify colour based on either physical or
perceptual models of colour

33

Munsell’s colour classification system
three axes

hue the dominant colour
lightness bright colours/dark colours
saturation vivid colours/dull colours

can represent this as a 3D graph
any two adjacent colours are a standard
“perceptual” distance apart

worked out by testing it on people
but how does the eye actually see colour?

invented by A. H. Munsell, an American artist, in 1905 in an attempt to systematically classify colours

MIN Fig 4
Colour plate 1

34

Colour vision
three types of cone

each responds to a different spectrum
very roughly long, medium, and short wavelengths
each has a response function l(λ), m(λ), s(λ)

different numbers of the different types
far fewer of the short wavelength receptors
so cannot see fine detail in blue

overall intensity response of the eye can be
calculated

y(λ) = l(λ) + m(λ) + s(λ)
y = k ∫ P(λ) y(λ) dλ is the perceived luminance

JMF Fig 20b

35

Colour signals sent to the brain
the signal that is sent to the brain is pre-
processed by the retina

this theory explains:
colour-blindness effects
why red, yellow, green and blue are perceptually important
why you can see e.g. a yellowish red but not a greenish red

+ + =long medium short luminance

- =long medium

+ - =long medium short yellow-blue

red-green

36

Chromatic metamerism
many different spectra will induce the same response
in our cones

the values of the three perceived values can be calculated as:
l = k ∫ P(λ) l(λ) dλ
m = k ∫ P(λ) m(λ) dλ
s = k ∫ P(λ) s(λ) dλ

k is some constant, P(λ) is the spectrum of the light incident on
the retina
two different spectra (e.g. P1(λ) and P2(λ)) can give the same
values of l, m, s
we can thus fool the eye into seeing (almost) any colour by
mixing correct proportions of some small number of lights

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 7

37

Mixing coloured lights
by mixing different amounts of red, green,
and blue lights we can generate a wide range
of responses in the human eye

red

green

blue

green

blue
light
off

red
light

fully on

38

XYZ colour space
not every wavelength can be represented as a
mix of red, green, and blue
but matching & defining coloured light with a
mixture of three fixed primaries is desirable
CIE define three standard primaries: X, Y, Z

Y matches the human eye’s response to light of a constant
intensity at each wavelength (luminous-efficiency function of the
eye)
X, Y, and Z are not themselves colours, they are used for
defining colours – you cannot make a light that emits one of
these primaries

XYZ colour space was defined in 1931 by the Commission Internationale de l’ Éclairage (CIE)

FvDFH Sec 13.2.2
Figs 13.20, 13.22, 13.23

39

CIE chromaticity diagram
chromaticity values are defined in terms of x, y, z

ignores luminance
can be plotted as a 2D function

pure colours (single wavelength) lie along the outer
curve
all other colours are a mix of pure colours and hence
lie inside the curve
points outside the curve do not exist as colours

x X
X Y Z

y Y
X Y Z

z Z
X Y Z

x y z=
+ +

=
+ +

=
+ +

∴ + + =, , 1

FvDFH Fig 13.24
Colour plate 2

40

RGB in XYZ space
CRTs and LCDs mix red, green, and blue to
make all other colours
the red, green, and blue primaries each map to
a point in XYZ space
any colour within the resulting triangle can be
displayed

any colour outside the triangle cannot be displayed
for example: CRTs cannot display very saturated purples,
blues, or greens

FvDFH Figs 13.26, 13.27

41

Colour spaces
CIE XYZ, Yxy
Pragmatic

used because they relate directly to the way that the hardware
works
RGB, CMY, CMYK

Munsell-like
considered by many to be easier for people to use than the
pragmatic colour spaces
HSV, HLS

Uniform
equal steps in any direction make equal perceptual differences
L*a*b*, L*u*v*

FvDFH Fig 13.28

FvDFH Figs 13.30, 13,35

GLA Figs 2.1, 2.2; Colour plates 3 & 4

42

Summary of colour spaces
the eye has three types of colour receptor
therefore we can validly use a three-dimensional
co-ordinate system to represent colour
XYZ is one such co-ordinate system

Y is the eye’s response to intensity (luminance)
X and Z are, therefore, the colour co-ordinates

same Y, change X or Z ⇒ same intensity, different colour
same X and Z, change Y ⇒ same colour, different intensity

some other systems use three colour co-ordinates
luminance can then be derived as some function of the three

e.g. in RGB: Y = 0.299 R + 0.587 G + 0.114 B

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 8

43

Implications of vision on resolution
in theory you can see about 600dpi, 30cm from
your eye
in practice, opticians say that the acuity of the eye
is measured as the ability to see a white gap,
1 minute wide, between two black lines

about 300dpi at 30cm

resolution decreases as contrast decreases
colour resolution is much worse than intensity
resolution

this is exploited in TV broadcast

44

Implications of vision on quantisation
humans can distinguish, at best, about a 2%
change in intensity

not so good at distinguishing colour differences
for TV ⇒ 10 bits of intensity information

8 bits is usually sufficient
why use only 8 bits? why is it usually acceptable?

for movie film ⇒ 14 bits of intensity information

for TV the brightest white is about 25x as bright as
the darkest black

movie film has about 10x the contrast ratio of TV

45

Storing images in memory
8 bits has become a de facto standard for
greyscale images

8 bits = 1 byte
an image of size W × H can therefore be stored in
a block of W × H bytes
one way to do this is to store pixel[x][y] at
memory location base + x + W × y

memory is 1D, images are 2Dbase

base + 1 + 5 × 2

5

5

4
3
2
1
0

0 1 2 3 4

≡

46

Colour images
tend to be 24 bits per pixel

3 bytes: one red, one green, one blue
can be stored as a contiguous block of memory

of size W × H × 3

more common to store each colour in a separate “plane”
each plane contains just W × H values

the idea of planes can be extended to other attributes
associated with each pixel

alpha plane (transparency), z-buffer (depth value), A-buffer (pointer
to a data structure containing depth and coverage information),
overlay planes (e.g. for displaying pop-up menus)

47

The frame buffer
most computers have a special piece of
memory reserved for storage of the current
image being displayed

the frame buffer normally consists of dual-
ported Dynamic RAM (DRAM)

sometimes referred to as Video RAM (VRAM)

output
stage

(e.g. DAC)
display

frame
buffer

B
U
S

48

Double buffering
if we allow the currently displayed image to be updated
then we may see bits of the image being displayed
halfway through the update

this can be visually disturbing, especially if we want the illusion
of smooth animation

double buffering solves this problem: we draw into one
frame buffer and display from the other

when drawing is complete we flip buffers

output
stage

(e.g. DAC)
display

Buffer AB
U
S

Buffer B

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 9

49

Image display
a handful of technologies cover over 99% of all
display devices

active displays
cathode ray tube most common, declining use
liquid crystal display rapidly increasing use
plasma displays still rare, but increasing use
special displays e.g. LEDs for special applications

printers (passive displays)
laser printers
ink jet printers
several other technologies

50

Liquid crystal display
liquid crystal can twist the polarisation of light
control is by the voltage that is applied across the
liquid crystal

either on or off: transparent or opaque
greyscale can be achieved in some liquid crystals
by varying the voltage
colour is achieved with colour filters
low power consumption but image quality not as
good as cathode ray tubes

JMF Figs 90, 91

51

Cathode ray tubes
focus an electron gun on a phosphor screen

produces a bright spot
scan the spot back and forth, up and down to
cover the whole screen
vary the intensity of the electron beam to change
the intensity of the spot
repeat this fast enough and humans see a
continuous picture

displaying pictures sequentially at > 20Hz gives illusion
of continuous motion
but humans are sensitive to flicker at
frequencies higher than this... CRT slides in handout

52

How fast do CRTs need to be?
speed at which entire screen is updated
is called the “refresh rate”
50Hz (PAL TV, used in most of Europe)

many people can see a slight flicker
60Hz (NTSC TV, used in USA and Japan)

better
80-90Hz

99% of viewers see no flicker, even on very
bright displays

100HZ (newer “flicker-free” PAL TV sets)
practically no-one can see the image flickering

Flicker/resolution
trade-off

PAL 50Hz
768x576

NTSC 60Hz
640x480

53

Colour CRTs: shadow masks
use three electron guns & colour phosphors
electrons have no colour

use shadow mask to direct electrons from each gun
onto the appropriate phosphor

the electron beams’ spots are bigger than the
shadow mask pitch

can get spot size down to 7/4 of the pitch
pitch can get down to 0.25mm with delta arrangement
of phosphor dots
with a flat tension shadow mask can reduce this to
0.15mm

FvDFH Fig 4.14

54

Printers
many types of printer

ink jet
sprays ink onto paper

dot matrix
pushes pins against an ink ribbon and onto the paper

laser printer
uses a laser to lay down a pattern of charge on a drum;
this picks up charged toner which is then pressed onto
the paper

all make marks on paper
essentially binary devices: mark/no mark

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 10

55

Printer resolution
laser printer

up to 1200dpi, generally 600dpi
ink jet

used to be lower resolution & quality than laser
printers but now have comparable resolution

phototypesetter
up to about 3000dpi

bi-level devices: each pixel is either black or
white

56

What about greyscale?
achieved by halftoning

divide image into cells, in each cell draw a spot of the
appropriate size for the intensity of that cell
on a printer each cell is m×m pixels, allowing m2+1 different
intensity levels
e.g. 300dpi with 4×4 cells ⇒ 75 cells per inch, 17 intensity
levels
phototypesetters can make 256 intensity levels in cells so
small you can only just see them

an alternative method is dithering
dithering photocopies badly, halftoning photocopies well

will discuss halftoning and dithering in Image Processing section of course

57

Dye sublimation printers: true greyscale
dye sublimation gives true greyscale

dye sublimes off dye sheet and onto paper in
proportion to the heat level

colour is achieved by using four different coloured
dye sheets in sequence — the heat mixes them

pixel sized heater

dye sheet
special paper

direction of travel

58

What about colour?
generally use cyan, magenta, yellow, and black
inks (CMYK)
inks aborb colour

c.f. lights which emit colour
CMY is the inverse of RGB

why is black (K) necessary?
inks are not perfect aborbers
mixing C + M + Y gives a muddy grey, not black
lots of text is printed in black: trying to align C, M
and Y perfectly for black text would be a nightmare

JMF Fig 9b

59

How do you produce halftoned colour?
print four halftone screens, one in each colour
carefully angle the screens to prevent interference (moiré)
patterns

Standard angles
Magenta 45°
Cyan 15°
Yellow 90°
Black 75°

Standard rulings (in lines per inch)
65 lpi
85 lpi newsprint
100 lpi
120 lpi uncoated offset paper
133 lpi uncoated offset paper
150 lpi matt coated offset paper or art paper

publication: books, advertising leavlets
200 lpi very smooth, expensive paper

very high quality publication

150 lpi × 16 dots per cell
= 2400 dpi phototypesetter
(16×16 dots per cell = 256

intensity levels)

Colour plate 5

60

2D Computer Graphics
lines

how do I draw a straight line?

curves
how do I specify curved lines?

clipping
what about lines that go off the edge of the screen?

filled areas
transformations

scaling, rotation, translation, shearing

applications

IP

3D CG

Background

2D CG

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 11

61

Drawing a straight line
a straight line can be defined by:

a mathematical line is “length without
breadth”
a computer graphics line is a set of
pixels
which pixels do we need to turn on to
draw a given line?

y mx c= +
the slope of
the line x

y

m
1c

62

Which pixels do we use?
there are two reasonably sensible alternatives:

every pixel through which
the line passes

(can have either one or two
pixels in each column)

the “closest” pixel to the
line in each column

(always have just one pixel
in every column)

in general, use this

63

A line drawing algorithm - preparation 1
pixel (x,y) has its centre at real co-ordinate (x,y)

it thus stretches from (x-½, y-½) to (x+½, y+½)

y

x-1 x+1x

y+1

x-½
y-½

y+½

y+1½

x+½ x+1½x-1½

pixel (x,y)

64

A line drawing algorithm - preparation 2
the line goes from (x0,y0) to (x1,y1)
the line lies in the first octant (0 ≤ m ≤ 1)
x0 < x1

(x0,y0)

(x1,y1)

65Bresenham’s line drawing algorithm 1

Initialisation d = (y1 - y0) / (x1 - x0)
x = x0

yi = y0

y = y0

DRAW(x,y)

WHILE x < x1 DO
x = x + 1
yi = yi + d
y = ROUND(yi)
DRAW(x,y)

END WHILE

y

x x+1

d
yi

(x0,y0)

y & y’

x x’

d
yi

yi’

Iteration

J. E. Bresenham, “Algorithm for Computer Control of a Digital Plotter”, IBM Systems Journal, 4(1), 1965

assumes
integer end

points

66Bresenham’s line drawing algorithm 2

naïve algorithm involves
floating point arithmetic &
rounding inside the loop
⇒ slow
Speed up A:

separate integer and fractional
parts of yi (into y and yf)
replace rounding by an IF

removes need to do rounding

d = (y1 - y0) / (x1 - x0)
x = x0

yf = 0
y = y0

DRAW(x,y)
WHILE x < x1 DO

x = x + 1
yf = yf + d
IF (yf > ½) THEN

y = y + 1
yf = yf - 1

END IF
DRAW(x,y)

END WHILE

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 12

67Bresenham’s line drawing algorithm 3

Speed up B:
multiply all operations involving yf
by 2(x1 - x0)

yf = yf + dy/dx → yf = yf + 2dy
yf > ½ → yf > dx
yf = yf - 1 → yf = yf - 2dx

removes need to do floating point
arithmetic if end-points have
integer co-ordinates

dy = (y1 - y0)
dx = (x1 - x0)
x = x0
yf = 0
y = y0
DRAW(x,y)
WHILE x < x1 DO

x = x + 1
yf = yf + 2dy
IF (yf > dx) THEN

y = y + 1
yf = yf - 2dx

END IF
DRAW(x,y)

END WHILE

68Bresenham’s algorithm for floating point
end points

y

x x+1

d
yi = y+yf

(x0,y0)

y & y’

x x’

d
y’+yf’

d = (y1 - y0) / (x1 - x0)
x = ROUND(x0)
yi = y0 + d * (x-x0)
y = ROUND(yi)
yf = yi - y
DRAW(x,y)
WHILE x < (x1 - ½) DO

x = x + 1
yf = yf + d
IF (yf > ½) THEN

y = y + 1
yf = yf - 1

END IF
DRAW(x,y)

END WHILE

y+yf

69

Bresenham’s algorithm — more details
we assumed that the line is in the first octant

can do fifth octant by swapping end points
therefore need four versions of the algorithm

1st

2nd3rd

4th

5th

6th 7th

8th

Exercise: work out what
changes need to be made
to the algorithm for it to
work in each of the other
three octants

70

A second line drawing algorithm
a line can be specified using an equation of
the form:

this divides the plane into three regions:
above the line k < 0
below the line k > 0
on the line k = 0

k ax by c= + +

k < 0

k > 0
k = 0

71

Midpoint line drawing algorithm 1
given that a particular pixel is on the line,
the next pixel must be either immediately to
the right (E) or to the right and up one (NE)

use a decision variable
(based on k) to determine
which way to go Evaluate the

decision variable
at this point

if ≥ 0 then go NE

if < 0 then go EThis is the current pixel

72

Midpoint line drawing algorithm 2
decision variable needs to make a decision at
point (x+1, y+½)

if go E then the new decision variable is at
(x+2, y+½)

if go NE then the new decision variable is at
(x+2, y+1½)

d a x b y c= + + + +() ()1 1
2

d a x b y c
d a

' () ()= + + + +
= +

2 1
2

d a x b y c
d a b

' () ()= + + + +
= + +

2 1 1
2

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 13

73

Midpoint line drawing algorithm 3

a = (y1 - y0)
b = -(x1 - x0)
c = x1 y0 - x0 y1
x = ROUND(x0)
y = ROUND(y0-(x- x0)(a / b))
d = a * (x+1) + b * (y+½) + c
DRAW(x,y)

WHILE x < (x1 - ½) DO
x = x + 1
IF d < 0 THEN

d = d + a
ELSE

d = d + a + b
y = y + 1

END IF
DRAW(x,y)

END WHILE

Initialisation Iteration

y

x x+1(x0,y0)
First decision

point

E case
just increment x

NE case
increment x & y

If end-points have integer co-ordinates then
all operations can be in integer arithmetic

74

Midpoint - comments
this version only works for lines in the first
octant

extend to other octants as for Bresenham
Sproull has proven that Bresenham and
Midpoint give identical results
Midpoint algorithm can be generalised to
draw arbitary circles & ellipses

Bresenham can only be generalised to draw
circles with integer radii

75

Curves
circles & ellipses
Bezier cubics

Pierre Bézier, worked in CAD for Renault
widely used in Graphic Design

Overhauser cubics
Overhauser, worked in CAD for Ford

NURBS
Non-Uniform Rational B-Splines
more powerful than Bezier & now more widely used
consider these in Part II

76

Midpoint circle algorithm 1
equation of a circle is

centred at the origin

decision variable can be
d = 0 on the circle, d > 0 outside, d < 0 inside

divide circle into eight octants

on the next slide we consider only
the second octant, the others are
similar

x y r2 2 2+ =

d x y r= + −2 2 2

77

Midpoint circle algorithm 2
decision variable needs to make a
decision at point (x+1, y-½)

if go E then the new decision variable is at
(x+2, y-½)

if go SE then the new decision variable is
at (x+2, y-1½)

d x y r= + + − −() ()1 2 1
2

2 2

d x y r
d x

' () ()= + + − −
= + +

2
2 3

2 1
2

2 2

d x y r
d x y

' () ()= + + − −
= + − +

2 1
2 2 5

2 1
2

2 2

Exercise: complete the circle
algorithm for the second octant

78

Taking circles further
the algorithm can be easily extended to
circles not centred at the origin
a similar method can be derived for ovals

but: cannot naively use octants
use points of 45° slope to divide
oval into eight sections

and: ovals must be axis-aligned
there is a more complex algorithm which
can be used for non-axis aligned ovals

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 14

79

Are circles & ellipses enough?
simple drawing packages use ellipses &
segments of ellipses
for graphic design & CAD need something
with more flexibility

use cubic polynomials

80

Why cubics?
lower orders cannot:

have a point of inflection
match both position and slope at both ends of a
segment
be non-planar in 3D

higher orders:
can wiggle too much
take longer to compute

81

Hermite cubic
the Hermite form of the cubic is defined by its two
end-points and by the tangent vectors at these
end-points:

two Hermite cubics can be smoothly joined by
matching both position and tangent at an end
point of each cubic

P t t t P
t t P

t t t T

t t T

() ()
()

()

()

= − +

+ − +

+ − +

+ −

2 3 1
2 3

2

3 2
0

3 2
1

3 2
0

3 2
1

Charles Hermite, mathematician, 1822–1901

82

Bezier cubic
difficult to think in terms of tangent vectors

Bezier defined by two end points and two
other control points

P t t P
t t P

t t P
t P

() ()
()

()

= −

+ −

+ −

+

1
3 1

3 1

3
0

2
1

2
2

3
3 P0

P1

P2

P3

Pierre Bézier worked for Citroën in the 1960s
where: P x yi i i≡ (,)

83

Bezier properties
Bezier is equivalent to Hermite

Weighting functions are Bernstein polynomials

Weighting functions sum to one

Bezier curve lies within convex hull of its control
points

T P P T P P0 1 0 1 3 23 3= − = −() ()

b t t b t t t b t t t b t t0
3

1
2

2
2

3
31 3 1 3 1() () () () () () ()= − = − = − =

b ti
i=
∑ =

0

3

1()

84

Types of curve join
each curve is smooth within itself
joins at endpoints can be:

C1 – continuous in both position and tangent
vector

smooth join
C0 – continuous in position

“corner”
discontinuous in position

Cn = continuous in all derivatives up to the nth derivative

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 15

85

Drawing a Bezier cubic – naïve method
draw as a set of short line segments equispaced in
parameter space, t

problems:
cannot fix a number of segments that is appropriate for
all possible Beziers: too many or too few segments
distance in real space, (x,y), is not linearly related to
distance in parameter space, t

(x0,y0) = Bezier(0)
FOR t = 0.05 TO 1 STEP 0.05 DO

(x1,y1) = Bezier(t)
DrawLine((x0,y0), (x1,y1))
(x0,y0) = (x1,y1)

END FOR

86

Drawing a Bezier cubic – sensible method
adaptive subdivision

check if a straight line between P0 and P3 is an
adequate approximation to the Bezier
if so: draw the straight line
if not: divide the Bezier into two halves, each a
Bezier, and repeat for the two new Beziers

need to specify some tolerance for when a
straight line is an adequate approximation

when the Bezier lies within half a pixel width of the
straight line along its entire length

87

Drawing a Bezier cubic (continued)

Procedure DrawCurve(Bezier curve)
VAR Bezier left, right
BEGIN DrawCurve

IF Flat(curve) THEN
DrawLine(curve)

ELSE
SubdivideCurve(curve, left, right)
DrawCurve(left)
DrawCurve(right)

END IF
END DrawCurve

e.g. if P1 and P2 both lie
within half a pixel width of
the line joining P0 to P3

draw a line between
P0 and P3: we already
know how to do this

how do we do this?
see the next slide…

Exercise: How do you
calculate the distance
from P1 to P0P3?

88

Subdividing a Bezier cubic into two halves
a Bezier cubic can be easily subdivided into
two smaller Bezier cubics
Q P
Q P P
Q P P P
Q P P P P

0 0

1
1
2 0

1
2 1

2
1
4 0

1
2 1

1
4 2

3
1
8 0

3
8 1

3
8 2

1
8 3

=
= +
= + +
= + + +

R P P P P
R P P P
R P P
R P

0
1
8 0

3
8 1

3
8 2

1
8 3

1
1
4 1

1
2 2

1
4 3

2
1
2 2

1
2 3

3 3

= + + +
= + +
= +
=

Exercise: prove that the Bezier cubic curves defined by Q0, Q1, Q2, Q3 and R0, R1, R2, R3
match the Bezier cubic curve defined by P0, P1, P2, P3 over the ranges t∈ [0,½] and
t∈ [½,1] respectively

89

What if we have no tangent vectors?
base each cubic piece on the four surrounding
data points

at each data point the curve must depend solely
on the three surrounding data points

define the tangent at each point as the direction from the
preceding point to the succeeding point

tangent at P1 is ½(P2 -P0), at P2 is ½(P3 -P1)

this is the basis of Overhauser’s cubic

Why?

90

Overhauser’s cubic
method

calculate the appropriate Bezier or Hermite values from
the given points
e.g. given points A, B, C, D, the Bezier control points are:

P0=B P1=B+(C-A)/6
P3=C P2=C-(D-B)/6

(potential) problem
moving a single point modifies the surrounding four
curve segments (c.f. Bezier where moving a single point
modifies just the two segments connected to that point)

good for control of movement in animation

Overhauser worked for the Ford motor company in the 1960s

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 16

91

Simplifying line chains
the problem: you are given a chain of line segments
at a very high resolution, how can you reduce the
number of line segments without compromising the
quality of the line

e.g. given the coastline of Britain defined as a chain of line
segments at 10m resolution, draw the entire outline on a
1280×1024 pixel screen

the solution: Douglas & Pücker’s line chain
simplification algorithm

This can also be applied to chains of Bezier curves at high resolution: most of the curves
will each be approximated (by the previous algorithm) as a single line segment, Douglas
& Pücker’s algorithm can then be used to further simplify the line chain

92

Douglas & Pücker’s algorithm
find point, C, at greatest distance from line AB
if distance from C to AB is more than some specified
tolerance then subdivide into AC and CB, repeat for
each of the two subdivisions
otherwise approximate entire chain from A to B by
the single line segment AB

A B

C Exercises: (1) How do
you calculate the
distance from C to AB?
(2) What special cases
need to be considered?
How should they be
handled?

Douglas & Pücker, Canadian Cartographer, 10(2), 1973

93

Clipping
what about lines that go off the edge of the
screen?

need to clip them so that we only draw the part of
the line that is actually on the screen

clipping points against a rectangle

y yT=

y yB=
x x L= x x R=

need to check four inequalities:
x x
x x
y y
y y

L

R

B

T

≥
≤
≥
≤

94

Clipping lines against a rectangle

y yT=

y yB=

x x L= x x R=

95

Cohen-Sutherland clipper 1
make a four bit code, one bit for each inequality

evaluate this for both endpoints of the line

A x x B x x C y y D y yL R B T≡ < ≡ > ≡ < ≡ >

Q A B C D Q A B C D1 1 1 1 1 2 2 2 2 2= =

y yT=

y yB=

x x L= x x R=

00001000 0100

00011001 0101

00101010 0110

ABCD ABCDABCD

Ivan Sutherland is one of the founders of Evans & Sutherland, manufacturers of flight simulator systems

96

Cohen-Sutherland clipper 2
Q1= Q2 =0

both ends in rectangle ACCEPT
Q1∧ Q2 ≠0

both ends outside and in same half-plane REJECT
otherwise

need to intersect line with one of the edges and start again
the 1 bits tell you which edge to clip against

y yB=

x x L=

0000

0010
1010

0000

x x y y y y x x
x x

y y x x x x y y
y y

L
L

B
B

1 1 1 2 1
1

2 1

1 1 1 2 1
1

2 1

' ' ()

' ' ' ' ' (') '
'

= = + − −
−

= = + − −
−

P1

P1'

P1''

P2Example

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 17

97

Cohen-Sutherland clipper 3
if code has more than a single 1 then you cannot tell
which is the best: simply select one and loop again
horizontal and vertical lines are not a problem
need a line drawing algorithm that can cope with
floating-point endpoint co-ordinates

y yT=

y yB=

x x L= x x R=

Why not?

Exercise: what happens in each of
the cases at left?
[Assume that, where there is a
choice, the algorithm always tries to
intersect with xL or xR before yB or yT.]

Try some other cases of your own
devising.

Why?

98

which pixels do we turn on?

those whose centres lie inside the polygon
this is a naïve assumption, but is sufficient for now

Polygon filling

99
Scanline polygon fill algorithm

take all polygon edges and place in an edge list (EL) , sorted on
lowest y value
start with the first scanline that intersects the polygon, get all

edges which intersect that scan line and move them to an active
edge list (AEL)
for each edge in the AEL: find the intersection point with the

current scanline; sort these into ascending order on the x value
fill between pairs of intersection points
move to the next scanline (increment y); remove edges from

the AEL if endpoint < y ; move new edges from EL to AEL if start
point ≤ y; if any edges remain in the AEL go back to step

100

Scanline polygon fill example

101

Scanline polygon fill details
how do we efficiently calculate the intersection points?

use a line drawing algorithm to do incremental calculation

what if endpoints exactly
intersect scanlines?

need to cope with this, e.g.
add a tiny amount to the y co-
ordinate to ensure that they
don’t exactly match

what about horizontal edges?
throw them out of the edge
list, they contribute nothing

102

Clipping polygons

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 18

103

Sutherland-Hodgman polygon clipping 1
clips an arbitrary polygon against an arbitrary convex
polygon

basic algorithm clips an arbitrary polygon against a single
infinite clip edge
the polygon is clipped against one edge at a time, passing
the result on to the next stage

Sutherland & Hodgman, “Reentrant Polygon Clipping,” Comm. ACM, 17(1), 1974

104

Sutherland-Hodgman polygon clipping 2
the algorithm progresses around the polygon checking if
each edge crosses the clipping line and outputting the
appropriate points

s

e

e output

inside outside

s
e

i output

inside outside
s

e

i and e output

inside outside

s

e

nothing
output

inside outside

Exercise: the Sutherland-Hodgman algorithm may introduce new edges
along the edge of the clipping polygon — when does this happen and why?

i

i

105

2D transformations
scale

rotate

translate

(shear)

why?
it is extremely useful to
be able to transform
predefined objects to an
arbitrary location,
orientation, and size
any reasonable graphics
package will include
transforms

2D Postscript
3D OpenGL

106

Basic 2D transformations
scale

about origin
by factor m

rotate
about origin
by angle θ

translate
along vector (xo,yo)

shear
parallel to x axis
by factor a

x mx
y my
'
'
=
=

x x y
y x y
' cos sin
' sin cos
= −
= +

θ θ
θ θ

x x x
y y y

o

o

'
'
= +
= +

x x ay
y y
'
'
= +
=

107

Matrix representation of transformations
scale

about origin, factor m

do nothing
identity

x
y

m
m

x
y

'
'







= 











0

0

x
y

x
y

'
'







= 











1 0
0 1

x
y

a x
y

'
'







= 











1
0 1

rotate
about origin, angle θ

shear
parallel to x axis, factor a

x
y

x
y

'
'

cos sin
sin cos







=

−











θ θ
θ θ

108

Homogeneous 2D co-ordinates
translations cannot be represented using simple
2D matrix multiplication on 2D vectors, so we
switch to homogeneous co-ordinates

an infinite number of homogeneous co-ordinates
map to every 2D point
w=0 represents a point at infinity
usually take the inverse transform to be:

()(, ,) ,x y w x
w

y
w≡

(,) (, ,)x y x y≡ 1

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 19

109

Matrices in homogeneous co-ordinates
scale

about origin, factor m

do nothing
identity

x
y
w

m
m

x
y
w

'
'
'

















=
































0 0
0 0
0 0 1

rotate
about origin, angle θ

shear
parallel to x axis, factor a

x
y
w

x
y
w

'
'
'

cos sin
sin cos

















=
−































θ θ
θ θ

0
0

0 0 1

x
y
w

a x
y
w

'
'
'

















=
































1 0
0 1 0
0 0 1

x
y
w

x
y
w

'
'
'

















=
































1 0 0
0 1 0
0 0 1

110

Translation by matrix algebra

x
y
w

x
y

x
y
w

o'
'
'

















=
































1 0
0 1
0 0 1

0

w w' =y y wyo'= +x x wxo'= +

x
w

x
w

x'
'
= + 0 0'

' y
w
y

w
y +=

In conventional coordinates

In homogeneous coordinates

111

Concatenating transformations
often necessary to perform more than one
transformation on the same object
can concatenate transformations by multiplying their
matrices
e.g. a shear followed by a scaling:

x
y
w

m
m

x
y
w

x
y
w

a x
y
w

' '
' '
' '

'
'
'

'
'
'

















=
















































=
































0 0
0 0
0 0 1

1 0
0 1 0
0 0 1

x
y
w

m
m

a x
y
w

m ma
m

x
y
w

' '
' '
' '

















=
















































=
































0 0
0 0
0 0 1

1 0
0 1 0
0 0 1

0
0 0
0 0 1

shearscale

shearscale both

112

Concatenation is not commutative
be careful of the order in which you
concatenate transformations

rotate by 45°

scale by 2
along x axis

rotate by 45°

scale by 2
along x axis

2
2

2
2

1
2

1
2

2
2

1
2

2
2

1
2

1
2

1
2

1
2

1
2

0
0

0 0 1

2 0 0
0 1 0
0 0 1

0
0

0 0 1

0
0

0 0 1

−

− −

































































scale

rotatescale then rotate

rotate then scale

113

Scaling about an arbitrary point
scale by a factor m about point (xo,yo)

translate point (xo,yo) to the origin
scale by a factor m about the origin
translate the origin to (xo,yo)

(xo,yo)

(0,0)

x
y
w

x
y

x
y
w

o

o

'
'
'

















=
−
−

































1 0
0 1
0 0 1

x
y
w

m
m

x
y
w

' '
' '
' '

'
'
'

















=
































0 0
0 0
0 0 1

x
y
w

x
y

x
y
w

o

o

' ' '
' ' '
' ' '

' '
' '
' '

















=
































1 0
0 1
0 0 1

x
y
w

x
y

m
m

x
y

x
y
w

o

o

o

o

' ' '
' ' '
' ' '

















=
































−
−

































1 0
0 1
0 0 1

0 0
0 0
0 0 1

1 0
0 1
0 0 1

Exercise: show how to
perform rotation about
an arbitrary point

114

Bounding boxes
when working with complex objects, bounding boxes
can be used to speed up some operations

N

S

EW

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 20

115

Clipping with bounding boxes
do a quick accept/reject/unsure test to the bounding
box then apply clipping to only the unsure objects

BBL BBR

BBB

BBT yT

yB

x L x R

A

A
A

R R

R

RR

R

U
U

U

BB x BB x BB x BB xL R R L B T T B> ∨ < ∨ > ∨ <
BB x BB x BB x BB xL L R R B B T T≥ ∧ ≤ ∧ ≥ ∧ ≤

otherwise ⇒ clip at next higher level of detail

⇒ REJECT

⇒ ACCEPT

116

Object inclusion with bounding boxes
including one object (e.g. a graphics) file inside another
can be easily done if bounding boxes are known and used

use the eight values to
translate and scale the
original to the appropriate
position in the destination
document

N

S

EW

BBL BBR

BBB

BBT
N

S

EW

COMPASS
productions

Tel: 01234 567890 Fax: 01234 567899
E-mail: compass@piped.co.uk

PT

PB

PRPL

117

Bit block transfer (BitBlT)
it is sometimes preferable to predraw something and
then copy the image to the correct position on the
screen as and when required

e.g. icons e.g. games

copying an image from place to place is essentially a
memory operation

can be made very fast
e.g. 32×32 pixel icon can be copied, say, 8 adjacent pixels at
a time, if there is an appropriate memory copy operation

118

XOR drawing
generally we draw objects in the appropriate colours,
overwriting what was already there
sometimes, usually in HCI, we want to draw something
temporarily, with the intention of wiping it out (almost)
immediately e.g. when drawing a rubber-band line
if we bitwise XOR the object’s colour with the colour
already in the frame buffer we will draw an object of the
correct shape (but wrong colour)
if we do this twice we will restore the original frame
buffer
saves drawing the whole screen twice

119

Application 1: user interface
tend to use objects that
are quick to draw

straight lines
filled rectangles

complicated bits done
using predrawn icons

typefaces also tend to
be predrawn

120

Application 2: typography
typeface: a family of letters designed to look good together

usually has upright (roman/regular), italic (oblique), bold and bold-
italic members

two forms of typeface used in computer graphics
pre-rendered bitmaps

single resolution (don’t scale well)
use BitBlT to put into frame buffer

outline definitions
multi-resolution (can scale)
need to render (fill) to put into frame buffer

abcd efgh ijkl mnop - Helvetica abcd efgh ijkl mnop - Times

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 21

121

Application 3: Postscript
industry standard rendering language for printers
developed by Adobe Systems
stack-based interpreted language
basic features

object outlines made up of lines, arcs & Bezier curves
objects can be filled or stroked
whole range of 2D transformations can be applied to
objects
typeface handling built in
halftoning
can define your own functions in the language

122

3D Computer Graphics
3D 2D projection
3D versions of 2D operations

clipping, transforms, matrices, curves & surfaces
3D scan conversion

depth-sort, BSP tree, z-Buffer, A-buffer
sampling
lighting
ray tracing

IP

Background

2D CG

3D CG

123

3D 2D projection
to make a picture

3D world is projected to a 2D image
like a camera taking a photograph
the three dimensional world is projected onto a plane

The 3D world is described as a set
of (mathematical) objects

e.g. sphere radius (3.4)
centre (0,2,9)

e.g. box size (2,4,3)
centre (7, 2, 9)
orientation (27º, 156º)

124

Types of projection
parallel

e.g.
useful in CAD, architecture, etc
looks unrealistic

perspective
e.g.
things get smaller as they get farther away
looks realistic

this is how cameras work!

(, ,) (,)x y z x y→

(, ,) (,)x y z x
z

y
z→

125

Viewing volume

eye point
(camera point)

viewing plane
(screen plane)

the rectangular pyramid is
the viewing volume

everything within the
viewing volume is projected
onto the viewing plane

126

Geometry of perspective projection

y

z

d

(, ,)x y z
(' , ' ,)x y d

x x d
z

y y d
z

'

'

=

=

(, ,)0 0 0

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 22

127Perspective projection
with an arbitrary camera

we have assumed that:
screen centre at (0,0,d)
screen parallel to xy-plane
z-axis into screen
y-axis up and x-axis to the right
eye (camera) at origin (0,0,0)

for an arbitrary camera we can either:
work out equations for projecting objects about an
arbitrary point onto an arbitrary plane
transform all objects into our standard co-ordinate
system (viewing co-ordinates) and use the above
assumptions

128

3D transformations
3D homogeneous co-ordinates

3D transformation matrices
(, , ,) (, ,)x y z w x

w
y
w

z
w→

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



















m
m

m

x

y

z

0 0 0
0 0 0
0 0 0
0 0 0 1



















1 0 0
0 1 0
0 0 1
0 0 0 1

t
t
t

x

y

z



















cos sin
sin cos

θ θ
θ θ

−

















0 0
0 0

0 0 1 0
0 0 0 1

1 0 0 0
0 0
0 0
0 0 0 1

cos sin
sin cos

θ θ
θ θ

−


















cos sin

sin cos

θ θ

θ θ

0 0
0 1 0 0

0 0
0 0 0 1

−



















translation identity

scale

rotation about x-axis

rotation about y-axisrotation about z-axis

129

3D transformations are not commutative

x

y
z

x

x
z

z

x

y
z

90° rotation
about z-axis

90° rotation
about x-axis

90° rotation
about z-axis

90° rotation
about x-axis

opposite
faces

↔

↔

↔

130

Viewing transform 1

the problem:
to transform an arbitrary co-ordinate system to
the default viewing co-ordinate system

camera specification in world co-ordinates
eye (camera) at (ex,ey,ez)
look point (centre of screen) at (lx,ly,lz)
up along vector (ux,uy,uz)

perpendicular to

world
co-ordinates

viewing
co-ordinatesviewing

transform

u

e

l

el

131

Viewing transform 2
translate eye point, (ex,ey,ez), to origin, (0,0,0)

scale so that eye point to look point distance, , is
distance from origin to screen centre, d

el

T =

−
−
−



















1 0 0
0 1 0
0 0 1
0 0 0 1

e
e
e

x

y

z

el S

el

el

el

= − + − + − =



















() () ()l e l e l ex x y y z z

d

d

d

2 2 2

0 0 0
0 0 0
0 0 0
0 0 0 1

132

Viewing transform 3
need to align line with z-axis

first transform e and l into new co-ordinate system

then rotate e''l'' into yz-plane, rotating about y-axis

el

e S T e 0 l S T l'' ''= × × = = × ×

R1

2 2

0 0
0 1 0 0

0 0
0 0 0 1

=

−

















=
+

cos sin

sin cos

arccos ' '
' ' ' '

θ θ

θ θ

θ l
l l

z

x z

x

z

(' ' , ' ' , ' ')l l lx y z

()0 2 2, ' ' , ' ' ' 'l l ly x z+

θ

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 23

133

Viewing transform 4
having rotated the viewing vector onto the yz plane,
rotate it about the x-axis so that it aligns with the z-axis

R 2

2 2

1 0 0 0
0 0
0 0
0 0 0 1

=
−



















=
+

cos sin
sin cos

arccos ' ' '
' ' ' ' ' '

φ φ
φ φ

φ l
l l

z

y z

y

z

(, ' ' ' , ' ' ')0 l ly z

()0 0

0 0

2 2, , ' ' ' ' ' '

(, ,)

l l

d
y z+

=

φ

l R l''' ''= ×1

134

Viewing transform 5
the final step is to ensure that the up vector actually
points up, i.e. along the positive y-axis

actually need to rotate the up vector about the z-axis so that it
lies in the positive y half of the yz plane

u R R u'''' = × ×2 1
why don’t we need to
multiply u by S or T?

R3

2 2

0 0
0 0

0 0 1 0
0 0 0 1

=
−


















=
+

cos sin
sin cos

arccos
' ' ' '

' ' ' ' ' ' ' '

ψ ψ
ψ ψ

ψ
u

u u
y

x y

135

Viewing transform 6

we can now transform any point in world co-ordinates
to the equivalent point in viewing co-ordinate

in particular:
the matrices depend only on e, l, and u, so they can be
pre-multiplied together

world
co-ordinates

viewing
co-ordinatesviewing

transform

x
y
z
w

x
y
z
w

'
'
'
'













= × × × × ×












R R R S T3 2 1

e l→ →(, ,) (, ,)0 0 0 0 0 d

M R R R S T= × × × ×3 2 1

136

Another transformation example
a well known graphics package (Open Inventor) defines a
cylinder to be:

centre at the origin, (0,0,0)
radius 1 unit
height 2 units, aligned along the y-axis

this is the only cylinder that can be drawn,
but the package has a complete set of 3D transformations
we want to draw a cylinder of:

radius 2 units
the centres of its two ends located at (1,2,3) and (2,4,5)

its length is thus 3 units
what transforms are required?
and in what order should they be applied?

x

y

2

2

137

A variety of transformations

the modelling transform and viewing transform can be multiplied
together to produce a single matrix taking an object directly from
object co-ordinates into viewing co-ordinates
either or both of the modelling transform and viewing transform
matrices can be the identity matrix

e.g. objects can be specified directly in viewing co-ordinates, or
directly in world co-ordinates

this is a useful set of transforms, not a hard and fast model of how
things should be done

object in
world

co-ordinates

object in
viewing

co-ordinatesviewing
transform

object in
2D screen

co-ordinatesprojection

object in
object

co-ordinates modelling
transform

138

Clipping in 3D
clipping against a volume in viewing co-ordinates

x

y

z
d

2b

2a

a point (x,y,z) can be
clipped against the
pyramid by checking it
against four planes:

x z a
d

x z a
d

y z b
d

y z b
d

> − <

> − <

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 24

139

What about clipping in z?
need to at least check for
z < 0 to stop things
behind the camera from
projecting onto the
screen

can also have front and
back clipping planes:
z > zf and z < zb

resulting clipping volume
is called the viewing
frustum zfx

y

z
zb

x

y

z

oops!

140

Clipping in 3D — two methods
clip against the viewing frustum

need to clip against six planes

project to 2D (retaining z) and clip against the
axis-aligned cuboid

still need to clip against six planes

these are simpler planes against which to clip
this is equivalent to clipping in 2D with two extra clips for z

x z a
d

x z a
d

y z b
d

y z b
d

z z z zf b= − = = − = = =

x a x a y b y b z z z zf b= − = = − = = =

which is
best?

141

Bounding volumes & clipping
can be very useful for reducing the amount of
work involved in clipping
what kind of bounding volume?

axis aligned box

sphere

can have multiple levels of bounding volume

142

Curves in 3D
same as curves in 2D, with an extra
co-ordinate for each point
e.g. Bezier cubic in 3D:

P t t P
t t P

t t P
t P

() ()
()

()

= −

+ −

+ −

+

1
3 1

3 1

3
0

2
1

2
2

3
3 P0

P1

P2

P3

where: P x y zi i i i≡ (, ,)

143

Surfaces in 3D: polygons
lines generalise to planar polygons

3 vertices (triangle) must be planar
> 3 vertices, not necessarily planar

this vertex is in
front of the other

three, which are all
in the same plane

a non-planar
“polygon” rotate the polygon

about the vertical axis

should the result be this
or this?

144

Splitting polygons into triangles
some graphics processors accept only triangles
an arbitrary polygon with more than three vertices
isn’t guaranteed to be planar; a triangle is

which is preferable?

?

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 25

145

Surfaces in 3D: patches
curves generalise to patches

a Bezier patch has a Bezier curve running along
each of its four edges and four extra internal
control points

146

Bezier patch definition
the Bezier patch defined by the sixteen control
points, P0,0,P0,1,…,P3,3, is:

compare this with the 2D version:

b t t b t t t b t t t b t t0
3

1
2

2
2

3
31 3 1 3 1() () () () () () ()= − = − = − =

P s t b s b t Pi j
ji

i j(,) () () ,=
==
∑∑

0

3

0

3

where:

P t b t Pi i
i

() ()=
=
∑

0

3

147

Continuity between Bezier patches
each patch is smooth within itself
ensuring continuity in 3D:

C0 – continuous in position
the four edge control points must match

C1 – continuous in both position and tangent vector
the four edge control points must match
the two control points on either side of each of the four edge
control points must be co-linear with both the edge point and
each another and be equidistant from the edge point

148

Drawing Bezier patches
in a similar fashion to Bezier curves, Bezier patches can be
drawn by approximating them with planar polygons
method:

check if the Bezier patch is sufficiently well approximated by a
quadrilateral, if so use that quadrilateral
if not then subdivide it into two smaller Bezier patches and repeat on
each

subdivide in different dimensions on alternate calls to the subdivision
function

having approximated the whole Bezier patch as a set of (non-planar)
quadrilaterals, further subdivide these into (planar) triangles

be careful to not leave any gaps in the resulting surface!

149

Subdividing a Bezier patch - example
1 2 3

4 5 6

150

Triangulating the subdivided patch

Final quadrilateral
mesh

Naïve
triangulation

More intelligent
triangulation

need to be careful not to generate holes
need to be equally careful when subdividing connected patches

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 26

151

3D scan conversion
lines
polygons

depth sort
Binary Space-Partitioning tree
z-buffer
A-buffer

ray tracing

152

3D line drawing
given a list of 3D lines we draw them by:

projecting end points onto the 2D screen
using a line drawing algorithm on the resulting 2D lines

this produces a wireframe version of whatever
objects are represented by the lines

153

Hidden line removal
by careful use of cunning algorithms, lines that are
hidden by surfaces can be carefully removed from
the projected version of the objects

still just a line drawing
will not be covered further in this course

154

3D polygon drawing
given a list of 3D polygons we draw them by:

projecting vertices onto the 2D screen
but also keep the z information

using a 2D polygon scan conversion algorithm on the
resulting 2D polygons

in what order do we draw the polygons?
some sort of order on z

depth sort
Binary Space-Partitioning tree

is there a method in which order does not matter?
z-buffer

155

Depth sort algorithm
transform all polygon vertices into viewing co-ordinates
and project these into 2D, keeping z information
calculate a depth ordering for polygons, based on the
most distant z co-ordinate in each polygon
resolve any ambiguities caused by polygons
overlapping in z
draw the polygons in depth order from back to front

“painter’s algorithm”: later polygons draw on top of earlier
polygons

steps and are simple, step is 2D polygon scan
conversion, step requires more thought

156

Resolving ambiguities in depth sort
may need to split polygons into smaller polygons to
make a coherent depth ordering

OK

OK

splitsplit

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 27

157

Resolving ambiguities: algorithm
for the rearmost polygon, P, in the list, need to compare each
polygon, Q, which overlaps P in z

the question is: can I draw P before Q?
do the polygons y extents not overlap?
do the polygons x extents not overlap?
is P entirely on the opposite side of Q’s plane from the viewpoint?
is Q entirely on the same side of P’s plane as the viewpoint?
do the projections of the two polygons into the xy plane not overlap?

if all 5 tests fail, repeat and with P and Q swapped (i.e. can I
draw Q before P?), if true swap P and Q
otherwise split either P or Q by the plane of the other, throw away
the original polygon and insert the two pieces into the list

draw rearmost polygon once it has been completely checked

tests get
more

expensive

158

Depth sort: comments
the depth sort algorithm produces a list of
polygons which can be scan-converted in 2D,
backmost to frontmost, to produce the correct
image
reasonably cheap for small number of polygons,
becomes expensive for large numbers of polygons

the ordering is only valid from one particular
viewpoint

159

Back face culling: a time-saving trick
if a polygon is a face of a closed
polyhedron and faces backwards with
respect to the viewpoint then it need
not be drawn at all because front facing
faces would later obscure it anyway

saves drawing time at the the cost of one
extra test per polygon
assumes that we know which way a
polygon is oriented

back face culling can be used in
combination with any 3D scan-
conversion algorithm

160

Binary Space-Partitioning trees
BSP trees provide a way of quickly calculating the
correct depth order:

for a collection of static polygons
from an arbitrary viewpoint

the BSP tree trades off an initial time- and space-
intensive pre-processing step against a linear display
algorithm (O(N)) which is executed whenever a new
viewpoint is specified
the BSP tree allows you to easily determine the
correct order in which to draw polygons by traversing
the tree in a simple way

161

BSP tree: basic idea
a given polygon will be correctly scan-converted if:

all polygons on the far side of it from the viewer are scan-
converted first
then it is scan-converted
then all the polygons on the near side of it are scan-
converted

162

Making a BSP tree
given a set of polygons

select an arbitrary polygon as the root of the tree
divide all remaining polygons into two subsets:

those in front of the selected polygon’s plane
those behind the selected polygon’s plane

any polygons through which the plane passes are split
into two polygons and the two parts put into the
appropriate subsets

make two BSP trees, one from each of the two subsets
these become the front and back subtrees of the root

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 28

163

Drawing a BSP tree
if the viewpoint is in front of the root’s polygon’s
plane then:

draw the BSP tree for the back child of the root
draw the root’s polygon
draw the BSP tree for the front child of the root

otherwise:
draw the BSP tree for the front child of the root
draw the root’s polygon
draw the BSP tree for the back child of the root

164
Scan-line algorithms

instead of drawing one polygon at a time:
modify the 2D polygon scan-conversion algorithm to handle
all of the polygons at once
the algorithm keeps a list of the active edges in all polygons
and proceeds one scan-line at a time

there is thus one large active edge list and one (even larger) edge list
enormous memory requirements

still fill in pixels between adjacent pairs of edges on the
scan-line but:

need to be intelligent about which polygon is in front
and therefore what colours to put in the pixels
every edge is used in two pairs:
one to the left and one to the right of it

165

z-buffer polygon scan conversion
depth sort & BSP-tree methods involve clever
sorting algorithms followed by the invocation
of the standard 2D polygon scan conversion
algorithm
by modifying the 2D scan conversion
algorithm we can remove the need to sort the
polygons

makes hardware implementation easier

166

z-buffer basics
store both colour and depth at each pixel
when scan converting a polygon:

calculate the polygon’s depth at each pixel
if the polygon is closer than the current depth
stored at that pixel

then store both the polygon’s colour and depth at that
pixel
otherwise do nothing

167

z-buffer algorithm
FOR every pixel (x,y)

Colour[x,y] = background colour ;
Depth[x,y] = infinity ;

END FOR ;

FOR each polygon
FOR every pixel (x,y) in the polygon’s projection

z = polygon’s z-value at pixel (x,y) ;
IF z < Depth[x,y] THEN

Depth[x,y] = z ;
Colour[x,y] = polygon’s colour at (x,y) ;

END IF ;
END FOR ;

END FOR ;

This is essentially the 2D
polygon scan conversion
algorithm with depth
calculation and depth
comparison added.

168

z-buffer example

9 9 9 9 ∞ ∞
8 8 8 8 ∞ ∞
7 7 7 ∞ ∞ ∞
6 6 6 ∞ ∞ ∞
5 5 ∞ ∞ ∞ ∞
4 4 ∞ ∞ ∞ ∞

9 9 6 6 6 6
8 6 6 6 6 6
6 6 6 6 6 6
6 6 6 6 6 6
5 5 6 6 6 6
4 4 ∞ ∞ 6 6

9 2 3 4 5 6
8 3 4 5 6 6
6 4 5 6 6 6
6 5 6 6 6 6
5 5 6 6 6 6
4 4 ∞ ∞ 6 6

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 29

169

Interpolating depth values 1
just as we incrementally interpolate x as we move
down the edges of the polygon, we can
incrementally interpolate z:

as we move down the edges of the polygon
as we move across the polygon’s projection

(, ,)x y z1 1 1

(, ,)x y z2 2 2

(, ,)x y z3 3 3

(' , ' ,)x y d1 1

(' , ' ,)x y d2 2

(' , ' ,)x y d3 3

project
x x d

z

y y d
z

a a
a

a a
a

'

'

=

=

170

Interpolating depth values 2
we thus have 2D vertices, with added depth information

we can interpolate x and y in 2D

but z must be interpolated in 3D

[(' , '),]x y za a a

x t x t x
y t y t y
' () ' () '
' () ' () '
= − +
= − +

1
1

1 2

1 2

1 1 1 1
1 2z

t
z

t
z

= − +() ()

171

Comparison of methods

BSP is only useful for scenes which do not change

as number of polygons increases, average size of polygon decreases, so
time to draw a single polygon decreases

z-buffer easy to implement in hardware: simply give it polygons in any
order you like

other algorithms need to know about all the polygons before drawing a
single one, so that they can sort them into order

Algorithm Complexity Notes
Depth sort O(N log N) Need to resolve ambiguities
Scan line O(N log N) Memory intensive
BSP tree O(N) O(N log N) pre-processing step
z-buffer O(N) Easy to implement in hardware

172

Putting it all together - a summary
a 3D polygon scan conversion algorithm
needs to include:

a 2D polygon scan conversion algorithm
2D or 3D polygon clipping
projection from 3D to 2D
some method of ordering the polygons so that
they are drawn in the correct order

173

Sampling
all of the methods so far take a
single sample for each pixel at
the precise centre of the pixel

i.e. the value for each pixel is the
colour of the polygon which happens
to lie exactly under the centre of the
pixel

this leads to:
stair step (jagged) edges to polygons
small polygons being missed
completely
thin polygons being missed
completely or split into small pieces

174

Anti-aliasing
these artefacts (and others) are jointly known as
aliasing
methods of ameliorating the effects of aliasing are
known as anti-aliasing

in signal processing aliasing is a precisely defined technical
term for a particular kind of artefact
in computer graphics its meaning has expanded to include
most undesirable effects that can occur in the image

this is because the same anti-aliasing techniques which
ameliorate true aliasing artefacts also ameliorate most of the
other artefacts

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 30

175

Anti-aliasing method 1: area averaging
average the contributions of all polygons to
each pixel

e.g. assume pixels are square and we just want the
average colour in the square
Ed Catmull developed an algorithm which does this:

works a scan-line at a time
clips all polygons to the scan-line
determines the fragment of each polygon which
projects to each pixel
determines the amount of the pixel covered by the
visible part of each fragment
pixel's colour is a weighted sum of the visible parts

expensive algorithm!

176

Anti-aliasing method 2: super-sampling
sample on a finer grid,
then average the samples
in each pixel to produce
the final colour

for an n×n sub-pixel grid, the
algorithm would take roughly
n2 times as long as just
taking one sample per pixel

can simply average all of
the sub-pixels in a pixel or
can do some sort of
weighted average

177

The A-buffer
a significant modification of the z-buffer, which
allows for sub-pixel sampling without as high an
overhead as straightforward super-sampling
basic observation:

a given polygon will cover a pixel:
totally
partially
not at all

sub-pixel sampling is only required in the
case of pixels which are partially covered
by the polygon

L. Carpenter, “The A-buffer: an antialiased hidden surface method”, SIGGRAPH 84, 103–8

178

A-buffer: details
for each pixel, a list of masks is stored
each mask shows how much of a polygon covers the
pixel
the masks are sorted in depth order
a mask is a 4×8 array of bits:

1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

1 = polygon covers this sub-pixel

0 = polygon doesn’t cover this sub-pixel

sampling is done at the centre of each
of the sub-pixels

need to store both
colour and depth in
addition to the mask{

179

A-buffer: example
to get the final colour of the pixel you need to average
together all visible bits of polygons

1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

sub-pixel
colours

final pixel
colour(frontmost) (backmost)

A=11111111 00011111 00000011 00000000
B=00000011 00000111 00001111 00011111
C=00000000 00000000 11111111 11111111

¬ A∧ B =00000000 00000000 00001100 00011111
¬ A∧¬ B∧ C =00000000 00000000 11110000 11100000

A covers 15/32 of the pixel
¬ A∧ B covers 7/32 of the pixel
¬ A∧¬ B∧ C covers 7/32 of the pixel

A B C

180

Making the A-buffer more efficient
if a polygon totally covers a pixel then:

do not need to calculate a mask, because the mask is all 1s
all masks currently in the list which are behind this polygon
can be discarded
any subsequent polygons which are behind this polygon can
be immediately discounted (without calculating a mask)

in most scenes, therefore, the majority of pixels will
have only a single entry in their list of masks

the polygon scan-conversion algorithm can be
structured so that it is immediately obvious whether a
pixel is totally or partially within a polygon

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 31

181

A-buffer: calculating masks
clip polygon to pixel
calculate the mask for each edge bounded by the
right hand side of the pixel

there are few enough of these that they can be stored in a
look-up table

XOR all masks together

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 1 1 1 0 0

0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

⊕ ⊕ ⊕ =

182

A-buffer: comments
the A-buffer algorithm essentially adds anti-aliasing to
the z-buffer algorithm in an efficient way

most operations on masks are AND, OR, NOT, XOR
very efficient boolean operations

why 4×8?
algorithm originally implemented on a machine with 32-bit
registers (VAX 11/780)
on a 64-bit register machine, 8×8 seems more sensible

what does the A stand for in A-buffer?
anti-aliased, area averaged, accumulator

183

A-buffer: extensions
as presented the algorithm assumes that a mask has
a constant depth (z value)

can modify the algorithm and perform approximate
intersection between polygons

can save memory by combining fragments which
start life in the same primitive

e.g. two triangles that are part of the decomposition of a
Bezier patch

can extend to allow transparent objects

184

Illumination & shading
until now we have assumed that each polygon is a
uniform colour and have not thought about how that
colour is determined
things look more realistic if there is some sort of
illumination in the scene
we therefore need a mechanism of determining the
colour of a polygon based on its surface properties
and the positions of the lights
we will, as a consequence, need to find ways to
shade polygons which do not have a uniform colour

185

Illumination & shading (continued)
in the real world every light source emits millions of
photons every second
these photons bounce off objects, pass through
objects, and are absorbed by objects
a tiny proportion of these photons enter your eyes
allowing you to see the objects

tracing the paths of all these photons is not an efficient
way of calculating the shading on the polygons in your
scene

186

How do surfaces reflect light?

θ θ θ θ θ

perfect reflection
(mirror)

specular reflection diffuse reflection
(Lambertian reflection)

Johann Lambert, 18th century German mathematician

the surface of a specular reflector is
facetted, each facet reflects perfectly but
in a slightly different direction to the other
facets

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 32

187

Comments on reflection
the surface can absorb some wavelengths of light

e.g. shiny gold or shiny copper
specular reflection has “interesting” properties at
glancing angles owing to occlusion of micro-facets by
one another

plastics are good examples of surfaces with:
specular reflection in the light’s colour
diffuse reflection in the plastic’s colour

188

Calculating the shading of a polygon
gross assumptions:

there is only diffuse (Lambertian) reflection
all light falling on a polygon comes directly from a light source

there is no interaction between polygons
no polygon casts shadows on any other

so can treat each polygon as if it were the only polygon in the scene
light sources are considered to be infinitely distant from the
polygon

the vector to the light is the same across the whole polygon
observation:

the colour of a flat polygon will be uniform across its surface,
dependent only on the colour & position of the polygon and the
colour & position of the light sources

189

Diffuse shading calculation
L is a normalised vector pointing in

the direction of the light source

N is the normal to the polygon

Il is the intensity of the light source

kd is the proportion of light which is
diffusely reflected by the surface

I is the intensity of the light reflected
by the surface

θL
N

I I k
I k N L

l d

l d

=
= ⋅

cos
()

θ

use this equation to set the colour of the whole polygon and draw
the polygon using a standard polygon scan-conversion routine

190

Diffuse shading: comments
can have different Il and different kd for different
wavelengths (colours)
watch out for cosθ < 0

implies that the light is behind the polygon and so it cannot
illuminate this side of the polygon

do you use one-sided or two-sided polygons?
one sided: only the side in the direction of the normal vector
can be illuminated

if cosθ < 0 then both sides are black
two sided: the sign of cosθ determines which side of the
polygon is illuminated

need to invert the sign of the intensity for the back side

191
Gouraud shading

for a polygonal model, calculate the diffuse illumination at
each vertex rather than for each polygon

calculate the normal at the vertex, and use this to calculate the
diffuse illumination at that point
normal can be calculated directly if the polygonal model was
derived from a curved surface

interpolate the colour across the
polygon, in a similar manner to that
used to interpolate z
surface will look smoothly curved

rather than looking like a set of polygons
surface outline will still look polygonal

[(' , '), , (, ,)]x y z r g b1 1 1 1 1 1

[(' , '), ,
(, ,)]

x y z
r g b

2 2 2

2 2 2

[(' , '), , (, ,)]x y z r g b3 3 3 3 3 3

Henri Gouraud, “Continuous Shading of Curved Surfaces”, IEEE Trans Computers, 20(6), 1971

192
Specular reflection

Phong developed an easy-
to-calculate approximation
to specular reflection

θ θ
α

N
R

V

L

θ θ

L is a normalised vector pointing in the
direction of the light source

R is the vector of perfect reflection
N is the normal to the polygon
V is a normalised vector pointing at the

viewer
Il is the intensity of the light source
ks is the proportion of light which is

specularly reflected by the surface
n is Phong’s ad hoc “roughness” coefficient
I is the intensity of the specularly reflected

light

I I k
I k R V

l s
n

l s
n

=
= ⋅

cos
()

α

Phong Bui-Tuong, “Illumination for computer generated pictures”, CACM, 18(6), 1975, 311–7

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 33

193

Phong shading
similar to Gouraud shading, but calculate the specular
component in addition to the diffuse component
therefore need to interpolate the normal across the
polygon in order to be able to calculate the reflection
vector

N.B. Phong’s approximation to
specular reflection ignores
(amongst other things) the
effects of glancing incidence

[(' , '), , (, ,),]x y z r g b1 1 1 1 1 1 1N

[(' , ') , ,
(, ,) ,]

x y z
r g b

2 2 2

2 2 2 2N

[(' , ') , , (, ,) ,]x y z r g b3 3 3 3 3 3 3N

194

The gross assumptions revisited
only diffuse reflection

now have a method of approximating specular reflection
no shadows

need to do ray tracing to get shadows
lights at infinity

can add local lights at the expense of more calculation
need to interpolate the L vector

no interaction between surfaces
cheat!

assume that all light reflected off all other surfaces onto a given
polygon can be amalgamated into a single constant term: “ambient
illumination”, add this onto the diffuse and specular illumination

195

Shading: overall equation
the overall shading equation can thus be considered to
be the ambient illumination plus the diffuse and
specular reflections from each light source

the more lights there are in the scene, the longer this
calculation will take

θ θ
α

N
Ri

V

Li

I I k I k L N I k R Va a i d i i s i
n

ii

= + ⋅ + ⋅∑∑ () ()

196
Illumination & shading: comments
how good is this shading equation?

gives reasonable results but most objects tend to look as if they
are made out of plastic
Cook & Torrance have developed a more realistic (and more
expensive) shading model which takes into account:

micro-facet geometry (which models, amongst other things, the
roughness of the surface)
Fresnel’s formulas for reflectance off a surface

there are other, even more complex, models
is there a better way to handle inter-object interaction?

“ambient illumination” is, frankly, a gross approximation
distributed ray tracing can handle specular inter-reflection
radiosity can handle diffuse inter-reflection

197

Ray tracing
a powerful alternative to polygon scan-conversion
techniques
given a set of 3D objects, shoot a ray from the eye
through the centre of every pixel and see what it hits

shoot a ray through each pixel whatever the ray hits determines the colour of
that pixel

198

Ray tracing algorithm

select an eye point and a screen plane

FOR every pixel in the screen plane
determine the ray from the eye through the pixel’s centre
FOR each object in the scene

IF the object is intersected by the ray
IF the intersection is the closest (so far) to the eye

record intersection point and object
END IF ;

END IF ;
END FOR ;
set pixel’s colour to that of the object at the closest intersection point

END FOR ;

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 34

199

Intersection of a ray with an object 1
plane

box, polygon, polyhedron
defined as a set of bounded planes

O
D

ray
plane

: ,
:

P O sD s
P N d
= + ≥

⋅ + =
0

0

N

s d N O
N D

= − + ⋅
⋅

200

Intersection of a ray with an object 2
sphere

cylinder, cone, torus
all similar to sphere

O
D C

r ()
() ()

a
dbs

a
dbs

acbd

rCOCOc
CODb

DDa

2

2

4

2

2

1

2

2

−−=

+−=

−=

−−⋅−=

−⋅=
⋅=

d real d imaginary

ray
circle

: ,
: () ()

P O sD s
P C P C r

= + ≥

− ⋅ − − =

0
02

201

Ray tracing: shading
once you have the
intersection of a ray with the
nearest object you can also:

calculate the normal to the
object at that intersection point
shoot rays from that point to all
of the light sources, and
calculate the diffuse and
specular reflections off the
object at that point

this (plus ambient illumination)
gives the colour of the object
(at that point)

O
D C

r

N

light 1

light 2

202

Ray tracing: shadows
because you are
tracing rays from the
intersection point to
the light, you can
check whether
another object is
between the
intersection and the
light and is hence
casting a shadow

also need to watch for
self-shadowing

O
D C

r

N

light 1

light 2

light 3

203

Ray tracing: reflection
if a surface is totally
or partially reflective
then new rays can
be spawned to find
the contribution to
the pixel’s colour
given by the
reflection

this is perfect
(mirror) reflection

O

N1

light
N2

204

Ray tracing: transparency & refraction
objects can be totally or
partially transparent

this allows objects behind
the current one to be seen
through it

transparent objects can
have refractive indices

bending the rays as they
pass through the objects

transparency + reflection
means that a ray can split
into two parts

O

light

D0

D1

D'1

D'2

D2

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 35

205

Sampling in ray tracing
single point

shoot a single ray through the
pixel’s centre

super-sampling for anti-aliasing
shoot multiple rays through the
pixel and average the result
regular grid, random, jittered,
Poisson disc

adaptive super-sampling
shoot a few rays through the pixel,
check the variance of the resulting
values, if similar enough stop,
otherwise shoot some more rays

206

Types of super-sampling 1
regular grid

divide the pixel into a number of sub-
pixels and shoot a ray through the centre
of each
problem: can still lead to noticable
aliasing unless a very high resolution sub-
pixel grid is used

random
shoot N rays at random points in the pixel
replaces aliasing artefacts with noise
artefacts

the eye is far less sensitive to noise than
to aliasing

12 8 4

207

Types of super-sampling 2
Poisson disc

shoot N rays at random
points in the pixel with the
proviso that no two rays
shall pass through the pixel
closer than ε to one another
for N rays this produces a
better looking image than
pure random sampling
very hard to implement
properly

Poisson disc pure random

208

Types of super-sampling 3
jittered

divide pixel into N sub-pixels
and shoot one ray at a random
point in each sub-pixel
an approximation to Poisson
disc sampling
for N rays it is better than pure
random sampling
easy to implement

jittered pure randomPoisson disc

209More reasons for wanting to take multiple
samples per pixel

super-sampling is only one reason why we might want to
take multiple samples per pixel
many effects can be achieved by distributing the multiple
samples over some range

called distributed ray tracing
N.B. distributed means distributed over a range of values

can work in two ways
each of the multiple rays shot through a pixel is allocated a
random value from the relevant distribution(s)

all effects can be achieved this way with sufficient rays per pixel
each ray spawns multiple rays when it hits an object

this alternative can be used, for example, for area lights

210

Examples of distributed ray tracing
distribute the samples for a pixel over the pixel area

get random (or jittered) super-sampling
used for anti-aliasing

distribute the rays going to a light source over some area
allows area light sources in addition to point and directional light
sources
produces soft shadows with penumbrae

distribute the camera position over some area
allows simulation of a camera with a finite aperture lens
produces depth of field effects

distribute the samples in time
produces motion blur effects on any moving objects

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 36

211Distributed ray tracing
for specular reflection

previously we could only
calculate the effect of
perfect reflection
we can now distribute the
reflected rays over the
range of directions from
which specularly reflected
light could come
provides a method of
handling some of the inter-
reflections between
objects in the scene
requires a very large
number of ray per pixel

O

light

212

Handling direct illumination

light

light diffuse reflection
handled by ray tracing and
polygon scan conversion
assumes that the object is
a perfect Lambertian
reflector

specular reflection
also handled by ray tracing
and polygon scan
conversion
use Phong’s approximation
to true specular reflection

213

Handing indirect illumination: 1
light

light

diffuse to specular
handled by
distributed ray tracing

specular to specular
also handled by
distributed ray tracing

214

Handing indirect illumination: 2
light

light

diffuse to diffuse
handled by radiosity

covered in the Part II
Advanced Graphics
course

specular to diffuse
handled by no usable
algorithm
some research work
has been done on this
but uses enormous
amounts of CPU time

215

Multiple inter-reflection
light may reflect off many surfaces on
its way from the light to the camera
standard ray tracing and polygon
scan conversion can handle a single
diffuse or specular bounce
distributed ray tracing can handle
multiple specular bounces
radiosity can handle multiple diffuse
bounces
the general case cannot be handled
by any efficient algorithm

(diffuse | specular)*

diffuse | specular

(diffuse | specular) (specular)*

(diffuse)*

(diffuse | specular)*

216

Hybrid algorithms
polygon scan conversion and ray tracing are
the two principal 3D rendering mechanisms

each has its advantages
polygon scan conversion is faster
ray tracing produces more realistic looking results

hybrid algorithms exist
these generally use the speed of polygon scan
conversion for most of the work and use ray
tracing only to achieve particular special effects

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 37

217

Surface detail
so far we have assumed perfectly
smooth, uniformly coloured
surfaces
real life isn’t like that:

multicoloured surfaces
e.g. a painting, a food can, a page in a book

bumpy surfaces
e.g. almost any surface! (very few things are
perfectly smooth)

textured surfaces
e.g. wood, marble

218

Texture mapping

all surfaces are smooth and of uniform
colour

most surfaces are textured with
2D texture maps

the pillars are textured with a solid texture

without with

219

Basic texture mapping
a texture is simply an
image, with a 2D coordinate
system (u,v)

each 3D object is
parameterised in (u,v) space
each pixel maps to some
part of the surface
that part of the surface
maps to part of the texture

u

v

220

Paramaterising a primitive
polygon: give (u,v)
coordinates for three
vertices, or treat as part
of a plane
plane: give u-axis and v-
axis directions in the
plane
cylinder: one axis goes
up the cylinder, the
other around the
cylinder

221

Sampling texture space

u

v

Find (u,v) coordinate of the sample point on
the object and map this into texture space
as shown

222

Sampling texture space: finding the value

nearest neighbour: the sample value is the nearest pixel
value to the sample point
bilinear reconstruction: the sample value is the weighted
mean of pixels around the sample point

(a) (b)

(i,j)

(i,j)

(i,j+1)

(i+1,j)

(i+1,j+1)

t

s

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 38

223Sampling texture space:
interpolation methods

nearest neighbour
fast with many artefacts

bilinear
reasonably fast, blurry

can we get better results?
bicubic gives better results

uses 16 values (4×4) around the sample location
but runs at one quarter the speed of bilinear

biquadratic
use 9 values (3×3) around the sample location
faster than bicubic, slower than linear, results seem to be nearly
as good as bicubic

224

Texture mapping examples

nearest-
neighbour

bilinear
u

v

225

Down-sampling
if the pixel covers quite a large
area of the texture, then it will
be necessary to average the
texture across that area, not just
take a sample in the middle of
the area

226

Multi-resolution texture
Rather than down-sampling every time you need to, have
multiple versions of the texture at different resolutions and pick
the appropriate resolution to sample from…

You can use tri-linear
interpolation to get an even better
result: that is, use bi-linear
interpolation in the two nearest levels
and then linearly interpolate between
the two interpolated values

227

an efficient memory arrangement for a multi-
resolution colour image
pixel (x,y) is a bottom level pixel location
(level 0); for an image of size (m,n), it is stored
at these locations in level k:

The MIP map

2 2
2

1 1
1

0 0

0













 +





 +

kk

ymxm
2

,
2












 +







kk

ymx
2

,
2



















 +

kk

yxm
2

,
2

Red

GreenBlue

228

Solid textures
texture mapping applies
a 2D texture to a surface

colour = f(u,v)
solid textures have
colour defined for every
point in space

colour = f(x,y,z)
permits the modelling of
objects which appear to
be carved out of a
material

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 39

229

What can a texture map modify?
any (or all) of the colour components

ambient, diffuse, specular
transparency

“transparency mapping”
reflectiveness

but also the surface normal
“bump mapping”

230

Bump mapping

but bump mapping
doesn’t change the
object’s outline

the surface normal is used in
calculating both diffuse and
specular reflection
bump mapping modifies the
direction of the surface
normal so that the surface
appears more or less bumpy
rather than using a texture
map, a 2D function can be
used which varies the
surface normal smoothly
across the plane

231

Image Processing
filtering

convolution
nonlinear filtering

point processing
intensity/colour correction

compositing
halftoning & dithering
compression

various coding schemes

IP

Background

2D CG

3D CG 232

Filtering
move a filter over the image, calculating a
new value for every pixel

233

Filters - discrete convolution
convolve a discrete filter with the image to
produce a new image

in one dimension:

in two dimensions:

f x h i f x i
i

'() () ()= × −
=−∞

+∞

∑
where h(i) is the filter

f x y h i j f x i y j
ji

' (,) (,) (,)= × − −
=−∞

+∞

=−∞

+∞

∑∑

234

Example filters - averaging/blurring
1

9
1

9
1

9
1

9
1

9
1

9
1

9
1

9
1

9

1 1 1
1 1 1
1 1 1

= ×1
9

1 2 1
2 24
1 2 1

1
16 ×

1 2 4 2 1
2
4
2
1 2 4 2 1

2
4
2

6 6

6 69
9

9
9161

112 ×

Basic 3x3 blurring filter

Gaussian 3x3 blurring filter
Gaussian 5x5 blurring filter

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 40

235

Example filters - edge detection

1 1 1
0 00
-1 -1 -1

1 1 0
1 -10
0 -1 -1

1 0 -1
1 -10
1 0 -1

1 2 1
0 00
-1 -2 -1

2 1 0
1 -10
0 -1 -2

1 0 -1
2 -20
1 0 -1

1 0
-10

0 1
0-1Prewitt filters

Sobel filters

Roberts filters

Horizontal Vertical Diagonal

236

Example filter - horizontal edge detection

1 1 1
0 00
-1 -1 -1

300 200 100 0

300 300 200 100

0 100 100 100

0 0 0 0 0 0

0 0 0 0

0

300

300

0

0

0

0 0 0 0 0 00

0 0 0 0 0

300

300

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

300

300

0

0

100 100 100 100 100 100

100 100 100 100 100 100

0 0 0 100 100 100

0 0 0 0 100 100

0 0 0 0 100 100

0 0 0 0 100 100

100 100 100 100 100 100

100

100

0

0

0

0

100

100

100

100

100

100

100

100

100

100

0

0

0

0

100

∗ =

Horizontal edge
detection filter

Image Result

237

Example filter - horizontal edge detection

original image after use of a 3×3 Prewitt
horizontal edge detection filter

mid-grey = no edge, black or white = strong edge

238

Median filtering
not a convolution method
the new value of a pixel is the median of the
values of all the pixels in its neighbourhood

99
10 15
12
15

17 21 24

18

27

34 2

37
38 42
40 44

40 41 43 47

16 20 25
22 23 25
37 36 39

27
39
41

16 21 24
20 36
23 36 39

25
(16,20,22,23,

25,
25,36,37,39)

sort into order and take median

e.g. 3×3 median filter

239

Median filter - example
original

add shot noise

median
filter

Gaussian
blur

240

Median filter - limitations
copes well with shot (impulse) noise
not so good at other types of noise
original

add random noise

median
filter

Gaussian
blur

in this example,
median filter reduces
noise but doesn’t
eliminate it

Gaussian filter
eliminates noise
at the expense of
excessive blurring

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 41

241

Point processing
each pixel’s value is modified
the modification function only takes that
pixel’s value into account

where p(i,j) is the value of the pixel and p'(i,j) is the
modified value
the modification function, f (p), can perform any
operation that maps one intensity value to another

p i j f p i j' (,) { (,)}=

242Point processing
inverting an image

black

white

p

f(p)

black white

243Point processing
improving an image’s contrast

black

white

p

f(p)

black white

dark histogram improved histogram

244Point processing
modifying the output of a filter

black

white

p

f(p)

black white
black

white

p

f(p)

black white

black or white = edge
mid-grey = no edge

black = edge
white = no edge
grey = indeterminate

black = edge
white = no edge

thresholding

245

Point processing: gamma correction
the intensity displayed on a CRT is related to the voltage on the
electron gun by:

the voltage is directly related to the pixel value:

gamma correction modifies pixel values in the inverse manner:

thus generating the appropriate intensity on the CRT:

CRTs generally have gamma values around 2.0

i V∝ γ

p p' /= 1 γ

V p∝

i V p p∝ ∝ ∝γ γ'

246

Image compositing
merging two or more images together

what does this operator do?

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 42

247

Simple compositing
copy pixels from one image to another

only copying the pixels you want
use a mask to specify the desired pixels

the mask determines
which image is used
for each pixel

248

Alpha blending for compositing
instead of a simple boolean mask, use an
alpha mask

value of alpha mask determines how much of each
image to blend together to produce final pixel

the mask determines
how to blend the two
source pixel values

a b

m d ma m b= + −()1

d

249

Arithmetic operations
images can be manipulated arithmetically

simply apply the operation to each pixel location
in turn

multiplication
used in masking

subtraction (difference)
used to compare images
e.g. comparing two x-ray images before and after
injection of a dye into the bloodstream

250

Difference example

- =
take the difference between the two images black = large difference

white = no differenced a b= − −1 | |

a b d

where 1 = white and 0 = black

the two images are taken from slightly different viewpoints

251

Halftoning & dithering
mainly used to convert greyscale to binary

e.g. printing greyscale pictures on a laser printer
8-bit to 1-bit

is also used in colour printing,
normally with four colours:

cyan, magenta, yellow, black

252

Halftoning
each greyscale pixel maps to a square of
binary pixels

e.g. five intensity levels can be approximated by a
2×2 pixel square

1-to-4 pixel mapping

8-bit values that map to each of the five possibilities
0-51 52-102 103-153 154-204 205-255

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 43

253

Halftoning dither matrix
one possible set of patterns for the 3×3 case
is:

these patterns can be represented by the
dither matrix: 7 9 5

2 1 4
6 3 8

1-to-9 pixel mapping

254

Rules for halftone pattern design
mustn’t introduce visual artefacts in areas of
constant intensity

e.g. this won’t work very well:
every on pixel in intensity level j must also be on in
levels > j

i.e. on pixels form a growth sequence
pattern must grow outward from the centre

simulates a dot getting bigger
all on pixels must be connected to one another

this is essential for printing, as isolated on pixels will not
print very well (if at all)

255

Ordered dither
halftone prints and photocopies well, at the
expense of large dots
an ordered dither matrix produces a nicer visual
result than a halftone dither matrix

1 9 3 11
15 5 13 7
4 12 2 10
14 8 16 6

16 8 11 14
12 1 2 5
7 4 3 10
15 9 6 13

ordered
dither

halftone

3 6 9 14

256

1-to-1 pixel mapping
a simple modification of the ordered dither
method can be used

turn a pixel on if its intensity is greater than (or
equal to) the value of the corresponding cell in the
dither matrix

1 9 3 11
15 5 13 7
4 12 2 10
14 8 16 6

0 1 2 3
0
1
2
3

m

n

dm n,

q p

b q d

i j i j

i j i j i j

, ,

, , ,()

=

= ≥

div

mod mod

15

4 4

quantise 8 bit pixel value

find binary value

e.g.

257

Error diffusion
error diffusion gives a more pleasing visual
result than ordered dither
method:

work left to right, top to bottom
map each pixel to the closest quantised value
pass the quantisation error on to the pixels to the
right and below, and add in the errors before
quantising these pixels

258

Error diffusion - example (1)
map 8-bit pixels to 1-bit pixels

quantise and calculate new error values

each 8-bit value is calculated from pixel and error
values:

8-bit value
fi,j

1-bit value
bi,j

error
ei,j

0-127

128-255

0

1

f i j,

f i j, − 255

f p e ei j i j i j i j, , , ,= + +− −
1
2 1

1
2 1

in this example the errors
from the pixels to the left
and above are taken into
account

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 44

259

Error diffusion - example (2)

107 100

60 80

+30

107 100

60 80

0

+30

1

137 100

0 0

+55

-59

-59 1 96

0 0

0
-59 +48

+48

original image process pixel (0,0) process pixel (1,0)

process pixel (0,1) process pixel (1,1)

107 100

0 110

+30 +55

+55

0

260

Error diffusion
Floyd & Steinberg developed the error diffusion
method in 1975

often called the “Floyd-Steinberg algorithm”
their original method diffused the errors in the
following proportions:

7
16

1
165

16
3

16

pixels still to
be processed

pixels that have
been processed

current pixel

261

Halftoning & dithering — examples
ordered dither

halftoning
(4×4 cells)

error diffused

halftoning
(5×5 cells)

original

thresholding

262

Halftoning & dithering — examples
original

halftoned with a very
fine screen

ordered dither

the regular dither
pattern is clearly
visible

error diffused

more random than
ordered dither and
therefore looks more
attractive to the
human eye

thresholding

<128 ⇒ black

≥128 ⇒ white

halftoning

the larger the cell size, the more intensity levels
available

the smaller the cell, the less noticable the
halftone dots

263

Encoding & compression
introduction
various coding schemes

difference, predictive, run-length, quadtree
transform coding

Fourier, cosine, wavelets, JPEG

264

What you should note about image data
there’s lots of it!

an A4 page scanned at 300 ppi produces:
24MB of data in 24 bit per pixel colour
1MB of data at 1 bit per pixel

the Encyclopaedia Britannica would require 25GB at 300
ppi, 1 bit per pixel

adjacent pixels tend to be very similar

compression is therefore both feasible and
necessary

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 45

265

Encoding - overview

mapper
maps pixel values to some other set of values
designed to reduce inter-pixel redundancies

quantiser
reduces the accuracy of the mapper’s output
designed to reduce psychovisual redundancies

symbol encoder
encodes the quantiser’s output
designed to reduce symbol redundancies

Mapper Quantiser Symbol
encoder

image
encoded

image

all three
operations are

optional

fewer
bits than
original

266

Lossless vs lossy compression
lossless

allows you to exactly reconstruct the pixel values
from the encoded data

implies no quantisation stage and no losses in either of
the other stages

lossy
loses some data, you cannot exactly reconstruct
the original pixel values

267

Raw image data
can be stored simply as a sequence of pixel
values

no mapping, quantisation, or encoding

32×32 pixels 1024 bytes

5 54 5 18 5 30 16 69 43 58 40 33 18 13 16 3 16 9 7 189 119 69 44 60 42 68 161 149 70 37 48 35 57 2
56 12 15 64 41 21 14 4 3 218 57 64 6 54 57 46 118 149 140 32 45 39 24 199 156 81 16 12 29 12 15 42
130 168 124 174 38 59 50 9 65 29 128 22 192 125 147 29 38 22 198 170 78 42 41 43 43 46 163 188 1
27 57 24 40 24 21 43 37 44 163 110 100 74 51 39 31 232 20 121 50 55 10 186 77 111 112 40 86 186
81 7 32 18 136 78 151 159 187 114 35 18 29 233 3 86 35 87 26 42 52 14 13 13 31 50 73 20 18 22 81
152 186 137 80 131 47 19 47 24 66 72 29 194 161 63 17 9 8 29 33 33 38 31 27 81 74 74 66 38 48 65
66 42 26 36 51 55 77 229 61 65 11 28 32 41 35 36 28 24 34 138 130 150 109 56 37 30 45 38 41 157 1
44 110 176 71 36 30 25 41 44 47 60 20 11 19 16 155 156 165 125 69 39 38 48 38 22 18 49 107 119 1
43 32 44 30 26 45 44 39 33 37 63 22 148 178 141 121 76 55 44 42 25 13 17 21 39 70 47 25 57 93 121
39 11 128 137 61 41 168 170 195 168 135 102 83 48 39 33 19 16 23 33 42 95 43 121 71 34 39 40 38 4
168 137 78 143 182 189 160 109 104 87 57 36 35 6 16 34 41 36 63 26 118 75 37 41 34 33 31 39 33 15
95 21 181 197 134 125 109 66 46 31 3 33 38 42 33 38 46 12 109 25 41 36 34 36 34 34 37 174 202 210
148 132 101 79 58 41 32 0 11 26 53 46 45 48 38 42 42 38 32 37 36 37 40 30 183 201 201 152 92 67 2
41 24 15 4 7 43 43 41 50 45 10 44 17 37 41 37 33 31 33 33 172 180 168 112 54 55 11 182 179 159 89
48 39 48 46 12 25 162 39 37 28 44 49 43 41 58 130 85 40 49 14 212 218 202 162 98 60 75 8 11 27 38
195 40 45 34 41 48 61 48 42 61 53 35 30 35 178 212 182 206 155 80 70 30 6 14 39 36 53 43 45 8 6 18
35 59 49 31 79 73 78 62 81 108 195 175 156 112 60 53 6 11 22 42 49 51 48 49 3 16 184 77 83 156 36
63 80 65 73 84 157 142 126 77 51 9 12 27 32 142 109 89 56 8 6 169 178 80 240 231 71 36 30 28 35 5
90 55 42 2 3 37 37 192 155 129 101 106 72 65 19 157 168 195 192 157 110 132 39 40 38 35 38 42 51
48 41 89 197 174 144 138 98 92 56 45 69 161 199 46 65 187 79 131 64 41 96 46 38 37 42 47 44 56 47
165 173 142 103 81 59 58 41 96 78 204 54 42 52 125 118 45 102 39 55 17 57 62 45 60 46 39 188 69 6
135 81 84 72 60 43 47 40 209 158 83 154 232 211 186 162 156 167 223 190 58 201 175 101 104 124
162 118 89 81 63 48 39 33 12 209 162 71 152 210 250 176 58 201 191 147 188 160 147 147 166 79 6
137 110 101 83 70 70 48 34 37 2 182 121 157 83 101 104 76 65 194 155 136 156 202 162 173 64 84 8
130 123 106 77 63 49 37 39 36 26 189 165 119 123 131 24 70 85 229 154 215 176 92 141 223 20 73 4
99 83 71 49 35 36 30 30 23 151 58 169 33 12 99 22 76 234 156 180 219 108 30 128 59 26 27 26 47 12
45 38 52 55 11 112 128 40 35 40 21 126 65 179 162 156 158 201 145 44 35 18 27 14 21 23 0 101 78 7
162 155 220 174 27 17 20 173 29 160 187 172 93 59 46 121 57 14 50 76 69 31 78 56 82 76 64 66 66 5
69 26 20 33 160 235 224 253 29 84 102 25 78 22 81 103 78 158 192 148 125 68 53 30 29 23 18 82 13

268
Symbol encoding on raw data

pixels are encoded by variable length
symbols

the length of the symbol is determined by the
frequency of the pixel value’s occurence

0
1
2
3
4
5
6
7

0.19
0.25
0.21
0.16
0.08
0.06
0.03
0.02

000
001
010
011
100
101
110
111

11
01
10

001
0001

00001
000001
000000

p P p() Code 1 Code 2

with Code 1 each pixel requires 3 bits
with Code 2 each pixel requires 2.7 bits

Code 2 thus encodes the data in
90% of the space of Code 1

e.g.

(an example of symbol encoding)

269
Quantisation as a compression method

quantisation, on its own, is not normally used
for compression because of the visual
degradation of the resulting image
however, an 8-bit to 4-bit quantisation using
error diffusion would compress an image to
50% of the space

(an example of quantisation)

270
Difference mapping

every pixel in an image will be very similar to those
either side of it
a simple mapping is to store the first pixel value and,
for every other pixel, the difference between it and the
previous pixel

67 73 74 69 53 54 52 49 127 125 125 126

67 +6 +1 -5 -16 +1 -2 -3 +78 -2 0 +1

(an example of mapping)

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 46

271

Difference mapping - example (1)

Difference
Percentage

of pixels
0 3.90%

-8..+7 42.74%
-16..+15 61.31%
-32..+31 77.58%
-64..+63 90.35%

-128..+127 98.08%
-255..+255 100.00%

this distribution of values will work well with
a variable length code

272
Difference mapping - example (2)

-8..+7 0XXXX 5 42.74%

-40..-9 10XXXXXX 8 38.03%
+8..+39

-255..-41 11XXXXXXXXX 11 19.23%
+40..+255

7.29 bits/pixel
91% of the space of the original image

Difference
value Code

Code
length

Percentage
of pixels

this is a very simple variable length code
(an example of mapping and symbol encoding combined)

273
Predictive mapping

when transmitting an image left-to-right top-to-bottom, we
already know the values above and to the left of the current
pixel
predictive mapping uses those known pixel values to
predict the current pixel value, and maps each pixel value
to the difference between its actual value and the
prediction

e.g. �p p pi j i j i j, , ,= +− −
1
2 1

1
2 1

prediction

difference - this is what we transmit
d p pi j i j i j, , ,= − �

(an example of mapping)

274
Run-length encoding

based on the idea that images often contain
runs of identical pixel values

method:
encode runs of identical pixels as run length and pixel
value
encode runs of non-identical pixels as run length and
pixel values

34 36 37 38 38 38 38 39 40 40 40 40 40 49 57 65 65 65

34 36 37 38 39 40 49 57 653 4 1 5 2 4

65

original pixels

run-length encoding

(an example of symbol encoding)

275

Run-length encoding - example (1)
run length is encoded as an 8-bit value:

first bit determines type of run
0 = identical pixels, 1 = non-identical pixels

other seven bits code length of run
binary value of run length - 1 (run length ∈{ 1,…,128})

pixels are encoded as 8-bit values

best case: all runs of 128 identical pixels
compression of 2/128 = 1.56%

worst case: no runs of identical pixels
compression of 129/128=100.78% (expansion!)

276

Run-length encoding - example (2)
works well for computer generated imagery
not so good for real-life imagery
especially bad for noisy images

19.37% 44.06% 99.76%
compression ratios

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 47

277

CCITT fax encoding
fax images are binary
1D CCITT group 3

binary image is stored as a series of run lengths
don’t need to store pixel values!

2D CCITT group 3 & 4
predict this line’s runs based on previous line’s
runs
encode differences

278

Transform coding

-4.5

= 76

+4.5

+0

+1.5

-2

+1.5

+2

79 73 63 71 73 79 81 89
transform N pixel values into
coefficients of a set of N basis
functions
the basis functions should be
chosen so as to squash as
much information into as few
coefficients as possible
quantise and encode the
coefficients

279

Mathematical foundations
each of the N pixels, f(x), is represented as a
weighted sum of coefficients, F(u)

f x F u H u x
u

N

() () (,)=
=

−

∑
0

1

0 1 2 3 4 5 6 7
0 +1 +1 +1 +1 +1 +1 +1 +1
1 +1 +1 +1 +1 -1 -1 -1 -1
2 +1 +1 -1 -1 +1 +1 -1 -1
3 +1 +1 -1 -1 -1 -1 +1 +1
4 +1 -1 +1 -1 +1 -1 +1 -1
5 +1 -1 +1 -1 -1 +1 -1 +1
6 +1 -1 -1 +1 +1 -1 -1 +1
7 +1 -1 -1 +1 -1 +1 +1 -1

e.g. H(u,x)

u

x
H(u,x) is the array

of weights

280

Calculating the coefficients
the coefficients can be calculated from the
pixel values using this equation:

compare this with the equation for a pixel value,
from the previous slide:

F u f x h x u
x

N

() () (,)=
=

−

∑
0

1

f x F u H u x
u

N

() () (,)=
=

−

∑
0

1

forward
transform

inverse
transform

281

Walsh-Hadamard transform
“square wave” transform
h(x,u)= 1/N H(u,x)

invented by Walsh (1923) and Hadamard (1893) - the two variants give the same results for N a power of 2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

the first sixteen
Walsh basis

functions
(Hadamard basis

functions are the same,
but numbered differently!)

282

2D transforms
the two-dimensional versions of the transforms are an
extension of the one-dimensional cases

F u f x h x u
x

N

() () (,)=
=

−

∑
0

1

f x F u H u x
u

N

() () (,)=
=

−

∑
0

1

F u v f x y h x y u v
y

N

x

N

(,) (,) (, , ,)=
=

−

=

−

∑∑
0

1

0

1

f x y F u v H u v x y
v

N

u

N

(,) (,) (, , ,)=
=

−

=

−

∑∑
0

1

0

1

one dimension two dimensions

forward transform

inverse transform

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 48

283

2D Walsh basis functions

these are the Walsh basis
functions for N=4
in general, there are N2 basis
functions operating on an
N×N portion of an image

284

Discrete Fourier transform (DFT)
forward transform:

inverse transform:

thus:

F u f x e
N

i ux N

x

N

() ()
/

=
−

=

−

∑
2

0

1 π

f x F u e i xu N

u

N

() () /=
=

−

∑ 2

0

1
π

h x u e

H u x e
N

i ux N

i xu N

(,)

(,)

/

/

=

=

−1 2

2

π

π

285

DFT - alternative interpretation
the DFT uses complex coefficients to represent
real pixel values
it can be reinterpreted as:

where A(u) and θ(u) are real values
a sum of weighted & offset sinusoids

∑
−

=

+=
1

0

2

))(2cos()()(
N

u

uuxuAxf θπ

286

Discrete cosine transform (DCT)
forward transform:

inverse transform:

F u f x x u
Nx

N

() () cos ()= +



=

−

∑ 2 1
20

1 π

f x F u u x u
Nu

N

() () () cos ()= +



=

−

∑ α π2 1
20

1

where:

α ()
{ , , }

u
u
u N

N

N

=
=
∈ −





1

2

0
1 2 1…

287

DCT basis functions
the first eight DCT
basis functions
showing the values of
h(u,x) for N=8

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0

1 4

3

2

7

6

5

288

Haar transform: wavelets
“square wave” transform, similar to Walsh-
Hadamard
Haar basis functions get progressively more local

c.f. Walsh-Hadamard, where all basis functions are global
simplest wavelet transform

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 49

289

Haar basis functions

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

the first sixteen Haar basis functions

290

Karhunen-Loève transform (KLT)
“eigenvector”, “principal component”, “Hotelling” transform

based on statistical properties of the image
source
theoretically best transform encoding method
but different basis functions for every
different image source

first derived by Hotelling (1933) for discrete data; by Karhunen (1947) and Loève (1948) for continuous data

291

JPEG: a practical example
compression standard

JPEG = Joint Photographic Expert Group

three different coding schemes:
baseline coding scheme

based on DCT, lossy
adequate for most compression applications

extended coding scheme
for applications requiring greater compression or higher
precision or progressive reconstruction

independent coding scheme
lossless, doesn’t use DCT

292

JPEG sequential baseline scheme
input and output pixel data limited to 8 bits
DCT coefficients restricted to 11 bits
three step method

DCT
transform Quantisation

Variable
length

encoding

image

JPEG
encoded

image

the following slides describe the steps involved in the JPEG
compression of an 8 bit/pixel image

293

JPEG example: DCT transform
subtract 128 from each (8-bit) pixel value
subdivide the image into 8×8 pixel blocks
process the blocks left-to-right, top-to-bottom
calculate the 2D DCT for each block

image 2D DCT

the most important
coefficients are in the
top left hand corner

294

JPEG example: quantisation
quantise each coefficient, F(u,v),
using the values in the
quantisation matrix and the
formula: �

F u v F u v
Z u v

(,) (,)
(,)

= 





round

reorder the quantised values
in a zigzag manner to put the
most important coefficients
first

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Z u v(,)

Computer Graphics & Image
Processing

©2003 Neil A. Dodgson 50

295

JPEG example: symbol encoding
the DC coefficient (mean intensity) is coded
relative to the DC coefficient of the previous 8×8
block
each non-zero AC coefficient is encoded by a
variable length code representing both the
coefficient’s value and the number of preceding
zeroes in the sequence

this is to take advantage of the fact that the sequence
of 63 AC coefficients will normally contain long runs
of zeroes

