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Review of Last Time

e 1-D transform of a vector ;
— Represent an N-sample sequence as a vector in N-dimehsion vector space
— Transform

« Different representation of this vector in the space via different basis
« e.g.,1-D DFT from time domain to frequency domain

— Forward transform

« In the form of inner product
« Project a vector onto a new set of basis to obtain N “coefficients”

— Inverse transform

« Use linear combination of basis vectors weighted by transform coeff.
to represent the original signal
e 2-D transform of a matrix

— Rewrite the matrix into a vector and apply 1-D transform
— Separable transform allows applying transform to rows then columns
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Review of Last Time (cont’d)

e Representation with orthonormal basis < Unitary transform

— Preserve energy, decorrelation, etc.

e Common unitary transforms
— DFT, DCT,KLT

e Which transform to choose?

Depend on need in particular task/application

DFT ~ reflect physical meaning of frequency or spatial frequency
KLT ~ optimal in energy compaction

DCT ~ real-to-real, and close to KLT’s energy compactability

Today’s addition: Haar Transform
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power of 2

k=2+q-1

“reminder”

Construction of Haar functions

e Unique decomposition of integer k < (p, q)
— k=0,...,N-1 with N=2n,0<=p<=n-1
— q=0, 1 (for p=0); 1 <= q<=2r (for p>0)

~ eg, k=0 & (0,0), k=1 ¢ (0,1); k=2 & (1,1), k=3 ©(1,2)

e hy(x) =h ,.(x) for x e [0,1] —
1
hy(x) = hyo(x) = f for xe [0,1] — ‘
—

Lo forq—-l<x<q_%
N 2r = 27 i : :

L e q-3 q
h(x)=h,, (x)= WZI forz—psz<2—p . .

0 for other x € [0,1] I_I
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Haar Transform

1
1
e Haar transform H )
~ Sample hy(x) at {m/N} = %2 %
e M=0,..,N-1 0
0
0

— Real and orthogonal

— Transition at each scale p is
localized according to g

e Basis images of 2-D
(separable) Haar transform

— One example of wavelets and
and multiresolution concepts

Compare Basis Images of DCT and Haar

8x8 DCT basis images

8x8 Haar basis images
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e NxN DCT basis images reflect transitions throughout the NxN image
— Ordered by frequency

e Haar basis images can reflect local transitions
— Ordered both by frequency and by spatial location index
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Image Compression

Part-1. Basics
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Why Need Compression?

e Savings in storage and transmission
— multimedia data (esp. image and video) have large data volume

— difficult to send real-time uncompressed video over current network

o Accommodate relatively slow storage devices

— they do not allow playing back uncompressed multimedia data in real
time
« 1x CD-ROM transfer rate ~ 150 kB/s
* 320 x 240 x 24 fps color video bit rate ~ 5.5MB/s
=> 36 seconds needed to transfer 1-sec uncompressed video from CD
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From Ken Lam’s DCT talk 2001 (HK Polytech)

Example: Storing An Encyclopedia

— 500,000 pages of text (2kB/page) ~1GB => 2:1 compress
3,000 color pictures (640x480x24bits) ~3GB => 15:1

— 500 maps (640x480x16bits=0.6MB/map)  ~ 0.3GB => 10:1
— 60 minutes of stereo sound (176kB/s) ~0.6GB=> 6:1

— 30 animations with average 2 minutes long
(640x320x16bitsx16frames/s=6.5MB/s) ~23.4GB =>50:1

— 50 digitized movies with average 1 minute long
(640x480x24bitsx30frames/s = 27.6MB/s)  ~ 82.8GB => 50:1

=> Require a total of 111.1GB storage capacity if without compression
= Reduce to 2.96GB if with compression
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PCM coding

e How to encode a digital image into bits?
— Sampling and perform uniform quantization
« “Pulse Coded Modulation” (PCM)
« 8bits per pixel ~ good for grayscale image/video
« 10-12 bpp ~ needed for medical images
e Reduce # of bpp for reasonable quality via quantization
— Quantization reduces # of possible levels to encode
— Visual quantization: companding, contrast quantization, dithering, etc.
« Halftone use 1bpp but usually upsampling ~ saving less than 2:1

I(xy) ;
—% Sampler }_.{ Quantizer }—v{ Encoder }M'

Input image

image capturing device
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Discussion on Improving PCM

e Quantized PCM values may not be equally likely
— Can we do better than encode each value using same # bits?

e Example
— P(“0”)=0.5, P(“1”)=0.25, P(“2”) = 0.125, P(“3") = 0.125

— Ifuse same # bits for all values
« Need 2 bits to represent the four possibilities if treat

— If use less bits for likely values “0” ~ Variable Length Codes (VLC)
s “0”=>[0], “1”=>[10], “2” => [110], “3” => [111]
« Use 1.75 bits on average ~ saves 0.25 bpp!
e Bring probability into the picture
— Previously use prob. distr. to reduce MSE of quantization
— Now use prob. distr. to reduce average # bits per quantized sample
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Entropy coding

e |dea: use less bits for commonly seen values

e How many # bits needed?

— Limit of compression => “Entropy”
« Measures the uncertainty or amount of avg. information of a source

« Definition: H= X, p;log, (1/p;) bits
« e.g., entropy of previous example is 1.75

« Can'’t represent a source perfectly with less than avg. H bits per sample

« Can represent a source perfectly with avg. H+¢ bits per sample
( Shannon Lossless Coding Theorem)

— “Compressability” depends on the sources

e Important to decode coded stream efficiently without
ambiguity

e See info. theory course for more theoretical details
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E.q. of Entropy Coding: Huffman Coding

e Variable length code

— assigning about log, (1 /p;) bits for the i value
« has to be integer# of bits per symbol

Step-1
— Arrange p; in decreasing order and consider them as tree leaves
Step-2

— Merge two nodes with smallest prob. to a new node and sum up prob.

— Arbitrarily assign 1 and 0 to each pair of merging branch

Step-3

— Repeat until no more than one node left.

— Read out codeword sequentially from root to leaf
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Huffman Coding (cont’d)

000 00 S0 025
©-0.54 5

001 10 s1 021 S o
010 010 S2 015 }02/ '
011 011 s3 o014 Y 0.46 =
1
0.2

100 1100 S4  0.0625—5

101 1101 s5 00625-Y }
110 1110 S6  0.0625— 1
111 1111 S7  0.0625 2

PCM Huffman
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Huffman Coding: Pros & Cons

e Pro
— Simplicity in implementation (table lookup)
— For a given block size Huffman coding gives the best coding efficiency

e Con

— Need to obtain source statistics

e Improvement
— Code a group of symbols as a whole to allow fractional # bit per symbol
— Arithmetic coding
— Lempel-Ziv coding or LZW algorithm

« “universal”, no need to estimate source statistics
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Discussion: Coding a Binary Image

e How to efficiently encode it?
- “000011000101000000111...”
e Run-length coding (RLC)

— Code length of runs of “0” between successive

« run-length of “0” ~ # of “0” between “1”
« good if often getting frequent large runs of “0” and sparse “1”

- Eg,=®H 03 MO OO)... ..

«]”

— Assign fixed-length codeword to run-length
— Or use variable-length code like Huffman to further improve

e RLC Also applicable to general binary data sequence with
sparse “1” (or “0”)
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Probability Model of Run-Length Coding

e Assume successive “0” occur independently w.p. p

e Prob. of getting an L runs of “0” (L=0,1, ..., M)
— P(L)=pt(I-p) for 0 <=1<=M-1 (geometric distribution)
— P(L)=p" for L=M

e Avg. # binary symbols per run

= Sug = 2L (LD pH(Ip) + Mp* = (1=p¥) /(1-p)

— Compression ratio C = S, /log, (M+1) = (1-p") / [( 1-p ) log,(M+1)]

e Example
- P=09,M=15 & S,,=794,C= 1985, H=0.469 bpp
— Avg. run-length coding rate B,,, = 4 bit/ 7.94 ~ 0.516 bpp
— Coding efficiency =H /B, , ~ 91%

M. Wu: ENEE631 Digital Image Processing (Fall'01) Lec7 — Image Compression 9/20/01 [19]

Predictive Coding (cont’d)
e Problem with 1st try

— Input to predictor are different at

encoder and decoder ug(n)

« decoder doesn’t know u(n)! T+

um - e(n) - eq(n)

— Mismatch error could propagate to Encoder

future reconstructed samples
eq(n)

U, (n
. q
e Solution: Differential PCM (DPCM) ?
— Use quantized sequence u,(n) for "
prediction at both encoder and decoder q
- uq“(n):f( uy(n-1), u (n-2), ..., u,(n-m) ) Decoder

— Prediction error e(n)

- Quantized prediction error e, (1) What predictor to use?
— Distortion d(n) = e(n) — e,n)

How to Encode Correlated Sequence?
e Consider: high correlation between successive samples

e Predictive coding

— Basic principle: Remove redundancy between successive pixels and only
encode residual between actual and predicted
— Residue usually has much smaller dynamic range
« Allow fewer quantization levels for the same MSE => get compression
— Compression efficiency depends on intersample redundancy

&)

u(n) e(n)

eq(n) Uq (n)

D
+
ug~(n)
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e Firsttry

Quantizer

Encoder
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Summary
e Finish image transform

e Begin basics on image coding/compression
— PCM coding

— Entropy coding

« Huffman
+ Run-length

— Predictive coding

e Next time: transform coding
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Assignment

e Readings
— Jain’s 11.1-11.3

e Reference
— Bovik’s Handbook Sec.5.1

e “Food for thoughts”
— What predictors to use for image predictive coding?

« pros and cons

e Announcement
— 1%tin-class exam will be given after “Image Compression”
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ENE631 Course Project: Introduction
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Topic: Video Coding and Processing

e Team project
— 2 students per team
— A few 3-person teams are allowed by instructor’s permission

e What to turn in finally?
— A video codec (encoder-decoder)

— Self-proposed part on video processing/analysis
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Step-by-Step Approach
e [9-10/01] 3 Building Blocks (BB) ~ similar to “assignment”

— individual work
— should keep a big picture of the project in mind

[11/2001] Team-up and submit project proposal
[12/2001] Project demo, presentation, and report

— peer review

o Details will be announced soon

e First BB on image transform will be posted this weekend
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